1
|
Hu ZH, Huang T, Zhang N, Chen C, Yang KX, Sun MZ, Yang N, Chen Y, Tao JP, Liu H, Li XH, Chen X, You X, Xiong AS, Zhuang J. Interference of skeleton photoperiod in circadian clock and photosynthetic efficiency of tea plant: in-depth analysis of mathematical model. HORTICULTURE RESEARCH 2024; 11:uhae226. [PMID: 39415971 PMCID: PMC11480659 DOI: 10.1093/hr/uhae226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/30/2024] [Indexed: 10/19/2024]
Abstract
The circadian system of plants is a complex physiological mechanism, a biological process in which plants can adjust themselves according to the day and night cycle. To understand the effects of different photoperiods on the biological clock of tea plants, we analyzed the expression levels of core clock genes (CCA1, PRR9, TOC1, ELF4) and photosynthesis-related genes (Lhcb, RbcS, atpA) under normal light (light/dark = 12 h/12 h, 12L12D) and took the cost function defined by cycle and phase errors as the basic model parameter. In the continuous light environment (24 h light, 24L), the peak activity and cycle of key genes that control the biological clock and photosynthesis were delayed by 1-2 h. Under a skeleton photoperiod (6L6D, 3L3D), the expression profiles of clock genes and photosynthesis-related genes in tea plants were changed and stomatal opening showed a circadian rhythm. These observations suggest that a skeleton photoperiod may have an effect on the circadian rhythm, photosynthetic efficiency and stomatal regulation of tea plants. Our study and model analyzed the components of circadian rhythms under different photoperiodic pathways, and also revealed the underlying mechanisms of circadian regulation of photosynthesis in tea plants.
Collapse
Affiliation(s)
- Zhi-Hang Hu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ting Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Nan Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Chen Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Kai-Xin Yang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Meng-Zhen Sun
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ni Yang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yi Chen
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jian-Ping Tao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xing-Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xuan Chen
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiong You
- College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
2
|
Zubova MY, Goncharuk EA, Nechaeva TL, Aksenova MA, Zaitsev GP, Katanskaya VM, Kazantseva VV, Zagoskina NV. Influence of Primary Light Exposure on the Morphophysiological Characteristics and Phenolic Compounds Accumulation of a Tea Callus Culture ( Camellia sinensis L.). Int J Mol Sci 2024; 25:10420. [PMID: 39408751 PMCID: PMC11477156 DOI: 10.3390/ijms251910420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/23/2024] [Accepted: 09/06/2024] [Indexed: 10/20/2024] Open
Abstract
Tea plant calli (Camellia sinensis L.) are characterized by the accumulation of various phenolic compounds (PC)-substances with high antioxidant activity. However, there is still no clarity on the response of tea cells to light exposure of varying intensity. The purpose of the research was to study tea callus cultures grown under the influence of primary exposure to different light intensities (50, 75, and 100 µmol·m-2·s-1). The cultures' growth, morphology, content of malondialdehyde and photosynthetic pigments (chlorophyll a and b), accumulation of various PC, including phenylpropanoids and flavanols, and the composition of catechins were analyzed. Primary exposure to different light intensities led to the formation of chloroplasts in tea calli, which was more pronounced at 100 µmol·m-2·s-1. Significant similarity in the growth dynamics of cultures, accumulation of pigments, and content of malondialdehyde and various phenolics in tea calli grown at light intensities of 50 and 75 µmol·m-2·s-1 has been established, which is not typical for calli grown at 100 µmol·m-2·s-1. According to data collected using high-performance liquid chromatography, (+)-catechin, (-)-epicatechin, epigallocatechin, gallocatechin gallate, epicatechin gallate, and epigallocatechin gallate were the main components of the tea callus culture's phenolic complex. Its content changed under the influence of primary exposure to light, reaching the greatest accumulation in the final stages of growth, and depended on the light intensity. The data obtained indicate changes in the morphophysiological and biochemical characteristics of tea callus cultures, including the accumulation of PC and their individual representatives under primary exposure to light exposure of varying intensity, which is most pronounced at its highest values (100 µmol·m-2·s-1).
Collapse
Affiliation(s)
- Maria Y. Zubova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.A.G.); (T.L.N.); (M.A.A.); (V.M.K.); k.v.- (V.V.K.)
| | - Evgenia A. Goncharuk
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.A.G.); (T.L.N.); (M.A.A.); (V.M.K.); k.v.- (V.V.K.)
| | - Tatiana L. Nechaeva
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.A.G.); (T.L.N.); (M.A.A.); (V.M.K.); k.v.- (V.V.K.)
| | - Maria A. Aksenova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.A.G.); (T.L.N.); (M.A.A.); (V.M.K.); k.v.- (V.V.K.)
| | - Georgiy P. Zaitsev
- All-Russia National Research Institute of Viticulture and Winemaking “Magarach”, Russian Academy of Sciences, 298600 Yalta, Russia;
| | - Vera M. Katanskaya
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.A.G.); (T.L.N.); (M.A.A.); (V.M.K.); k.v.- (V.V.K.)
| | - Varvara V. Kazantseva
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.A.G.); (T.L.N.); (M.A.A.); (V.M.K.); k.v.- (V.V.K.)
| | - Natalia V. Zagoskina
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (E.A.G.); (T.L.N.); (M.A.A.); (V.M.K.); k.v.- (V.V.K.)
| |
Collapse
|
3
|
Tariq A, Meng M, Jiang X, Bolger A, Beier S, Buchmann JP, Fernie AR, Wen W, Usadel B. In-depth exploration of the genomic diversity in tea varieties based on a newly constructed pangenome of Camellia sinensis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2096-2115. [PMID: 38872506 DOI: 10.1111/tpj.16874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 06/15/2024]
Abstract
Tea, one of the most widely consumed beverages globally, exhibits remarkable genomic diversity in its underlying flavour and health-related compounds. In this study, we present the construction and analysis of a tea pangenome comprising a total of 11 genomes, with a focus on three newly sequenced genomes comprising the purple-leaved assamica cultivar "Zijuan", the temperature-sensitive sinensis cultivar "Anjibaicha" and the wild accession "L618" whose assemblies exhibited excellent quality scores as they profited from latest sequencing technologies. Our analysis incorporates a detailed investigation of transposon complement across the tea pangenome, revealing shared patterns of transposon distribution among the studied genomes and improved transposon resolution with long read technologies, as shown by long terminal repeat (LTR) Assembly Index analysis. Furthermore, our study encompasses a gene-centric exploration of the pangenome, exploring the genomic landscape of the catechin pathway with our study, providing insights on copy number alterations and gene-centric variants, especially for Anthocyanidin synthases. We constructed a gene-centric pangenome by structurally and functionally annotating all available genomes using an identical pipeline, which both increased gene completeness and allowed for a high functional annotation rate. This improved and consistently annotated gene set will allow for a better comparison between tea genomes. We used this improved pangenome to capture the core and dispensable gene repertoire, elucidating the functional diversity present within the tea species. This pangenome resource might serve as a valuable resource for understanding the fundamental genetic basis of traits such as flavour, stress tolerance, and disease resistance, with implications for tea breeding programmes.
Collapse
Affiliation(s)
- Arslan Tariq
- HHU Düsseldorf, Faculty of Mathematics and Natural Sciences, CEPLAS, Heinrich Heine University, Universitätsstrasse 1, Düsseldorf, Germany
| | - Minghui Meng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaohui Jiang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Anthony Bolger
- Institute of Bio- and Geosciences, IBG-4: Bioinformatics, CEPLAS, Forschungszentrum Jülich, Leo Brandt-Straße, Jülich, 52425, Germany
| | - Sebastian Beier
- Institute of Bio- and Geosciences, IBG-4: Bioinformatics, CEPLAS, Forschungszentrum Jülich, Leo Brandt-Straße, Jülich, 52425, Germany
| | - Jan P Buchmann
- HHU Düsseldorf, Faculty of Mathematics and Natural Sciences, CEPLAS, Heinrich Heine University, Universitätsstrasse 1, Düsseldorf, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam-Golm, 14476, Germany
| | - Weiwei Wen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Björn Usadel
- HHU Düsseldorf, Faculty of Mathematics and Natural Sciences, CEPLAS, Heinrich Heine University, Universitätsstrasse 1, Düsseldorf, Germany
- Institute of Bio- and Geosciences, IBG-4: Bioinformatics, CEPLAS, Forschungszentrum Jülich, Leo Brandt-Straße, Jülich, 52425, Germany
| |
Collapse
|
4
|
Chen Z, Wang P, Bai W, Deng Y, Cheng Z, Su L, Nong L, Liu T, Yang W, Yang X, Liu Z. Quantitative Trait Loci Sequencing and Genetic Mapping Reveal Two Main Regulatory Genes for Stem Color in Wax Gourds. PLANTS (BASEL, SWITZERLAND) 2024; 13:1804. [PMID: 38999643 PMCID: PMC11244448 DOI: 10.3390/plants13131804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024]
Abstract
Stem color is an important agronomic trait of wax gourds. However, its regulatory genes have not been identified. In this study, 105 inbred lines constructed from two parents (GX-71 and MY-1) were sequenced and quantitative trait loci sequencing was used to mine the genes that regulate stem color in wax gourds. The results identified two quantitative trait loci related to stem color, qSC5 and qSC12, located on Chr05 (11,134,567-16,459,268) and Chr12 (74,618,168-75,712,335), respectively. The qSC5 had a phenotypic variation rate of 36.9% and a maximum limit of detection of 16.9. And the qSC12 had a phenotypic variation rate of 20.9%, and a maximum limit of detection of 11.2. Bch05G003950 (named BchAPRR2) and Bch12G020400 were identified as candidate genes involved in stem color regulation in wax gourds. The chlorophyll content and expression of BchAPRR2 and Bch12G020400 were significantly higher in green-stemmed wax gourds than in white-stemmed ones. Therefore, BchAPRR2 and Bch12G020400 were considered the main and secondary regulatory genes for wax gourd stem color, respectively. Finally, InDel markers closely linked to BchAPRR2 were developed to validate the prediction of wax gourd stem color traits in 55 germplasm lines, with an accuracy of 81.8%. These findings lay the foundation for exploring the genetic regulation of wax gourd stem color and future research on wax gourd breeding.
Collapse
Affiliation(s)
- Zhihao Chen
- College of Agriculture, Guangxi University, Nanning 530000, China
| | - Peng Wang
- College of Agriculture, Guangxi University, Nanning 530000, China
| | - Wenhui Bai
- College of Agriculture, Guangxi University, Nanning 530000, China
| | - Yan Deng
- College of Agriculture, Guangxi University, Nanning 530000, China
| | - Zhikui Cheng
- College of Agriculture, Guangxi University, Nanning 530000, China
| | - Liwen Su
- College of Agriculture, Guangxi University, Nanning 530000, China
| | - Lifeng Nong
- College of Agriculture, Guangxi University, Nanning 530000, China
| | - Ting Liu
- College of Agriculture, Guangxi University, Nanning 530000, China
| | - Wenrui Yang
- College of Agriculture, Guangxi University, Nanning 530000, China
| | - Xiping Yang
- College of Agriculture, Guangxi University, Nanning 530000, China
| | - Zhengguo Liu
- College of Agriculture, Guangxi University, Nanning 530000, China
| |
Collapse
|
5
|
Zhang T, Jian Q, Yao X, Guan L, Li L, Liu F, Zhang C, Li D, Tang H, Lu L. Plant growth-promoting rhizobacteria (PGPR) improve the growth and quality of several crops. Heliyon 2024; 10:e31553. [PMID: 38818163 PMCID: PMC11137509 DOI: 10.1016/j.heliyon.2024.e31553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) are known to have the effect of promoting plant growth. In this paper, three PGPR strains were selected from the previous work, which had plant growth-promoting activities such as phosphate solubilization, nitrogen fixation, phosphorus mobilization, etc. These strains named FJS-3(Burkholderia pyromania), FJS-7(Pseudomonas rhodesiae), and FJS-16(Pseudomonas baetica), respectively, were prepared into solid biological agents. Three widely planted commercial crops (tea plant, tobacco, and chili pepper) were selected for PGPR growth promotion verification. The results showed that the new shoots of tea seedlings under PGPR treatment were much more than the control. We also used tobacco, another important crop in Guizhou, to test the growth-promoting effect of individual bacteria, and the results showed that each of them could promote the growth of tobacco plants, and FJS-3(Burkholderia pyrrocinia) had the best effect. In addition, we carried out experiments on tobacco and pepper using multi-strain PGPR, the tobacco plants' height, fresh, and root weight increased by 30.15 %, 37.36 %, and 54.5 %, respectively, and the pepper plants' increased by 30.10 %, 56.38 % and 43.18 %, respectively, which both showed significantly better effects than that of a single strain. To further test the field performance, field trials were carried out in a mature Longjing43 tea plantation in Guizhou. There were four treatments: no fertilization (T1), combined application of PGPR biological agent and compound fertilizer (T2), only application of PGPR (T3), and only application of compound fertilizer (T4). In terms of yield, grouped with or without PGPR, there was a 15.38 % (T2:T4) and 92.31 % (T3:T1) increase between them, respectively. The tea's yield and tea flavor substances such as tea polyphenols, caffeine, and theanine were detected, and the T2 showed the most significant positive effect on both sides. Especially, an important indicator of Matcha green tea is the color, chlorophyll content was then tested, and PGPR application increased it and improved the appearance. All these results demonstrated that the PGPR we screened could significantly promote plant growth and quality improvement, and had good application potential in crop planting, which could contribute to environmental protection and economic growth.
Collapse
Affiliation(s)
- Tongrui Zhang
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Qinhao Jian
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Xinzhuan Yao
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Li Guan
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Linlin Li
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Fei Liu
- WENGFU GROUP, Guiyang 550025, China
| | | | - Dan Li
- Wengfu Group Agriservice Co., Ltd, Fuquan 550500, China
| | - Hu Tang
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Litang Lu
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| |
Collapse
|
6
|
Yin S, Niu L, Zhang J, Liu Y. Gardenia yellow pigment: Extraction methods, biological activities, current trends, and future prospects. Food Res Int 2024; 179:113981. [PMID: 38342530 DOI: 10.1016/j.foodres.2024.113981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 02/13/2024]
Abstract
Food coloring plays a vital role in influencing consumers' food choices, imparting vibrant and appealing colors to various food and beverage products. Synthetic food colorants have been the most commonly used coloring agents in the food industry. However, concerns about potential health issues related to synthetic colorants, coupled with increasing consumer demands for food safety and health, have led food manufacturers to explore natural alternatives. Natural pigments not only offer a wide range of colors to food products but also exhibit beneficial bioactive properties. Gardenia yellow pigment is a water-soluble natural pigment with various biological activities, widely present in gardenia fruits. Therefore, this paper aims to delve into Gardenia Yellow Pigment, highlighting its significance as a food colorant. Firstly, a thorough understanding and exploration of various methods for obtaining gardenia yellow pigment. Subsequently, the potential functionality of gardenia yellow pigment was elaborated, especially its excellent antioxidant and neuroprotective properties. Finally, the widespread application trend of gardenia yellow pigment in the food industry was explored, as well as the challenges faced by the future development of gardenia yellow pigment in the field of food and health. Some feasible solutions were proposed, providing valuable references and insights for researchers, food industry professionals, and policy makers.
Collapse
Affiliation(s)
- Shipeng Yin
- School of Food Science and Technology, Jiangnan University, Wuxi, China.
| | - Liqiong Niu
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jian Zhang
- Future Food (Bai Ma) Research Institute, Nanjing, China
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, Wuxi, China.
| |
Collapse
|
7
|
Li S, Yin Y, Chen J, Cui X, Fu J. H 2O 2 promotes trimming-induced tillering by regulating energy supply and redox status in bermudagrass. PeerJ 2024; 12:e16985. [PMID: 38436009 PMCID: PMC10909351 DOI: 10.7717/peerj.16985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
Tillering/branching pattern plays a significant role in determining the structure and diversity of grass, and trimming has been found to induce tillering in turfgrass. Recently, it has been reported that hydrogen peroxide (H2O2) regulates axillary bud development. However, the role of H2O2 in trimming-induced tillering in bermudagrass, a kind of turfgrass, remains unclear. Our study unveils the significant impact of trimming on promoting the sprouting and growth of tiller buds in stolon nodes, along with an increase in the number of tillers in the main stem. This effect is accompanied by spatial-temporal changes in cytokinin and sucrose content, as well as relevant gene expression in axillary buds. In addition, the partial trimming of new-born tillers results in an increase in sucrose and starch reserves in their leaves, which can be attributed to the enhanced photosynthesis capacity. Importantly, trimming promotes a rapid H2O2 burst in the leaves of new-born tillers and axillary stolon buds. Furthermore, exogenous application of H2O2 significantly increases the number of tillers after trimming by affecting the expression of cytokinin-related genes, bolstering photosynthesis potential, energy reserves and antioxidant enzyme activity. Taken together, these results indicate that both endogenous production and exogenous addition of H2O2 enhance the inductive effects of trimming on the tillering process in bermudagrass, thus helping boost energy supply and maintain the redox state in newly formed tillers.
Collapse
Affiliation(s)
- Shuang Li
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Yanling Yin
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Jianmin Chen
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Xinyu Cui
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Jinmin Fu
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| |
Collapse
|
8
|
Zhang Y, Wang L, Kong X, Chen Z, Zhong S, Li X, Shan R, You X, Wei K, Chen C. Integrated Analysis of Metabolome and Transcriptome Revealed Different Regulatory Networks of Metabolic Flux in Tea Plants [ Camellia sinensis (L.) O. Kuntze] with Varied Leaf Colors. Int J Mol Sci 2023; 25:242. [PMID: 38203412 PMCID: PMC10779186 DOI: 10.3390/ijms25010242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Leaf color variations in tea plants were widely considered due to their attractive phenotypes and characteristic flavors. The molecular mechanism of color formation was extensively investigated. But few studies focused on the transformation process of leaf color change. In this study, four strains of 'Baijiguan' F1 half-sib generation with similar genetic backgrounds but different colors were used as materials, including Green (G), Yellow-Green (Y-G), Yellow (Y), and Yellow-Red (Y-R). The results of broadly targeted metabolomics showed that 47 metabolites were differentially accumulated in etiolated leaves (Y-G, Y, and Y-R) as compared with G. Among them, lipids were the main downregulated primary metabolites in etiolated leaves, which were closely linked with the thylakoid membrane and chloroplast structure. Flavones and flavonols were the dominant upregulated secondary metabolites in etiolated leaves, which might be a repair strategy for reducing the negative effects of dysfunctional chloroplasts. Further integrated analysis with the transcriptome indicated different variation mechanisms of leaf phenotype in Y-G, Y, and Y-R. The leaf color formation of Y-G and Y was largely determined by the increased content of eriodictyol-7-O-neohesperidoside and the enhanced activities of its modification process, while the color formation of Y-R depended on the increased contents of apigenin derivates and the vigorous processes of their transportation and transcription factor regulation. The key candidate genes, including UDPG, HCT, CsGSTF1, AN1/CsMYB75, and bHLH62, might play important roles in the flavonoid pathway.
Collapse
Affiliation(s)
- Yazhen Zhang
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China; (Y.Z.); (X.K.); (Z.C.); (S.Z.); (X.L.); (R.S.); (X.Y.)
| | - Liyuan Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China;
| | - Xiangrui Kong
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China; (Y.Z.); (X.K.); (Z.C.); (S.Z.); (X.L.); (R.S.); (X.Y.)
| | - Zhihui Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China; (Y.Z.); (X.K.); (Z.C.); (S.Z.); (X.L.); (R.S.); (X.Y.)
| | - Sitong Zhong
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China; (Y.Z.); (X.K.); (Z.C.); (S.Z.); (X.L.); (R.S.); (X.Y.)
| | - Xinlei Li
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China; (Y.Z.); (X.K.); (Z.C.); (S.Z.); (X.L.); (R.S.); (X.Y.)
| | - Ruiyang Shan
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China; (Y.Z.); (X.K.); (Z.C.); (S.Z.); (X.L.); (R.S.); (X.Y.)
| | - Xiaomei You
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China; (Y.Z.); (X.K.); (Z.C.); (S.Z.); (X.L.); (R.S.); (X.Y.)
| | - Kang Wei
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), Hangzhou 310008, China;
| | - Changsong Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350012, China; (Y.Z.); (X.K.); (Z.C.); (S.Z.); (X.L.); (R.S.); (X.Y.)
| |
Collapse
|
9
|
Zhao Y, Yang P, Cheng Y, Liu Y, Yang Y, Liu Z. Insights into the physiological, molecular, and genetic regulators of albinism in Camellia sinensis leaves. Front Genet 2023; 14:1219335. [PMID: 37745858 PMCID: PMC10516542 DOI: 10.3389/fgene.2023.1219335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/03/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction: Yanling Yinbiancha, a cultivar of Camellia sinensis (L.) O. Kuntze, is an evergreen woody perennial with characteristic albino leaves. A mutant variant with green leaves on branches has been recently identified. The molecular mechanisms underlying this color variation remain unknown. Methods: We aimed to utilize omics tools to decipher the molecular basis for this color variation, with the ultimate goal of enhancing existing germplasm and utilizing it in future breeding programs. Results and discussion: Albinotic leaves exhibited significant chloroplast degeneration and reduced carotenoid accumulation. Transcriptomic and metabolomic analysis of the two variants revealed 1,412 differentially expressed genes and 127 differentially accumulated metabolites (DAMs). Enrichment analysis for DEGs suggested significant enrichment of pathways involved in the biosynthesis of anthocyanins, porphyrin, chlorophyll, and carotenoids. To further narrow down the causal variation for albinotic leaves, we performed a conjoint analysis of metabolome and transcriptome and identified putative candidate genes responsible for albinism in C. sinensis leaves. 12, 7, and 28 DEGs were significantly associated with photosynthesis, porphyrin/chlorophyll metabolism, and flavonoid metabolism, respectively. Chlorophyllase 2, Chlorophyll a-Binding Protein 4A, Chlorophyll a-Binding Protein 24, Stay Green Regulator, Photosystem II Cytochrome b559 subunit beta along with transcription factors AP2, bZIP, MYB, and WRKY were identified as a potential regulator of albinism in Yanling Yinbiancha. Moreover, we identified Anthocyanidin reductase and Arabidopsis Response Regulator 1 as DEGs influencing flavonoid accumulation in albino leaves. Identification of genes related to albinism in C. sinensis may facilitate genetic modification or development of molecular markers, potentially enhancing cultivation efficiency and expanding the germplasm for utilization in breeding programs.
Collapse
Affiliation(s)
- Yang Zhao
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | | | | | | | | | - Zhen Liu
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| |
Collapse
|
10
|
Qiu X, Sun G, Liu F, Hu W. Functions of Plant Phytochrome Signaling Pathways in Adaptation to Diverse Stresses. Int J Mol Sci 2023; 24:13201. [PMID: 37686008 PMCID: PMC10487518 DOI: 10.3390/ijms241713201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Phytochromes are receptors for red light (R)/far-red light (FR), which are not only involved in regulating the growth and development of plants but also in mediated resistance to various stresses. Studies have revealed that phytochrome signaling pathways play a crucial role in enabling plants to cope with abiotic stresses such as high/low temperatures, drought, high-intensity light, and salinity. Phytochromes and their components in light signaling pathways can also respond to biotic stresses caused by insect pests and microbial pathogens, thereby inducing plant resistance against them. Given that, this paper reviews recent advances in understanding the mechanisms of action of phytochromes in plant resistance to adversity and discusses the importance of modulating the genes involved in phytochrome signaling pathways to coordinate plant growth, development, and stress responses.
Collapse
Affiliation(s)
- Xue Qiu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China; (X.Q.); (G.S.)
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Guanghua Sun
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China; (X.Q.); (G.S.)
| | - Fen Liu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China; (X.Q.); (G.S.)
| | - Weiming Hu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China; (X.Q.); (G.S.)
| |
Collapse
|
11
|
Liu X, Cao J, Cheng X, Zhu W, Sun Y, Wan X, Liu L. CsRVE1 promotes seasonal greening of albino Camellia sinensis cv. Huangkui by activating chlorophyll biosynthesis. TREE PHYSIOLOGY 2023; 43:1432-1443. [PMID: 37083709 DOI: 10.1093/treephys/tpad052] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/08/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Seasonal greening is a crucial survival strategy for albino tea cultivars, during which dysfunctional chloroplasts recover and chlorophyll biosynthesis increases in albino leaves. However, the regulatory mechanisms of seasonal greening in albino tea plants remain unclear. Here, we report that CsRVE1, a nuclear-located Myb-like transcription factor, can positively modulate the seasonal greening of albino Camellia sinensis cv. Huangkui leaves by activating the expression of genes involved in light harvesting and chlorophyll biosynthesis. The transcriptional expression of CsRVE1 increased during seasonal greening and was tightly correlated with increases in the expression of genes involved in light harvesting (CsLhcb) and chlorophyll biosynthesis (CsCHLH, CsHEMA1 and CsCAO). In vivo and in vitro molecular analyses showed that CsRVE1 can directly bind to the promoters of CsLhcb, CsCHLH and CsPORA, eventually leading to chlorophyll accumulation in tea leaves. Furthermore, transient suppression of CsRVE1 in tea leaves led to a decrease in target gene expression. In contrast, the overexpression of CsRVE1 in Arabidopsis led to chlorophyll increases and the activation of AtLhcb, AtPORA, AtCHLH, etc. These results identify CsRVE1 as an important promoter of seasonal greening that functions by regulating genes involved in chlorophyll biosynthesis in albino tea plants and shed new light on the regulatory mechanisms of leaf phenotypes in plants.
Collapse
Affiliation(s)
- Xuyang Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, China
| | - Jingjie Cao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, China
| | - Xin Cheng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, China
| | - Wenfeng Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, China
| | - Ying Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, China
| | - Linlin Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui 230036, China
| |
Collapse
|
12
|
Tadda SA, Li C, Ding J, Li J, Wang J, Huang H, Fan Q, Chen L, He P, Ahiakpa JK, Karikari B, Chen X, Qiu D. Integrated metabolome and transcriptome analyses provide insight into the effect of red and blue LEDs on the quality of sweet potato leaves. FRONTIERS IN PLANT SCIENCE 2023; 14:1181680. [PMID: 37324670 PMCID: PMC10266350 DOI: 10.3389/fpls.2023.1181680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/02/2023] [Indexed: 06/17/2023]
Abstract
Red and blue light-emitting diodes (LEDs) affect the quality of sweet potato leaves and their nutritional profile. Vines cultivated under blue LEDs had higher soluble protein contents, total phenolic compounds, flavonoids, and total antioxidant activity. Conversely, chlorophyll, soluble sugar, protein, and vitamin C contents were higher in leaves grown under red LEDs. Red and blue light increased the accumulation of 77 and 18 metabolites, respectively. Alpha-linoleic and linolenic acid metabolism were the most significantly enriched pathways based on Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. A total of 615 genes were differentially expressed between sweet potato leaves exposed to red and blue LEDs. Among these, 510 differentially expressed genes were upregulated in leaves grown under blue light compared with those grown under red light, while the remaining 105 genes were expressed at higher levels in the latter than in the former. Among the KEGG enrichment pathways, blue light significantly induced anthocyanin and carotenoid biosynthesis structural genes. This study provides a scientific reference basis for using light to alter metabolites to improve the quality of edible sweet potato leaves.
Collapse
Affiliation(s)
- Shehu A. Tadda
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Agronomy, Federal University Dutsin-Ma, Katsina, Nigeria
- Agriculture Research Group, Organization of African Academic Doctors (OAAD), Nairobi, Kenya
| | - Chengyue Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jintao Ding
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jian’an Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jingjing Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huaxing Huang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Quan Fan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lifang Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pengfei He
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - John K. Ahiakpa
- Agriculture Research Group, Organization of African Academic Doctors (OAAD), Nairobi, Kenya
| | - Benjamin Karikari
- Agriculture Research Group, Organization of African Academic Doctors (OAAD), Nairobi, Kenya
- Department of Agricultural Biotechnology, University for Development Studies, Tamale, Ghana
| | - Xuanyang Chen
- College of Agriculture, Fujian Agriculture, and Forestry University, Fuzhou, China
- Key Laboratory of Crop Biotechnology, Fujian Agriculture and Forestry University, Fujian Province Universities, Fuzhou, China
| | - Dongliang Qiu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
13
|
Zhang X, Zhao Z, Zhang M, Wang J, Cheng T, Zhang Q, Pan H. FsHemF is involved in the formation of yellow Forsythia leaves by regulating chlorophyll synthesis in response to light intensity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107746. [PMID: 37210861 DOI: 10.1016/j.plaphy.2023.107746] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/23/2023]
Abstract
The leaves of Forsythia koreana 'Suwon Gold' are yellow under natural light condition and can revert to green when the light intensity is reduced. To understand the molecular mechanism of leaf color changes in response to light intensity, we compared the chlorophyll content and precursor content between yellow- and green-leaf Forsythia under shade and light-recovery conditions. We identified the conversion of coproporphyrin III (Coprogen III) to protoporphyrin IX (Proto IX) as the primary rate-limiting step of chlorophyll biosynthesis in yellow-leaf Forsythia. Further analysis of the activity of the enzymes that catalyze this step and the expression pattern of the chlorophyll biosynthesis-related genes under different light intensities revealed that the negatively regulated expression of FsHemF by light intensity was the major cause affecting the leaf color change in response to light intensity in yellow-leaf Forsythia. To further understand the cause of differential expression pattern of FsHemF in yellow- and green-leaf lines, we compared the coding sequence and promoter sequence of FsHemF between yellow- and green-leaf Forsythia. We found that one G-box light-responsive cis-element was absent in the promoter region of green-leaf lines. To investigate the functional role of FsHemF, we performed virus-induced gene silencing (VIGS) of FsHemF in green-leaf Forsythia, which leads to yellowing leaf veins, decreased chlorophyll b content, and inhibition of chlorophyll biosynthesis. The results will assist in elucidating the mechanism of yellow-leaf Forsythia in response to light intensity.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Zhengtian Zhao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Man Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
14
|
Liu X, Cheng X, Cao J, Zhu W, Sun Y, Lin N, Wan X, Liu L. UV-B regulates seasonal greening of albino leaves by modulating CsHY5-inhibiting chlorophyll biosynthesis in Camellia sinensis cv. Huangkui. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 328:111569. [PMID: 36529181 DOI: 10.1016/j.plantsci.2022.111569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/27/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Seasonal greening is crucial for albino plants but the underlying regulatory mechanism is unclear, especially concerning light regulation as one of the most important environmental factors for light-sensitive albino tea plants. Here, we report that the UV-B signal regulates the seasonal greening process of albino leaves by modulating CsHY5-inhibiting chlorophyll biosynthesis in Camellia sinensis cv. Huangkui. Reduction of solar UV-B in plantation promoted the seasonal greening of albino 'HK' leaves by inhibiting CsHY5 transcription and activating genes involved in light-harvesting CsLhlb and the chlorophyll biosynthetic pathway (CsCHLH, CsHEMA1, and CsPORA), leading to enrichment of chlorophyll accumulation and recovery of dysfunctional chloroplasts. In contrast, indoor supplementary UV-B exposure reduced chlorophylls by activating CsHY5 but inhibiting chlorophyll biosynthetic genes. In vivo and in vitro molecular analyses showed that CsHY5 can directly bind to the promoters of CsLhlb, CsCHLH, CsHEMA1, and CsPORA. These results indicate that CsHY5 acts as a repressor for the seasonal greening of the albino tea plants in response to the UV-B signal. This is the first study that investigates the regulatory role of the CsHY5-mediated UV-B signal in regulating the seasonal greening of the albino tea plant, which improves our understanding of light regulation in leaf phenotypes of higher plants.
Collapse
Affiliation(s)
- Xuyang Liu
- State Key Laboratory of Tea Plant Biology and Utilization, China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, China; Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, China.
| | - Xin Cheng
- State Key Laboratory of Tea Plant Biology and Utilization, China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, China; Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, China.
| | - Jingjie Cao
- State Key Laboratory of Tea Plant Biology and Utilization, China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, China; Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, China.
| | - Wenfeng Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, China; Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, China.
| | - Ying Sun
- State Key Laboratory of Tea Plant Biology and Utilization, China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, China; Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, China.
| | - Ning Lin
- State Key Laboratory of Tea Plant Biology and Utilization, China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, China; Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, China.
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, China; Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, China.
| | - Linlin Liu
- State Key Laboratory of Tea Plant Biology and Utilization, China; Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture, China; Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, China.
| |
Collapse
|
15
|
Zhu L, Wang Y, Zhang Z, Hu D, Wang Z, Hu J, Ma C, Yang L, Sun S, Li Y. Chromosomal fragment deletion in APRR2-repeated locus modulates the dark stem color in Cucurbita pepo. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4277-4288. [PMID: 36098750 DOI: 10.1007/s00122-022-04217-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Cp4.1LG15g03420 (CpDsc-1), which encodes a two-component response regulator-like protein (APRR2) in the nucleus, influences dark green stem formation in Cucurbita pepo by regulating the chlorophyll content. Stem color is an important agronomic trait in zucchini (Cucurbita pepo) for robust seeding and high yield. However, the gene controlling the stem color has not been characterized. In this study, we identified a single locus accounting for the dark green stem color of C. pepo (CpDsc-1). Genetic analysis of this trait in segregated populations derived from two parental lines (line 296 with dark green stems and line 274 with light green stems) revealed that stem color was controlled by a single dominant gene (dark green vs. light green). In bulked segregant analysis, CpDsc-1 was mapped to a 2.09-Mb interval on chromosome 15. This region was further narrowed to 65.2 kb using linkage analysis of the F2 population. Sequencing analysis revealed a 14 kb deletion between Cp4.1LG15g03420 and Cp4.1LG15g03360; these two genes both encoded a two-component response regulator-like protein (APRR2). The incomplete structures of the two APRR2 genes and abnormal chloroplasts in line 274 might be the main cause of the light green phenotype. Gene expression pattern analysis showed that only Cp4.1LG15g03420 was upregulated in line 296. Subcellular localization analysis indicated that Cp4.1LG15g03420 was a nuclear gene. Furthermore, a co-dominant marker, G4563 (93% accuracy rate), and a co-segregation marker, Fra3, were established in 111 diverse germplasms; both of these markers were tightly linked with the color trait. This study provided insights into chlorophyll regulation mechanisms and revealed the markers valuable for marker-assisted selection in future zucchini breeding.
Collapse
Affiliation(s)
- Lei Zhu
- Henan Engineering Technology Research Center of Germplasm Innovation and Utilization of Melon Crops, Henan Agricultural University, Zhengzhou, China
- International Joint Laboratory of Horticultural Biology, College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, China
| | - Yong Wang
- Henan Engineering Technology Research Center of Germplasm Innovation and Utilization of Melon Crops, Henan Agricultural University, Zhengzhou, China
| | - Zhenli Zhang
- International Joint Laboratory of Horticultural Biology, College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, China
| | - Deju Hu
- International Joint Laboratory of Horticultural Biology, College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, China
| | - Zanlin Wang
- International Joint Laboratory of Horticultural Biology, College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, China
| | - Jianbin Hu
- International Joint Laboratory of Horticultural Biology, College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, China
| | - Changsheng Ma
- Henan Engineering Technology Research Center of Germplasm Innovation and Utilization of Melon Crops, Henan Agricultural University, Zhengzhou, China
- International Joint Laboratory of Horticultural Biology, College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, China
| | - Luming Yang
- Henan Engineering Technology Research Center of Germplasm Innovation and Utilization of Melon Crops, Henan Agricultural University, Zhengzhou, China
- International Joint Laboratory of Horticultural Biology, College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, China
| | - Shouru Sun
- Henan Engineering Technology Research Center of Germplasm Innovation and Utilization of Melon Crops, Henan Agricultural University, Zhengzhou, China.
- International Joint Laboratory of Horticultural Biology, College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, China.
| | - Yanman Li
- Henan Engineering Technology Research Center of Germplasm Innovation and Utilization of Melon Crops, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
16
|
Zhou Z, Chen M, Wu Q, Zeng W, Chen Z, Sun W. Combined analysis of lipidomics and transcriptomics revealed the key pathways and genes of lipids in light-sensitive albino tea plant ( Camellia sinensis cv. Baijiguan). FRONTIERS IN PLANT SCIENCE 2022; 13:1035119. [PMID: 36330254 PMCID: PMC9623167 DOI: 10.3389/fpls.2022.1035119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Currently, the mechanism by which light-sensitive albino tea plants respond to light to regulate pigment synthesis has been only partially elucidated. However, few studies have focused on the role of lipid metabolism in the whitening of tea leaves. Therefore, in our study, the leaves of the Baijiguan (BJG) tea tree under shade and light restoration conditions were analyzed by a combination of lipidomics and transcriptomics. The leaf color of BJG was regulated by light intensity and responded to light changes in light by altering the contents and proportions of lipids. According to the correlation analysis, we found three key lipid components that were significantly associated with the chlorophyll SPAD value, namely, MGDG (36:6), DGDG (36:6) and DGDG (34:3). Further weighted gene coexpression network analysis (WGCNA) showed that HY5 TF and GLIP genes may be hub genes involved lipid regulation in albino tea leaves. Our results lay a foundation for further exploration of the color changes in albino tea leaves.
Collapse
Affiliation(s)
- Zhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingjie Chen
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Quanjin Wu
- Department of Finance and Management, The Open University of Fujian, Fuzhou, China
| | - Wen Zeng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhidan Chen
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou, China
| | - Weijiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
17
|
Liang H, Liu B, Wu C, Zhang X, Wang M, Huang X, Wan L, Tang H. Effects of light intensity on the growth of Polygala fallax Hemsl. (Polygalaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:985628. [PMID: 36092442 PMCID: PMC9459231 DOI: 10.3389/fpls.2022.985628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Polygala fallax Hemsl. (Polygalaceae), a traditional Chinese medicinal species, requires optimal growth conditions for artificial cultivation. Irradiance is one of the primary environmental factors that affects the growth and survival of P. fallax Hemsl. plants, which seemingly grow better under weak irradiance conditions. However, the optimum light intensity for growing P. fallax Hemsl. is not clear. To determine the optimum light intensity for cultivating this medicinal plant species, P. fallax Hemsl. plants from two different habitats were grown and exposed to three shade treatments (50% shade, 70% shade and 90% shade, which resulted in photosynthetically active radiation amounts equal to 662 μmol m-2 s-1, 401 μmol m-2 s-1, and 131 μmol m-2 s-1, respectively) to evaluate survival, growth, leaf photosynthesis, and the main pharmacological active ingredients (saponins) in response to shade. Our results revealed that the P. fallax Hemsl. plants in the different habitats consistently exhibited relatively high photosynthesis rates, biomass, survival rates and saponins under 662 μmol m-2 s-1 created by the 50% shade treatment. We concluded that photosynthetically active radiation of approximately 662 μmol m-2 s-1 is suitable for the cultivation of P. fallax Hemsl. plants.
Collapse
|
18
|
Yue C, Peng H, Li W, Tong Z, Wang Z, Yang P. Untargeted Metabolomics and Transcriptomics Reveal the Mechanism of Metabolite Differences in Spring Tender Shoots of Tea Plants of Different Ages. Foods 2022; 11:foods11152303. [PMID: 35954069 PMCID: PMC9368032 DOI: 10.3390/foods11152303] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
The metabolites in the tender shoots of the tea plant are the material basis for the determination of tea quality. The composition and abundance of these metabolites are affected by many key factors, and the tea plant’s age is one of them. However, the effect of plant age on the tender shoot metabolites of tea cultivars of different genotypes is poorly understood. Therefore, we used a combination of untargeted metabolomics and transcriptomics to analyze the differential mechanism behind the differences in the metabolites of the spring tender shoots of 7- and 40-year-old tea plants of two tea cultivars of different genotypes. We found that plant age could significantly change the metabolites in the spring tender shoots of tea plants and that flavonoids, and amino acids and their derivatives, were predominant among the differential metabolites. The quantities of most flavonoids in the aged tea plants of different genotypes were upregulated, which was caused by the upregulated expression of differential genes in the flavonoid biosynthesis pathway. We further discovered that 11 key structural genes play key regulatory roles in the changes in the flavonoid contents of tea plants of different plant ages. However, the influence of plant age on amino acids and their derivatives might be cultivar-specific. By characterizing and evaluating the quality-related metabolites of tea cultivars of two different genotypes at different plant ages, we found that whether an old tea plant (40 years old) can produce high-quality tea is related to the genotype of the tea plant.
Collapse
Affiliation(s)
- Cuinan Yue
- Jiangxi Cash Crops Research Institute, Nanchang 330202, China; (C.Y.); (H.P.); (W.L.); (Z.T.); (Z.W.)
- Jiangxi Key Laboratory of Tea Quality and Safety Control, Nanchang 330202, China
- Jiangxi Sericulture and Tea Research Institute, Nanchang 330202, China
| | - Hua Peng
- Jiangxi Cash Crops Research Institute, Nanchang 330202, China; (C.Y.); (H.P.); (W.L.); (Z.T.); (Z.W.)
- Jiangxi Key Laboratory of Tea Quality and Safety Control, Nanchang 330202, China
- Jiangxi Sericulture and Tea Research Institute, Nanchang 330202, China
| | - Wenjin Li
- Jiangxi Cash Crops Research Institute, Nanchang 330202, China; (C.Y.); (H.P.); (W.L.); (Z.T.); (Z.W.)
- Jiangxi Key Laboratory of Tea Quality and Safety Control, Nanchang 330202, China
- Jiangxi Sericulture and Tea Research Institute, Nanchang 330202, China
| | - Zhongfei Tong
- Jiangxi Cash Crops Research Institute, Nanchang 330202, China; (C.Y.); (H.P.); (W.L.); (Z.T.); (Z.W.)
- Jiangxi Key Laboratory of Tea Quality and Safety Control, Nanchang 330202, China
- Jiangxi Sericulture and Tea Research Institute, Nanchang 330202, China
| | - Zhihui Wang
- Jiangxi Cash Crops Research Institute, Nanchang 330202, China; (C.Y.); (H.P.); (W.L.); (Z.T.); (Z.W.)
- Jiangxi Key Laboratory of Tea Quality and Safety Control, Nanchang 330202, China
- Jiangxi Sericulture and Tea Research Institute, Nanchang 330202, China
| | - Puxiang Yang
- Jiangxi Cash Crops Research Institute, Nanchang 330202, China; (C.Y.); (H.P.); (W.L.); (Z.T.); (Z.W.)
- Jiangxi Key Laboratory of Tea Quality and Safety Control, Nanchang 330202, China
- Jiangxi Sericulture and Tea Research Institute, Nanchang 330202, China
- Correspondence: ; Tel.: +86-0791-85021391
| |
Collapse
|
19
|
Fu X, Chen J, Li J, Dai G, Tang J, Yang Z. Mechanism underlying the carotenoid accumulation in shaded tea leaves. Food Chem X 2022; 14:100323. [PMID: 35571330 PMCID: PMC9097638 DOI: 10.1016/j.fochx.2022.100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/20/2022] [Accepted: 04/29/2022] [Indexed: 11/25/2022] Open
Abstract
Long-term shading treatment (14 days) increased carotenoid content in tea leaves. Long-term darkness (14 days) decreased carotenoid content in tea leaves. Long-term shading treatment increased carotenoid biosynthetic gene expression levels. Long-term darkness decreased carotenoid biosynthetic gene expression levels. The functions of CsDXS1, CsDXS3, CsPSY, CsLCYB and CsLCYE genes have been verified.
Carotenoids contribute to tea leaf coloration and are the precursors of important aromatic compounds. Shading can promote the accumulation of carotenoids in tea leaves, but the underlying mechanism remains unknown. In the study, we analyzed the content and composition of carotenoids, and transcript levels and functions of related genes in carotenoid biosynthesis using HPLC, qRT-PCR, and heterologous expression system. It was found that long-term shading (14 days, 90% shading) significantly increased the total carotenoid content in tea leaves, and increased the expression of non-mevalonate pathway (MEP) genes (CsDXS1 and CsDXS3) and key genes in carotenoid synthesis pathway (CsPSY, CsLCYB, and CsLCYE). Long-term exposure to darkness (14 days, 0 lx) decreased the transcription of most carotenoid biosynthetic genes and adversely affected carotenoid accumulation. Furthermore, CsDXS1, CsDXS3, CsPSY, CsLCYB, and CsLCYE were functionally identified and contributed to the enhanced accumulation of carotenoids in tea leaves in response to long-term shading.
Collapse
|
20
|
Optimizing the Quality and Commercial Value of Gyokuro-Styled Green Tea Grown in Australia. BEVERAGES 2022. [DOI: 10.3390/beverages8020022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Gyokuro is a style of Japanese green tea produced by employing agricultural shading in the weeks before harvest. This method results in a tea product with different organoleptic and chemical properties than common Japanese green tea. In an effort to yield the highest quality and commercially valuable green tea product, the present study explores the influence of shading treatments and the duration of shading on the natural biochemistry of the green tea plant. This study applied shading treatments at light intensity conditions of 40%, 16%, 10% and 1% of available ambient light and the application of a red-colored shade cloth of 60% opacity. The Quality Index Tool was used to measure the quality and commercial value of the green tea, using individual target constituents (theanine, caffeine and the catechins) quantified from HPLC analysis. This study shows that very high levels of total visible spectrum light shading (~99%) is required to achieve improvements in quality and commercial value. Specifically, this improvement is a direct result of changes in the mood- modifying bioactive metabolites theanine and caffeine. This study concludes that in green tea growing regions with more hours of sunlight per year, such as on the Central Coast of Australia, more intense shading will achieve products with improved quality and commercial value, which has more potential to be marketed as a functional ingredient.
Collapse
|