1
|
Zhang J, Mao Z, Zhang D, Guo L, Zhao H, Miao M. Mass spectrometry imaging as a promising analytical technique for herbal medicines: an updated review. Front Pharmacol 2024; 15:1442870. [PMID: 39148546 PMCID: PMC11324582 DOI: 10.3389/fphar.2024.1442870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
Herbal medicines (HMs) have long played a pivotal role in preventing and treating various human diseases and have been studied widely. However, the complexities present in HM metabolites and their unclear mechanisms of action have posed significant challenges in the modernization of traditional Chinese medicine (TCM). Over the past two decades, mass spectrometry imaging (MSI) has garnered increasing attention as a robust analytical technique that enables the simultaneous execution of qualitative, quantitative, and localization analyses without complex sample pretreatment. With advances in technical solutions, MSI has been extensively applied in the field of HMs. MSI, a label-free ion imaging technique can comprehensively map the spatial distribution of HM metabolites in plant native tissues, thereby facilitating the effective quality control of HMs. Furthermore, the spatial dimension information of small molecule endogenous metabolites within animal tissues provided by MSI can also serve as a supplement to uncover pharmacological and toxicological mechanisms of HMs. In the review, we provide an overview of the three most common MSI techniques. In addition, representative applications in HM are highlighted. Finally, we discuss the current challenges and propose several potential solutions. We hope that the summary of recent findings will contribute to the application of MSI in exploring metabolites and mechanisms of action of HMs.
Collapse
Affiliation(s)
- Jinying Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, China
| | - Zhiguo Mao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, China
| | - Ding Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, China
| | - Lin Guo
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, China
| | - Hui Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, China
| | - Mingsan Miao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, China
| |
Collapse
|
2
|
García-Rojas NS, Sierra-Álvarez CD, Ramos-Aboites HE, Moreno-Pedraza A, Winkler R. Identification of Plant Compounds with Mass Spectrometry Imaging (MSI). Metabolites 2024; 14:419. [PMID: 39195515 DOI: 10.3390/metabo14080419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
The presence and localization of plant metabolites are indicative of physiological processes, e.g., under biotic and abiotic stress conditions. Further, the chemical composition of plant parts is related to their quality as food or for medicinal applications. Mass spectrometry imaging (MSI) has become a popular analytical technique for exploring and visualizing the spatial distribution of plant molecules within a tissue. This review provides a summary of mass spectrometry methods used for mapping and identifying metabolites in plant tissues. We present the benefits and the disadvantages of both vacuum and ambient ionization methods, considering direct and indirect approaches. Finally, we discuss the current limitations in annotating and identifying molecules and perspectives for future investigations.
Collapse
Affiliation(s)
- Nancy Shyrley García-Rojas
- Unidad de Genómica Avanzada, Cinvestav, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico
| | | | - Hilda E Ramos-Aboites
- Unidad de Genómica Avanzada, Cinvestav, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico
| | - Abigail Moreno-Pedraza
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e.V., Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743 Jena, Germany
| | - Robert Winkler
- Unidad de Genómica Avanzada, Cinvestav, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico
| |
Collapse
|
3
|
Guan C, Kong L. Mass spectrometry imaging in pulmonary disorders. Clin Chim Acta 2024; 561:119835. [PMID: 38936534 DOI: 10.1016/j.cca.2024.119835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Mass Spectrometry Imaging (MSI) represents a novel and advancing technology that offers unparalleled in situ characterization of tissues. It provides comprehensive insights into the chemical structures, relative abundances, and spatial distributions of a vast array of both identified and unidentified endogenous and exogenous compounds, a capability not paralleled by existing analytical methodologies. Recent scholarly endeavors have increasingly explored the utility of MSI in the adjunct diagnosis and biomarker research of pulmonary disorders, including but not limited to lung cancer. Concurrently, MSI has proven instrumental in elucidating the spatiotemporal dynamics of various pharmacological agents. This review concisely delineates the fundamental principles underpinning MSI, its applications in pulmonary disease diagnosis, biomarker discovery, and drug distribution investigations. Additionally, it presents a forward-looking perspective on the prospective trajectories of MSI technological advancements.
Collapse
Affiliation(s)
- Chunliu Guan
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Lu Kong
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
4
|
Castro DC, Chan-Andersen P, Romanova EV, Sweedler JV. Probe-based mass spectrometry approaches for single-cell and single-organelle measurements. MASS SPECTROMETRY REVIEWS 2024; 43:888-912. [PMID: 37010120 PMCID: PMC10545815 DOI: 10.1002/mas.21841] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/09/2023] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
Exploring the chemical content of individual cells not only reveals underlying cell-to-cell chemical heterogeneity but is also a key component in understanding how cells combine to form emergent properties of cellular networks and tissues. Recent technological advances in many analytical techniques including mass spectrometry (MS) have improved instrumental limits of detection and laser/ion probe dimensions, allowing the analysis of micron and submicron sized areas. In the case of MS, these improvements combined with MS's broad analyte detection capabilities have enabled the rise of single-cell and single-organelle chemical characterization. As the chemical coverage and throughput of single-cell measurements increase, more advanced statistical and data analysis methods have aided in data visualization and interpretation. This review focuses on secondary ion MS and matrix-assisted laser desorption/ionization MS approaches for single-cell and single-organelle characterization, which is followed by advances in mass spectral data visualization and analysis.
Collapse
Affiliation(s)
- Daniel C. Castro
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Peter Chan-Andersen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Elena V. Romanova
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Jonathan V. Sweedler
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL USA
| |
Collapse
|
5
|
Hu S, Habib A, Xiong W, Chen L, Bi L, Wen L. Mass Spectrometry Imaging Techniques: Non-Ambient and Ambient Ionization Approaches. Crit Rev Anal Chem 2024:1-54. [PMID: 38889072 DOI: 10.1080/10408347.2024.2362703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Molecular information can be acquired from sample surfaces in real time using a revolutionary molecular imaging technique called mass spectrometry imaging (MSI). The technique can concurrently provide high spatial resolution information on the spatial distribution and relative proportion of many different compounds. Thus, many scientists have been drawn to the innovative capabilities of the MSI approach, leading to significant focus in various fields during the past few decades. This review describes the sampling protocol, working principle and applications of a few non-ambient and ambient ionization mass spectrometry imaging techniques. The non-ambient techniques include secondary ionization mass spectrometry and matrix-assisted laser desorption ionization, while the ambient techniques include desorption electrospray ionization, laser ablation electrospray ionization, probe electro-spray ionization, desorption atmospheric pressure photo-ionization and femtosecond laser desorption ionization. The review additionally addresses the advantages and disadvantages of ambient and non-ambient MSI techniques in relation to their suitability, particularly for biological samples used in tissue diagnostics. Last but not least, suggestions and conclusions are made regarding the challenges and future prospects of MSI.
Collapse
Affiliation(s)
- Shundi Hu
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Ahsan Habib
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- Department of Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - Wei Xiong
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - La Chen
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Lei Bi
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| | - Luhong Wen
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang, China
- China Innovation Instrument Co., Ltd, Ningbo, Zhejiang, China
| |
Collapse
|
6
|
Ma X, Fernández FM. Advances in mass spectrometry imaging for spatial cancer metabolomics. MASS SPECTROMETRY REVIEWS 2024; 43:235-268. [PMID: 36065601 PMCID: PMC9986357 DOI: 10.1002/mas.21804] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 05/09/2023]
Abstract
Mass spectrometry (MS) has become a central technique in cancer research. The ability to analyze various types of biomolecules in complex biological matrices makes it well suited for understanding biochemical alterations associated with disease progression. Different biological samples, including serum, urine, saliva, and tissues have been successfully analyzed using mass spectrometry. In particular, spatial metabolomics using MS imaging (MSI) allows the direct visualization of metabolite distributions in tissues, thus enabling in-depth understanding of cancer-associated biochemical changes within specific structures. In recent years, MSI studies have been increasingly used to uncover metabolic reprogramming associated with cancer development, enabling the discovery of key biomarkers with potential for cancer diagnostics. In this review, we aim to cover the basic principles of MSI experiments for the nonspecialists, including fundamentals, the sample preparation process, the evolution of the mass spectrometry techniques used, and data analysis strategies. We also review MSI advances associated with cancer research in the last 5 years, including spatial lipidomics and glycomics, the adoption of three-dimensional and multimodal imaging MSI approaches, and the implementation of artificial intelligence/machine learning in MSI-based cancer studies. The adoption of MSI in clinical research and for single-cell metabolomics is also discussed. Spatially resolved studies on other small molecule metabolites such as amino acids, polyamines, and nucleotides/nucleosides will not be discussed in the context.
Collapse
Affiliation(s)
- Xin Ma
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Facundo M Fernández
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Daphnis T, Tomasetti B, Delmez V, Vanvarenberg K, Préat V, Thieffry C, Henriet P, Dupont-Gillain C, Delcorte A. Improvement of Lipid Detection in Mouse Brain and Human Uterine Tissue Sections Using In Situ Matrix Enhanced Secondary Ion Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2259-2268. [PMID: 37712225 DOI: 10.1021/jasms.3c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The potential of mass spectrometry imaging, and especially ToF-SIMS 2D and 3D imaging, for submicrometer-scale, label-free molecular localization in biological tissues is undisputable. Nevertheless, sensitivity issues remain, especially when one wants to achieve the best lateral and vertical (nanometer-scale) resolution. In this study, the interest of in situ matrix transfer for tissue analysis with cluster ion beams (Bin+, Arn+) is explored in detail, using a series of six low molecular weight acidic (MALDI) matrices. After estimating the sensitivity enhancements for phosphatidylcholine (PC), an abundant lipid type present in almost any kind of cell membrane, the most promising matrices were softly transferred in situ on mouse brain and human uterine tissue samples using a 10 keV Ar3000+ cluster beam. Signal enhancements up to 1 order of magnitude for intact lipid signals were observed in both tissues under Bi5+ and Ar3000+ bombardment. The main findings of this study lie in the in-depth characterization of uterine tissue samples, the demonstration that the transferred matrices also improve signal efficiency in the negative ion polarity and that they perform as well when using Bin+ and Arn+ primary ions for analysis and imaging.
Collapse
Affiliation(s)
- Thomas Daphnis
- Institute of Condensed Matter and Nanoscience, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| | - Benjamin Tomasetti
- Institute of Condensed Matter and Nanoscience, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| | - Vincent Delmez
- Institute of Condensed Matter and Nanoscience, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| | - Kevin Vanvarenberg
- Louvain Drug Research Institute, Université catholique de Louvain, Avenue Mounier 73, 1200 Brussels, Belgium
| | - Véronique Préat
- Louvain Drug Research Institute, Université catholique de Louvain, Avenue Mounier 73, 1200 Brussels, Belgium
| | - Charlotte Thieffry
- Institut De Duve, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Patrick Henriet
- Institut De Duve, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Christine Dupont-Gillain
- Institute of Condensed Matter and Nanoscience, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| | - Arnaud Delcorte
- Institute of Condensed Matter and Nanoscience, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
8
|
Saunders KD, von Gerichten J, Lewis HM, Gupta P, Spick M, Costa C, Velliou E, Bailey MJ. Single-Cell Lipidomics Using Analytical Flow LC-MS Characterizes the Response to Chemotherapy in Cultured Pancreatic Cancer Cells. Anal Chem 2023; 95:14727-14735. [PMID: 37725657 PMCID: PMC10551860 DOI: 10.1021/acs.analchem.3c02854] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023]
Abstract
In this work, we demonstrate the development and first application of nanocapillary sampling followed by analytical flow liquid chromatography-mass spectrometry for single-cell lipidomics. Around 260 lipids were tentatively identified in a single cell, demonstrating remarkable sensitivity. Human pancreatic ductal adenocarcinoma cells (PANC-1) treated with the chemotherapeutic drug gemcitabine can be distinguished from controls solely on the basis of their single-cell lipid profiles. Notably, the relative abundance of LPC(0:0/16:0) was significantly affected in gemcitabine-treated cells, in agreement with previous work in bulk. This work serves as a proof of concept that live cells can be sampled selectively and then characterized using automated and widely available analytical workflows, providing biologically relevant outputs.
Collapse
Affiliation(s)
| | | | - Holly-May Lewis
- Faculty
of Health & Medical Sciences, University
of Surrey, Guildford GU2 7XH, U.K.
| | - Priyanka Gupta
- Centre
for 3D Models of Health and Disease, University
College London—Division of Surgery and Interventional Science, London W1W 7TY, U.K.
| | - Matt Spick
- Faculty
of Health & Medical Sciences, University
of Surrey, Guildford GU2 7XH, U.K.
| | - Catia Costa
- Ion
Beam Centre, University of Surrey, Guildford GU2 7XH, U.K.
| | - Eirini Velliou
- Centre
for 3D Models of Health and Disease, University
College London—Division of Surgery and Interventional Science, London W1W 7TY, U.K.
| | - Melanie J. Bailey
- Department
of Chemistry, University of Surrey, Guildford GU2 7XH, U.K.
| |
Collapse
|
9
|
Suvannapruk W, Edney MK, Fisher LE, Luckett JC, Kim DH, Scurr DJ, Ghaemmaghami AM, Alexander MR. Label-free Chemical Characterization of Polarized Immune Cells in vitro and Host Response to Implanted Bio-instructive Polymers in vivo Using 3D OrbiSIMS. Bio Protoc 2023; 13:e4727. [PMID: 37575382 PMCID: PMC10415193 DOI: 10.21769/bioprotoc.4727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/21/2023] [Accepted: 05/07/2023] [Indexed: 08/15/2023] Open
Abstract
The Three-dimensional OrbiTrap Secondary Ion Mass Spectrometry (3D OrbiSIMS) is a secondary ion mass spectrometry instrument, a combination of a Time of Flight (ToF) instrument with an Orbitrap analyzer. The 3D OrbiSIMS technique is a powerful tool for metabolic profiling in biological samples. This can be achieved at subcellular spatial resolution, high sensitivity, and high mass-resolving power coupled with MS/MS analysis. Characterizing the metabolic signature of macrophage subsets within tissue sections offers great potential to understand the response of the human immune system to implanted biomaterials. Here, we describe a protocol for direct analysis of individual cells after in vitro differentiation of naïve monocytes into M1 and M2 phenotypes using cytokines. As a first step in vivo, we investigate explanted silicon catheter sections as a medical device in a rodent model of foreign body response. Protocols are presented to allow the host response to different immune instructive materials to be compared. The first demonstration of this capability illustrates the great potential of direct cell and tissue section analysis for in situ metabolite profiling to probe functional phenotypes using molecular signatures. Details of the in vitro cell approach, materials, sample preparation, and explant handling are presented, in addition to the data acquisition approaches and the data analysis pipelines required to achieve useful interpretation of these complex spectra. This method is useful for in situ characterization of both in vitro single cells and ex vivo tissue sections. This will aid the understanding of the immune response to medical implants by informing the design of immune-instructive biomaterials with positive interactions. It can also be used to investigate a broad range of other clinically relevant therapeutics and immune dysregulations. Graphical overview.
Collapse
Affiliation(s)
- Waraporn Suvannapruk
- Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, University Park Nottingham, NG7 2RD, UK
| | - Max K. Edney
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, University Park Nottingham, NG7 2RD, UK
| | - Leanne E. Fisher
- Immunology & Immuno-bioengineering Group, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, University Park Nottingham, NG7 2RD, UK
| | - Jeni C. Luckett
- School of Life Sciences, Faculty of Medicine and Health Science, University of Nottingham, University Park Nottingham, NG7 2RD, UK
| | - Dong-Hyun Kim
- Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, University Park Nottingham, NG7 2RD, UK
| | - David J. Scurr
- Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, University Park Nottingham, NG7 2RD, UK
| | - Amir M. Ghaemmaghami
- Immunology & Immuno-bioengineering Group, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, University Park Nottingham, NG7 2RD, UK
| | - Morgan R. Alexander
- Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, University Park Nottingham, NG7 2RD, UK
| |
Collapse
|
10
|
Kern C, Kern S, Henss A, Rohnke M. Secondary ion mass spectrometry for bone research. Biointerphases 2023; 18:041203. [PMID: 37489909 DOI: 10.1116/6.0002820] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/29/2023] [Indexed: 07/26/2023] Open
Abstract
The purpose of this Tutorial is to highlight the suitability of time-of-flight secondary ion mass spectrometry (ToF-SIMS) and OrbiTrap™ SIMS (Orbi-SIMS) in bone research by introducing fundamentals and best practices of bone analysis with these mass spectrometric imaging (MSI) techniques. The Tutorial includes sample preparation, determination of best-suited measurement settings, data acquisition, and data evaluation, as well as a brief overview of SIMS applications in bone research in the current literature. SIMS is a powerful analytical technique that allows simultaneous analysis and visualization of mineralized and nonmineralized bone tissue, bone marrow as well as implanted biomaterials, and interfaces between bone and implants. Compared to histological staining, which is the standard analytical procedure in bone research, SIMS provides chemical imaging of nonstained bone sections that offers insights beyond what is conventionally obtained. The Tutorial highlights the versatility of ToF- and Orbi-SIMS in addressing important questions in bone research. By illustrating the value of these MSI techniques, it demonstrates how they can contribute to advance progress in bone research.
Collapse
Affiliation(s)
- Christine Kern
- Institute of Physical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, Giessen 35392, Germany
| | - Stefanie Kern
- Institute of Physical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, Giessen 35392, Germany
| | - Anja Henss
- Institute of Physical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, Giessen 35392, Germany
- Center for Materials Research, Justus Liebig University Giessen, Heinrich-Buff-Ring 16, Giessen 35392, Germany
| | - Marcus Rohnke
- Institute of Physical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, Giessen 35392, Germany
- Center for Materials Research, Justus Liebig University Giessen, Heinrich-Buff-Ring 16, Giessen 35392, Germany
| |
Collapse
|
11
|
King ME, Lin M, Spradlin M, Eberlin LS. Advances and Emerging Medical Applications of Direct Mass Spectrometry Technologies for Tissue Analysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:1-25. [PMID: 36944233 DOI: 10.1146/annurev-anchem-061020-015544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Offering superb speed, chemical specificity, and analytical sensitivity, direct mass spectrometry (MS) technologies are highly amenable for the molecular analysis of complex tissues to aid in disease characterization and help identify new diagnostic, prognostic, and predictive markers. By enabling detection of clinically actionable molecular profiles from tissues and cells, direct MS technologies have the potential to guide treatment decisions and transform sample analysis within clinical workflows. In this review, we highlight recent health-related developments and applications of direct MS technologies that exhibit tangible potential to accelerate clinical research and disease diagnosis, including oncological and neurodegenerative diseases and microbial infections. We focus primarily on applications that employ direct MS technologies for tissue analysis, including MS imaging technologies to map spatial distributions of molecules in situ as well as handheld devices for rapid in vivo and ex vivo tissue analysis.
Collapse
Affiliation(s)
- Mary E King
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA;
- Department of Surgery, Baylor College of Medicine, Houston, Texas, USA;
| | - Monica Lin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA;
| | - Meredith Spradlin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA;
| | - Livia S Eberlin
- Department of Surgery, Baylor College of Medicine, Houston, Texas, USA;
| |
Collapse
|
12
|
Seubnooch P, Montani M, Tsouka S, Claude E, Rafiqi U, Perren A, Dufour JF, Masoodi M. Characterisation of hepatic lipid signature distributed across the liver zonation using mass spectrometry imaging. JHEP Rep 2023; 5:100725. [PMID: 37284141 PMCID: PMC10240278 DOI: 10.1016/j.jhepr.2023.100725] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/03/2023] [Accepted: 02/27/2023] [Indexed: 06/08/2023] Open
Abstract
Background & Aims Lipid metabolism plays an important role in liver pathophysiology. The liver lobule asymmetrically distributes oxygen and nutrition, resulting in heterogeneous metabolic functions. Periportal and pericentral hepatocytes have different metabolic functions, which lead to generating liver zonation. We developed spatial metabolic imaging using desorption electrospray ionisation mass spectrometry to investigate lipid distribution across liver zonation with high reproducibility and accuracy. Methods Fresh frozen livers from healthy mice with control diet were analysed using desorption electrospray ionisation mass spectrometry imaging. Imaging was performed at 50 μm × 50 μm pixel size. Regions of interest (ROIs) were manually created by co-registering with histological data to determine the spatial hepatic lipids across liver zonation. The ROIs were confirmed by double immunofluorescence. The mass list of specific ROIs was automatically created, and univariate and multivariate statistical analysis were performed to identify statistically significant lipids across liver zonation. Results A wide range of lipid species was identified, including fatty acids, phospholipids, triacylglycerols, diacylglycerols, ceramides, and sphingolipids. We characterised hepatic lipid signatures in three different liver zones (periportal zone, midzone, and pericentral zone) and validated the reproducibility of our method for measuring a wide range of lipids. Fatty acids were predominantly detected in the periportal region, whereas phospholipids were distributed in both the periportal and pericentral zones. Interestingly, phosphatidylinositols, PI(36:2), PI(36:3), PI(36:4), PI(38:5), and PI(40:6) were located predominantly in the midzone (zone 2). Triacylglycerols and diacylglycerols were detected mainly in the pericentral region. De novo triacylglycerol biosynthesis appeared to be the most influenced pathway across the three zones. Conclusions The ability to accurately assess zone-specific hepatic lipid distribution in the liver could lead to a better understanding of lipid metabolism during the progression of liver disease. Impact and Implications Zone-specific hepatic lipid metabolism could play an important role in lipid homoeostasis during disease progression. Herein, we defined the zone-specific references of hepatic lipid species in the three liver zones using molecular imaging. The de novo triacylglycerol biosynthesis was highlighted as the most influenced pathway across the three zones.
Collapse
Affiliation(s)
- Patcharamon Seubnooch
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Matteo Montani
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Sofia Tsouka
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland
| | | | - Umara Rafiqi
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Aurel Perren
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Jean-Francois Dufour
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Mojgan Masoodi
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
13
|
Saunders KDG, Lewis HM, Beste DJ, Cexus O, Bailey MJ. Spatial single cell metabolomics: Current challenges and future developments. Curr Opin Chem Biol 2023; 75:102327. [PMID: 37224735 DOI: 10.1016/j.cbpa.2023.102327] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 04/03/2023] [Accepted: 04/24/2023] [Indexed: 05/26/2023]
Abstract
Single cell metabolomics is a rapidly advancing field of bio-analytical chemistry which aims to observe cellular biology with the greatest detail possible. Mass spectrometry imaging and selective cell sampling (e.g. using nanocapillaries) are two common approaches within the field. Recent achievements such as observation of cell-cell interactions, lipids determining cell states and rapid phenotypic identification demonstrate the efficacy of these approaches and the momentum of the field. However, single cell metabolomics can only continue with the same impetus if the universal challenges to the field are met, such as the lack of strategies for standardisation and quantification, and lack of specificity/sensitivity. Mass spectrometry imaging and selective cell sampling come with unique advantages and challenges which, in many cases are complementary to each other. We propose here that the challenges specific to each approach could be ameliorated with collaboration between the two communities driving these approaches.
Collapse
Affiliation(s)
| | - Holly-May Lewis
- Department of Chemistry, University of Surrey, Guildford, UK
| | - Dany Jv Beste
- Department of Microbial Sciences, University of Surrey, Guildford, UK
| | - Olivier Cexus
- Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | | |
Collapse
|
14
|
Graham DJ, Gamble LJ. Back to the basics of time-of-flight secondary ion mass spectrometry of bio-related samples. I. Instrumentation and data collection. Biointerphases 2023; 18:021201. [PMID: 36990800 PMCID: PMC10063322 DOI: 10.1116/6.0002477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is used widely throughout industrial and academic research due to the high information content of the chemically specific data it produces. Modern ToF-SIMS instruments can generate high mass resolution data that can be displayed as spectra and images (2D and 3D). This enables determining the distribution of molecules across and into a surface and provides access to information not obtainable from other methods. With this detailed chemical information comes a steep learning curve in how to properly acquire and interpret the data. This Tutorial is aimed at helping ToF-SIMS users to plan for and collect ToF-SIMS data. The second Tutorial in this series will cover how to process, display, and interpret ToF-SIMS data.
Collapse
|
15
|
McDowell CT, Lu X, Mehta AS, Angel PM, Drake RR. Applications and continued evolution of glycan imaging mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:674-705. [PMID: 34392557 PMCID: PMC8946722 DOI: 10.1002/mas.21725] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/16/2021] [Accepted: 08/03/2021] [Indexed: 05/03/2023]
Abstract
Glycosylation is an important posttranslational modifier of proteins and lipid conjugates critical for the stability and function of these macromolecules. Particularly important are N-linked glycans attached to asparagine residues in proteins. N-glycans have well-defined roles in protein folding, cellular trafficking and signal transduction, and alterations to them are implicated in a variety of diseases. However, the non-template driven biosynthesis of these N-glycans leads to significant structural diversity, making it challenging to identify the most biologically and clinically relevant species using conventional analyses. Advances in mass spectrometry instrumentation and data acquisition, as well as in enzymatic and chemical sample preparation strategies, have positioned mass spectrometry approaches as powerful analytical tools for the characterization of glycosylation in health and disease. Imaging mass spectrometry expands upon these strategies by capturing the spatial component of a glycan's distribution in-situ, lending additional insight into the organization and function of these molecules. Herein we review the ongoing evolution of glycan imaging mass spectrometry beginning with widely adopted tissue imaging approaches and expanding to other matrices and sample types with potential research and clinical implications. Adaptations of these techniques, along with their applications to various states of disease, are discussed. Collectively, glycan imaging mass spectrometry analyses broaden our understanding of the biological and clinical relevance of N-glycosylation to human disease.
Collapse
Affiliation(s)
- Colin T. McDowell
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Xiaowei Lu
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
16
|
Zhang YX, Zhang YD, Shi YP. Tracking Spatial Distribution Alterations of Multiple Endogenous Molecules during Lentil Germination by MALDI Mass Spectrometry Imaging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2124-2133. [PMID: 36652673 DOI: 10.1021/acs.jafc.2c07513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Exploring the spatial distribution alterations of metabolites during lentil germination is essential to reveal the nutritional value, physiological function, and metabolic pathway in lentils. Hence, an effective matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) method was established for the first time to visualize the spatial localization changes of 53 metabolites in lentils during germination for 12-72 h. The results of MALDI-MSI analysis showed that phosphatidylinositols, phosphatidylethanolamines, phosphatidylglycerols, and phosphatidic acids were mainly located in the cotyledons of lentils throughout the germination process, while triacylglycerols, phosphatidylcholines, diacylglycerols, amino acids, choline, and spermine spread throughout the lentil tissue at the initial stage of germination and gradually presented obvious distribution characteristics in the radicle with increasing germination time. Heat map analysis was used to visualize the correlations between lipid content changes and germination time, which supported the use of germinated lentils as nutraceutical or functional food.
Collapse
Affiliation(s)
- Yan-Xia Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Chinese Academy of Sciences, Lanzhou Institute of Chemical Physics, Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yi-Da Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Chinese Academy of Sciences, Lanzhou Institute of Chemical Physics, Lanzhou 730000, P. R. China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Chinese Academy of Sciences, Lanzhou Institute of Chemical Physics, Lanzhou 730000, P. R. China
| |
Collapse
|
17
|
Hou Y, Gao Y, Guo S, Zhang Z, Chen R, Zhang X. Applications of spatially resolved omics in the field of endocrine tumors. Front Endocrinol (Lausanne) 2023; 13:993081. [PMID: 36704039 PMCID: PMC9873308 DOI: 10.3389/fendo.2022.993081] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Endocrine tumors derive from endocrine cells with high heterogeneity in function, structure and embryology, and are characteristic of a marked diversity and tissue heterogeneity. There are still challenges in analyzing the molecular alternations within the heterogeneous microenvironment for endocrine tumors. Recently, several proteomic, lipidomic and metabolomic platforms have been applied to the analysis of endocrine tumors to explore the cellular and molecular mechanisms of tumor genesis, progression and metastasis. In this review, we provide a comprehensive overview of spatially resolved proteomics, lipidomics and metabolomics guided by mass spectrometry imaging and spatially resolved microproteomics directed by microextraction and tandem mass spectrometry. In this regard, we will discuss different mass spectrometry imaging techniques, including secondary ion mass spectrometry, matrix-assisted laser desorption/ionization and desorption electrospray ionization. Additionally, we will highlight microextraction approaches such as laser capture microdissection and liquid microjunction extraction. With these methods, proteins can be extracted precisely from specific regions of the endocrine tumor. Finally, we compare applications of proteomic, lipidomic and metabolomic platforms in the field of endocrine tumors and outline their potentials in elucidating cellular and molecular processes involved in endocrine tumors.
Collapse
Affiliation(s)
- Yinuo Hou
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Shudi Guo
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Zhibin Zhang
- General Surgery, Tianjin First Center Hospital, Tianjin, China
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xiangyang Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
18
|
Zhang C, Horikawa M, Kahyo T, Matsudaira T, Tanaka T, Xu L, Takei S, Setou M. Glutaraldehyde and uranyl acetate dual fixation combined sputtering/unroofing enables intracellular fatty acids TOF-SIMS imaging with organelle-corresponding subcellular distribution. Microscopy (Oxf) 2022; 71:324-333. [PMID: 35762441 DOI: 10.1093/jmicro/dfac034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 01/18/2023] Open
Abstract
Fatty acids (FAs) have diverse functions in cellular activities. The intracellular distribution of FAs is critical for their functions. Imaging of FAs by time-of-flight secondary ion mass spectrometry (TOF-SIMS) has been achieved. However, TOF-SIMS images of FAs so far do not have subcellular distribution due to inadequate sample preparation methods. In this study, we developed a chemical fixation method using glutaraldehyde (GA) with uranyl acetate (UA), which preserved cellular structure and intracellular FA distribution well. Combining GA+UA fixation with sputtering-based methods and unroofing-based methods, respectively, we successfully imaged intracellular lipids with the subcellular distribution.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Makoto Horikawa
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.,Hiroshima Research Center for Healthy Aging, Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Tomoaki Kahyo
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Takaomi Matsudaira
- Analysis and Evaluation Division, Foundation for Promotion of Material Science and Technology of Japan, 1-18-6 Kitami, Setagaya-ku, Tokyo 157-0067, Japan
| | - Tatsuya Tanaka
- Analysis and Evaluation Division, Foundation for Promotion of Material Science and Technology of Japan, 1-18-6 Kitami, Setagaya-ku, Tokyo 157-0067, Japan
| | - Lili Xu
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Shiro Takei
- Laboratory of Fish Biology, Department of Environmental Biology, College of Bioscience and Biotechnology, Chubu University, 1200, Matsumoto-cho, Kasugai-shi, Aichi 487-8501, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.,Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| |
Collapse
|
19
|
Baquer G, Sementé L, Mahamdi T, Correig X, Ràfols P, García-Altares M. What are we imaging? Software tools and experimental strategies for annotation and identification of small molecules in mass spectrometry imaging. MASS SPECTROMETRY REVIEWS 2022:e21794. [PMID: 35822576 DOI: 10.1002/mas.21794] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mass spectrometry imaging (MSI) has become a widespread analytical technique to perform nonlabeled spatial molecular identification. The Achilles' heel of MSI is the annotation and identification of molecular species due to intrinsic limitations of the technique (lack of chromatographic separation and the difficulty to apply tandem MS). Successful strategies to perform annotation and identification combine extra analytical steps, like using orthogonal analytical techniques to identify compounds; with algorithms that integrate the spectral and spatial information. In this review, we discuss different experimental strategies and bioinformatics tools to annotate and identify compounds in MSI experiments. We target strategies and tools for small molecule applications, such as lipidomics and metabolomics. First, we explain how sample preparation and the acquisition process influences annotation and identification, from sample preservation to the use of orthogonal techniques. Then, we review twelve software tools for annotation and identification in MSI. Finally, we offer perspectives on two current needs of the MSI community: the adaptation of guidelines for communicating confidence levels in identifications; and the creation of a standard format to store and exchange annotations and identifications in MSI.
Collapse
Affiliation(s)
- Gerard Baquer
- Department of Electronic Engineering, University Rovira I Virgili, Tarragona, Spain
| | - Lluc Sementé
- Department of Electronic Engineering, University Rovira I Virgili, Tarragona, Spain
| | - Toufik Mahamdi
- Department of Electronic Engineering, University Rovira I Virgili, Tarragona, Spain
| | - Xavier Correig
- Department of Electronic Engineering, University Rovira I Virgili, Tarragona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Institut D'Investigacio Sanitaria Pere Virgili, Tarragona, Spain
| | - Pere Ràfols
- Department of Electronic Engineering, University Rovira I Virgili, Tarragona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Institut D'Investigacio Sanitaria Pere Virgili, Tarragona, Spain
| | - María García-Altares
- Department of Electronic Engineering, University Rovira I Virgili, Tarragona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| |
Collapse
|
20
|
Mass spectral imaging showing the plant growth-promoting rhizobacteria's effect on the Brachypodium awn. Biointerphases 2022; 17:031006. [PMID: 35738921 DOI: 10.1116/6.0001949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The plant growth-promoting rhizobacteria (PGPR) on the host plant surface play a key role in biological control and pathogenic response in plant functions and growth. However, it is difficult to elucidate the PGPR effect on plants. Such information is important in biomass production and conversion. Brachypodium distachyon (Brachypodium), a genomics model for bioenergy and native grasses, was selected as a C3 plant model; and the Gram-negative Pseudomonas fluorescens SBW25 (P.) and Gram-positive Arthrobacter chlorophenolicus A6 (A.) were chosen as representative PGPR strains. The PGPRs were introduced to the Brachypodium seed's awn prior to germination, and their possible effects on the seeding and growth were studied using different modes of time-of-flight secondary ion mass spectrometry (ToF-SIMS) measurements, including a high mass-resolution spectral collection and delayed image extraction. We observed key plant metabolic products and biomarkers, such as flavonoids, phenolic compounds, fatty acids, and auxin indole-3-acetic acid in the Brachypodium awns. Furthermore, principal component analysis and two-dimensional imaging analysis reveal that the Brachypodium awns are sensitive to the PGPR, leading to chemical composition and morphology changes on the awn surface. Our results show that ToF-SIMS can be an effective tool to probe cell-to-cell interactions at the biointerface. This work provides a new approach to studying the PGPR effects on awn and shows its potential for the research of plant growth in the future.
Collapse
|
21
|
Liu QB, Lu JG, Jiang ZH, Zhang W, Li WJ, Qian ZM, Bai LP. In situ Chemical Profiling and Imaging of Cultured and Natural Cordyceps sinensis by TOF-SIMS. Front Chem 2022; 10:862007. [PMID: 35402389 PMCID: PMC8987775 DOI: 10.3389/fchem.2022.862007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/25/2022] [Indexed: 12/26/2022] Open
Abstract
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is a sensitive surface analytical technology, which can simultaneously acquire diverse chemical components and their precise locations on the surfaces of samples without any requirements for chemical damage pretreatments or additional matrices. Commonly, the quality control of TCMs (traditional Chinese medicines) is limited by the qualitative and quantitative evaluations of the specifically extractive constituents. In this study, a practical sample preparation strategy named two-layered media embedding sample preparation was developed to obtain ideal freezing sections of dried materials of Cordyceps sinensis. Meanwhile, the well-established sample preparation method was applied for in situ chemical profiling and imaging of natural (NCS) and cultured Cordyceps sinensis (CCS) by using TOF-SIMS. More than 200 components were tentatively identified and imaged in NCS and CCS at the same time. Mass spectrometry imaging revealed that most components have even distributions in caterpillars of Cordyceps sinensis, while TAGs, DAGs, MAGs, and FAs only have distributions outside caterpillars’ digestive chambers. This is the first time that components were in situ imaged for Cordyceps sinensis to exhibit the chemical distributions which have never been achieved by other analytical techniques so far. In addition, chemometrics was used to simplify and explain the massive TOF-SIMS mass data sets, which revealed the high chemical similarity between CCS and NCS. Furthermore, the relative quantification of TOF-SIMS data showed that CCS has comparable proportions of amino acids, nucleosides, monosaccharides, sphingolipids, sterols and other principles to NCS except for fatty acids, glycerides and glycerophospholipids. The higher amounts of TAGs and DAGs in CCS were confirmed by quantitative 1H-NMR, indicating reliable relative quantification of TOF-SIMS. In general, our research developed a novel approach of TOF-SIMS for in situ chemical analysis of TCMs, and its successful application in comparative study of CCS and NCS suggested that TOF-SIMS is an advanced and promising analytical technology for the research of TCMs.
Collapse
Affiliation(s)
- Qian-Bao Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Jing-Guang Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China
- *Correspondence: Zhi-Hong Jiang, ; Li-Ping Bai,
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China
| | - Wen-Jia Li
- Dongguan HEC Cordyceps R and D Co., Ltd., Dongguan, China
| | | | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau, China
- *Correspondence: Zhi-Hong Jiang, ; Li-Ping Bai,
| |
Collapse
|
22
|
Detection of Label-Free Drugs within Brain Tissue Using Orbitrap Secondary Ion Mass Spectrometry as a Complement to Neuro-Oncological Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14030571. [PMID: 35335947 PMCID: PMC8953756 DOI: 10.3390/pharmaceutics14030571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Historically, pre-clinical neuro-oncological drug delivery studies have exhaustively relied upon overall animal survival as an exclusive measure of efficacy. However, with no adopted methodology to both image and quantitate brain parenchyma penetration of label-free drugs, an absence of efficacy typically hampers clinical translational potential, rather than encourage re-formulation of drug compounds using nanocarriers to achieve greater tissue penetration. OrbiSIMS, a next-generation analytical instrument for label-free imaging, combines the high resolving power of an OrbiTrapTM mass spectrometer with the relatively high spatial resolution of secondary ion mass spectrometry. Here, we develop an ex vivo pipeline using OrbiSIMS to accurately detect brain penetration of drug compounds. Secondary ion spectra were acquired for a panel of drugs (etoposide, olaparib, gemcitabine, vorinostat and dasatinib) under preclinical consideration for the treatment of isocitrate dehydrogenase-1 wild-type glioblastoma. Each drug demonstrated diagnostic secondary ions (all present molecular ions [M-H]− which could be discriminated from brain analytes when spiked at >20 µg/mg tissue. Olaparib/dasatinib and olaparib/etoposide dual combinations are shown as exemplars for the capability of OrbiSIMS to discriminate distinct drug ions simultaneously. Furthermore, we demonstrate the imaging capability of OrbiSIMS to simultaneously illustrate label-free drug location and brain chemistry. Our work encourages the neuro-oncology community to consider mass spectrometry imaging modalities to complement in vivo efficacy studies, as an analytical tool to assess brain distribution of systemically administered drugs, or localised brain penetration of drugs released from micro- or nano-scale biomaterials.
Collapse
|
23
|
Jiang H, Zhang Y, Liu Z, Wang X, He J, Jin H. Advanced applications of mass spectrometry imaging technology in quality control and safety assessments of traditional Chinese medicines. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114760. [PMID: 34678417 PMCID: PMC9715987 DOI: 10.1016/j.jep.2021.114760] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 05/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicines (TCMs) have made great contributions to the prevention and treatment of human diseases in China, and especially in cases of COVID-19. However, due to quality problems, the lack of standards, and the diversity of dosage forms, adverse reactions to TCMs often occur. Moreover, the composition of TCMs makes them extremely challenging to extract and isolate, complicating studies of toxicity mechanisms. AIM OF THE REVIEW The aim of this paper is therefore to summarize the advanced applications of mass spectrometry imaging (MSI) technology in the quality control, safety evaluations, and determination of toxicity mechanisms of TCMs. MATERIALS AND METHODS Relevant studies from the literature have been collected from scientific databases, such as "PubMed", "Scifinder", "Elsevier", "Google Scholar" using the keywords "MSI", "traditional Chinese medicines", "quality control", "metabolomics", and "mechanism". RESULTS MSI is a new analytical imaging technology that can detect and image the metabolic changes of multiple components of TCMs in plants and animals in a high throughput manner. Compared to other chemical analysis methods, such as liquid chromatography-mass spectrometry (LC-MS), this method does not require the complex extraction and separation of TCMs, and is fast, has high sensitivity, is label-free, and can be performed in high-throughput. Combined with chemometrics methods, MSI can be quickly and easily used for quality screening of TCMs. In addition, this technology can be used to further focus on potential biomarkers and explore the therapeutic/toxic mechanisms of TCMs. CONCLUSIONS As a new type of analysis method, MSI has unique advantages to metabolic analysis, quality control, and mechanisms of action explorations of TCMs, and contributes to the establishment of quality standards to explore the safety and toxicology of TCMs.
Collapse
Affiliation(s)
- Haiyan Jiang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yaxin Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhigang Liu
- School of Biological Science and Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Xiangyi Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing 100050, China.
| | - Hongtao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd., Beijing 100176, China; NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing 100050, China.
| |
Collapse
|
24
|
Noun M, Akoumeh R, Abbas I. Cell and Tissue Imaging by TOF-SIMS and MALDI-TOF: An Overview for Biological and Pharmaceutical Analysis. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-26. [PMID: 34809729 DOI: 10.1017/s1431927621013593] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The potential of mass spectrometry imaging (MSI) has been demonstrated in cell and tissue research since 1970. MSI can reveal the spatial distribution of a wide range of atomic and molecular ions detected from biological sample surfaces, it is a powerful and valuable technique used to monitor and detect diverse chemical and biological compounds, such as drugs, lipids, proteins, and DNA. MSI techniques, notably matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) and time of flight secondary ion mass spectrometry (TOF-SIMS), witnessed a dramatic upsurge in studying and investigating biological samples especially, cells and tissue sections. This advancement is attributed to the submicron lateral resolution, the high sensitivity, the good precision, and the accurate chemical specificity, which make these techniques suitable for decoding and understanding complex mechanisms of certain diseases, as well as monitoring the spatial distribution of specific elements, and compounds. While the application of both techniques for the analysis of cells and tissues is thoroughly discussed, a briefing of MALDI-TOF and TOF-SIMS basis and the adequate sampling before analysis are briefly covered. The importance of MALDI-TOF and TOF-SIMS as diagnostic tools and robust analytical techniques in the medicinal, pharmaceutical, and toxicology fields is highlighted through representative published studies.
Collapse
Affiliation(s)
- Manale Noun
- Lebanese Atomic Energy Commission - NCSR, Beirut, Lebanon
| | - Rayane Akoumeh
- Lebanese Atomic Energy Commission - NCSR, Beirut, Lebanon
| | - Imane Abbas
- Lebanese Atomic Energy Commission - NCSR, Beirut, Lebanon
| |
Collapse
|
25
|
Agrawal I, Tripathi P, Biswas S. Mass Spectrometry Based Protein Biomarkers and Drug Target Discovery and Clinical Diagnosis in Age-Related Progressing Neurodegenerative Diseases. Drug Metab Rev 2022; 54:22-36. [PMID: 35038284 DOI: 10.1080/03602532.2022.2029475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Neurodegenerative diseases correspond to overly complex health disorders that are driven by intersecting pathophysiology that are often trapped in vicious cycles of degeneration and cognitive decline. The usual diagnostic route of these diseases is based on postmortem examination that involves identifying pathology that is specific to the disease in the brain. However, in such cases, accurate diagnosis of the specific disease is limited because clinical disease presentations are often complex that do not easily allow to discriminate patient's cognitive, behavioral, and functional impairment profiles. Additionally, an early identification and therapeutic intervention of these diseases is pivotal to slow the progression of neurodegeneration and extend healthy life span. Mass spectrometry-based techniques have proven to be hugely promising in biological sample analysis and discovery of biomarkers including protein and peptide biomarkers for potential drug target discovery. Recent studies on these biomarkers have demonstrated their potential for applications in early diagnostics and identifying therapeutic targets to battle against neurodegenerative diseases. In this review, we have presented principles of mass spectrometry (MS) and the associated workflows in analyzing and imaging biological samples for discovery of biomarkers. We have especially focused on age- related progressing neurodegenerative diseases such as Alzheimer's (AD) and Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal dementia (FTD) and the related MS-based biomarkers developments for these diseases. Finally, we present a future perspective discussing the potential research directions ahead.
Collapse
Affiliation(s)
- Ishita Agrawal
- Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Pallavi Tripathi
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, M1 7DN, Manchester, UK
| | - Shyamasri Biswas
- USA Prime Biotech LLC, 1330 NW 6th St., Suite A-2, Gainesville, FL 32601, USA
| |
Collapse
|
26
|
Audinot JN, Philipp P, De Castro O, Biesemeier A, Hoang QH, Wirtz T. Highest resolution chemical imaging based on secondary ion mass spectrometry performed on the helium ion microscope. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:105901. [PMID: 34404033 DOI: 10.1088/1361-6633/ac1e32] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
This paper is a review on the combination between Helium Ion Microscopy (HIM) and Secondary Ion Mass Spectrometry (SIMS), which is a recently developed technique that is of particular relevance in the context of the quest for high-resolution high-sensitivity nano-analytical solutions. We start by giving an overview on the HIM-SIMS concept and the underlying fundamental principles of both HIM and SIMS. We then present and discuss instrumental aspects of the HIM and SIMS techniques, highlighting the advantage of the integrated HIM-SIMS instrument. We give an overview on the performance characteristics of the HIM-SIMS technique, which is capable of producing elemental SIMS maps with lateral resolution below 20 nm, approaching the physical resolution limits, while maintaining a sub-nanometric resolution in the secondary electron microscopy mode. In addition, we showcase different strategies and methods allowing to take profit of both capabilities of the HIM-SIMS instrument (high-resolution imaging using secondary electrons and mass filtered secondary sons) in a correlative approach. Since its development HIM-SIMS has been successfully applied to a large variety of scientific and technological topics. Here, we will present and summarise recent applications of nanoscale imaging in materials research, life sciences and geology.
Collapse
Affiliation(s)
- Jean-Nicolas Audinot
- Advanced Instrumentation for Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Patrick Philipp
- Advanced Instrumentation for Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Olivier De Castro
- Advanced Instrumentation for Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Antje Biesemeier
- Advanced Instrumentation for Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Quang Hung Hoang
- Advanced Instrumentation for Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Tom Wirtz
- Advanced Instrumentation for Nano-Analytics (AINA), MRT Department, Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxembourg
| |
Collapse
|
27
|
Zhang Y, Komorek R, Son J, Riechers S, Zhu Z, Jansson J, Jansson C, Yu XY. Molecular imaging of plant-microbe interactions on the Brachypodium seed surface. Analyst 2021; 146:5855-5865. [PMID: 34378550 DOI: 10.1039/d1an00205h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) play a crucial role in biological control and pathogenic defense on and within plant tissues, however the mechanisms by which plants associate with PGPR to elicit such beneficial effects need further study. Here, we present time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging of Brachypodium distachyon (Brachypodium) seeds with and without exposure to two model PGPR, i.e., Gram-negative Pseudomonas fluorescens SBW25 (P.) and Gram-positive Arthrobacter chlorophenolicus A6 (A.). Delayed image extraction was used to image PGPR-treated seed sections to reveal morphological changes. ToF-SIMS spectral comparison, principal component analysis (PCA), and two-dimensional (2D) imaging show that the selected PGPR have different effects on the host seed surface, resulting in changes in chemical composition and morphology. Metabolite products and biomarkers, such as flavonoids, phenolic compounds, fatty acids, and indole-3-acetic acid (IAA), were identified on the PGPR-treated seed surfaces. These compounds have different distributions on the Brachypodium seed surface for the two PGPR, indicating that the different bacteria elicit distinct responses from the host. Our results illustrate that ToF-SIMS is an effective tool to study plant-microbe interactions and to provide insightful information with submicrometer lateral resolution of the chemical distributions associated with morphological features, potentially offering a new way to study the mechanisms underlying beneficial roles of PGPR.
Collapse
Affiliation(s)
- Yuchen Zhang
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - Rachel Komorek
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - Jiyoung Son
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - Shawn Riechers
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - Zihua Zhu
- Environmental and Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Janet Jansson
- Earth and Biological Science Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Christer Jansson
- Environmental and Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Xiao-Ying Yu
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| |
Collapse
|
28
|
Gunawan R, Imran A, Ahmed I, Liu Y, Chu Y, Guo L, Yang M, Lau C. FROZEN! Intracellular multi-electrolyte analysis measures millimolar lithium in mammalian cells. Analyst 2021; 146:5186-5197. [PMID: 34297019 DOI: 10.1039/d1an00806d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lithium salts are commonly used as medication for Bipolar Disorder (BD) and depression. However, there are limited methods to quantify intracellular lithium. Most methods to analyze intracellular electrolytes require tedious sample processing, specialized and often expensive machinery, sometimes involving harmful chemicals, and a bulk amount of the sample. In this work, we report a novel method (FROZEN!) based on cell isolation (from the surrounding medium) through rapid de-ionized water cleaning, followed by flash freezing for preservation. SKOV3 cells were cultured in normal medium and a medium containing 1.0 mM lithium. Lithium and other intracellular electrolytes in the isolated and preserved cells were simultaneously analyzed with laser-induced breakdown spectroscopy (LIBS) and X-ray fluorescence spectroscopy (XRF). Key electrolytes such as sodium, potassium, and magnesium, along with lithium, were detectable at the single-cell level. We found that cells cultured in the lithium medium have an intracellular lithium concentration of 0.5 mM. Concurrently, the intracellular concentrations of other positively charged electrolytes (sodium, potassium, and magnesium) were reduced by the presence of lithium. FROZEN! will greatly facilitate research in intracellular electrolyte balance during drug treatment, or other physiological stresses. In particular, the cell isolation and preservation steps can be easily performed by many laboratories worldwide, after which the samples are sent to an analytical laboratory for electrolyte analysis.
Collapse
Affiliation(s)
- Renardi Gunawan
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong, SAR, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Sparvero LJ, Tian H, Amoscato AA, Sun W, Anthonymuthu TS, Tyurina YY, Kapralov O, Javadov S, He R, Watkins SC, Winograd N, Kagan VE, Bayır H. Direct Mapping of Phospholipid Ferroptotic Death Signals in Cells and Tissues by Gas Cluster Ion Beam Secondary Ion Mass Spectrometry (GCIB‐SIMS). Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Louis J. Sparvero
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh Pittsburgh PA 15261 USA
- Department of Critical Care Medicine and Children's Neuroscience Institute UPMC Children's Hospital of Pittsburgh Pittsburgh PA 15261 USA
| | - Hua Tian
- Department of Chemistry Pennsylvania State University University Park State College PA 16802 USA
| | - Andrew A. Amoscato
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh Pittsburgh PA 15261 USA
| | - Wan‐Yang Sun
- College of Pharmacy Jinan University Guangzhou Guangdong 510632 China
| | - Tamil S. Anthonymuthu
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh Pittsburgh PA 15261 USA
- Department of Critical Care Medicine and Children's Neuroscience Institute UPMC Children's Hospital of Pittsburgh Pittsburgh PA 15261 USA
| | - Yulia Y. Tyurina
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh Pittsburgh PA 15261 USA
| | - Oleksandr Kapralov
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh Pittsburgh PA 15261 USA
| | - Sabzali Javadov
- Department of Physiology School of Medicine University of Puerto Rico San Juan PR 00936-5067 USA
| | - Rong‐Rong He
- College of Pharmacy and School of Traditional Chinese Medicine Jinan University Guangzhou Guangdong 510632 China
| | - Simon C. Watkins
- Department of Cell Biology and Center for Biological Imaging University of Pittsburgh Pittsburgh PA 15261 USA
| | - Nicholas Winograd
- Department of Chemistry Pennsylvania State University University Park State College PA 16802 USA
| | - Valerian E. Kagan
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh Pittsburgh PA 15261 USA
- Department of Critical Care Medicine and Children's Neuroscience Institute UPMC Children's Hospital of Pittsburgh Pittsburgh PA 15261 USA
| | - Hülya Bayır
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh Pittsburgh PA 15261 USA
- Department of Critical Care Medicine and Children's Neuroscience Institute UPMC Children's Hospital of Pittsburgh Pittsburgh PA 15261 USA
| |
Collapse
|
30
|
Sparvero LJ, Tian H, Amoscato AA, Sun WY, Anthonymuthu TS, Tyurina YY, Kapralov O, Javadov S, He RR, Watkins SC, Winograd N, Kagan VE, Bayır H. Direct Mapping of Phospholipid Ferroptotic Death Signals in Cells and Tissues by Gas Cluster Ion Beam Secondary Ion Mass Spectrometry (GCIB-SIMS). Angew Chem Int Ed Engl 2021; 60:11784-11788. [PMID: 33684237 PMCID: PMC8243396 DOI: 10.1002/anie.202102001] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Indexed: 12/14/2022]
Abstract
Peroxidized phosphatidylethanolamine (PEox) species have been identified by liquid chromatography mass spectrometry (LC-MS) as predictive biomarkers of ferroptosis, a new program of regulated cell death. However, the presence and subcellular distribution of PEox in specific cell types and tissues have not been directly detected by imaging protocols. By applying gas cluster ion beam secondary ion mass spectrometry (GCIB-SIMS) imaging with a 70 keV (H2 O)n+ (n>28 000) cluster ion beam, we were able to map PEox with 1.2 μm spatial resolution at the single cell/subcellular level in ferroptotic H9c2 cardiomyocytes and cortical/hippocampal neurons after traumatic brain injury. Application of this protocol affords visualization of physiologically relevant levels of very low abundance (20 pmol μmol-1 lipid) peroxidized lipids in subcellular compartments and their accumulation in disease conditions.
Collapse
Affiliation(s)
- Louis J. Sparvero
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA 15261 (USA)
- Department of Critical Care Medicine and Children’s Neuroscience Institute UPMC Children’s Hospital of Pittsburgh Pittsburgh, PA 15261 (USA)
| | - Hua Tian
- Department of Chemistry, Pennsylvania State University University Park, State College, PA 16802 (USA)
| | - Andrew A. Amoscato
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA 15261 (USA)
| | - Wan-Yang Sun
- College of Pharmacy, Jinan University Guangzhou, Guangdong 510632 (China)
| | - Tamil S. Anthonymuthu
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA 15261 (USA)
- Department of Critical Care Medicine and Children’s Neuroscience Institute UPMC Children’s Hospital of Pittsburgh Pittsburgh, PA 15261 (USA)
| | - Yulia Y. Tyurina
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA 15261 (USA)
| | - Oleksandr Kapralov
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA 15261 (USA)
| | - Sabzali Javadov
- Department of Physiology, School of Medicine University of Puerto Rico, San Juan, PR 00936-5067 (USA)
| | - Rong-Rong He
- College of Pharmacy and School of Traditional Chinese Medicine Jinan University, Guangzhou, Guangdong 510632 (China)
| | - Simon C. Watkins
- Department of Cell Biology and Center for Biological Imaging University of Pittsburgh, Pittsburgh, PA 15261 (USA)
| | - Nicholas Winograd
- Department of Chemistry, Pennsylvania State University University Park, State College, PA 16802 (USA)
| | - Valerian E. Kagan
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA 15261 (USA)
- Department of Critical Care Medicine and Children’s Neuroscience Institute UPMC Children’s Hospital of Pittsburgh Pittsburgh, PA 15261 (USA)
| | - Hülya Bayır
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA 15261 (USA)
- Department of Critical Care Medicine and Children’s Neuroscience Institute UPMC Children’s Hospital of Pittsburgh Pittsburgh, PA 15261 (USA)
| |
Collapse
|
31
|
Davoli E, Zucchetti M, Matteo C, Ubezio P, D'Incalci M, Morosi L. THE SPACE DIMENSION AT THE MICRO LEVEL: MASS SPECTROMETRY IMAGING OF DRUGS IN TISSUES. MASS SPECTROMETRY REVIEWS 2021; 40:201-214. [PMID: 32501572 DOI: 10.1002/mas.21633] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Mass spectrometry imaging (MSI) has seen remarkable development in recent years. The possibility of getting quantitative or semiquantitative data, while maintaining the spatial component in the tissues has opened up unique study possibilities. Now with a spatial window of few tens of microns, we can characterize the events occurring in tissue subcompartments in physiological and pathological conditions. For example, in oncology-especially in preclinical models-we can quantitatively measure drug distribution within tumors, correlating it with pharmacological treatments intended to modify it. We can also study the local effects of the drug in the tissue, and their effects in relation to histology. This review focuses on the main results in the field of drug MSI in clinical pharmacology, looking at the literature on the distribution of drugs in human tissues, and also the first preclinical evidence of drug intratissue effects. The main instrumental techniques are discussed, looking at the different instrumentation, sample preparation protocols, and raw data management employed to obtain the sensitivity required for these studies. Finally, we review the applications that describe in situ metabolic events and pathways induced by the drug, in animal models, showing that MSI makes it possible to study effects that go beyond the simple concentration of the drug, maintaining the space dimension. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Enrico Davoli
- Laboratory of Mass Spectrometry, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Massimo Zucchetti
- Laboratory of Antitumoral Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Cristina Matteo
- Laboratory of Antitumoral Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Paolo Ubezio
- Laboratory of Antitumoral Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Maurizio D'Incalci
- Laboratory of Antitumoral Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Lavinia Morosi
- Laboratory of Antitumoral Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
32
|
Jeng JY, Jiang ZH, Cho YT, Su H, Lee CW, Shiea J. Obtaining molecular imagings of pesticide residues on strawberry surfaces with probe sampling followed by ambient ionization mass spectrometric analysis. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4644. [PMID: 32885563 DOI: 10.1002/jms.4644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Thermal desorption-electrospray ionization tandem mass spectrometry (TD-ESI/MS/MS) was used to rapidly characterize the residual pesticides collected on the surface of a strawberry with a metallic probe. Twelve pesticides, including nine fungicides and three miticides, were detected; the results were validated by comparison with results that used solvent extraction followed by gas chromatography/mass spectrometry and liquid chromatography/tandem mass spectrometry analyses. The distribution of pesticide residues on a strawberry's surface was explored by collecting multiple samples using probes from 40 positions on the strawberry, with the collected samples being analyzed with TD-ESI/MS/MS. The obtained molecular information was used to construct mass spectrometry imaging of the strawberry's pesticide residues.
Collapse
Affiliation(s)
- Jing-Yueh Jeng
- Department of Medicinal Chemistry, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Zong-Han Jiang
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yi-Tzu Cho
- Department of Cosmetic Applications and Management, Yuh-Ing Junior College of Health Care & Management, Kaohsiung, Taiwan
| | - Hung Su
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chi-Wei Lee
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jentaie Shiea
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
33
|
Optical Microscopy-Guided Laser Ablation Electrospray Ionization Ion Mobility Mass Spectrometry: Ambient Single Cell Metabolomics with Increased Confidence in Molecular Identification. Metabolites 2021; 11:metabo11040200. [PMID: 33801673 PMCID: PMC8065410 DOI: 10.3390/metabo11040200] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Single cell analysis is a field of increasing interest as new tools are continually being developed to understand intercellular differences within large cell populations. Laser-ablation electrospray ionization mass spectrometry (LAESI-MS) is an emerging technique for single cell metabolomics. Over the years, it has been validated that this ionization technique is advantageous for probing the molecular content of individual cells in situ. Here, we report the integration of a microscope into the optical train of the LAESI source to allow for visually informed ambient in situ single cell analysis. Additionally, we have coupled this ‘LAESI microscope’ to a drift-tube ion mobility mass spectrometer to enable separation of isobaric species and allow for the determination of ion collision cross sections in conjunction with accurate mass measurements. This combined information helps provide higher confidence for structural assignment of molecules ablated from single cells. Here, we show that this system enables the analysis of the metabolite content of Allium cepa epidermal cells with high confidence structural identification together with their spatial locations within a tissue.
Collapse
|
34
|
Neumann EK, Djambazova KV, Caprioli RM, Spraggins JM. Multimodal Imaging Mass Spectrometry: Next Generation Molecular Mapping in Biology and Medicine. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2401-2415. [PMID: 32886506 PMCID: PMC9278956 DOI: 10.1021/jasms.0c00232] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Imaging mass spectrometry has become a mature molecular mapping technology that is used for molecular discovery in many medical and biological systems. While powerful by itself, imaging mass spectrometry can be complemented by the addition of other orthogonal, chemically informative imaging technologies to maximize the information gained from a single experiment and enable deeper understanding of biological processes. Within this review, we describe MALDI, SIMS, and DESI imaging mass spectrometric technologies and how these have been integrated with other analytical modalities such as microscopy, transcriptomics, spectroscopy, and electrochemistry in a field termed multimodal imaging. We explore the future of this field and discuss forthcoming developments that will bring new insights to help unravel the molecular complexities of biological systems, from single cells to functional tissue structures and organs.
Collapse
Affiliation(s)
- Elizabeth K Neumann
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
| | - Katerina V Djambazova
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
| | - Richard M Caprioli
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
- Department of Pharmacology, Vanderbilt University, 2220 Pierce Avenue, Nashville, Tennessee 37232, United States
- Department of Medicine, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
| | - Jeffrey M Spraggins
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, Tennessee 37205, United States
- Mass Spectrometry Research Center, Vanderbilt University, 465 21st Avenue S #9160, Nashville, Tennessee 37235, United States
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, Tennessee 37235, United States
| |
Collapse
|
35
|
Gulin AA, Nadtochenko VA, Pogorelova VN, Melnikov MY, Pogorelov AG. Sample Preparation of Biological Tissues and Cells for the Time-of-Flight Secondary Ion Mass Spectrometry. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s106193482006009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Holmes DT, Romney MG, Angel P, DeMarco ML. Proteomic applications in pathology and laboratory medicine: Present state and future prospects. Clin Biochem 2020; 82:12-20. [PMID: 32442429 DOI: 10.1016/j.clinbiochem.2020.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022]
Abstract
Clinical mass spectrometry applications have traditionally focused on small molecules, particularly in the areas of therapeutic drug monitoring, toxicology, and measurement of endogenous and exogenous steroids. More recently, the use of matrix assisted laser desorption/ionization time of flight mass spectrometry for the identification of microbial pathogens has been widely implemented. Following this evolution, there has been an expanding role for the measurement of peptides and proteins in pathology and laboratory medicine. This review explores the current state of protein measurement by clinical mass spectrometry and the analytical strategies employed, as well as emerging applications in clinical chemistry, clinical microbiology and anatomical pathology.
Collapse
Affiliation(s)
- Daniel T Holmes
- Department of Pathology and Laboratory Medicine, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC V6Z 1Y6, Canada; University of British Columbia Department of Pathology and Laboratory Medicine, Vancouver, BC V6T 2B5 Canada.
| | - Marc G Romney
- Department of Pathology and Laboratory Medicine, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC V6Z 1Y6, Canada; University of British Columbia Department of Pathology and Laboratory Medicine, Vancouver, BC V6T 2B5 Canada.
| | - Peggi Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charelston, SC 29425 Canada.
| | - Mari L DeMarco
- Department of Pathology and Laboratory Medicine, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC V6Z 1Y6, Canada; University of British Columbia Department of Pathology and Laboratory Medicine, Vancouver, BC V6T 2B5 Canada.
| |
Collapse
|
37
|
Witt B, Schaumlöffel D, Schwerdtle T. Subcellular Localization of Copper-Cellular Bioimaging with Focus on Neurological Disorders. Int J Mol Sci 2020; 21:ijms21072341. [PMID: 32231018 PMCID: PMC7178132 DOI: 10.3390/ijms21072341] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022] Open
Abstract
As an essential trace element, copper plays a pivotal role in physiological body functions. In fact, dysregulated copper homeostasis has been clearly linked to neurological disorders including Wilson and Alzheimer’s disease. Such neurodegenerative diseases are associated with progressive loss of neurons and thus impaired brain functions. However, the underlying mechanisms are not fully understood. Characterization of the element species and their subcellular localization is of great importance to uncover cellular mechanisms. Recent research activities focus on the question of how copper contributes to the pathological findings. Cellular bioimaging of copper is an essential key to accomplish this objective. Besides information on the spatial distribution and chemical properties of copper, other essential trace elements can be localized in parallel. Highly sensitive and high spatial resolution techniques such as LA-ICP-MS, TEM-EDS, S-XRF and NanoSIMS are required for elemental mapping on subcellular level. This review summarizes state-of-the-art techniques in the field of bioimaging. Their strengths and limitations will be discussed with particular focus on potential applications for the elucidation of copper-related diseases. Based on such investigations, further information on cellular processes and mechanisms can be derived under physiological and pathological conditions. Bioimaging studies might enable the clarification of the role of copper in the context of neurodegenerative diseases and provide an important basis to develop therapeutic strategies for reduction or even prevention of copper-related disorders and their pathological consequences.
Collapse
Affiliation(s)
- Barbara Witt
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114–116, 14558 Nuthetal, Germany;
- Correspondence: ; Tel.: +49-3320-088-5241
| | - Dirk Schaumlöffel
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux (IPREM), UMR 5254, CNRS/Université de Pau et des Pays de l’Adour/E2S UPPA, 64000 Pau, France;
| | - Tanja Schwerdtle
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114–116, 14558 Nuthetal, Germany;
- TraceAge—DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Potsdam-Berlin-Jena, Germany
| |
Collapse
|
38
|
Saigusa D, Saito R, Kawamoto K, Uruno A, Kano K, Aoki J, Yamamoto M, Kawamoto T. Conductive Adhesive Film Expands the Utility of Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. Anal Chem 2019; 91:8979-8986. [DOI: 10.1021/acs.analchem.9b01159] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Daisuke Saigusa
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan
- Medical Biochemistry, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
- LEAP, Japan Agency for Medical Research and Development (AMED), 1-7-1, Otemachi, Chiyoda-ku, Tokyo, Japan
| | - Ritsumi Saito
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan
- Medical Biochemistry, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Komei Kawamoto
- School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi,
Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan
| | - Akira Uruno
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan
- Medical Biochemistry, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Kuniyuki Kano
- Medical Biochemistry, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki-aza,
Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Junken Aoki
- Medical Biochemistry, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki-aza,
Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan
- Medical Biochemistry, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Tadafumi Kawamoto
- School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi,
Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan
| |
Collapse
|