1
|
Padma HH, Dominic D, Illath K, Kar S, Santra TS. Light-activated nanocomposite thin sheet for high throughput contactless biomolecular delivery into hard-to-transfect cells. Analyst 2025. [PMID: 39781686 DOI: 10.1039/d4an01331j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
High throughput intracellular delivery of biological macromolecules is crucial for cell engineering, gene expression, therapeutics, diagnostics, and clinical studies; however, most existing techniques are either contact-based or have throughput limitations. Herein, we report a light-activated, contactless, high throughput photoporation method for highly efficient and viable cell transfection of more than a million cells within a minute. We fabricated reduced graphene oxide (rGO) nanoflakes that was mixed with a polydimethylsiloxane (PDMS) nanocomposite thin sheet with an area of 3 cm2 and a thickness of ∼600 μm. Upon infrared (980 nm) nanosecond pulse laser exposure, the rGO nanoflakes induced heat and created photothermal bubbles, leading to cell membrane deformation and biomolecular delivery. Using this platform, we achieved delivery of small to large size molecules, such as propidium iodide (PI) dye (668 Da), dextran (3000 Da), siRNA (20-24 bp), EGFP (6159 bp) and enzymes (465 kDa), in L929, N2a, and HeLa cells as well as in hard-to-transfect NiH3T3 and HuH7 cells. The best results were achieved for enzymes with ∼97% transfection efficiency and 98% cell viability in Huh7 cells. This highly efficient cargo delivery tool is simple and easy to use, and its dimensions can be varied according to the user requirements. Moreover, this safe and successful method has applicability in diagnostics and cell therapy.
Collapse
Affiliation(s)
- Hima Harshan Padma
- Department of Engineering Design, Indian Institute of Technology Madras, India.
| | - Donia Dominic
- Department of Engineering Design, Indian Institute of Technology Madras, India.
| | - Kavitha Illath
- Department of Engineering Design, Indian Institute of Technology Madras, India.
| | - Srabani Kar
- Department of Engineering Design, Indian Institute of Technology Madras, India.
- Department of Physics, Indian Institute of Technology Hyderabad, India
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, India.
| |
Collapse
|
2
|
Shirzad M, Daraei A, Najafzadehvarzi H, Farnoush N, Parsian H. Co-culture system of breast cancer and normal cells to investigate inflammation: using doxorubicin encapsulated in adipose-derived exosomes. Med Oncol 2024; 42:21. [PMID: 39630192 DOI: 10.1007/s12032-024-02568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/11/2024] [Indexed: 01/23/2025]
Abstract
Doxorubicin (DOX) chemotherapy for breast cancer is an effective treatment option, but it also has disadvantages. Exosomes (EXOs) have safely and successfully transported DOX and reduced its adverse effects; however, its use is still being explored. In this study, a co-culture system of malignant and non-malignant breast cells was used to generate an in vitro model reflecting the in vivo cellular microenvironment, and the effects of this treatment were investigated by examining inflammatory genes. Extracellular matrices (EXOs) were extracted from mesenchymal stem cells derived from human adipose tissue by ultracentrifugation. Later, Western blotting, dynamic light scattering (DLS) and transmission electron microscopy methods were used to examine the properties of the EXO. DOX was encapsulated in the EXOs by sonication and the loading rate was measured by spectrophotometry. In the current study, a co-culture system was used to investigate the cytotoxic effects of free DOX and DOX encapsulated in EXOs (EXO-DOX) on various breast cell lines, including MCF-7, MCF-10A, MDA-MB-231, and A-MSC. Additionally, the expression levels of inflammatory cytokines (IL-1β, IL-6, IL-10, and TNF-α) were examined. Methylthiazolyldiphenyl-tetrazolium bromide assay demonstrated that free DOX showed the highest cytotoxicity against MCF-10A cells, followed by MCF-7 cells. Conversely, EXO-DOX indicated a greater effect on MCF-7 cells and had a lower IC50 compared to MDA-MB-231 cells. Free DOX significantly downregulated the expression of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), particularly in MCF-7 and MCF-10A cells, while concurrently upregulating IL-10 expression. EXO-DOX induced a more significant alteration in cytokine expression than the control and free DOX treatment groups. The co-culture system revealed a synergistic effect of free DOX on cancer cells while simultaneously mitigating the toxic effects of DOX on normal cells. This study suggests that EXO-DOX has promising potential as a targeted drug delivery system that could potentially improve therapeutic efficacy and minimize off-target toxicity.
Collapse
Affiliation(s)
- Moein Shirzad
- Student Research Committee, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Hossein Najafzadehvarzi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Pharmacology Department, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Nazila Farnoush
- Department of Surgery, Babol University of Medical Sciences, Babol, Iran
| | - Hadi Parsian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
3
|
Xenodochidis C, Hristova-Panusheva K, Kamenska T, Santhosh PB, Petrov T, Stoychev L, Genova J, Krasteva N. Graphene Oxide Nanoparticles for Photothermal Treatment of Hepatocellular Carcinoma Using Low-Intensity Femtosecond Laser Irradiation. Molecules 2024; 29:5650. [PMID: 39683809 DOI: 10.3390/molecules29235650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Graphene oxide-mediated photothermal therapy using femtosecond lasers has recently shown promise in treating hepatocellular carcinoma. However, significant work remains to optimize irradiation parameters for specific nanoparticle types and cancer cells to improve nanomaterial-mediated photothermal anticancer therapy. This study investigated the photothermal potential of nGO and nGO-PEG nanoparticles (NPs) combined with femtosecond laser irradiation at 515 nm and 1030 nm wavelengths, with varying power (0.1 and 0.2 W/cm2) and duration (5 and 10 min), to optimize photothermal therapy for hepatocellular carcinoma. Conversion efficiency of NPs, morphology and viability of HepG2 and normal MDCK cells after treatments were evaluated using an electronic thermometer, phase-contrast microscopy, and WST-1 assay. The results revealed that nGO-PEG NPs exhibited better photothermal efficiency than nGO, with 515 nm of irradiation inducing a temperature increase up to 19.1 °C compared to 4.7 °C with 1030 nm of light. Laser exposure to 515 nm significantly reduced HepG2 cell viability, with the most intense conditions (10 min at 0.2 W/cm2) causing a decrease of up to 58.2% with nGO and 43.51% with nGO-PEG. Normal MDCK cells showed minimal impact or a slight viability increase, especially with nGO-PEG. Combined treatment with laser irradiation and NPs induced significant morphological changes in HepG2 cells, including cell detachment and apoptotic-like characteristics, particularly with 1030 nm of irradiation. MDCK cells exhibited minimal morphological changes, with some recovery observed under lower energy conditions. These findings suggest that low-energy lasers and engineered nanomaterials could provide a minimally invasive approach to photothermal cancer therapy with reduced side effects.
Collapse
Affiliation(s)
- Charilaos Xenodochidis
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria
| | - Kamelia Hristova-Panusheva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria
| | - Trayana Kamenska
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria
| | - Poornima Budime Santhosh
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria
| | - Todor Petrov
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria
- Faculty of Applied Mathematics and Informatics, Technical University of Sofia, 8 Kliment Ohridski Str., 1000 Sofia, Bulgaria
| | - Lyubomir Stoychev
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria
| | - Julia Genova
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, 1784 Sofia, Bulgaria
| | - Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl.21, 1113 Sofia, Bulgaria
| |
Collapse
|
4
|
Padma HH, Illath K, Dominic D, Chang HY, Nagai M, Ojha R, Kar S, Santra TS. Ultra-low intensity light pulses for large cargo delivery into hard-to-transfect cells using an rGO mixed PDMS microtip device. LAB ON A CHIP 2024; 24:3880-3897. [PMID: 38984422 DOI: 10.1039/d4lc00121d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Nanoparticle-mediated photoporation has arisen as a universal intracellular delivery tool; however, the direct interaction of nanoparticles and cells hampers its clinical translation. Here, we report a uniform contactless intracellular delivery that transfects a large number of cells within a minute and avoids direct contact of nanoparticles and cells, thereby improving the cell viability. Our platform consists of an array of polydimethylsiloxane (PDMS) mixed reduced graphene oxide (rGO) nanoflakes on pyramidal microtips, uniformly distributed at the apex of the tip. The extraordinary optoelectronic properties of rGO were combined with micro-pyramidal cavities to entrap light in micro-cavities and efficiently convert it into heat through multiple reflections and absorptions. As a result, ultralow infra-red laser pulse irradiation could create cavitation bubbles followed by cell membrane deformation and biomolecular delivery. Using this delivery platform, we have achieved the delivery of small to large cargo (668 Da to 465 kDa) in various mammalian cells, including hard-to-transfect H9C2 cardiomyocytes. The best results were achieved for enzyme (465 kDa) delivery with a transfection efficiency and cell viability of 95% and 98%, respectively, in SiHa cells. The highly efficient cargo delivery tool demonstrated a safe and effective approach for cell therapy and diagnostics.
Collapse
Affiliation(s)
- Hima Harshan Padma
- Department of Engineering Design, Indian Institute of Technology Madras, India.
| | - Kavitha Illath
- Department of Engineering Design, Indian Institute of Technology Madras, India.
| | - Donia Dominic
- Department of Engineering Design, Indian Institute of Technology Madras, India.
| | - Hwan-You Chang
- Department of Medical Science, National Tsing Hua University, Taiwan
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Japan
| | - Rajdeep Ojha
- Department of Physical Medicine and Rehabilitation, Christian Medical College, Vellore, India
| | - Srabani Kar
- Department of Physics, Indian Institute of Science Education and Research Tirupati, India
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, India.
| |
Collapse
|
5
|
Rehan F, Zhang M, Fang J, Greish K. Therapeutic Applications of Nanomedicine: Recent Developments and Future Perspectives. Molecules 2024; 29:2073. [PMID: 38731563 PMCID: PMC11085487 DOI: 10.3390/molecules29092073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The concept of nanomedicine has evolved significantly in recent decades, leveraging the unique phenomenon known as the enhanced permeability and retention (EPR) effect. This has facilitated major advancements in targeted drug delivery, imaging, and individualized therapy through the integration of nanotechnology principles into medicine. Numerous nanomedicines have been developed and applied for disease treatment, with a particular focus on cancer therapy. Recently, nanomedicine has been utilized in various advanced fields, including diagnosis, vaccines, immunotherapy, gene delivery, and tissue engineering. Multifunctional nanomedicines facilitate concurrent medication delivery, therapeutic monitoring, and imaging, allowing for immediate responses and personalized treatment plans. This review concerns the major advancement of nanomaterials and their potential applications in the biological and medical fields. Along with this, we also mention the various clinical translations of nanomedicine and the major challenges that nanomedicine is currently facing to overcome the clinical translation barrier.
Collapse
Affiliation(s)
- Farah Rehan
- Department of Molecular Medicine, Al-Jawhara Centre for Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 323, Bahrain;
| | - Mingjie Zhang
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan;
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jun Fang
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan;
| | - Khaled Greish
- Department of Molecular Medicine, Al-Jawhara Centre for Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 323, Bahrain;
| |
Collapse
|
6
|
Wu S, Zhang Q, Zhao Q, Jiang Y, Qu X, Zhou Y, Zhao T, Cang F, Li Y. Cobalt-doped hollow polydopamine for oxygen generation and GSH consumption enhanced chemo-PTT combined cancer therapy. BIOMATERIALS ADVANCES 2023; 154:213593. [PMID: 37657278 DOI: 10.1016/j.bioadv.2023.213593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023]
Abstract
Nanotechnology has revolutionized the field of therapeutics by introducing a plethora of nanomaterials capable of enhancing traditional drug efficacy or paving the way for innovative treatment methods. Within this domain, we propose a novel Cobalt-doped hollow polydopamine nanosphere system. This system, incorporating Doxorubicin loading and hyaluronic acid (HA) surface coating (CoHPDA@DOX-HA), is designed for combined tumor therapy. The overarching aim is to diminish the administration dosage, mitigate the cytotoxic side effects of chemotherapy drugs, augment chemosensitivity within neoplastic tissues, and attain superior results in tumor treatment via combined therapeutic strategies. The targeted molecule, hyaluronic acid (HA), amplifies the biocompatibility of CoHPDA@DOX-HA throughout circulation and fosters endocytosis of the nanoparticle system within cancer cells. This nanosphere system possesses pH sensitivity properties, allowing for a meticulous drug release within the acidic microenvironment of tumor cells. Concurrently, Polydopamine (PDA) facilitates proficient photothermal therapy upon exposure to 808 nm laser irradiation. This process further amplifies the Glutathione (GSH) depletion, and when coupled with the oxygen production capabilities of the Cobalt-doped hollow PDA, significantly enhances the chemo-photothermal therapeutic efficiency. Findings from the treatment of tumor-bearing mice substantiate that even at dosages equivalent to a singular DOX administration, the CoHPDA@DOX-HA can provide efficacious synergistic therapy. Therefore, it is anticipated that multifunctional nanomaterials with Photoacoustic Tomography (PAT) imaging capabilities, targeted delivery, and a controlled collaborative therapeutic framework may serve as promising alternatives for accurate diagnostics and efficacious treatment strategies.
Collapse
Affiliation(s)
- Shilong Wu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, China
| | - Qin Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Qiyao Zhao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Yu Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, China
| | - Xiaomeng Qu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Yifan Zhou
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, China
| | - Tingting Zhao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, China
| | - Feng Cang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, China
| | - Yanyan Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, China.
| |
Collapse
|
7
|
Wang Z, Fu L, Liu D, Tang D, Liu K, Rao L, Yang J, Liu Y, Li Y, Chen H, Yang X. Controllable Preparation and Research Progress of Photosensitive Antibacterial Complex Hydrogels. Gels 2023; 9:571. [PMID: 37504450 PMCID: PMC10379193 DOI: 10.3390/gels9070571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/02/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023] Open
Abstract
Hydrogels are materials consisting of a network of hydrophilic polymers. Due to their good biocompatibility and hydrophilicity, they are widely used in biomedicine, food safety, environmental protection, agriculture, and other fields. This paper summarizes the typical complex materials of photocatalysts, photosensitizers, and hydrogels, as week as their antibacterial activities and the basic mechanisms of photothermal and photodynamic effects. In addition, the application of hydrogel-based photoresponsive materials in microbial inactivation is discussed, including the challenges faced in their application. The advantages of photosensitive antibacterial complex hydrogels are highlighted, and their application and research progress in various fields are introduced in detail.
Collapse
Affiliation(s)
- Zhijun Wang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Lili Fu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Dongliang Liu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Dongxu Tang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Kun Liu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Lu Rao
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Jinyu Yang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yi Liu
- College of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, China
| | - Yuesheng Li
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Huangqin Chen
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Xiaojie Yang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
8
|
González-Rodríguez L, Pérez-Davila S, López-Álvarez M, Chiussi S, Serra J, González P. Review article laser-induced hyperthermia on graphene oxide composites. J Nanobiotechnology 2023; 21:196. [PMID: 37340410 DOI: 10.1186/s12951-023-01956-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Hyperthermia-based therapies have shown great potential for clinical applications such as for the antitumor and antipathogenic activities. Within all strategies, the so-called photothermal therapy proposes to induce the hyperthermia by the remote laser radiation on a photothermal conversion agent, in contact with the target tissue. METHODS This paper reviews the most relevant in vitro and in vivo studies focused on NIR laser-induced hyperthermia due to photoexcitation of graphene oxide (GO) and reduced graphene oxide (rGO). Relevant parameters such as the amount of GO/rGO, the influence of the laser wavelength and power density are considered. Moreover, the required temperature and exposure time for each antitumor/antipathogenic case are collected and unified in a thermal dose parameter: the CEM43. RESULTS The calculated CEM43 thermal doses revealed a great variability for the same type of tumor/strain. In order to detect potential tendencies, the values were classified into four ranges, varying from CEM43 < 60 min to CEM43 ≥ 1 year. Thus, a preference for moderate thermal doses of CEM43 < 1 year was detected in antitumor activity, with temperatures ≤ 50 °C and exposure time ≤ 15 min. In case of the antipathogenic studies, the most used thermal dose was higher, CEM43 ≥ 1 year, with ablative hyperthermia (> 60ºC). CONCLUSIONS The ability of GO/rGO as effective photothermal conversion agents to promote a controlled hyperthermia is proven. The variability found for the CEM43 thermal doses on the reviewed studies reveals the potentiality to evaluate, for each application, the use of lower temperatures, by modulating time and/or repetitions in the doses.
Collapse
Affiliation(s)
- Laura González-Rodríguez
- Grupo de Novos Materiais, CINTECX, Universidade de Vigo, Vigo, 36310, Spain.
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36213, Spain.
| | - Sara Pérez-Davila
- Grupo de Novos Materiais, CINTECX, Universidade de Vigo, Vigo, 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36213, Spain
| | - Miriam López-Álvarez
- Grupo de Novos Materiais, CINTECX, Universidade de Vigo, Vigo, 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36213, Spain
| | - Stefano Chiussi
- Grupo de Novos Materiais, CINTECX, Universidade de Vigo, Vigo, 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36213, Spain
| | - Julia Serra
- Grupo de Novos Materiais, CINTECX, Universidade de Vigo, Vigo, 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36213, Spain
| | - Pío González
- Grupo de Novos Materiais, CINTECX, Universidade de Vigo, Vigo, 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36213, Spain
| |
Collapse
|
9
|
Liu S, Su J, Xie X, Huang R, Li H, Luo R, Li J, Liu X, He J, Huang Y, Wu P. Detection of methyltransferase activity and inhibitor screening based on rGO-mediated silver enhancement signal amplification strategy. Anal Biochem 2023:115207. [PMID: 37290576 DOI: 10.1016/j.ab.2023.115207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/20/2023] [Accepted: 06/04/2023] [Indexed: 06/10/2023]
Abstract
DNA methylation refers to the chemical modification process of obtaining a methyl group by the covalent bonding of a specific base in DNA sequence with S-adenosyl methionine (SAM) as a methyl donor under the catalysis of methyltransferase (MTase), which is related to the occurrence of multiple diseases. Therefore, the detection of MTase activity is of great significance for disease diagnosis and drug screening. Because reduced graphene oxide (rGO) has a unique planar structure and remarkable catalytic performance, it is not clear whether rGO can rapidly catalyze silver deposition as an effective way of signal amplification. However, in this study, we were pleasantly surprised to find that using H2O2 as a reducing agent, rGO can rapidly catalyze silver deposition, and its catalytic efficiency of silver deposition is significantly better than that of GO. Therefore, based on further verifying the mechanism of catalytic properties of rGO, we constructed a novel electrochemical biosensor (rGO/silver biosensor) for the detection of dam MTase activity, which has high selectivity and sensitivity to MTase in the range of 0.1 U/mL to 10.0 U/mL, and the detection limit is as low as 0.07 U/mL. Besides, this study also used Gentamicin and 5-Fluorouracil as inhibitor models, confirming that the biosensor has a good application prospect in the high-throughput screening of dam MTase inhibitors.
Collapse
Affiliation(s)
- Shuyan Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410008, China; State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jing Su
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China; College of Chemistry & Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Xixiang Xie
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Rongping Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Haiping Li
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Ruiyu Luo
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jinghua Li
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jian He
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Yong Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
10
|
Konoe R, Morizane R. Strategies for Improving Vascularization in Kidney Organoids: A Review of Current Trends. BIOLOGY 2023; 12:503. [PMID: 37106704 PMCID: PMC10135596 DOI: 10.3390/biology12040503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023]
Abstract
Kidney organoids possess the potential to revolutionize the treatment of renal diseases. However, their growth and maturation are impeded by insufficient growth of blood vessels. Through a PubMed search, we have identified 34 studies that attempted to address this challenge. Researchers are exploring various approaches including animal transplantation, organ-on-chips, and extracellular matrices (ECMs). The most prevalent method to promote the maturation and vascularization of organoids involves transplanting them into animals for in vivo culture, creating an optimal environment for organoid growth and the development of a chimeric vessel network between the host and organoids. Organ-on-chip technology permits the in vitro culture of organoids, enabling researchers to manipulate the microenvironment and investigate the key factors that influence organoid development. Lastly, ECMs have been discovered to aid the formation of blood vessels during organoid differentiation. ECMs from animal tissue have been particularly successful, although the underlying mechanisms require further research. Future research building upon these recent studies may enable the generation of functional kidney tissues for replacement therapies.
Collapse
Affiliation(s)
| | - Ryuji Morizane
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
11
|
Gupta T, Pawar B, Vasdev N, Pawar V, Tekade RK. Carbonaceous Nanomaterials for Phototherapy of Cancer. Technol Cancer Res Treat 2023; 22:15330338231186388. [PMID: 37461375 DOI: 10.1177/15330338231186388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Carbonaceous nanomaterials (CNMs) have drawn tremendous biomedical research interest because of their unique structural features. Recently, CNMs, namely carbon dots, fullerenes, graphene, etc, have been successful in establishing them as considerable nanotherapeutics for phototherapy applications due to their electrical, thermal, and surface properties. This review aims to crosstalk the current understanding of CNMs as multimodal compounds in photothermal and photodynamic therapies as an integrated approach to treating cancer. It also expounds on phototherapy's biomechanics and illustrates its relation to cancer biomodulation. Critical considerations related to the structural properties, fabrication approaches, surface functionalization strategies, and biosafety profiles of CNMs have been explained. This article provides an overview of the most recent developments in the study of CNMs used in phototherapy, emphasizing their usage as nanocarriers. To conquer the current challenges of CNMs, we can raise the standard of cancer therapy for patients. The review will be of interest to the researchers working in the area of photothermal and photodynamic therapies and aiming to explore CNMs and their conjugates in cancer therapy.
Collapse
Affiliation(s)
- Tanisha Gupta
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad (An Institute of National Importance, Government of India), Gandhinagar, Gujarat, India
| | - Bhakti Pawar
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad (An Institute of National Importance, Government of India), Gandhinagar, Gujarat, India
| | - Nupur Vasdev
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad (An Institute of National Importance, Government of India), Gandhinagar, Gujarat, India
| | - Vinayak Pawar
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad (An Institute of National Importance, Government of India), Gandhinagar, Gujarat, India
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad (An Institute of National Importance, Government of India), Gandhinagar, Gujarat, India
| |
Collapse
|
12
|
Singh R, Alshaghdali K, Saeed A, Kausar MA, Aldakheel FM, Anwar S, Mishra D, Srivastava M. Prospects of microbial-engineering for the production of graphene and its derivatives: Application to design nanosystms for cancer theranostics. Semin Cancer Biol 2022; 86:885-898. [PMID: 34020029 DOI: 10.1016/j.semcancer.2021.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/05/2021] [Accepted: 05/14/2021] [Indexed: 01/27/2023]
Abstract
Cancer is known as one of the leading causes of morbidity and fatality, currently faced by our society. The prevalence of cancer related dieses is rapidly increasing around the world. To reduce the mortality rates, early diagnosis and subsequent treatment of cancer in timely manner is quite essential. Advancements have been made to achieve effective theranostics strategies to tackle cancerous dieses, yet very challenging to overcome this issue. Recently, advances made in the field of nanotechnology have shown tremendous potential for cancer theranostics. Different types of nanomaterials have been successfully employed to develop sophisticated diagnosis and therapy techniques. In this context, graphene and its derivatives e.g. graphene oxide (GO) and reduced graphene oxide (RGO) have been investigated as promising candidates to design graphene-based nanosystems for the diagnosis and therapeutic purpose. Further, to synthesize graphene and its derivatives different types of physicochemical methods are being adopted. However, each method has its own advantage and disadvantages. In this reference, among diverse biological methods, microbial technique can be one of the most promising and eco-friendly approach for the preparation of graphene and its derivatives, particularly GO and RGO. In this review, we summarize studies performed on the preparation of graphene and its derivatives following microbial routes meanwhile focus has been made on the preparation method and the possible mechanism involved therein. Thereafter, we have discussed applications of graphene and its derivatives to developed advanced nanosystem that can be imperative for the cancer theranostics. Results of recent studies exploring applications graphene based nanosystem for the preparation of different types of biosensors for early diagnosis; advanced therapeutic approaches by designing drug delivery nanosystems along with multifunctionality (e.g cancer imaging, drug delivery, photodynamic and photo thermal therapy) in cancer theranostics have been discussed. Particularly, emphasis has been given on the preparation techniques of graphene based nanosystems, being employed in designing of biosensing platforms, drug delivery and multifunctional nanosystems. Moreover, issues have been discussed on the preparation of graphene and its derivatives following microbial technique and the implementation of graphene based nanosystems in cancer theranostics.
Collapse
Affiliation(s)
- Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, 110052, India
| | - Khalid Alshaghdali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, P.O Box 2440, Saudi Arabia
| | - Amir Saeed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, P.O Box 2440, Saudi Arabia; Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Medical Sciences & Technology, P.O Box 12810, Khartoum, Sudan
| | - Mohd Adnan Kausar
- Department of Biochemistry, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Fahad M Aldakheel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11564, Saudi Arabia; Prince Sattam Chair for Epidemiology and Public Health Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Sadaf Anwar
- Department of Biochemistry, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Debabrata Mishra
- Department of Physics & Astrophysics, University of Delhi, Delhi, 110007, India
| | - Manish Srivastava
- Department of Chemical Engineering & Technology, IIT (BHU), Varanasi, 221005, India.
| |
Collapse
|
13
|
Choi JW, Seo WH, Lee YS, Kim SY, Kim BS, Lee KG, Lee SJ, Chung BG. Development of an IoT-integrated multiplexed digital PCR system for quantitative detection of infectious diseases. LAB ON A CHIP 2022; 22:3933-3941. [PMID: 36102682 DOI: 10.1039/d2lc00726f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
For rapid detection of the COVID-19 infection, the digital polymerase chain reaction (dPCR) with higher sensitivity and specificity has been presented as a promising method of point-of-care testing (POCT). Unlike the conventional real-time PCR (qPCR), the dPCR system allows absolute quantification of the target DNA without a calibration curve. Although a number of dPCR systems have previously been reported, most of these previous assays lack multiplexing capabilities. As different variants of COVID-19 have rapidly emerged, there is an urgent need for highly specific multiplexed detection systems. Additionally, the advances in the Internet of Things (IoT) technology have enabled the onsite detection of infectious diseases. Here, we present an IoT-integrated multiplexed dPCR (IM-dPCR) system involving sample compartmentalization, DNA amplification, fluorescence imaging, and quantitative analysis. This IM-dPCR system comprises three modules: a plasmonic heating-based thermal cycler, a multi-color fluorescence imaging set-up, and a firmware control module. Combined with a custom-developed smartphone application built on an IoT platform, the IM-dPCR system enabled automatic processing, data collection, and cloud storage. Using a self-priming microfluidic chip, 9 RNA groups (e.g., H1N1, H3N2, IFZ B, DENV2, DENV3, DENV4, OC43, 229E, and NL63) associated with three infectious diseases (e.g., influenza, dengue, and human coronaviruses) were analyzed with higher linearity (>98%) and sensitivity (1 copy per μL). The IM-dPCR system exhibited comparable analytical accuracy to commercial qPCR platforms. Therefore, this IM-dPCR system plays a crucial role in the onsite detection of infectious diseases.
Collapse
Affiliation(s)
- Ji Wook Choi
- Department of Mechanical Engineering, Sogang University, Seoul, Korea.
| | - Won Ho Seo
- Department of Biomedical Engineering, Sogang University, Seoul, Korea
| | - Young Suh Lee
- Department of Mechanical Engineering, Sogang University, Seoul, Korea.
| | - So Young Kim
- Biology, Graduate School of Natural Sciences, Soonchunhyang University, Asan, Korea
| | | | - Kyoung G Lee
- Center for Nano Bio Development, National NanoFab Center (NNFC), Daejeon, Korea
| | - Seok Jae Lee
- Center for Nano Bio Development, National NanoFab Center (NNFC), Daejeon, Korea
| | - Bong Geun Chung
- Department of Mechanical Engineering, Sogang University, Seoul, Korea.
- Institute of Integrated Biotechnology, Sogang University, Seoul, Korea
| |
Collapse
|
14
|
Wu Z, Chan B, Low J, Chu JJH, Hey HWD, Tay A. Microbial resistance to nanotechnologies: An important but understudied consideration using antimicrobial nanotechnologies in orthopaedic implants. Bioact Mater 2022; 16:249-270. [PMID: 35415290 PMCID: PMC8965851 DOI: 10.1016/j.bioactmat.2022.02.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/11/2022] Open
Abstract
Microbial resistance to current antibiotics therapies is a major cause of implant failure and adverse clinical outcomes in orthopaedic surgery. Recent developments in advanced antimicrobial nanotechnologies provide numerous opportunities to effective remove resistant bacteria and prevent resistance from occurring through unique mechanisms. With tunable physicochemical properties, nanomaterials can be designed to be bactericidal, antifouling, immunomodulating, and capable of delivering antibacterial compounds to the infection region with spatiotemporal accuracy. Despite its substantial advancement, an important, but under-explored area, is potential microbial resistance to nanomaterials and how this can impact the clinical use of antimicrobial nanotechnologies. This review aims to provide a better understanding of nanomaterial-associated microbial resistance to accelerate bench-to-bedside translations of emerging nanotechnologies for effective control of implant associated infections.
Collapse
Affiliation(s)
- Zhuoran Wu
- Institute of Health Innovation & Technology, National University of Singapore, 117599, Singapore
| | - Brian Chan
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
| | - Jessalyn Low
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
| | - Justin Jang Hann Chu
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
- Infectious Disease Programme, Yong Loo Lin School of Medicine, National University of Singapore, 117547, Singapore
- Institute of Molecular and Cell Biology, 35 Agency for Science, Technology and Research, 138673, Singapore
| | - Hwee Weng Dennis Hey
- National University Health System, National University of Singapore, 119228, Singapore
| | - Andy Tay
- Institute of Health Innovation & Technology, National University of Singapore, 117599, Singapore
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
- Tissue Engineering Programme, National University of Singapore, 117510, Singapore
| |
Collapse
|
15
|
Itoo AM, Vemula SL, Gupta MT, Giram MV, Kumar SA, Ghosh B, Biswas S. Multifunctional graphene oxide nanoparticles for drug delivery in cancer. J Control Release 2022; 350:26-59. [PMID: 35964787 DOI: 10.1016/j.jconrel.2022.08.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 02/07/2023]
Abstract
Recent advancements in nanotechnology have enabled us to develop sophisticated multifunctional nanoparticles or nanosystems for targeted diagnosis and treatment of several illnesses, including cancers. To effectively treat any solid tumor, the therapy should preferably target just the malignant cells/tissue with minor damage to normal cells/tissues. Graphene oxide (GO) nanoparticles have gained considerable interest owing to their two-dimensional planar structure, chemical/mechanical stability, excellent photosensitivity, superb conductivity, high surface area, and good biocompatibility in cancer therapy. Many compounds have been functionalized on the surface of GO to increase their biological applications and minimize cytotoxicity. The review presents an overview of the physicochemical characteristics, strategies for various modifications, toxicity and biocompatibility of graphene and graphene oxide, current trends in developing GO-based nano constructs as a drug delivery cargo and other biological applications, including chemo-photothermal therapy, chemo-photodynamic therapy, bioimaging, and theragnosis in cancer. Further, the review discusses the challenges and opportunities of GO, GO-based nanomaterials for the said applications. Overall, the review focuses on the therapeutic potential of strategically developed GO nanomedicines and comprehensively discusses their opportunities and challenges in cancer therapy.
Collapse
Affiliation(s)
- Asif Mohd Itoo
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Sree Lakshmi Vemula
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Mahima Tejasvni Gupta
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Mahesh Vilasrao Giram
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Sangishetty Akhil Kumar
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India.
| |
Collapse
|
16
|
Alamdari SG, Amini M, Jalilzadeh N, Baradaran B, Mohammadzadeh R, Mokhtarzadeh A, Oroojalian F. Recent advances in nanoparticle-based photothermal therapy for breast cancer. J Control Release 2022; 349:269-303. [PMID: 35787915 DOI: 10.1016/j.jconrel.2022.06.050] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 12/17/2022]
Abstract
Breast cancer is one of the most common cancers among women that is associated with high mortality. Conventional treatments including surgery, radiotherapy, and chemotherapy, which are not effective enough and have disadvantages such as toxicity and damage to healthy cells. Photothermal therapy (PTT) of cancer cells has been took great attention by researchers in recent years due to the use of light radiation and heat generation at the tumor site, which thermal ablation is considered a minimally invasive method for the treatment of breast cancer. Nanotechnology has opened up a new perspective in the treatment of breast cancer using PTT method. Through NIR light absorption, researchers applied various nanostructures because of their specific nature of penetrating and targeting tumor tissue, increasing the effectiveness of PTT, and combining it with other treatments. If PTT is used with common cancer treatments, it can dramatically increase the effectiveness of treatment and reduce the side effects of other methods. PTT performance can also be improved by hybridizing at least two different nanomaterials. Nanoparticles that intensely absorb light and increase the efficiency of converting light into heat can specifically kill tumors through hyperthermia of cancer cells. One of the main reasons that have increased the efficiency of nanoparticles in PTT is their permeability and durability effect and they can accumulate in tumor tissue. Targeted PTT can be provided by incorporating specific ligands to target receptors expressed on the surface of cancer cells on nanoparticles. These nanoparticles can specifically target cancer cells by maintaining the surface area and increasing penetration. In this study, we briefly introduce the performance of light therapy, application of metal nanoparticles, polymer nanoparticles, carbon nanoparticles, and hybrid nanoparticles for use in PTT of breast cancer.
Collapse
Affiliation(s)
- Sania Ghobadi Alamdari
- Department of Cell and Molecular Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Jalilzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mohammadzadeh
- Department of Cell and Molecular Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Fatemeh Oroojalian
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| |
Collapse
|
17
|
Kim JW, Choi YY, Park SH, Ha JH, Lee HU, Kang T, Sun W, Chung BG. Microfluidic electrode array chip for electrical stimulation-mediated axonal regeneration. LAB ON A CHIP 2022; 22:2122-2130. [PMID: 35388823 DOI: 10.1039/d1lc01158h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The precise manipulation of the neural stem cell (NSC)-derived neural differentiation is still challenging, and there is a technological barrier to regulate the axonal regeneration in a controlled manner. Here, we developed a microfluidic chip integrated with a microelectrode array as an axonal guidance platform. The microfluidic electrode array chip consisted of two compartments and a bridge microchannel that could isolate and guide the axons. We demonstrated that the NSCs were largely differentiated into neural cells as the electric field was applied to the microfluidic electrode array chip. We also confirmed the synergistic effects of the electrical stimulation (ES) and neurotrophic factor (NF) on axonal outgrowth. This microfluidic electrode array chip can serve as a central nervous system (CNS) model for axonal injury and regeneration. Therefore, it could be a potentially powerful tool for an in vitro model of the axonal regeneration.
Collapse
Affiliation(s)
- Ji Woon Kim
- Department of Biomedical Engineering, Sogang University, Seoul, Korea
| | - Yoon Young Choi
- Institute of Integrated Biotechnology, Sogang University, Seoul, Korea
| | - Si-Hyung Park
- Department of Anatomy, Korea University College of Medicine, Seoul, Korea.
| | - Jang Ho Ha
- Department of Mechanical Engineering, Sogang University, Seoul, Korea.
| | - Hee Uk Lee
- Department of Mechanical Engineering, Sogang University, Seoul, Korea.
| | - Taewook Kang
- Institute of Integrated Biotechnology, Sogang University, Seoul, Korea
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Korea
| | - Woong Sun
- Department of Anatomy, Korea University College of Medicine, Seoul, Korea.
| | - Bong Geun Chung
- Institute of Integrated Biotechnology, Sogang University, Seoul, Korea
- Department of Mechanical Engineering, Sogang University, Seoul, Korea.
| |
Collapse
|
18
|
Yoon J, Lim J, Shin M, Lee JY, Choi JW. Recent progress in nanomaterial-based bioelectronic devices for biocomputing system. Biosens Bioelectron 2022; 212:114427. [PMID: 35653852 DOI: 10.1016/j.bios.2022.114427] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022]
Abstract
Bioelectronic devices have received the massive attention because of their huge potential to develop the core electronic components for biocomputing system. Up to now, numerous bioelectronic devices have been reported such as biomemory and biologic gate by employment of biomolecules including metalloproteins and nucleic acids. However, the intrinsic limitations of biomolecules such as instability and low signal production hinder the development of novel bioelectronic devices capable of performing various novel computing functions. As a way to overcome these limitations, nanomaterials have the great potential and wide applicability to grant and extend the electronic functions, and improve the inherent properties from biomolecules. Accordingly, lots of nanomaterials including the conductive metal, graphene, and transition metal dichalcogenide nanomaterials are being used to develop the remarkable functional bioelectronic devices like the multi-bit biomemory and resistive random-access biomemory. This review discusses the nanomaterial-based superb bioelectronic devices including the biomemory, biologic gates, and bioprocessors. In conclusion, this review will provide the interdisciplinary information about utilization of various novel nanomaterials applicable for biocomputing system.
Collapse
Affiliation(s)
- Jinho Yoon
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Joungpyo Lim
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Minkyu Shin
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Ji-Young Lee
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Gonçalves IM, Carvalho V, Rodrigues RO, Pinho D, Teixeira SFCF, Moita A, Hori T, Kaji H, Lima R, Minas G. Organ-on-a-Chip Platforms for Drug Screening and Delivery in Tumor Cells: A Systematic Review. Cancers (Basel) 2022; 14:cancers14040935. [PMID: 35205683 PMCID: PMC8870045 DOI: 10.3390/cancers14040935] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Cancer is one of the diseases with a high mortality rate worldwide. Of the current strategies to study new diagnostic and treating tools, organs-on-chip are quite promising regarding the achievement of more personalized medicine. In this work, 75 out of 820 of the most recent published scientific articles were selected and analyzed through a systematic process. The selected articles present the different microfluidic platforms where cell culture was introduced and was used for the evaluation of cancer treatments efficacy and/or toxicity. Abstract The development of cancer models that rectify the simplicity of monolayer or static cell cultures physiologic microenvironment and, at the same time, replicate the human system more accurately than animal models has been a challenge in biomedical research. Organ-on-a-chip (OoC) devices are a solution that has been explored over the last decade. The combination of microfluidics and cell culture allows the design of a dynamic microenvironment suitable for the evaluation of treatments’ efficacy and effects, closer to the response observed in patients. This systematic review sums the studies from the last decade, where OoC with cancer cell cultures were used for drug screening assays. The studies were selected from three databases and analyzed following the research guidelines for systematic reviews proposed by PRISMA. In the selected studies, several types of cancer cells were evaluated, and the majority of treatments tested were standard chemotherapeutic drugs. Some studies reported higher drug resistance of the cultures on the OoC devices than on 2D cultures, which indicates the better resemblance to in vivo conditions of the former. Several studies also included the replication of the microvasculature or the combination of different cell cultures. The presence of vasculature can influence positively or negatively the drug efficacy since it contributes to a greater diffusion of the drug and also oxygen and nutrients. Co-cultures with liver cells contributed to the evaluation of the systemic toxicity of some drugs metabolites. Nevertheless, few studies used patient cells for the drug screening assays.
Collapse
Affiliation(s)
- Inês M. Gonçalves
- METRICS, University of Minho, Alameda da Universidade, 4800-058 Guimarães, Portugal; (I.M.G.); (V.C.); (R.L.)
- IN+—Center for Innovation, Technology and Policy Research, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Violeta Carvalho
- METRICS, University of Minho, Alameda da Universidade, 4800-058 Guimarães, Portugal; (I.M.G.); (V.C.); (R.L.)
- Center for MicroElectromechanical Systems (CMEMS-UMinho), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal;
- ALGORITMI Center, Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal;
| | - Raquel O. Rodrigues
- Center for MicroElectromechanical Systems (CMEMS-UMinho), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal;
- LABBELS-Associate Laboratory, Braga/Guimarães, 4806-909 Guimarães, Portugal
- Correspondence: (R.O.R.); (G.M.); Tel.: +351-253-510190 (ext. 604705) (R.O.R. & G.M.)
| | - Diana Pinho
- Center for MicroElectromechanical Systems (CMEMS-UMinho), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal;
- LABBELS-Associate Laboratory, Braga/Guimarães, 4806-909 Guimarães, Portugal
| | | | - Ana Moita
- IN+—Center for Innovation, Technology and Policy Research, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal;
- CINAMIL—Centro de Investigação Desenvolvimento e Inovação da Academia Militar, Academia Militar, Instituto Universitário Militar, Rua Gomes Freire, 1169-203 Lisboa, Portugal
| | - Takeshi Hori
- Department of Biomechanics, Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU), Chiyoda, Tokyo 101-0062, Japan; (T.H.); (H.K.)
| | - Hirokazu Kaji
- Department of Biomechanics, Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU), Chiyoda, Tokyo 101-0062, Japan; (T.H.); (H.K.)
| | - Rui Lima
- METRICS, University of Minho, Alameda da Universidade, 4800-058 Guimarães, Portugal; (I.M.G.); (V.C.); (R.L.)
- CEFT, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Graça Minas
- Center for MicroElectromechanical Systems (CMEMS-UMinho), Campus de Azurém, University of Minho, 4800-058 Guimarães, Portugal;
- LABBELS-Associate Laboratory, Braga/Guimarães, 4806-909 Guimarães, Portugal
- Correspondence: (R.O.R.); (G.M.); Tel.: +351-253-510190 (ext. 604705) (R.O.R. & G.M.)
| |
Collapse
|
20
|
Choi HW, Lim JH, Kim CW, Lee E, Kim JM, Chang K, Chung BG. Near-Infrared Light-Triggered Generation of Reactive Oxygen Species and Induction of Local Hyperthermia from Indocyanine Green Encapsulated Mesoporous Silica-Coated Graphene Oxide for Colorectal Cancer Therapy. Antioxidants (Basel) 2022; 11:174. [PMID: 35052678 PMCID: PMC8772730 DOI: 10.3390/antiox11010174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/01/2023] Open
Abstract
Near-infrared (NIR) light-mediated photothermal therapy (PTT) and photodynamic therapy (PDT) have widely been used for cancer treatment applications. However, a number of limitations (e.g., low NIR absorption capacity of photothermal agents, insufficient loading efficiency of photosensitive molecules) have hindered the widespread use of NIR-mediated cancer therapy. Therefore, we developed a mesoporous silica-coated reduced graphene oxide (rGO) nanocomposite that could provide a high encapsulation rate of indocyanine green (ICG) and enhance PTT/PDT efficiency in vitro and in vivo. The ICG-encapsulated nanocomposite not only enhances the photothermal effect but also generates a large number of tumor toxic reactive oxygen species (ROS). By conjugation of polyethylene glycol (PEG) with folic acid (FA) as a tumor targeting moiety, we confirmed that ICG-encapsulated mesoporous silica (MS)-coated rGO nanocomposite (ICG@MS-rGO-FA) exhibited high colloidal stability and intracellular uptake in folate receptor-expressing CT-26 colorectal cancer cells. Upon NIR laser irradiation, this ICG@MS-rGO-FA nanocomposite induced the apoptosis of only CT-26 cells via enhanced PTT and PDT effects without any damage to normal cells. Furthermore, the ICG@MS-rGO-FA nanocomposite revealed satisfactory tumor targeting and biocompatibility in CT-26 tumor-bearing mice, thereby enhancing the therapeutic effects of PTT and PDT in vivo. Therefore, this tumor-targeted ICG@MS-rGO-FA nanocomposite shows a great potential for phototherapy applications.
Collapse
Affiliation(s)
- Hyung Woo Choi
- Department of Mechanical Engineering, Sogang University, Baekbeom-ro 35, Mapo-gu, Seoul 04107, Korea;
| | - Jae Hyun Lim
- Department of Biomedical Engineering, Sogang University, Baekbeom-ro 35, Mapo-gu, Seoul 04107, Korea;
| | - Chan Woo Kim
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul 06591, Korea; (C.W.K.); (E.L.); (J.-M.K.)
- Catholic Research Institute for Intractable Cardiovascular Disease, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul 06591, Korea
| | - Eunmi Lee
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul 06591, Korea; (C.W.K.); (E.L.); (J.-M.K.)
- Catholic Research Institute for Intractable Cardiovascular Disease, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul 06591, Korea
| | - Jin-Moo Kim
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul 06591, Korea; (C.W.K.); (E.L.); (J.-M.K.)
- Catholic Research Institute for Intractable Cardiovascular Disease, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul 06591, Korea
| | - Kiyuk Chang
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul 06591, Korea; (C.W.K.); (E.L.); (J.-M.K.)
- Catholic Research Institute for Intractable Cardiovascular Disease, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul 06591, Korea
| | - Bong Geun Chung
- Department of Mechanical Engineering, Sogang University, Baekbeom-ro 35, Mapo-gu, Seoul 04107, Korea;
| |
Collapse
|
21
|
The Preliminary Study on the Proapoptotic Effect of Reduced Graphene Oxide in Breast Cancer Cell Lines. Int J Mol Sci 2021; 22:ijms222212593. [PMID: 34830472 PMCID: PMC8620501 DOI: 10.3390/ijms222212593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 01/10/2023] Open
Abstract
Breast cancer is the most common cancer diagnosed in women, however traditional therapies have several side effects. This has led to an urgent need to explore novel drug approaches to treatment strategies such as graphene-based nanomaterials such as reduced graphene oxide (rGO). It was noticed as a potential drug due to its target selectivity, easy functionalisation, chemisensitisation, and high drug-loading capacity. rGO is widely used in many fields, including biological and biomedical, due to its unique physicochemical properties. However, the possible mechanisms of rGO toxicity remain unclear. In this paper, we present findings on the cytotoxic and antiproliferative effects of rGO and its ability to induce oxidative stress and apoptosis of breast cancer cell lines. We indicate that rGO induced time- and dose-dependent cytotoxicity in MDA-MB-231 and ZR-75-1 cell lines, but not in T-47D, MCF-7, Hs 578T cell lines. In rGO-treated MDA-MB-231 and ZR-75-1 cell lines, we noticed increased induction of apoptosis and necrosis. In addition, rGO has been found to cause oxidative stress, reduce proliferation, and induce structural changes in breast cancer cells. Taken together, these studies provide new insight into the mechanism of oxidative stress and apoptosis in breast cancer cells.
Collapse
|
22
|
Lee KH, Kim TH. Recent Advances in Multicellular Tumor Spheroid Generation for Drug Screening. BIOSENSORS 2021; 11:445. [PMID: 34821661 PMCID: PMC8615712 DOI: 10.3390/bios11110445] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 05/12/2023]
Abstract
Multicellular tumor spheroids (MCTs) have been employed in biomedical fields owing to their advantage in designing a three-dimensional (3D) solid tumor model. For controlling multicellular cancer spheroids, mimicking the tumor extracellular matrix (ECM) microenvironment is important to understand cell-cell and cell-matrix interactions. In drug cytotoxicity assessments, MCTs provide better mimicry of conventional solid tumors that can precisely represent anticancer drug candidates' effects. To generate incubate multicellular spheroids, researchers have developed several 3D multicellular spheroid culture technologies to establish a research background and a platform using tumor modelingvia advanced materials science, and biosensing techniques for drug-screening. In application, drug screening was performed in both invasive and non-invasive manners, according to their impact on the spheroids. Here, we review the trend of 3D spheroid culture technology and culture platforms, and their combination with various biosensing techniques for drug screening in the biomedical field.
Collapse
Affiliation(s)
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Korea;
| |
Collapse
|
23
|
Lee HN, Choi YY, Kim JW, Lee YS, Choi JW, Kang T, Kim YK, Chung BG. Effect of biochemical and biomechanical factors on vascularization of kidney organoid-on-a-chip. NANO CONVERGENCE 2021; 8:35. [PMID: 34748091 PMCID: PMC8575721 DOI: 10.1186/s40580-021-00285-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/14/2021] [Indexed: 05/05/2023]
Abstract
Kidney organoids derived from the human pluripotent stem cells (hPSCs) recapitulating human kidney are the attractive tool for kidney regeneration, disease modeling, and drug screening. However, the kidney organoids cultured by static conditions have the limited vascular networks and immature nephron-like structures unlike human kidney. Here, we developed a kidney organoid-on-a-chip system providing fluidic flow mimicking shear stress with optimized extracellular matrix (ECM) conditions. We demonstrated that the kidney organoids cultured in our microfluidic system showed more matured podocytes and vascular structures as compared to the static culture condition. Additionally, the kidney organoids cultured in microfluidic systems showed higher sensitivity to nephrotoxic drugs as compared with those cultured in static conditions. We also demonstrated that the physiological flow played an important role in maintaining a number of physiological functions of kidney organoids. Therefore, our kidney organoid-on-a-chip system could provide an organoid culture platform for in vitro vascularization in formation of functional three-dimensional (3D) tissues.
Collapse
Affiliation(s)
- Han Na Lee
- Department of Biomedical Engineering, Sogang University, Seoul, South Korea
| | - Yoon Young Choi
- Institute of Integrated Biotechnology, Sogang University, Seoul, South Korea
| | - Jin Won Kim
- Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Young Seo Lee
- Department of Mechanical Engineering, Sogang University, Seoul, South Korea
| | - Ji Wook Choi
- Department of Mechanical Engineering, Sogang University, Seoul, South Korea
| | - Taewook Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, South Korea
| | - Yong Kyun Kim
- Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, St. Vincent's Hospital, Suwon, South Korea.
| | - Bong Guen Chung
- Department of Mechanical Engineering, Sogang University, Seoul, South Korea.
| |
Collapse
|
24
|
Bae J, Kim M, Kang H, Kim T, Choi H, Kim B, Do HW, Shim W. Kinetic 2D Crystals via Topochemical Approach. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006043. [PMID: 34013602 DOI: 10.1002/adma.202006043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/06/2020] [Indexed: 06/12/2023]
Abstract
The designing of novel materials is a fascinating and innovative pathway in materials science. Particularly, novel layered compounds have tremendous influence in various research fields. Advanced fundamental studies covering various aspects, including reactants and synthetic methods, are required to obtain novel layered materials with unique physical and chemical properties. Among the promising synthetic techniques, topochemical approaches have afforded the platform for widening the extent of novel 2D materials. Notably, the synthesis of binary layered materials is considered as a major scientific breakthrough after the synthesis of graphene as they exhibit a wide spectrum of material properties with varied potential applicability. In this review, a comprehensive overview of the progress in the development of metastable layered compounds is presented. The various metastable layered compounds synthesized from layered ternary bulk materials through topochemical approaches are listed, followed by the descriptions of their mechanisms, structural analyses, characterizations, and potential applications. Finally, an essential research direction concerning the synthesis of new materials is indicated, wherein the possible application of topochemical approaches in unprecedented areas is explored.
Collapse
Affiliation(s)
- Jihong Bae
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| | - Minjung Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| | - Hyeonsoo Kang
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| | - Taeyoung Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| | - Hong Choi
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| | - Bokyeong Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| | - Hyung Wan Do
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| | - Wooyoung Shim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| |
Collapse
|
25
|
Ketebo AA, Park C, Kim J, Jun M, Park S. Probing mechanobiological role of filamin A in migration and invasion of human U87 glioblastoma cells using submicron soft pillars. NANO CONVERGENCE 2021; 8:19. [PMID: 34213679 PMCID: PMC8253861 DOI: 10.1186/s40580-021-00267-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/21/2021] [Indexed: 05/21/2023]
Abstract
Filamin A (FLNa) belongs to an actin-binding protein family in binding and cross-linking actin filaments into a three-dimensional structure. However, little attention has been given to its mechanobiological role in cancer cells. Here, we quantitatively investigated the role of FLNa by analyzing the following parameters in negative control (NC) and FLNa-knockdown (KD) U87 glioma cells using submicron pillars (900 nm diameter and 2 μm height): traction force (TF), rigidity sensing ability, cell aspect ratio, migration speed, and invasiveness. During the initial phase of cell adhesion (< 1 h), FLNa-KD cells polarized more slowly than did NC cells, which can be explained by the loss of rigidity sensing in FLNa-KD cells. The higher motility of FLNa-KD cells relative to NC cells can be explained by the high TF exerted by FLNa-KD cells when compared to NC cells, while the higher invasiveness of FLNa-KD cells relative to NC cells can be explained by a greater number of filopodia in FLNa-KD cells than in NC cells. Our results suggest that FLNa plays important roles in suppressing motility and invasiveness of U87 cells.
Collapse
Affiliation(s)
- Abdurazak Aman Ketebo
- Department of Mechanical Engineering, Sungkyunkwan University (SKKU), 16419, Suwon, Korea
| | - Chanyong Park
- Department of Mechanical Engineering, Sungkyunkwan University (SKKU), 16419, Suwon, Korea
| | - Jaewon Kim
- Department of Mechanical Engineering, Sungkyunkwan University (SKKU), 16419, Suwon, Korea
| | - Myeongjun Jun
- Department of Mechanical Engineering, Sungkyunkwan University (SKKU), 16419, Suwon, Korea
| | - Sungsu Park
- Department of Mechanical Engineering, Sungkyunkwan University (SKKU), 16419, Suwon, Korea.
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), 16419, Suwon, Korea.
- Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), 16419, Suwon, Korea.
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, 16419, Suwon, Korea.
| |
Collapse
|
26
|
Dash BS, Jose G, Lu YJ, Chen JP. Functionalized Reduced Graphene Oxide as a Versatile Tool for Cancer Therapy. Int J Mol Sci 2021; 22:2989. [PMID: 33804239 PMCID: PMC8000837 DOI: 10.3390/ijms22062989] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer is one of the deadliest diseases in human history with extremely poor prognosis. Although many traditional therapeutic modalities-such as surgery, chemotherapy, and radiation therapy-have proved to be successful in inhibiting the growth of tumor cells, their side effects may vastly limited the actual benefits and patient acceptance. In this context, a nanomedicine approach for cancer therapy using functionalized nanomaterial has been gaining ground recently. Considering the ability to carry various anticancer drugs and to act as a photothermal agent, the use of carbon-based nanomaterials for cancer therapy has advanced rapidly. Within those nanomaterials, reduced graphene oxide (rGO), a graphene family 2D carbon nanomaterial, emerged as a good candidate for cancer photothermal therapy due to its excellent photothermal conversion in the near infrared range, large specific surface area for drug loading, as well as functional groups for functionalization with molecules such as photosensitizers, siRNA, ligands, etc. By unique design, multifunctional nanosystems could be designed based on rGO, which are endowed with promising temperature/pH-dependent drug/gene delivery abilities for multimodal cancer therapy. This could be further augmented by additional advantages offered by functionalized rGO, such as high biocompatibility, targeted delivery, and enhanced photothermal effects. Herewith, we first provide an overview of the most effective reducing agents for rGO synthesis via chemical reduction. This was followed by in-depth review of application of functionalized rGO in different cancer treatment modalities such as chemotherapy, photothermal therapy and/or photodynamic therapy, gene therapy, chemotherapy/phototherapy, and photothermal/immunotherapy.
Collapse
Affiliation(s)
- Banendu Sunder Dash
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (B.S.D.); (G.J.)
| | - Gils Jose
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (B.S.D.); (G.J.)
| | - Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan;
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (B.S.D.); (G.J.)
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
27
|
Ma K, Li W, Zhu G, Chi H, Yin Y, Li Y, Zong Y, Guo Z, Wang L, Xu W, Cui C, Zhou H, Xu J. PEGylated DOX-coated nano graphene oxide as pH-responsive multifunctional nanocarrier for targeted drug delivery. J Drug Target 2021; 29:884-891. [PMID: 33571019 DOI: 10.1080/1061186x.2021.1887200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nano graphene oxide (NGO) has high drug-loading capacity due to its huge surface area. However, the limited stability and the poor biocompatibility of NGO hampered its application as drug delivery carrier under physiological conditions. Thereby, a new strategy of using chemical conjugation on NGO with hydrophilic polymers was adopted but currently was too complicated, low yield and costly. In this study, doxorubicin-hyd-PEG-folic acid (DOX-hyd-PEG-FA) polymers were coated on the surface of NGO via π-π stocking and the hydrophobic effect between DOX and NGO. With the PEG shell protection, the biocompatibility of NGO was significantly improved. The drug-loading capacity of nanoparticles was more than 100%. FA ligands on the nanoparticle could guide the nanoparticles actively targeting to tumour cells. The hydrazone bond between DOX and PEG was decomposed spontaneously in the weakly acidic environment, which made PEG layer dissociated from NGO. Furthermore, DOX was easily protonized at low pH conditions, which weakened the interaction between DOX and NGO. Thus, DOX could be released rapidly from the nanoparticles in tumour cells. In summary, NGO@DOX-hyd-PEG-FA is an easy-prepared nanoparticle with excellent biocompatibility, high pH-sensitivity and active tumour targeting. Therefore, it is a promising multifunctional nanocarrier effective for targeted drug delivery.
Collapse
Affiliation(s)
- Kun Ma
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Wenzhe Li
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Guang Zhu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Hao Chi
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Yalin Yin
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Yijing Li
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Yan Zong
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Zhaoming Guo
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Li Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Weiping Xu
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, China
| | - Changhao Cui
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Huiwei Zhou
- School of Computer Science and Technology, Dalian University of Technology, Dalian, China
| | - Jianqiang Xu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China.,Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin, China
| |
Collapse
|
28
|
Cho HY, Choi JH, Kim KJ, Shin M, Choi JW. Microfluidic System to Analyze the Effects of Interleukin 6 on Lymphatic Breast Cancer Metastasis. Front Bioeng Biotechnol 2021; 8:611802. [PMID: 33659239 PMCID: PMC7917128 DOI: 10.3389/fbioe.2020.611802] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/24/2020] [Indexed: 01/09/2023] Open
Abstract
Metastasis is the primary cause of a large number of cancer-associated deaths. By portraying the precise environment of the metastasis process in vitro, the microfluidic system provides useful insights on the mechanisms underlying cancer cell migration, invasion, colonization, and the procurement of supplemental nutrients. However, current in vitro metastasis models are biased in studying blood vessel-based metastasis pathways and thus the understanding of lymphatic metastasis is limited which is also closely related to the inflammatory system. To understand the effects of inflammatory cytokines in lymphatic metastasis, we developed a three-channel microfluidic system by mimicking the lymph vessel-tissue-blood vessel (LTB) structure. Based on the LTB chip, we successfully confirmed the inflammatory cytokine, interleukin 6 (IL-6), -mediated intercellular communication in the tumor microenvironment during lymphatic metastasis. The IL-6 exposure to different subtypes of breast cancer cells was induced epithelial-mesenchymal transition (EMT) and improved tissue invasion property (8-fold). And the growth of human vein endothelial cells toward the lymph vessel channel was observed by VEGF secretion from human lymphatic endothelial cells with IL-6 treatment. The proposed LTB chip can be applied to analyze the intercellular communication during the lymphatic metastasis process and be a unique tool to understand the intercellular communication in the cancer microenvironment under various extracellular stimuli such as inflammatory cytokines, stromal reactions, hypoxia, and nutrient deficiency.
Collapse
Affiliation(s)
- Hyeon-Yeol Cho
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, South Korea.,Interdisciplinary Program for Bio-Health Convergence, Kookmin University, Seoul, South Korea
| | - Jin-Ha Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, South Korea
| | - Kyeong-Jun Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, South Korea
| | - Minkyu Shin
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, South Korea
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, South Korea
| |
Collapse
|
29
|
Kim YJ, Lim JH, Lee JM, Choi JW, Choi HW, Seo WH, Lee KG, Lee SJ, Chung BG. CuS/rGO-PEG Nanocomposites for Photothermal Bonding of PMMA-Based Plastic Lab-on-a-Chip. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:176. [PMID: 33445759 PMCID: PMC7828185 DOI: 10.3390/nano11010176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/28/2020] [Accepted: 01/10/2021] [Indexed: 11/16/2022]
Abstract
We developed copper sulfide (CuS)/reduced graphene oxide (rGO)-poly (ethylene glycol) (PEG) nanocomposites for photothermal bonding of a polymethyl methacrylate (PMMA)-based plastic lab-on-a-chip. The noncontact photothermal bonding of PMMA-based plastic labs-on-chip plays an important role in improving the stability and adhesion at a high-temperature as well as minimizing the solution leakage from microchannels when connecting two microfluidic devices. The CuS/rGO-PEG nanocomposites were used to bond a PMMA-based plastic lab-on-a-chip in a short time with a high photothermal effect by a near-infrared (NIR) laser irradiation. After the thermal bonding process, a gap was not generated in the PMMA-based plastic lab-on-a-chip due to the low viscosity and density of the CuS/rGO-PEG nanocomposites. We also evaluated the physical and mechanical properties after the thermal bonding process, showing that there was no solution leakage in PMMA-based plastic lab-on-a-chip during polymerase chain reaction (PCR) thermal cycles. Therefore, the CuS/rGO-PEG nanocomposite could be a potentially useful nanomaterial for non-contact photothermal bonding between the interfaces of plastic module lab-on-a-chip.
Collapse
Affiliation(s)
- Young Jae Kim
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Korea; (Y.J.K.); (J.W.C.); (H.W.C.)
| | - Jae Hyun Lim
- Department of Biomedical Engineering, Sogang University, Seoul 04107, Korea; (J.H.L.); (W.H.S.)
| | - Jong Min Lee
- Division of Chemical Industry, Yeungnam University College, Daegu 38541, Korea;
| | - Ji Wook Choi
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Korea; (Y.J.K.); (J.W.C.); (H.W.C.)
| | - Hyung Woo Choi
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Korea; (Y.J.K.); (J.W.C.); (H.W.C.)
| | - Won Ho Seo
- Department of Biomedical Engineering, Sogang University, Seoul 04107, Korea; (J.H.L.); (W.H.S.)
| | - Kyoung G. Lee
- Division of Nano-Bio Sensors/Chips Development, National NanoFab Center, Daejeon 34141, Korea; (K.G.L.); (S.J.L.)
| | - Seok Jae Lee
- Division of Nano-Bio Sensors/Chips Development, National NanoFab Center, Daejeon 34141, Korea; (K.G.L.); (S.J.L.)
| | - Bong Geun Chung
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Korea; (Y.J.K.); (J.W.C.); (H.W.C.)
| |
Collapse
|
30
|
Shin HH, Choi HW, Lim JH, Kim JW, Chung BG. Near-Infrared Light-Triggered Thermo-responsive Poly(N-Isopropylacrylamide)-Pyrrole Nanocomposites for Chemo-photothermal Cancer Therapy. NANOSCALE RESEARCH LETTERS 2020; 15:214. [PMID: 33180229 PMCID: PMC7661614 DOI: 10.1186/s11671-020-03444-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/02/2020] [Indexed: 05/28/2023]
Abstract
The combination therapy based on multifunctional nanocomposites has been considered as a promising approach to improve cancer therapeutic efficacy. Herein, we report targeted multi-functional poly(N-isopropylacrylamide) (PNIPAM)-based nanocomposites for synergistic chemo-photothermal therapy toward breast cancer cells. To increase the transition temperature, acrylic acid (AAc) was added in synthetic process of PNIPAM, showing that the intrinsic lower critical solution temperature was changed to 42 °C . To generate the photothermal effect under near-infrared (NIR) laser irradiation (808 nm), polypyrrole (ppy) nanoparticles were uniformly decorated in PNIPAM-AAc. Folic acid (FA), as a cancer targeting ligand, was successfully conjugated on the surplus carboxyl groups in PNIPAM network. The drug release of PNIPAM-ppy-FA nanocomposites was efficiently triggered in response to the temperature change by NIR laser irradiation. We also confirmed that PNIPAM-ppy-FA was internalized to MDA-MB-231 breast cancer cells by folate-receptor-mediated endocytosis and significantly enhanced cancer therapeutic efficacy with combination treatment of chemo-photothermal effects. Therefore, our work encourages further exploration of multi-functional nanocarrier agents for synergistic therapeutic approaches to different types of cancer cells.
Collapse
Affiliation(s)
- Ha Hee Shin
- Department of Biomedical Engineering, Sogang University, Seoul, Korea
| | - Hyung Woo Choi
- Department of Mechanical Engineering, Sogang University, Seoul, Korea
| | - Jae Hyun Lim
- Department of Biomedical Engineering, Sogang University, Seoul, Korea
| | - Ji Woon Kim
- Department of Biomedical Engineering, Sogang University, Seoul, Korea
| | - Bong Geun Chung
- Department of Mechanical Engineering, Sogang University, Seoul, Korea.
| |
Collapse
|
31
|
Ha JH, Shin HH, Choi HW, Lim JH, Mo SJ, Ahrberg CD, Lee JM, Chung BG. Electro-responsive hydrogel-based microfluidic actuator platform for photothermal therapy. LAB ON A CHIP 2020; 20:3354-3364. [PMID: 32749424 DOI: 10.1039/d0lc00458h] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Electrical stimuli play an important role in regulating the delivery of plasmonic nanomaterials with cancer targeting peptides. Here, we developed an electro-responsive hydrogel-based microfluidic actuator platform for brain tumor targeting and photothermal therapy (PTT) applications. The electro-responsive hydrogels consisted of highly conductive silver nanowires (AgNWs) and biocompatible collagen I gels. We confirmed that an electrically conductive hydrogel could be used as an effective actuator by applying an electrical signal in the microfluidic platform. Furthermore, we successfully demonstrated PTT efficacy for brain tumor cells using targetable Arg-Gly-Asp (RGD) peptide-conjugated gold nanorods (GNRs). Therefore, our electro-responsive hydrogel-based microfluidic actuator platform could be useful for electro-responsive intelligent nanomaterial delivery and PTT applications.
Collapse
Affiliation(s)
- Jang Ho Ha
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Droplet-based Synthesis of Homogeneous Gold Nanoparticles for Enhancing HRP-based ELISA Signals. BIOCHIP JOURNAL 2020. [DOI: 10.1007/s13206-020-4307-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|