1
|
Yun Y, Kim S, Lee SN, Cho HY, Choi JW. Nanomaterial-based detection of circulating tumor cells and circulating cancer stem cells for cancer immunotherapy. NANO CONVERGENCE 2024; 11:56. [PMID: 39671082 PMCID: PMC11645384 DOI: 10.1186/s40580-024-00466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024]
Abstract
Nanomaterials have emerged as transformative tools for detecting circulating tumor cells (CTCs) and circulating cancer stem cells (CCSCs), significantly enhancing cancer diagnostics and immunotherapy. Nanomaterials, including those composed of gold, magnetic materials, and silica, have enhanced the sensitivity, specificity, and efficiency of isolating these rare cells from blood. These developments are of paramount importance for the early detection of cancer and for providing real-time insights into metastasis and treatment resistance, which are essential for the development of personalized immunotherapies. The combination of nanomaterial-based platforms with phenotyping techniques, such as Raman spectroscopy and microfluidics, enables researchers to enhance immunotherapy protocols targeting specific CTC and CCSC markers. Nanomaterials also facilitate the targeted delivery of immunotherapeutic agents, including immune checkpoint inhibitors and therapeutic antibodies, directly to tumor cells. This synergistic approach has the potential to enhance therapeutic efficacy and mitigate the risk of metastasis and relapse. In conclusion, this review critically examines the use of nanomaterial-driven detection systems for detecting CTCs and CCSCs, their application in immunotherapy, and suggests future directions, highlighting their potential to transform the integration of diagnostics and treatment, thereby paving the way for more precise and personalized cancer therapies.
Collapse
Affiliation(s)
- Yeochan Yun
- Department of Bio and Fermentation Convergence Technology, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul, 02707, Republic of Korea
| | - Seewoo Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Sang-Nam Lee
- Uniance Gene Inc., 273, Digital-ro, Guro-gu, Seoul, 08381, Republic of Korea.
| | - Hyeon-Yeol Cho
- Department of Bio and Fermentation Convergence Technology, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul, 02707, Republic of Korea.
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea.
| |
Collapse
|
2
|
Han CY, Choi SH, Chi SH, Hong JH, Cho YE, Kim J. Nano-fluorescence imaging: advancing lymphatic disease diagnosis and monitoring. NANO CONVERGENCE 2024; 11:53. [PMID: 39661218 PMCID: PMC11635084 DOI: 10.1186/s40580-024-00462-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/30/2024] [Indexed: 12/12/2024]
Abstract
The lymphatic system plays a crucial role in maintaining physiological homeostasis and regulating immune responses. Traditional imaging modalities such as magnetic resonance imaging, computerized tomography, and positron emission tomography have been widely used to diagnose disorders in the lymphatic system, including lymphedema, lymphangioma, lymphatic metastasis, and Castleman disease. Nano-fluorescence technology has distinct advantages-including naked-eye visibility, operational simplicity, portability of the laser, and real-time visibility-and serves as an innovative alternative to traditional imaging techniques. This review explores recent advancements in nano-fluorescence imaging aimed at enhancing the resolution of lymphatic structure, function, and immunity. After delineating the fundamental characteristics of lymphatic systems, it elaborates on the development of various nano-fluorescence systems (including nanoparticles incorporating fluorescent dyes and those with intrinsic fluorescence) while addressing key challenges such as photobleaching, limited tissue penetration, biocompatibility, and signal interference from biomolecules. Furthermore, this review highlights the clinical applications of nano-fluorescence and its potential integration into standard diagnostic protocols. Ongoing advancements in nanoparticle technology underscore the potential of nano-fluorescence to revolutionize the diagnosis and treatment of lymphatic disease.
Collapse
Affiliation(s)
- Chae Yeon Han
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Sang-Hun Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Soo-Hyang Chi
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Ji Hyun Hong
- Department of Radiation Oncology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Young-Eun Cho
- Department of Food and Nutrition, Andong National University, Andong, 36729, South Korea
| | - Jihoon Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, South Korea.
| |
Collapse
|
3
|
Luo Y, He X, Du Q, Xu L, Xu J, Wang J, Zhang W, Zhong Y, Guo D, Liu Y, Chen X. Metal-based smart nanosystems in cancer immunotherapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230134. [PMID: 39713201 PMCID: PMC11655314 DOI: 10.1002/exp.20230134] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/12/2024] [Indexed: 12/24/2024]
Abstract
Metals are an emerging topic in cancer immunotherapy that have shown great potential in modulating cancer immunity cycle and promoting antitumor immunity by activating the intrinsic immunostimulatory mechanisms which have been identified in recent years. The main challenge of metal-assisted immunotherapy lies in the fact that the free metals as ion forms are easily cleared during circulation, and even cause systemic metal toxicity due to the off-target effects. With the rapid development of nanomedicine, metal-based smart nanosystems (MSNs) with unique controllable structure become one of the most promising delivery carriers to solve the issue, owing to their various endogenous/external stimuli-responsiveness to release free metal ions for metalloimmunotherapy. In this review, the state-of-the-art research progress in metal-related immunotherapy is comprehensively summarized. First, the mainstream mechanisms of MSNs-assisted immunotherapy will be delineated. The immunological effects of certain metals and categorization of MSNs with different characters and compositions are then provided, followed by the representative exemplar applications of MSNs in cancer treatment, and synergistic combination immunotherapy. Finally, we conclude this review with a summary of the remaining challenges associated with MSNs and provide the authors' perspective on their further advances.
Collapse
Affiliation(s)
- Ying Luo
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Xiaojing He
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Qianying Du
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Lian Xu
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Jie Xu
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Junrui Wang
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Wenli Zhang
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Yixin Zhong
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Dajing Guo
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Yun Liu
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingPeople's Republic of China
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of SurgeryChemical and Biomolecular Engineeringand Biomedical EngineeringYong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingaporeSingapore
- Institute of Molecular and Cell BiologyAgency for Science, Technology, and Research (A*STAR)SingaporeSingapore
| |
Collapse
|
4
|
Luo M, Wang YM, Zhao FK, Luo Y. Recent Advances in Nanomaterial-Mediated Cell Death for Cancer Therapy. Adv Healthc Mater 2024:e2402697. [PMID: 39498722 DOI: 10.1002/adhm.202402697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/01/2024] [Indexed: 11/07/2024]
Abstract
Nanomedicine has shown great anticancer potential by disrupting redox homeostasis and increasing the levels of oxidative stress, but the therapeutic effect is limited by factors including the intrinsic self-protection mechanism of tumors. Cancer cell death can be induced by the exploration of different cell death mechanisms, such as apoptosis, pyroptosis, necroptosis, cuproptosis, and ferroptosis. The merging of nanotechnology with biomedicine has provided tremendous opportunities to construct cell death-based nanomedicine for innovative cancer therapy. Nanocarriers are not only used for the targeted delivery of cell death inducers, but also as therapeutic components to induce cell death to achieve efficient tumor treatment. This review focuses on seven cell death modalities mediated by nanomaterials, such as apoptosis, pyroptosis, necroptosis, ferroptosis, cuprotosis, immunogenic cell death, and autophagy. The mechanisms of these seven cell death modalities are described in detail, as well as the preparation of nanomaterials that induce them and the mechanisms, they used to exert their effects. Finally, this work describes the potential future development based on the current knowledge related to cell death induced by nanomaterials.
Collapse
Affiliation(s)
- Min Luo
- Department of Clinical Medicine, The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Zunyi, Guizhou, 563000, China
| | - Yuan-Min Wang
- Department of Clinical Medicine, The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Zunyi, Guizhou, 563000, China
| | - Fu-Kun Zhao
- Department of Clinical Medicine, The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Zunyi, Guizhou, 563000, China
| | - Yong Luo
- Department of Neurology, The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Zunyi, Guizhou, 563000, China
| |
Collapse
|
5
|
Gholami A, Mohkam M, Soleimanian S, Sadraeian M, Lauto A. Bacterial nanotechnology as a paradigm in targeted cancer therapeutic delivery and immunotherapy. MICROSYSTEMS & NANOENGINEERING 2024; 10:113. [PMID: 39166136 PMCID: PMC11333603 DOI: 10.1038/s41378-024-00743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/02/2024] [Accepted: 06/23/2024] [Indexed: 08/22/2024]
Abstract
Cancer, a multifaceted and diverse ailment, presents formidable obstacles to traditional treatment modalities. Nanotechnology presents novel prospects for surmounting these challenges through its capacity to facilitate meticulous and regulated administration of therapeutic agents to malignant cells while concurrently modulating the immune system to combat neoplasms. Bacteria and their derivatives have emerged as highly versatile and multifunctional platforms for cancer nanotherapy within the realm of nanomaterials. This comprehensive review delves into the multifaceted and groundbreaking implementations of bacterial nanotechnology within cancer therapy. This review encompasses four primary facets: the utilization of bacteria as living conveyors of medicinal substances, the employment of bacterial components as agents that stimulate the immune system, the deployment of bacterial vectors as tools for delivering genetic material, and the development of bacteria-derived nano-drugs as intelligent nano-medications. Furthermore, we elucidate the merits and modalities of operation pertaining to these bacterial nano-systems, along with their capacity to synergize with other cutting-edge nanotechnologies, such as CRISPR-Cas systems. Additionally, we offer insightful viewpoints regarding the forthcoming trajectories and prospects within this expanding domain. It is our deduction that bacterial nanotechnology embodies a propitious and innovative paradigm in the realm of cancer therapy, which has the potential to provide numerous advantages and synergistic effects in enhancing the outcomes and quality of life for individuals afflicted with cancer.
Collapse
Affiliation(s)
- Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Mohkam
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeede Soleimanian
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Sadraeian
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007 Australia
| | - Antonio Lauto
- School of Science, University of Western Sydney, Campbelltown, NSW 2560 Australia
- School of Medicine, University of Western Sydney, Campbelltown, NSW 2560 Australia
| |
Collapse
|
6
|
Chen X, Wu D, Chen Z. Biomedical applications of stimuli-responsive nanomaterials. MedComm (Beijing) 2024; 5:e643. [PMID: 39036340 PMCID: PMC11260173 DOI: 10.1002/mco2.643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/23/2024] Open
Abstract
Nanomaterials have aroused great interests in drug delivery due to their nanoscale structure, facile modifiability, and multifunctional physicochemical properties. Currently, stimuli-responsive nanomaterials that can respond to endogenous or exogenous stimulus display strong potentials in biomedical applications. In comparison with conventional nanomaterials, stimuli-responsive nanomaterials can improve therapeutic efficiency and reduce the toxicity of drugs toward normal tissues through specific targeting and on-demand drug release at pathological sites. In this review, we summarize the responsive mechanism of a variety of stimulus, including pH, redox, and enzymes within pathological microenvironment, as well as exogenous stimulus such as thermal effect, magnetic field, light, and ultrasound. After that, biomedical applications (e.g., drug delivery, imaging, and theranostics) of stimuli-responsive nanomaterials in a diverse array of common diseases, including cardiovascular diseases, cancer, neurological disorders, inflammation, and bacterial infection, are presented and discussed. Finally, the remaining challenges and outlooks of future research directions for the biomedical applications of stimuli-responsive nanomaterials are also discussed. We hope that this review can provide valuable guidance for developing stimuli-responsive nanomaterials and accelerate their biomedical applications in diseases diagnosis and treatment.
Collapse
Affiliation(s)
- Xiaojie Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesDepartment of NeurologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Di Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesDepartment of NeurologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang ProvinceSchool of Pharmaceutical SciencesDepartment of NeurologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| |
Collapse
|
7
|
Ly NH, Aminabhavi TM, Vasseghian Y, Joo SW. Advanced protein nanobiosensors to in-situ detect hazardous material in the environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121727. [PMID: 39008923 DOI: 10.1016/j.jenvman.2024.121727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024]
Abstract
Determining hazardous substances in the environment is vital to maintaining the safety and health of all components of society, including the ecosystem and humans. Recently, protein-based nanobiosensors have emerged as effective tools for monitoring potentially hazardous substances in situ. Nanobiosensor detection mode is a combination of particular plasmonic nanomaterials (e.g., nanoparticles, nanotubes, quantum dots, etc.), and specific bioreceptors (e.g., aptamers, antibodies, DNA, etc.), which has the benefits of high selectivity, sensitivity, and compatibility with biological systems. The role of these nanobiosensors in identifying dangerous substances (e.g., heavy metals, organic pollutants, pathogens, toxins, etc.) is discussed along with different detection mechanisms and various transduction methods (e.g., electrical, optical, mechanical, electrochemical, etc.). In addition, topics discussed include the design and construction of these sensors, the selection of proteins, the integration of nanoparticles, and their development processes. A discussion of the challenges and prospects of this technology is also included. As a result, protein nanobiosensors are introduced as a powerful tool for monitoring and improving environmental quality and community safety.
Collapse
Affiliation(s)
- Nguyen Hoang Ly
- Department of Chemistry, Gachon University, Seongnam, 13120, South Korea
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580 031, India; Korea University, Seoul, South Korea; School of Engineering, University of Petroleum and Energy Studies (UPES) Uttarakhand, Dehradun, 248 007, India.
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea.
| |
Collapse
|
8
|
Naser IH, Zaid M, Ali E, Jabar HI, Mustafa AN, Alubiady MHS, Ramadan MF, Muzammil K, Khalaf RM, Jalal SS, Alawadi AH, Alsalamy A. Unveiling innovative therapeutic strategies and future trajectories on stimuli-responsive drug delivery systems for targeted treatment of breast carcinoma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3747-3770. [PMID: 38095649 DOI: 10.1007/s00210-023-02885-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/02/2023] [Indexed: 05/23/2024]
Abstract
This comprehensive review delineates the latest advancements in stimuli-responsive drug delivery systems engineered for the targeted treatment of breast carcinoma. The manuscript commences by introducing mammary carcinoma and the current therapeutic methodologies, underscoring the urgency for innovative therapeutic strategies. Subsequently, it elucidates the logic behind the employment of stimuli-responsive drug delivery systems, which promise targeted drug administration and the minimization of adverse reactions. The review proffers an in-depth analysis of diverse types of stimuli-responsive systems, including thermoresponsive, pH-responsive, and enzyme-responsive nanocarriers. The paramount importance of material choice, biocompatibility, and drug loading strategies in the design of these systems is accentuated. The review explores characterization methodologies for stimuli-responsive nanocarriers and probes preclinical evaluations of their efficacy, toxicity, pharmacokinetics, and biodistribution in mammary carcinoma models. Clinical applications of stimuli-responsive systems, ongoing clinical trials, the potential of combination therapies, and the utility of multifunctional nanocarriers for the co-delivery of assorted drugs and therapies are also discussed. The manuscript addresses the persistent challenge of drug resistance in mammary carcinoma and the potential of stimuli-responsive systems in surmounting it. Regulatory and safety considerations, including FDA guidelines and biocompatibility assessments, are outlined. The review concludes by spotlighting future trajectories and emergent technologies in stimuli-responsive drug delivery, focusing on pioneering approaches, advancements in nanotechnology, and personalized medicine considerations. This review aims to serve as a valuable compendium for researchers and clinicians interested in the development of efficacious and safe stimuli-responsive drug delivery systems for the treatment of breast carcinoma.
Collapse
Affiliation(s)
- Israa Habeeb Naser
- Medical Laboratories Techniques Department, AL-Mustaqbal University, Hillah, Babil, Iraq
| | - Muhaned Zaid
- Department of Pharmacy, Al-Manara College for Medical Sciences, Maysan, Amarah, Iraq
| | - Eyhab Ali
- Al-Zahraa University for Women, Karbala, Iraq
| | - Hayder Imad Jabar
- Department of Pharmaceutics, College of Pharmacy, University of Al-Ameed, Karbala, Iraq
| | | | | | | | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, Saudi Arabia
| | | | - Sarah Salah Jalal
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Ahmed Hussien Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq
- College of Technical Engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, the Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq.
| |
Collapse
|
9
|
Liu F, Song J, Li S, Sun H, Wang J, Su F, Li S. Chitosan-based GOx@Co-MOF composite hydrogel: A promising strategy for enhanced antibacterial and wound healing effects. Int J Biol Macromol 2024; 270:132120. [PMID: 38740153 DOI: 10.1016/j.ijbiomac.2024.132120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
A novel composite hydrogel was synthesized via Schiff base reaction between chitosan and di-functional poly(ethylene glycol) (DF-PEG), incorporating glucose oxidase (GOx) and cobalt metal-organic frameworks (Co-MOF). The resulting CS/PEG/GOx@Co-MOF composite hydrogel was characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and energy-dispersive X-ray spectroscopy (EDS). The results confirmed successful integration and uniform distribution of Co-MOF within the hydrogel matrix. Functionally, the hydrogel exploits the catalytic decomposition of glucose by GOx to generate gluconic acid and hydrogen peroxide (H2O2), while Co-MOF gradually releases metal ions and protects GOx. This synergy enhanced the antibacterial activity of the composite hydrogel against both Gram-positive (S. aureus) and Gram-negative bacteria (E. coli), outperforming conventional chitosan-based hydrogels. The potential of the composite hydrogel in treating wound infections was evaluated through antibacterial and wound healing experiments. Overall, CS/PEG/GOx@Co-MOF hydrogel holds great promise for the treatment of wound infections, paving the way for further research and potential clinical applications.
Collapse
Affiliation(s)
- Fangyu Liu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jie Song
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Sihan Li
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Haozhi Sun
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jinjun Wang
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao 266033, China.
| | - Feng Su
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Suming Li
- Institut Europeen des Membranes, UMR CNRS 5635, Universite de Montpellier, 34095 Montpellier, France.
| |
Collapse
|
10
|
Zhang T, Wang X, Wang D, Lei M, Hu Y, Chen Z, Li Y, Luo Y, Zhang L, Zhu Y. Synergistic effects of photodynamic therapy and chemotherapy: Activating the intrinsic/extrinsic apoptotic pathway of anoikis for triple-negative breast cancer treatment. BIOMATERIALS ADVANCES 2024; 160:213859. [PMID: 38642515 DOI: 10.1016/j.bioadv.2024.213859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/23/2024] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly invasive and metastatic subtype of breast cancer that often recurs after surgery. Herein, we developed a cyclodextrin-based tumor-targeted nano delivery system that incorporated the photosensitizer chlorin e6 (Ce6) and the chemotherapeutic agent lonidamine (LND) to form the R6RGD-CMβCD-se-se-Ce6/LND nanoparticles (RCC/LND NPS). This nanosystem could target cancer cells, avoid lysosomal degradation and further localize within the mitochondria. The RCC/LND NPS had pH and redox-responsive to control the release of Ce6 and LND. Consequently, the nanosystem had a synergistic effect by effectively alleviating hypoxia, enhancing the production of cytotoxic reactive oxygen species (ROS) and amplifying the efficacy of photodynamic therapy (PDT). Furthermore, the RCC/LND NPS + light weakened anoikis resistance, disrupted extracellular matrix (ECM), activated both the intrinsic apoptotic pathway (mitochondrial pathway) and extrinsic apoptotic pathway (receptor death pathway) of anoikis. In addition, the nanosystem showed significant anti-TNBC efficacy in vivo. These findings collectively demonstrated that RCC/LND NPS + light enhanced the anticancer effects, induced anoikis and inhibited tumor cell migration and invasion through a synergistic effect of chemotherapy and PDT. Overall, this study highlighted the promising potential of the RCC/LND NPS + light for the treatment of TNBC.
Collapse
Affiliation(s)
- Tianyu Zhang
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xueyuan Wang
- College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Dongna Wang
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Meng Lei
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Yixue Hu
- College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhimeng Chen
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Yuting Li
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yingnan Luo
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Liefeng Zhang
- College of Life Science, Nanjing Normal University, Nanjing 210023, China; School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Yongqiang Zhu
- College of Life Science, Nanjing Normal University, Nanjing 210023, China; School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
11
|
Vishwakarma M, Agrawal P, Soni S, Tomar S, Haider T, Kashaw SK, Soni V. Cationic nanocarriers: A potential approach for targeting negatively charged cancer cell. Adv Colloid Interface Sci 2024; 327:103160. [PMID: 38663154 DOI: 10.1016/j.cis.2024.103160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024]
Abstract
Cancer, a widespread and lethal disease, necessitates precise therapeutic interventions to mitigate its devastating impact. While conventional chemotherapy remains a cornerstone of cancer treatment, its lack of specificity towards cancer cells results in collateral damage to healthy tissues, leading to adverse effects. Thus, the quest for targeted strategies has emerged as a critical focus in cancer research. This review explores the development of innovative targeting methods utilizing novel drug delivery systems tailored to recognize and effectively engage cancer cells. Cancer cells exhibit morphological and metabolic traits, including irregular morphology, unchecked proliferation, metabolic shifts, genetic instability, and a higher negative charge, which serve as effective targeting cues. Central to these strategies is the exploitation of the unique negative charge characteristic of cancer cells, attributed to alterations in phospholipid composition and the Warburg effect. Leveraging this distinct feature, researchers have devised cationic carrier systems capable of enhancing the specificity of therapeutic agents towards cancer cells. The review delineates the underlying causes of the negative charge in cancer cells and elucidates various targeting approaches employing cationic compounds for drug delivery systems. Furthermore, it delves into the methods employed for the preparation of these systems. Beyond cancer treatment, the review also underscores the multifaceted applications of cationic carrier systems, encompassing protein and peptide delivery, imaging, photodynamic therapy, gene delivery, and antimicrobial applications. This comprehensive exploration underscores the potential of cationic carrier systems as versatile tools in the fight against cancer and beyond.
Collapse
Affiliation(s)
- Monika Vishwakarma
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| | - Poornima Agrawal
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| | - Sakshi Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| | - Surbhi Tomar
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| | - Tanweer Haider
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India; Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior 474005, MP, India
| | - Sushil K Kashaw
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India.
| |
Collapse
|
12
|
Alijani HQ, Pourseyedi S, Torkzadeh-Mahani M, Khatami M. Porous α-Fe 2O 3 nanocarriers: Biosynthesis and in vitro gene delivery applications. Heliyon 2024; 10:e28676. [PMID: 38617951 PMCID: PMC11015384 DOI: 10.1016/j.heliyon.2024.e28676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 04/16/2024] Open
Abstract
Non-viral gene delivery is a new therapeutic in the treating genetic disorders. The most important challenge in nonviral gene transformation is the immunogenicity of carriers. Nowadays, The immunogenicity of nanocarriers as a deliverer of nucleic acid molecules has received significant attention. In this research, hematite green nanocarriers were prepared in one step with rosemary extract. Synthetic nanocarriers were investigated by using XRD (X-ray diffraction analysis), FESEM-EDX (field emission scanning electron microscopy with energy dispersive X-Ray spectroscopy), HR-TEM (high-resolution transmission electron microscopy), VSM (value stream mapping), TGA- DTG (thermal gravimetric analysis-differential thermal analysis), FT-IR (fourier-transform infrared spectroscopy), BET (brunauer-emmett-teller) and BJH (barrett-joyner-halenda) analyses. The cytotoxicity of synthetic nanocarriers was evaluated on HEK-293Tcell lines at concentration of 1-500 μg/ml using MTT method. Finally, targeted transfection of GFP plasmid using green porous particles was performed using an external magnetic field. Biogenic hematite nanoparticles with hexagonal crystal structures have a 3D pile flower-like morphology. The existence of rosemary phytochemicals in the construction of nanoparticles has caused minimal toxicity and high biocompatibility of nanocarriers. Also, TGA studies confirmed the stability of bionic nanoparticles. Superparamagnetic green nanocarriers at concentrations above 500 μg/ml is not toxic to HEK293T cells. The delivery efficiency of the plasmid was optimal at an N/P ratio of 3. Therefore, the porous α-Fe2O3 green nanocarriers are non-viral and safe carriers with potential applications in gene therapy.
Collapse
Affiliation(s)
- Hajar Q. Alijani
- Research and Technology Institute of Plant Production, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Shahram Pourseyedi
- Research and Technology Institute of Plant Production, Shahid Bahonar University of Kerman, Kerman, Iran
- Department of Biotechnology, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Masoud Torkzadeh-Mahani
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Mehrdad Khatami
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
13
|
Yuan M, Han Z, Li Y, Zhan X, Sun Y, He B, Liang Y, Luo K, Li F. A pH-responsive nanoplatform with dual-modality imaging for enhanced cancer phototherapy and diagnosis of lung metastasis. J Nanobiotechnology 2024; 22:180. [PMID: 38622591 PMCID: PMC11017640 DOI: 10.1186/s12951-024-02431-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/20/2024] [Indexed: 04/17/2024] Open
Abstract
To address the limitations of traditional photothermal therapy (PTT)/ photodynamic therapy (PDT) and real-time cancer metastasis detection, a pH-responsive nanoplatform (NP) with dual-modality imaging capability was rationally designed. Herein, 1 H,1 H-undecafluorohexylamine (PFC), served as both an oxygen carrier and a 19F magnetic resonance imaging (MRI) probe, and photosensitizer indocyanine green (ICG) were grafted onto the pH-responsive peptide hexahistidine (H6) to form H6-PFC-ICG (HPI). Subsequently, the heat shock protein 90 inhibitor, gambogic acid (GA), was incorporated into hyaluronic acid (HA) modified HPI (HHPI), yielding the ultimate HHPI@GA NPs. Upon self-assembly, HHPI@GA NPs passively accumulated in tumor tissues, facilitating oxygen release and HA-mediated cell uptake. Once phagocytosed by lysosomes, protonation of H6 was triggered due to the low pH, resulting in the release of GA. With near-infrared laser irradiation, GA-mediated decreased HSP90 expression and PFC-mediated increased ROS generation amplified the PTT/PDT effect of HHPI@GA, leading to excellent in vitro and in vivo anticancer efficacies. Additionally, the fluorescence and 19F MRI dual-imaging capabilities of HHPI@GA NPs enabled effective real-time primary cancer and lung metastasis monitoring. This work offers a novel approach for enhanced cancer phototherapy, as well as precise cancer diagnosis.
Collapse
Affiliation(s)
- Mujie Yuan
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Zeyu Han
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yan Li
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xin Zhan
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yong Sun
- Department of Pharmaceutics, Qingdao University School of Pharmacy, Qingdao, 266021, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Yan Liang
- Department of Pharmaceutics, Qingdao University School of Pharmacy, Qingdao, 266021, China.
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fan Li
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
- Department of Pharmaceutics, Qingdao University School of Pharmacy, Qingdao, 266021, China.
| |
Collapse
|
14
|
Singh D, Sharma Y, Dheer D, Shankar R. Stimuli responsiveness of recent biomacromolecular systems (concept to market): A review. Int J Biol Macromol 2024; 261:129901. [PMID: 38316328 DOI: 10.1016/j.ijbiomac.2024.129901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Stimuli responsive delivery systems, also known as smart/intelligent drug delivery systems, are specialized delivery vehicles designed to provide spatiotemporal control over drug release at target sites in various diseased conditions, including tumor, inflammation and many others. Recent advances in the design and development of a wide variety of stimuli-responsive (pH, redox, enzyme, temperature) materials have resulted in their widespread use in drug delivery and tissue engineering. The aim of this review is to provide an insight of recent nanoparticulate drug delivery systems including polymeric nanoparticles, dendrimers, lipid-based nanoparticles and the design of new polymer-drug conjugates (PDCs), with a major emphasis on natural along with synthetic commercial polymers used in their construction. Special focus has been placed on stimuli-responsive polymeric materials, their preparation methods, and the design of novel single and multiple stimuli-responsive materials that can provide controlled drug release in response a specific stimulus. These stimuli-sensitive drug nanoparticulate systems have exhibited varying degrees of substitution with enhanced in vitro/in vivo release. However, in an attempt to further increase drug release, new dual and multi-stimuli based natural polymeric nanocarriers have been investigated which respond to a mixture of two or more signals and are awaiting clinical trials. The translation of biopolymeric directed stimuli-sensitive drug delivery systems in clinic demands a thorough knowledge of its mechanism and drug release pattern in order to produce affordable and patient friendly products.
Collapse
Affiliation(s)
- Davinder Singh
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Yashika Sharma
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Divya Dheer
- Chitkara University School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India; Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India.
| | - Ravi Shankar
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
15
|
Singh R, Kumawat M, Gogoi H, Madhyastha H, Lichtfouse E, Daima HK. Engineered Nanomaterials for Immunomodulation: A Review. ACS APPLIED BIO MATERIALS 2024; 7:727-751. [PMID: 38166376 DOI: 10.1021/acsabm.3c00940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The immune system usually provides a defense against invading pathogenic microorganisms and any other particulate contaminants. Nonetheless, it has been recently reported that nanomaterials can evade the immune system and modulate immunological responses due to their unique physicochemical characteristics. Consequently, nanomaterial-based activation of immune components, i.e., neutrophils, macrophages, and other effector cells, may induce inflammation and alter the immune response. Here, it is essential to distinguish the acute and chronic modulations triggered by nanomaterials to determine the possible risks to human health. Nanomaterials size, shape, composition, surface charge, and deformability are factors controlling their uptake by immune cells and the resulting immune responses. The exterior corona of molecules adsorbed over nanomaterials surfaces also influences their immunological effects. Here, we review current nanoengineering trends for targeted immunomodulation with an emphasis on the design, safety, and potential toxicity of nanomaterials. First, we describe the characteristics of engineered nanomaterials that trigger immune responses. Then, the biocompatibility and immunotoxicity of nanoengineered particles are debated, because these factors influence applications. Finally, future nanomaterial developments in terms of surface modifications, synergistic approaches, and biomimetics are discussed.
Collapse
Affiliation(s)
| | - Mamta Kumawat
- Department of Biotechnology, School of Sciences, JECRC University, Sitapura Extension, Jaipur 303905, Rajasthan, India
| | - Himanshu Gogoi
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, University of Miyazaki, Miyazaki 8891692, Japan
| | - Eric Lichtfouse
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University Xi'an, Shaanxi 710049, China
| | - Hemant Kumar Daima
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindari 305817, Ajmer, India
| |
Collapse
|
16
|
Xiao H, Wu GL, Tan S, Tan X, Yang Q. Recent Progress on Tumor Microenvironment-Activated NIR-II Phototheranostic Agents with Simultaneous Activation for Diagnosis and Treatment. Chem Asian J 2024; 19:e202301036. [PMID: 38230541 DOI: 10.1002/asia.202301036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/18/2024]
Abstract
Malignant tumors seriously threaten human life and well-being. Emerging Near-infrared II (NIR-II, 1000-1700 nm) phototheranostic nanotechnology integrates diagnostic and treatment modalities, offering merits including improved tissue penetration and enhanced spatiotemporal resolution. This remarkable progress has opened promising avenues for advancing tumor theranostic research. The tumor microenvironment (TME) differs from normal tissues, exhibiting distinct attributes such as hypoxia, acidosis, overexpressed hydrogen peroxide, excess glutathione, and other factors. Capitalizing on these attributes, researchers have developed TME-activatable NIR-II phototheranostic agents with diagnostic and therapeutic attributes concurrently. Therefore, developing TME-activatable NIR-II phototheranostic agents with diagnostic and therapeutic activation holds significant research importance. Currently, research on TME-activatable NIR-II phototheranostic agents is still in its preliminary stages. This review examines the recent advances in developing dual-functional NIR-II activatable phototheranostic agents over the past years. It systematically presents NIR-II phototheranostic agents activated by various TME factors such as acidity (pH), hydrogen peroxide (H2 O2 ), glutathione (GSH), hydrogen sulfide (H2 S), enzymes, and their hybrid. This encompasses NIR-II fluorescence and photoacoustic imaging diagnostics, along with therapeutic modalities, including photothermal, photodynamic, chemodynamic, and gas therapies triggered by these TME factors. Lastly, the difficulties and opportunities confronting NIR-II activatable phototheranostic agents in the simultaneous diagnosis and treatment field are highlighted.
Collapse
Affiliation(s)
- Hao Xiao
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
| | - Gui-Long Wu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
| | - Senyou Tan
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
| | - Xiaofeng Tan
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, 53 Xiangchun Road, Changsha City, Hunan Province, 410008, China
| | - Qinglai Yang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, 53 Xiangchun Road, Changsha City, Hunan Province, 410008, China
| |
Collapse
|
17
|
Kim J, Nah Y, Kim S, Kim WJ. Transformation of nanoparticles via the transition of functional DNAs responsive to pH and vascular endothelial growth factor for photothermal anti-tumor therapy. Biomater Sci 2024; 12:1031-1041. [PMID: 38214329 DOI: 10.1039/d3bm01968c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
This study presents a novel approach for the development of DNA-functionalized gold nanoparticles (AuNPs) capable of responding to disease-specific factors and microenvironmental changes, resulting in an effective anti-tumor effect via photothermal therapy. The AuNPs are decorated with two types of DNAs, an i-motif duplex and a VEGF split aptamer, enabling recognition of changes in pH and VEGF, respectively. The formation of VEGF aptamers on the AuNPs induces their aggregation, further enhanced by VEGF ligands. The resulting changes in the optical properties of the AuNPs are detected by monitoring the absorbance. Upon irradiation with a near-infrared laser, the aggregated AuNPs generate heat due to their thermoplasmonic characteristic, leading to an anti-tumor effect. This study demonstrates the enhanced anti-tumor effect of DNA-functionalized AuNPs via photothermal therapy in both in vitro and in vivo tumor models. These findings suggest the potential utilization of such functional AuNPs for precise disease diagnosis and treatment by detecting disease-related factors in the microenvironment.
Collapse
Affiliation(s)
- Jinseong Kim
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Yunyoung Nah
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Seongmin Kim
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Won Jong Kim
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- OmniaMed Co., Ltd, Pohang, Republic of Korea
| |
Collapse
|
18
|
Wu M, Wang Q, Peng Y, Liang X, Lv X, Wang S, Zhong C. Enhancing Targeted Therapy in Hepatocellular Carcinoma through a pH-Responsive Delivery System: Folic Acid-Modified Polydopamine-Paclitaxel-Loaded Poly(3-hydroxybutyrate- co-3-hydroxyvalerate) Nanoparticles. Mol Pharm 2024; 21:581-595. [PMID: 38131328 DOI: 10.1021/acs.molpharmaceut.3c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Currently, there is an inherent contradiction between the multifunctionality and excellent biocompatibility of anticancer drug nanocarriers, which limits their application. Therefore, to overcome this limitation, we aimed to develop a biocompatible drug delivery system for the treatment of hepatocellular carcinoma (HCC). In this study, we employed poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) as the fundamental framework of the nanocarrier and utilized the emulsion solvent evaporation method to fabricate nanoparticles loaded with paclitaxel (PTX), known as PTX-PHBV NPs. To enhance the tumor-targeting capability, a dopamine self-polymerization strategy was employed to form a pH-sensitive coating on the surface of the nanoparticles. Then, folic acid (FA)-targeting HCC was conjugated to the nanoparticles with a polydopamine (PDA) coating by using the Michael addition reaction, resulting in the formation of HCC-targeted nanoparticles (PTX-PHBV@PDA-FA NPs). The PTX-PHBV@PDA-FA NPs were characterized and analyzed by using dynamic light scattering, scanning electron microscopy, fourier-transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, and thermogravimetric analysis. Encouragingly, PTX-PHBV@PDA-FA NPs exhibited remarkable anticancer efficacy in an HCC xenograft mouse model. Furthermore, compared to raw PTX, PTX-PHBV@PDA-FA NPs showed less toxicity in vivo. In conclusion, these results demonstrate the potential of PTX-PHBV@PDA-FA NPs for HCC treatment and biocompatibility.
Collapse
Affiliation(s)
- Mingfang Wu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
- Key Laboratory of Agricultural Products Chemical and Biological Processing Technology of Zhejiang Province, Hangzhou 310023, Zhejiang, China
| | - Qi Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Yaya Peng
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Xiaohui Liang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Xiaofeng Lv
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Siying Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Chen Zhong
- School of Life Sciences, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
19
|
Wang Y, Wang N, Wang P, Yang F, Han C, Yu D. Preparation of magnetic dialdehyde starch-immobilized phospholipase A 1 and acyl transfer in reflection. Int J Biol Macromol 2024; 257:128804. [PMID: 38101664 DOI: 10.1016/j.ijbiomac.2023.128804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
In this paper, using a coprecipitation method to prepare Fe3O4 magnetic nanoparticles (Fe3O4 MNPS), magnetic dialdehyde starch nanoparticles with immobilized phospholipase A1 (MDSNIPLA) were successfully prepared by using green dialdehyde starch (DAS) instead of glutaraldehyde as the crosslinking agent. The Fe3O4 MNPS was characterized by infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), the Brunauer-Emmett-Teller (BET) surface area analysis method, thermogravimetric analysis (TGA), and transmission electron microscopy (TEM) et al. The results showed that the alkaline resistance and acid resistance of the enzyme were improved after the crosslinking of DAS. After repeated use (seven times), the relative activity of MDSNIPLA reached 56 %, and the magnetic dialdehyde starch nanoparticles (MDASN) had good carrier performance. MDSNIPLA was applied to enzymatic hydrolysis of phospholipids in the soybean oil degumming process. The results showed that the acyl transfer rate of sn-2-HPA was 14.01 %, and the content of free fatty acids was 1.144 g/100 g after 2 h reaction at 50 °C and pH 5.0 with appropriate boric acid. The immobilized enzyme has good thermal stability and storage stability, and its application of soybean oil improves the efficiency of the oil.
Collapse
Affiliation(s)
- Yawen Wang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ning Wang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Peng Wang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Fuming Yang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Cuiping Han
- School of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Dianyu Yu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
20
|
Yang W, Tan Z, Yu S, Ren Y, Pan R, Yu X. A highly sensitive optical fiber sensor enables rapid triglycerides-specific detection and measurement at different temperatures using convolutional neural networks. Int J Biol Macromol 2024; 256:128353. [PMID: 38000611 DOI: 10.1016/j.ijbiomac.2023.128353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
For specific recognition and sensitive detection of triglycerides (TGs), an optical fiber sensor (OFS) based on an enhanced core diameter mismatch was proposed. The sensitivity of the sensor is significantly increased due to the repetitive excitation of the higher-order cladding modes. A technique for immobilizing lipase using covalent binding technology was presented and demonstrated by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy. The interference dip of the sensor was shifted due to TGs being hydrolyzed in the presence of lipase. The sensor shows an optimal response within 3 min and exhibits a high sensitivity of 0.9933 nm/(mg/ml) and a limit of detection of 0.0822 mg/ml in the concentration range 0-8 mg/ml at a temperature of 37 °C and a pH of 7.4. The response of the sensor to TGs concentration at different temperatures and pH was investigated. The reproducibility, reusability, and stability of the proposed sensor were tested and verified experimentally. The biosensor is highly specific for TGs and unaffected by many other interfering substances. Further, the measurement of TGs concentration at different temperatures was realized. This method provides a new way to detect TGs rapidly and reliably and has potential applications in medical research and clinical diagnosis.
Collapse
Affiliation(s)
- Wenlong Yang
- Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin 150080, China; School of measurement and communication engineering, Harbin University of Science and Technology, Harbin 150080, China.
| | - Zhengzheng Tan
- Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin 150080, China; School of measurement and communication engineering, Harbin University of Science and Technology, Harbin 150080, China.
| | - Shuang Yu
- Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin 150080, China; School of measurement and communication engineering, Harbin University of Science and Technology, Harbin 150080, China.
| | - Yuanyuan Ren
- Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin 150080, China; School of measurement and communication engineering, Harbin University of Science and Technology, Harbin 150080, China.
| | - Rui Pan
- Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin 150080, China; School of measurement and communication engineering, Harbin University of Science and Technology, Harbin 150080, China.
| | - Xiaoyang Yu
- Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application, Harbin University of Science and Technology, Harbin 150080, China; School of measurement and communication engineering, Harbin University of Science and Technology, Harbin 150080, China.
| |
Collapse
|
21
|
Kim TH, Kim NY, Lee HU, Choi JW, Kang T, Chung BG. Smartphone-based iontophoresis transdermal drug delivery system for cancer treatment. J Control Release 2023; 364:383-392. [PMID: 37914000 DOI: 10.1016/j.jconrel.2023.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Cancer is a leading cause of the death worldwide. However, the conventional cancer therapy still suffers from several limitations, such as systemic side effects, poor efficacy, and patient compliance due to limited accessibility to the tumor site. To address these issues, the localized drug delivery system has emerged as a promising approach. In this study, we developed an iontophoresis-based transdermal drug delivery system (TDDS) controlled by a smartphone application for cancer treatment. Iontophoresis, a low-intensity electric current-based TDDS, enhances drug permeation across the skin to provide potential for localized drug delivery and minimize systemic side effects. The fundamental mechanism of our system was modeled using finite element analysis and its performance was corroborated through the flow-through skin permeation tests using a plastic-based microfluidic chip. The results of in vitro cell experiments and skin deposition tests successfully demonstrated that our smartphone-controlled iontophoresis system significantly enhanced the drug permeation for cancer treatment. Therefore, this hand-held smartphone-based iontophoresis TDDS could be a powerful tool for self-administrated anticancer drug delivery applications.
Collapse
Affiliation(s)
- Tae Hyeon Kim
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea
| | - Na Yeon Kim
- Department of Biomedical Engineering, Sogang University, Seoul, Republic of Korea
| | - Hee Uk Lee
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea
| | - Ji Wook Choi
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea
| | - Taewook Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea; Institute of Integrated Biotechnology, Sogang University, Seoul, Republic of Korea
| | - Bong Geun Chung
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea; Department of Biomedical Engineering, Sogang University, Seoul, Republic of Korea; Institute of Smart Biosensor, Sogang University, Seoul, Republic of Korea; Institute of Integrated Biotechnology, Sogang University, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Madadi M, Khoee S. Magnetite-based Janus nanoparticles, their synthesis and biomedical applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1908. [PMID: 37271573 DOI: 10.1002/wnan.1908] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 06/06/2023]
Abstract
The advent of Janus nanoparticles has been a great breakthrough in the emerging field of nanomaterials. Janus nanoparticles refer to a single structure with two distinct chemical functions on either side. Owing to their asymmetric structures, they can be utilized in a variety of applications where monomorphic particles are insufficient. In the last decade, a wide variety of materials have been employed to fabricate Janus nanoparticles, and due to the great advantages of magnetite (Iron-oxide) NPs, they have been considered as one of the best candidates. With the main benefit of magnetic controlling, magnetite Janus nanoparticles fulfill great promises, especially in biomedical areas such as bioimaging, cancer therapies, theranostics, and biosensing. The intrinsic characteristics of magnetite Janus nanoparticles (MJNPs) even hold great potential in magnetite Janus forms of micro-/nanomotors. Despite the great interest and potential in magnetic Janus NPs, the need for a comprehensive review on MJNPs with a concentration on magnetite NPs has been overlooked. Herein, we present recent advancements in the magnetite-based Janus nanoparticles in the flourishing field of biomedicine. First, the synthesis and fabrication methods of Janus nanoparticles are discussed. Then we will delve into their intriguing biomedical applications, with a separate section for magnetite Janus micro-/nanomotors in biomedicine. And finally, the challenges and future outlook are provided. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Diagnostic Nanodevices Diagnostic Tools > In Vitro Nanoparticle-Based Sensing.
Collapse
Affiliation(s)
- Mozhdeh Madadi
- Polymer Laboratory, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Sepideh Khoee
- Polymer Laboratory, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
23
|
Zhu Z, Ouyang H, Ling C, Ma M, Wang J, Yu X, Li Y. Fabrication of magnetic α-Fe 2O 3/Fe 3O 4heterostructure nanorods via the urea hydrolysis-calcination process and their biocompatibility with LO 2and HepG 2cells. NANOTECHNOLOGY 2023; 34:505711. [PMID: 37703834 DOI: 10.1088/1361-6528/acf939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/12/2023] [Indexed: 09/15/2023]
Abstract
β-FeOOH nanorods were prepared via the urea hydrolysis process with the average length of 289.1 nm and average diameter of 61.2 nm, while magneticα-Fe2O3/Fe3O4heterostructure nanorods were prepared via the urea calcination process withβ-FeOOH nanorods as precursor, and the optimum conditions were the calcination temperature of 400 °C, the calcination time of 2 h, theβ-FeOOH/urea mass ratio of 1:6. The average length, diameter, and the saturation magnetization of the heterostructure nanorods prepared under the optimum conditions were 328.8 nm, 63.4 nm and 42 emu·g-1, respectively. The Prussian blue test demonstrated that the heterostructure nanorods could be taken up by HepG2 cells, and cytotoxicity tests proved that the heterostructure nanorods had no significant effect on the viabilities of LO2 and HepG2 cells within 72 h in the range of 100-1600μg·ml-1. Therefore, magneticα-Fe2O3/Fe3O4heterostructure nanorods had better biocompatibility with LO2 and HepG2 cells.
Collapse
Affiliation(s)
- Ziye Zhu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Hezhong Ouyang
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang 212300, People's Republic of China
| | - Chen Ling
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Mingyi Ma
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Jie Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xiang Yu
- College of Vanadium and Titanium, Panzhihua University, Panzhihua 617000, People's Republic of China
| | - Yongjin Li
- School of Medicine, Jiangsu University, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
24
|
Wang Y, Chen S, Wang C, Guo F. Nanocarrier-based targeting of metabolic pathways for endometrial cancer: Status and future perspectives. Biomed Pharmacother 2023; 166:115348. [PMID: 37639743 DOI: 10.1016/j.biopha.2023.115348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/10/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023] Open
Abstract
Cancer is the second-most lethal global disease, as per health reports, and is responsible for around 70% of deaths in low- and middle-income countries. Endometrial cancer is one of the emerging malignancies and has been predicted as a public health challenge for the future. Insulin resistance, obesity, and diabetes mellitus are the key metabolic factors that promote risks for the development of endometrial cancer. Various signaling pathways and associated genes are involved in the genesis of endometrial cancer, and any mutation or deletion in such related factors leads to the induction of endometrial cancer. The conventional way of drug delivery has been used for ages but is associated with poor management of cancer due to non-targeting of the endometrial cancer cells, low efficacy of the therapy, and toxicity issues as well. In this context, nanocarrier-based therapy for the management of endometrial cancer is an effective alternate choice that overcomes the problems associated with conventional therapy. In this review article, we highlighted the nanocarrier-based targeting of endometrial cancer, with a special focus on targeting various metabolic signaling pathways. Furthermore, the future perspectives of nanocarrier-based targeting of metabolic pathways in endometrial cancer were also underpinned. It is concluded that targeting metabolic signaling pathways in endometrial cancer via nanocarrier scaffolds is the future of pharmaceutical design for the significant management and treatment of endometrial cancer.
Collapse
Affiliation(s)
- Yichao Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Siyao Chen
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Chunling Wang
- Medical Affairs Department, The Second Hospital of Jilin University, Changchun 130000, China
| | - Fengjun Guo
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
25
|
Keum C, Hirschbiegel CM, Chakraborty S, Jin S, Jeong Y, Rotello VM. Biomimetic and bioorthogonal nanozymes for biomedical applications. NANO CONVERGENCE 2023; 10:42. [PMID: 37695365 PMCID: PMC10495311 DOI: 10.1186/s40580-023-00390-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/23/2023] [Indexed: 09/12/2023]
Abstract
Nanozymes mimic the function of enzymes, which drive essential intracellular chemical reactions that govern biological processes. They efficiently generate or degrade specific biomolecules that can initiate or inhibit biological processes, regulating cellular behaviors. Two approaches for utilizing nanozymes in intracellular chemistry have been reported. Biomimetic catalysis replicates the identical reactions of natural enzymes, and bioorthogonal catalysis enables chemistries inaccessible in cells. Various nanozymes based on nanomaterials and catalytic metals are employed to attain intended specific catalysis in cells either to mimic the enzymatic mechanism and kinetics or expand inaccessible chemistries. Each nanozyme approach has its own intrinsic advantages and limitations, making them complementary for diverse and specific applications. This review summarizes the strategies for intracellular catalysis and applications of biomimetic and bioorthogonal nanozymes, including a discussion of their limitations and future research directions.
Collapse
Affiliation(s)
- Changjoon Keum
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Cristina-Maria Hirschbiegel
- Department of Chemistry, University of Massachusetts, Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Soham Chakraborty
- Department of Chemistry, University of Massachusetts, Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA
| | - Soyeong Jin
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
| | - Youngdo Jeong
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- Department of HY-KIST Bio-Convergence, Hanyang University, Seoul, 04763, Republic of Korea.
- Division of Bio-Medical Science and Technology, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts, Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA.
| |
Collapse
|
26
|
Feitelson MA, Arzumanyan A, Medhat A, Spector I. Short-chain fatty acids in cancer pathogenesis. Cancer Metastasis Rev 2023; 42:677-698. [PMID: 37432606 PMCID: PMC10584782 DOI: 10.1007/s10555-023-10117-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/05/2023] [Indexed: 07/12/2023]
Abstract
Cancer is a multi-step process that can be viewed as a cellular and immunological shift away from homeostasis in response to selected infectious agents, mutations, diet, and environmental carcinogens. Homeostasis, which contributes importantly to the definition of "health," is maintained, in part by the production of short-chain fatty acids (SCFAs), which are metabolites of specific gut bacteria. Alteration in the composition of gut bacteria, or dysbiosis, is often a major risk factor for some two dozen tumor types. Dysbiosis is often characterized by diminished levels of SCFAs in the stool, and the presence of a "leaky gut," permitting the penetration of microbes and microbial derived molecules (e.g., lipopolysaccharides) through the gut wall, thereby triggering chronic inflammation. SCFAs attenuate inflammation by inhibiting the activation of nuclear factor kappa B, by decreasing the expression of pro-inflammatory cytokines such as tumor necrosis factor alpha, by stimulating the expression of anti-inflammatory cytokines such as interleukin-10 and transforming growth factor beta, and by promoting the differentiation of naïve T cells into T regulatory cells, which down-regulate immune responses by immunomodulation. SCFA function epigenetically by inhibiting selected histone acetyltransferases that alter the expression of multiple genes and the activity of many signaling pathways (e.g., Wnt, Hedgehog, Hippo, and Notch) that contribute to the pathogenesis of cancer. SCFAs block cancer stem cell proliferation, thereby potentially delaying or inhibiting cancer development or relapse by targeting genes and pathways that are mutated in tumors (e.g., epidermal growth factor receptor, hepatocyte growth factor, and MET) and by promoting the expression of tumor suppressors (e.g., by up-regulating PTEN and p53). When administered properly, SCFAs have many advantages compared to probiotic bacteria and fecal transplants. In carcinogenesis, SCFAs are toxic against tumor cells but not to surrounding tissue due to differences in their metabolic fate. Multiple hallmarks of cancer are also targets of SCFAs. These data suggest that SCFAs may re-establish homeostasis without overt toxicity and either delay or prevent the development of various tumor types.
Collapse
Affiliation(s)
- Mark A Feitelson
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA.
| | - Alla Arzumanyan
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Arvin Medhat
- Department of Molecular Cell Biology, Islamic Azad University Tehran North Branch, Tehran, 1975933411, Iran
| | - Ira Spector
- SFA Therapeutics, Jenkintown, PA, 19046, USA
| |
Collapse
|
27
|
Nazeer SS, Saraswathy A, Nimi N, Santhakumar H, Radhakrishnapillai Suma P, Shenoy SJ, Jayasree RS. Near infrared-emitting multimodal nanosystem for in vitro magnetic hyperthermia of hepatocellular carcinoma and dual imaging of in vivo liver fibrosis. Sci Rep 2023; 13:12947. [PMID: 37558889 PMCID: PMC10412632 DOI: 10.1038/s41598-023-40143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 08/05/2023] [Indexed: 08/11/2023] Open
Abstract
Prolonged usage of traditional nanomaterials in the biological field has posed several short- and long-term toxicity issues. Over the past few years, smart nanomaterials (SNs) with controlled physical, chemical, and biological features have been synthesized in an effort to allay these challenges. The current study seeks to develop theranostic SNs based on iron oxide to enable simultaneous magnetic hyperthermia and magnetic resonance imaging (MRI), for chronic liver damage like liver fibrosis which is a major risk factor for hepatocellular carcinoma. To accomplish this, superparamagnetic iron oxide nanoparticles (SPIONs) were prepared, coated with a biocompatible and naturally occurring polysaccharide, alginate. The resultant material, ASPIONs were evaluated in terms of physicochemical, magnetic and biological properties. A hydrodynamic diameter of 40 nm and a transverse proton relaxation rate of 117.84 mM-1 s-1 pronounces the use of ASPIONs as an efficient MRI contrast agent. In the presence of alternating current of 300 A, ASPIONs could elevate the temperature to 45 °C or more, with the possibility of hyperthermia based therapeutic approach. Magnetic therapeutic and imaging potential of ASPIONs were further evaluated respectively in vitro and in vivo in HepG2 carcinoma cells and animal models of liver fibrosis, respectively. Finally, to introduce dual imaging capability along with magnetic properties, ASPIONs were conjugated with near infrared (NIR) dye Atto 700 and evaluated its optical imaging efficiency in animal model of liver fibrosis. Histological analysis further confirmed the liver targeting efficacy of the developed SNs for Magnetic theranostics and optical imaging as well as proved its short-term safety, in vivo.
Collapse
Affiliation(s)
- Shaiju S Nazeer
- Department of Chemistry, Indian Institute of Space Sciences and Technology, Thiruvananthapuram, 695547, Kerala, India
- Division of Biophotonics and Imaging, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojappura, Thiruvananthapuram, 695 012, Kerala, India
| | - Ariya Saraswathy
- Division of Biophotonics and Imaging, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojappura, Thiruvananthapuram, 695 012, Kerala, India
- Department of Physics, HHMSPBNSS College, Thiruvananthapuram, 695 040, Kerala, India
| | - Nirmala Nimi
- Division of Biophotonics and Imaging, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojappura, Thiruvananthapuram, 695 012, Kerala, India
| | - Hema Santhakumar
- Division of Biophotonics and Imaging, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojappura, Thiruvananthapuram, 695 012, Kerala, India
| | - Parvathy Radhakrishnapillai Suma
- Division of Biophotonics and Imaging, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojappura, Thiruvananthapuram, 695 012, Kerala, India
| | - Sachin J Shenoy
- Division of In Vivo Models and Testing, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojappura, Thiruvananthapuram, 695 012, Kerala, India
| | - Ramapurath S Jayasree
- Division of Biophotonics and Imaging, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojappura, Thiruvananthapuram, 695 012, Kerala, India.
| |
Collapse
|
28
|
Brito B, Ruggiero MR, Price TW, da Costa Silva M, Genicio N, Wilson AJ, Tyurina O, Rosecker V, Eykyn TR, Bañobre-López M, Stasiuk GJ, Gallo J. Redox double-switch cancer theranostics through Pt(IV) functionalised manganese dioxide nanostructures. NANOSCALE 2023. [PMID: 37325846 DOI: 10.1039/d3nr00076a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Manganese dioxide (MnO2)-based nanostructures have emerged as promising tumour microenvironment (TME) responsive platforms. Herein, we used a one-pot reaction to prepare MnO2 nanostructures with Pt(IV) prodrugs as redox- (and thus TME-) responsive theranostics for cancer therapy, in which the Pt(IV) complexes act as prodrugs of cisplatin (Pt(II)), a clinical chemotherapeutic drug. The cytotoxicity of these MnO2-Pt(IV) probes was evaluated in two and three dimensional (2D and 3D) A549 cell models and found to be as effective as active drug cisplatin in 3D models. Moreover, MnO2-Pt(IV) nanoparticles exhibited strong off/ON magnetic resonance (MR) contrast in response to reducing agents, with the longitudinal relaxivity (r1) increasing 136-fold upon treatment with ascorbic acid. This off/ON MR switch was also observed in (2D and 3D) cells in vitro. In vivo MRI experiments revealed that the nanostructures induce a strong and long-lasting T1 signal enhancement upon intratumoral injection in A549 tumour-bearing mice. These results show the potential of MnO2-Pt(IV) NPs as redox responsive MR theranostics for cancer therapy.
Collapse
Affiliation(s)
- Beatriz Brito
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Strand, WC2R 2LS London, UK.
- School of Life Sciences, Faculty of Health Sciences, University of Hull, Cottingham Road, HU6 7RX Hull, UK
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| | - Maria Rosaria Ruggiero
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Strand, WC2R 2LS London, UK.
| | - Thomas W Price
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Strand, WC2R 2LS London, UK.
| | - Milene da Costa Silva
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| | - Núria Genicio
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| | - Annah J Wilson
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Strand, WC2R 2LS London, UK.
| | - Olga Tyurina
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Strand, WC2R 2LS London, UK.
| | - Veronika Rosecker
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Strand, WC2R 2LS London, UK.
| | - Thomas R Eykyn
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Strand, WC2R 2LS London, UK.
| | - Manuel Bañobre-López
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| | - Graeme J Stasiuk
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Strand, WC2R 2LS London, UK.
| | - Juan Gallo
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| |
Collapse
|
29
|
Gomaa I, Emam MH, Wassel AR, Ashraf K, Hussan S, Kalil H, Bayachou M, Ibrahim MA. Microspheres with 2D rGO/Alginate Matrix for Unusual Prolonged Release of Cefotaxime. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1527. [PMID: 37177072 PMCID: PMC10180501 DOI: 10.3390/nano13091527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
A synergistic interaction between reduced graphene oxide (rGO) and a biodegradable natural polymer, sodium alginate, was developed to create unique microspheres with protruding spiky features at the surface (spiky microspheres) that act as a super encapsulation and sustained release system for the highly effective antibiotic cefotaxime. Three forms of microspheres, namely alginate (Alg), alginate-cefotaxime (Alg-CTX), and alginate-cefotaxime-reduced graphene (Alg-CTX-rGO) composites, were prepared using calcium chloride as a cross-linking agent. The microspheres were characterized using field emission scanning electron microscopy (FESEM), Fourier-transform infrared (FT-IR) spectroscopy, and X-ray diffraction to investigate their pores, roughness, surface morphology, functional groups, phase formation, purity, and structural properties. The membrane diffusion method was employed to determine the release profile of Cefotaxime from the fabricated microspheres. The antibacterial activities of CTX solution, Alg microspheres, Alg-CTX microspheres, and Alg-CTX-rGO microspheres were investigated against gram-negative bacteria (Escherichia coli) using the agar diffusion method on Muller-Hinton agar. The prepared samples exhibited excellent results, suggesting their potential for enhanced antibiotic delivery. The results demonstrated the potential of the microsphere 2D rGO/alginate matrix for enhancing cefotaxime delivery with an unusual, prolonged release profile.
Collapse
Affiliation(s)
- Islam Gomaa
- Nanotechnology Research Centre (NTRC), The British University in Egypt, El-Shorouk City, Suez Desert Road, Cairo 11837, Egypt
| | - Merna H. Emam
- Nanotechnology Research Centre (NTRC), The British University in Egypt, El-Shorouk City, Suez Desert Road, Cairo 11837, Egypt
| | - Ahmed R. Wassel
- Nanotechnology Research Centre (NTRC), The British University in Egypt, El-Shorouk City, Suez Desert Road, Cairo 11837, Egypt
- Electron Microscope and Thin Film Department, Physics Research Division, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Kholoud Ashraf
- Department of Biotechnology, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Sara Hussan
- Biophysics Department, Mansoura University, Mansoura 35516, Egypt
| | - Haitham Kalil
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Chemistry Department, Cleveland State University, Cleveland, OH 44115, USA
| | - Mekki Bayachou
- Chemistry Department, Cleveland State University, Cleveland, OH 44115, USA
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Medhat A. Ibrahim
- Molecular Spectroscopy and Modeling Unit, Spectroscopy Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
30
|
Jahedi M, Meshkini A. Tumor tropic delivery of FU.FA@NSs using mesenchymal stem cells for synergistic chemo-photodynamic therapy of colorectal cancer. Colloids Surf B Biointerfaces 2023; 226:113333. [PMID: 37141773 DOI: 10.1016/j.colsurfb.2023.113333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/19/2023] [Accepted: 04/29/2023] [Indexed: 05/06/2023]
Abstract
To overcome the limitations associated with the targeting abilities of nanotherapeutics and drug loading capacity of mesenchymal stem cells (MSCs), the present study relies on the combination of MSCs tumor tropism with the controlled release function of nano-based drug delivery platforms to achieve tumor-specific accumulation of chemotherapeutics with minimal off-target effects. 5-fluorouracil (5-FU)-containing ceria (CeNPs) coated calcium carbonate nanoparticles (CaNPs) were functionalized with folinic acid (FA) to develop drug-containing nanocomposites (Ca.FU.Ce.FA NCs). NCs were then conjugated with graphene oxide (GO) and decorated with silver nanoparticles (Ag°NPs) to form FU.FA@NS, a rationally designed drug delivery system with O2 generation capacity that alleviates tumor hypoxia for improved photodynamic therapy. Engineering of MSCs with FU.FA@NSs provided successful loading and long-term retention of therapeutics on the surface membrane with minimal changes to the functional properties of MSCs. Co-culturing of FU.FA@NS.MSCs with CT26 cells upon UVA exposure revealed enhanced apoptosis in tumor cells through ROS-mediated mitochondrial pathway. FU.FA@NSs released from MSCs were effectively taken up by CT26 cells via a clathrin-mediated endocytosis pathway and distributed their drug depots in a pH, H2O2, and UVA-stimulated fashion. Therefore, the cell-based biomimetic drug delivery platform formulated in the current study could be considered a promising strategy for targeted chemo-photodynamic therapy of colorectal cancer.
Collapse
Affiliation(s)
- Mehrnaz Jahedi
- Biochemical Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran
| | - Azadeh Meshkini
- Biochemical Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 9177948974 Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
31
|
Kashyap BK, Singh VV, Solanki MK, Kumar A, Ruokolainen J, Kesari KK. Smart Nanomaterials in Cancer Theranostics: Challenges and Opportunities. ACS OMEGA 2023; 8:14290-14320. [PMID: 37125102 PMCID: PMC10134471 DOI: 10.1021/acsomega.2c07840] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Cancer is ranked as the second leading cause of death globally. Traditional cancer therapies including chemotherapy are flawed, with off-target and on-target toxicities on the normal cells, requiring newer strategies to improve cell selective targeting. The application of nanomaterial has been extensively studied and explored as chemical biology tools in cancer theranostics. It shows greater applications toward stability, biocompatibility, and increased cell permeability, resulting in precise targeting, and mitigating the shortcomings of traditional cancer therapies. The nanoplatform offers an exciting opportunity to gain targeting strategies and multifunctionality. The advent of nanotechnology, in particular the development of smart nanomaterials, has transformed cancer diagnosis and treatment. The large surface area of nanoparticles is enough to encapsulate many molecules and the ability to functionalize with various biosubstrates such as DNA, RNA, aptamers, and antibodies, which helps in theranostic action. Comparatively, biologically derived nanomaterials perceive advantages over the nanomaterials produced by conventional methods in terms of economy, ease of production, and reduced toxicity. The present review summarizes various techniques in cancer theranostics and emphasizes the applications of smart nanomaterials (such as organic nanoparticles (NPs), inorganic NPs, and carbon-based NPs). We also critically discussed the advantages and challenges impeding their translation in cancer treatment and diagnostic applications. This review concludes that the use of smart nanomaterials could significantly improve cancer theranostics and will facilitate new dimensions for tumor detection and therapy.
Collapse
Affiliation(s)
- Brijendra Kumar Kashyap
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi 284128, Uttar Pradesh, India
| | - Virendra Vikram Singh
- Defence Research and Development Establishment, DRDO, Gwalior 474002, Madhya Pradesh, India
| | - Manoj Kumar Solanki
- Faculty of Natural Sciences, Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Anil Kumar
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Cheri-Manatu, Karmre, Kanke 835222, Ranchi, India
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Vikkinkaari 1, 00100 Helsinki, Finland
| |
Collapse
|
32
|
Deriu C, Thakur S, Tammaro O, Fabris L. Challenges and opportunities for SERS in the infrared: materials and methods. NANOSCALE ADVANCES 2023; 5:2132-2166. [PMID: 37056617 PMCID: PMC10089128 DOI: 10.1039/d2na00930g] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
In the wake of a global, heightened interest towards biomarker and disease detection prompted by the SARS-CoV-2 pandemic, surface enhanced Raman spectroscopy (SERS) positions itself again at the forefront of biosensing innovation. But is it ready to move from the laboratory to the clinic? This review presents the challenges associated with the application of SERS to the biomedical field, and thus, to the use of excitation sources in the near infrared, where biological windows allow for cell and through-tissue measurements. Two main tackling strategies will be discussed: (1) acting on the design of the enhancing substrate, which includes manipulation of nanoparticle shape, material, and supramolecular architecture, and (2) acting on the spectral collection set-up. A final perspective highlights the upcoming scientific and technological bets that need to be won in order for SERS to stably transition from benchtop to bedside.
Collapse
Affiliation(s)
- Chiara Deriu
- Department of Applied Science and Technology, Politecnico di Torino 10129 Turin Italy
| | - Shaila Thakur
- Department of Applied Science and Technology, Politecnico di Torino 10129 Turin Italy
| | - Olimpia Tammaro
- Department of Applied Science and Technology, Politecnico di Torino 10129 Turin Italy
| | - Laura Fabris
- Department of Applied Science and Technology, Politecnico di Torino 10129 Turin Italy
- Department of Materials Science and Engineering, Rutgers University Piscataway NJ 08854 USA
| |
Collapse
|
33
|
Levin A, Gong S, Cheng W. Wearable Smart Bandage-Based Bio-Sensors. BIOSENSORS 2023; 13:bios13040462. [PMID: 37185537 PMCID: PMC10136806 DOI: 10.3390/bios13040462] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023]
Abstract
Bandage is a well-established industry, whereas wearable electronics is an emerging industry. This review presents the bandage as the base of wearable bioelectronics. It begins with introducing a detailed background to bandages and the development of bandage-based smart sensors, which is followed by a sequential discussion of the technical characteristics of the existing bandages, a more practical methodology for future applications, and manufacturing processes of bandage-based wearable biosensors. The review then elaborates on the advantages of basing the next generation of wearables, such as acceptance by the customers and system approvals, and disposal.
Collapse
Affiliation(s)
- Arie Levin
- Department of Chemical & Biological Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3168, Australia
| | - Shu Gong
- Department of Chemical & Biological Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3168, Australia
| | - Wenlong Cheng
- Department of Chemical & Biological Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
34
|
Yadav S, Ramesh K, Reddy OS, Karthika V, Kumar P, Jo SH, Yoo SII, Park SH, Lim KT. Redox-Responsive Comparison of Diselenide and Disulfide Core-Cross-Linked Micelles for Drug Delivery Application. Pharmaceutics 2023; 15:pharmaceutics15041159. [PMID: 37111644 PMCID: PMC10144204 DOI: 10.3390/pharmaceutics15041159] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
In this study, diselenide (Se–Se) and disulfide (S–S) redox-responsive core-cross-linked (CCL) micelles were synthesized using poly(ethylene oxide)2k-b-poly(furfuryl methacrylate)1.5k (PEO2k-b-PFMA1.5k), and their redox sensitivity was compared. A single electron transfer-living radical polymerization technique was used to prepare PEO2k-b-PFMA1.5k from FMA monomers and PEO2k-Br initiators. An anti-cancer drug, doxorubicin (DOX), was incorporated into PFMA hydrophobic parts of the polymeric micelles, which were then cross-linked with maleimide cross-linkers, 1,6-bis(maleimide) hexane, dithiobis(maleimido) ethane and diselenobis(maleimido) ethane via Diels–Alder reaction. Under physiological conditions, the structural stability of both S–S and Se–Se CCL micelles was maintained; however, treatments with 10 mM GSH induced redox-responsive de-cross-linking of S–S and Se–Se bonds. In contrast, the S–S bond was intact in the presence of 100 mM H2O2, while the Se–Se bond underwent de-crosslinking upon the treatment. DLS studies revealed that the size and PDI of (PEO2k-b-PFMA1.5k-Se)2 micelles varied more significantly in response to changes in the redox environment than (PEO2k-b-PFMA1.5k-S)2 micelles. In vitro release studies showed that the developed micelles had a lower drug release rate at pH 7.4, whereas a higher release was observed at pH 5.0 (tumor environment). The micelles were non-toxic against HEK-293 normal cells, which revealed that they could be safe for use. Nevertheless, DOX-loaded S–S/Se–Se CCL micelles exhibited potent cytotoxicity against BT-20 cancer cells. Based on these results, the (PEO2k-b-PFMA1.5k-Se)2 micelles can be more sensitive drug carriers than (PEO2k-b-PFMA1.5k-S)2 micelles.
Collapse
Affiliation(s)
- Sonyabapu Yadav
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Kalyan Ramesh
- R&D Center, Devens Lab, SEQENS (CDMO) Pharmaceutical Solutions, Devens, MA 01434, USA
| | - Obireddy Sreekanth Reddy
- Major of Display Semiconductor Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Viswanathan Karthika
- Major of Display Semiconductor Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Parveen Kumar
- Major of Display Semiconductor Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Sung-Han Jo
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Seong II Yoo
- Department of Polymer Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Sang-Hyug Park
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Kwon Taek Lim
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
- Major of Display Semiconductor Engineering, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
35
|
Al-Otibi FO, Yassin MT, Al-Askar AA, Maniah K. Green Biofabrication of Silver Nanoparticles of Potential Synergistic Activity with Antibacterial and Antifungal Agents against Some Nosocomial Pathogens. Microorganisms 2023; 11:microorganisms11040945. [PMID: 37110368 PMCID: PMC10144991 DOI: 10.3390/microorganisms11040945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
Nosocomial bacterial and fungal infections are one of the main causes of high morbidity and mortality worldwide, owing to the high prevalence of multidrug-resistant microbial strains. Hence, the study aims to synthesize, characterize, and investigate the antifungal and antibacterial activity of silver nanoparticles (AgNPs) fabricated using Camellia sinensis leaves against nosocomial pathogens. The biogenic AgNPs revealed a small particle diameter of 35.761 ± 3.18 nm based on transmission electron microscope (TEM) graphs and a negative surface charge of −14.1 mV, revealing the repulsive forces between nanoparticles, which in turn indicated their colloidal stability. The disk diffusion assay confirmed that Escherichia coli was the most susceptible bacterial strain to the biogenic AgNPs (200 g/disk), while the lowest sensitive strain was found to be the Acinetobacter baumannii strain with relative inhibition zones of 36.14 ± 0.67 and 21.04 ± 0.19 mm, respectively. On the other hand, the biogenic AgNPs (200 µg/disk) exposed antifungal efficacy against Candida albicans strain with a relative inhibition zone of 18.16 ± 0.14 mm in diameter. The biogenic AgNPs exposed synergistic activity with both tigecycline and clotrimazole against A. baumannii and C. albicans, respectively. In conclusion, the biogenic AgNPs demonstrated distinct physicochemical properties and potential synergistic bioactivity with tigecycline, linezolid, and clotrimazole against gram-negative, gram-positive, and fungal strains, respectively. This is paving the way for the development of effective antimicrobial combinations for the effective management of nosocomial pathogens in intensive care units (ICUs) and health care settings.
Collapse
Affiliation(s)
- Fatimah O. Al-Otibi
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Taha Yassin
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulaziz A. Al-Askar
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid Maniah
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
36
|
Fan H, Guo Z. Tumor microenvironment-responsive manganese-based nanomaterials for cancer treatment. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
37
|
Park JH, Eom YS, Kim TH. Recent Advances in Aptamer-Based Sensors for Sensitive Detection of Neurotransmitters. BIOSENSORS 2023; 13:bios13040413. [PMID: 37185488 PMCID: PMC10136356 DOI: 10.3390/bios13040413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023]
Abstract
In recent years, there has been an increased demand for highly sensitive and selective biosensors for neurotransmitters, owing to advancements in science and technology. Real-time sensing is crucial for effective prevention of neurological and cardiovascular diseases. In this review, we summarise the latest progress in aptamer-based biosensor technology, which offers the aforementioned advantages. Our focus is on various biomaterials utilised to ensure the optimal performance and high selectivity of aptamer-based biosensors. Overall, this review aims to further aptamer-based biosensor technology.
Collapse
Affiliation(s)
- Joon-Ha Park
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yun-Sik Eom
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
38
|
Długosz O, Matyjasik W, Hodacka G, Szostak K, Matysik J, Krawczyk P, Piasek A, Pulit-Prociak J, Banach M. Inorganic Nanomaterials Used in Anti-Cancer Therapies:Further Developments. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13061130. [PMID: 36986024 PMCID: PMC10051539 DOI: 10.3390/nano13061130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/14/2023]
Abstract
In this article, we provide an overview of the progress of scientists working to improve the quality of life of cancer patients. Among the known methods, cancer treatment methods focusing on the synergistic action of nanoparticles and nanocomposites have been proposed and described. The application of composite systems will allow precise delivery of therapeutic agents to cancer cells without systemic toxicity. The nanosystems described could be used as a high-efficiency photothermal therapy system by exploiting the properties of the individual nanoparticle components, including their magnetic, photothermal, complex, and bioactive properties. By combining the advantages of the individual components, it is possible to obtain a product that would be effective in cancer treatment. The use of nanomaterials to produce both drug carriers and those active substances with a direct anti-cancer effect has been extensively discussed. In this section, attention is paid to metallic nanoparticles, metal oxides, magnetic nanoparticles, and others. The use of complex compounds in biomedicine is also described. A group of compounds showing significant potential in anti-cancer therapies are natural compounds, which have also been discussed.
Collapse
|
39
|
Huang Y, Kou Q, Su Y, Lu L, Li X, Jiang H, Gui R, Huang R, Nie X, Li J. Combination therapy based on dual-target biomimetic nano-delivery system for overcoming cisplatin resistance in hepatocellular carcinoma. J Nanobiotechnology 2023; 21:89. [PMID: 36918874 PMCID: PMC10015699 DOI: 10.1186/s12951-023-01840-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
Strategies to overcome toxicity and drug resistance caused by chemotherapeutic drugs for targeted therapy against hepatocellular carcinoma (HCC) are urgently needed. Previous studies revealed that high oxidored-nitro domain-containing protein 1(NOR1) expression in HCC was associated with cisplatin (DDP) resistance. Herein, a novel dual-targeting nanocarrier system AR-NADR was generated for the treatment of DDP resistance in HCC. The core of the nanocarrier system is the metal-organic frameworks (MOF) modified with nuclear location sequence (NLS), which loading with DDP and NOR1 shRNA (R). The shell is an A54 peptide inserted into the erythrocyte membrane (AR). Our results show that AR-NADR efficiently internalized by tumor cells due to its specific binding to the A54 receptors that are abundantly expressed on the surface of HCC cells and NLS peptide-mediated nuclear entry. Additionally, DDP is more likely to be released due to the degradation of Ag-MOF in the acidic tumor microenvironment. Moreover, by acting as a vector for gene delivery, AR-NADR effectively inhibits tumor drug resistance by suppressing the expression of NOR1, which induces intracellular DDP accumulation and makes cells sensitive to DDP. Finally, the anti-HCC efficacy and mechanisms of AR-NADR were systematically elucidated by a HepG2/DDP cell model as well as a tumor model. Therefore, AR-NADR constitutes a key strategy to achieve excellent gene silencing and antitumor efficacy, which provides effective gene therapy and precise treatment strategies for cisplatin resistance in HCC.
Collapse
Affiliation(s)
- Yufen Huang
- Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Qinjie Kou
- Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Yanrong Su
- Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Lu Lu
- Department of Blood Transfusion, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xisheng Li
- Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Haiye Jiang
- Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Rong Gui
- Department of Blood Transfusion, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Rong Huang
- Department of Blood Transfusion, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xinmin Nie
- Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China. .,Hunan Engineering Technology Research Center of Optoelectronic Health Detection, Changsha, 410000, Hunan, China.
| | - Jian Li
- Department of Blood Transfusion, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
40
|
Banaye Yazdipour A, Masoorian H, Ahmadi M, Mohammadzadeh N, Ayyoubzadeh SM. Predicting the toxicity of nanoparticles using artificial intelligence tools: a systematic review. Nanotoxicology 2023; 17:62-77. [PMID: 36883698 DOI: 10.1080/17435390.2023.2186279] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Nanoparticles have been used extensively in different scientific fields. Due to the possible destructive effects of nanoparticles on the environment or the biological systems, their toxicity evaluation is a crucial phase for studying nanomaterial safety. In the meantime, experimental approaches for toxicity assessment of various nanoparticles are expensive and time-consuming. Thus, an alternative technique, such as artificial intelligence (AI), could be valuable for predicting nanoparticle toxicity. Therefore, in this review, the AI tools were investigated for the toxicity assessment of nanomaterials. To this end, a systematic search was performed on PubMed, Web of Science, and Scopus databases. Articles were included or excluded based on pre-defined inclusion and exclusion criteria, and duplicate studies were excluded. Finally, twenty-six studies were included. The majority of the studies were conducted on metal oxide and metallic nanoparticles. In addition, Random Forest (RF) and Support Vector Machine (SVM) had the most frequency in the included studies. Most of the models demonstrated acceptable performance. Overall, AI could provide a robust, fast, and low-cost tool for the evaluation of nanoparticle toxicity.
Collapse
Affiliation(s)
- Alireza Banaye Yazdipour
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Hoorie Masoorian
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Ahmadi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Mohammadzadeh
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ayyoubzadeh
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Govindan B, Sabri MA, Hai A, Banat F, Haija MA. A Review of Advanced Multifunctional Magnetic Nanostructures for Cancer Diagnosis and Therapy Integrated into an Artificial Intelligence Approach. Pharmaceutics 2023; 15:868. [PMID: 36986729 PMCID: PMC10058002 DOI: 10.3390/pharmaceutics15030868] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/10/2023] Open
Abstract
The new era of nanomedicine offers significant opportunities for cancer diagnostics and treatment. Magnetic nanoplatforms could be highly effective tools for cancer diagnosis and treatment in the future. Due to their tunable morphologies and superior properties, multifunctional magnetic nanomaterials and their hybrid nanostructures can be designed as specific carriers of drugs, imaging agents, and magnetic theranostics. Multifunctional magnetic nanostructures are promising theranostic agents due to their ability to diagnose and combine therapies. This review provides a comprehensive overview of the development of advanced multifunctional magnetic nanostructures combining magnetic and optical properties, providing photoresponsive magnetic platforms for promising medical applications. Moreover, this review discusses various innovative developments using multifunctional magnetic nanostructures, including drug delivery, cancer treatment, tumor-specific ligands that deliver chemotherapeutics or hormonal agents, magnetic resonance imaging, and tissue engineering. Additionally, artificial intelligence (AI) can be used to optimize material properties in cancer diagnosis and treatment, based on predicted interactions with drugs, cell membranes, vasculature, biological fluid, and the immune system to enhance the effectiveness of therapeutic agents. Furthermore, this review provides an overview of AI approaches used to assess the practical utility of multifunctional magnetic nanostructures for cancer diagnosis and treatment. Finally, the review presents the current knowledge and perspectives on hybrid magnetic systems as cancer treatment tools with AI models.
Collapse
Affiliation(s)
- Bharath Govindan
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Muhammad Ashraf Sabri
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Abdul Hai
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Mohammad Abu Haija
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Advanced Materials Chemistry Center (AMCC), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
42
|
Kim SJ, Lee Y, Choi EJ, Lee JM, Kim KH, Oh JW. The development progress of multi-array colourimetric sensors based on the M13 bacteriophage. NANO CONVERGENCE 2023; 10:1. [PMID: 36595116 PMCID: PMC9808696 DOI: 10.1186/s40580-022-00351-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Techniques for detecting chemicals dispersed at low concentrations in air continue to evolve. These techniques can be applied not only to manage the quality of agricultural products using a post-ripening process but also to establish a safety prevention system by detecting harmful gases and diagnosing diseases. Recently, techniques for rapid response to various chemicals and detection in complex and noisy environments have been developed using M13 bacteriophage-based sensors. In this review, M13 bacteriophage-based multi-array colourimetric sensors for the development of an electronic nose is discussed. The self-templating process was adapted to fabricate a colour band structure consisting of an M13 bacteriophage. To detect diverse target chemicals, the colour band was utilised with wild and genetically engineered M13 bacteriophages to enhance their sensing abilities. Multi-array colourimetric sensors were optimised for application in complex and noisy environments based on simulation and deep learning analysis. The development of a multi-array colourimetric sensor platform based on the M13 bacteriophage is likely to result in significant advances in the detection of various harmful gases and the diagnosis of various diseases based on exhaled gas in the future.
Collapse
Affiliation(s)
- Sung-Jo Kim
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, Republic of Korea
| | - Yujin Lee
- Department of Nano Fusion Technology, Pusan National University, Busan, Republic of Korea
| | - Eun Jung Choi
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, Republic of Korea
- Korea Nanobiotechnology Center, Pusan National University, Busan, Republic of Korea
| | - Jong-Min Lee
- School of Nano Convergence Technology, Hallym University, Chuncheon, Republic of Korea
- Korea and Nano Convergence Technology Center, Hallym University, Chuncheon, Republic of Korea
| | - Kwang Ho Kim
- School of Materials Science and Engineering, Pusan National University, Busan, Republic of Korea
- Global Frontier Research and Development Center for Hybrid Interface Materials, Pusan National University, Busan, Republic of Korea
| | - Jin-Woo Oh
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, Republic of Korea
- Department of Nano Fusion Technology, Pusan National University, Busan, Republic of Korea
- Korea Nanobiotechnology Center, Pusan National University, Busan, Republic of Korea
- Department of Nanoenergy Engineering and Research Center for Energy Convergence Technology, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
43
|
Koo KM, Kim CD, Ju FN, Kim H, Kim CH, Kim TH. Recent Advances in Electrochemical Biosensors for Monitoring Animal Cell Function and Viability. BIOSENSORS 2022; 12:bios12121162. [PMID: 36551129 PMCID: PMC9775431 DOI: 10.3390/bios12121162] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 05/28/2023]
Abstract
Redox reactions in live cells are generated by involving various redox biomolecules for maintaining cell viability and functions. These qualities have been exploited in the development of clinical monitoring, diagnostic approaches, and numerous types of biosensors. Particularly, electrochemical biosensor-based live-cell detection technologies, such as electric cell-substrate impedance (ECIS), field-effect transistors (FETs), and potentiometric-based biosensors, are used for the electrochemical-based sensing of extracellular changes, genetic alterations, and redox reactions. In addition to the electrochemical biosensors for live-cell detection, cancer and stem cells may be immobilized on an electrode surface and evaluated electrochemically. Various nanomaterials and cell-friendly ligands are used to enhance the sensitivity of electrochemical biosensors. Here, we discuss recent advances in the use of electrochemical sensors for determining cell viability and function, which are essential for the practical application of these sensors as tools for pharmaceutical analysis and toxicity testing. We believe that this review will motivate researchers to enhance their efforts devoted to accelerating the development of electrochemical biosensors for future applications in the pharmaceutical industry and stem cell therapeutics.
Collapse
|
44
|
Gao N, Zhao J, Zhu X, Xu J, Ling G, Zhang P. Functional two-dimensional MXenes as cancer theranostic agents. Acta Biomater 2022; 154:1-22. [PMID: 36243374 DOI: 10.1016/j.actbio.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 12/14/2022]
Abstract
Recently, MXenes, as a kind of two-dimensional (2D) layered materials with exceptional performance, have become the research hotspots owing to their unique structural, electronic, and chemical properties. They have potential applications in electrochemical storage, photocatalysis, and biosensors. Furthermore, they have certain characteristics such as large surface area, favorable biocompatibility, and ideal mechanical properties, which can expand their applications in biomedical fields, especially in cancer therapy. To date, several researchers have explored the applications of MXenes in tumor elimination, which exhibited other fantastic properties of those 2D MXenes, such as efficient in vivo photothermal ablation, low phototoxicity, high biocompatibility, etc. In this review, the structures, properties, modifications, and preparation methods are introduced respectively. More importantly, the multifunctional platforms for cancer therapy based on MXenes nanosheets (NSs) are reviewed in detail, including single-modality and combined-modality cancer therapy. Finally, the prospects and challenges of MXenes are prospected and discussed. STATEMENT OF SIGNIFICANCE: In this review, the structures, properties, modifications, and preparation methods of MXenes nanomaterials are introduced, respectively. In addition, the preparation conditions and morphological characterizations of some common MXenes for therapeutic platforms are also summarized. More importantly, the practical applications of MXenes-based nanosheets are reviewed in detail, including drug delivery, biosensing, bioimaging, and multifunctional tumor therapy platforms. Finally, the future prospects and challenges of MXenes are prospected and discussed.
Collapse
Affiliation(s)
- Nan Gao
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Jiuhong Zhao
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Xiaoguang Zhu
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Jiaqi Xu
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
45
|
Mazur O, Bałdysz S, Warowicka A, Nawrot R. Tap the sap - investigation of latex-bearing plants in the search of potential anticancer biopharmaceuticals. FRONTIERS IN PLANT SCIENCE 2022; 13:979678. [PMID: 36388598 PMCID: PMC9664067 DOI: 10.3389/fpls.2022.979678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Latex-bearing plants have been in the research spotlight for the past couple of decades. Since ancient times their extracts have been used in folk medicine to treat various illnesses. Currently they serve as promising candidates for cancer treatment. Up to date there have been several in vitro and in vivo studies related to the topic of cytotoxicity and anticancer activity of extracts from latex-bearing plants towards various cell types. The number of clinical studies still remains scarce, however, over the years the number is systematically increasing. To the best of our knowledge, the scientific community is still lacking in a recent review summarizing the research on the topic of cytotoxicity and anticancer activity of latex-bearing plant extracts. Therefore, the aim of this paper is to review the current knowledge on in vitro and in vivo studies, which focus on the cytotoxicity and anticancer activities of latex-bearing plants. The vast majority of the studies are in vitro, however, the interest in this topic has resulted in the substantial growth of the number of in vivo studies, leading to a promising number of plant species whose latex can potentially be tested in clinical trials. The paper is divided into sections, each of them focuses on specific latex-bearing plant family representatives and their potential anticancer activity, which in some instances is comparable to that induced by commonly used therapeutics currently available on the market. The cytotoxic effect of the plant's crude latex, its fractions or isolated compounds, is analyzed, along with a study of cell apoptosis, chromatin condensation, DNA damage, changes in gene regulation and morphology changes, which can be observed in cell post plant extract addition. The in vivo studies go beyond the molecular level by showing significant reduction of the tumor growth and volume in animal models. Additionally, we present data regarding plant-mediated biosynthesis of nanoparticles, which is regarded as a new branch in plant latex research. It is solely based on the green-synthesis approach, which presents an interesting alternative to chemical-based nanoparticle synthesis. We have analyzed the cytotoxic effect of these particles on cells. Data regarding the cytotoxicity of such particles raises their potential to be involved in the design of novel cancer therapies, which further underlines the significance of latex-bearing plants in biotechnology. Throughout the course of this review, we concluded that plant latex is a rich source of many compounds, which can be further investigated and applied in the design of anticancer pharmaceuticals. The molecules, to which this cytotoxic effect can be attributed, include alkaloids, flavonoids, tannins, terpenoids, proteases, nucleases and many novel compounds, which still remain to be characterized. They have been studied extensively in both in vitro and in vivo studies, which provide an excellent starting point for their rapid transfer to clinical studies in the near future. The comprehensive study of molecules from latex-bearing plants can result in finding a promising alternative to several pharmaceuticals on the market and help unravel the molecular mode of action of latex-based preparations.
Collapse
Affiliation(s)
- Oliwia Mazur
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Sophia Bałdysz
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Alicja Warowicka
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
- NanoBioMedical Centre, Adam Mickiewicz University, Poznań, Poland
| | - Robert Nawrot
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
46
|
Choi HW, Lim JH, Kang T, Chung BG. Antioxidant, Enzyme, and H 2O 2-Triggered Melanoma Targeted Mesoporous Organo-Silica Nanocomposites for Synergistic Cancer Therapy. Antioxidants (Basel) 2022; 11:2137. [PMID: 36358509 PMCID: PMC9686543 DOI: 10.3390/antiox11112137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 12/10/2023] Open
Abstract
The multi-stimuli responsive drug delivery system has recently attracted attention in cancer treatments, since it can reduce several side effects and enhance cancer therapeutic efficacy. Herein, we present the intracellular antioxidant (glutathione, GSH), enzyme (hyaluronidase, HAase), and hydrogen peroxide (H2O2) triggered mesoporous organo-silica (MOS) nanocomposites for multi-modal treatments via chemo-, photothermal, and photodynamic cancer therapies. A MOS nanoparticle was synthesized by two-types of precursors, tetraethyl orthosilicate (TEOS) and bis[3-(triethoxysilyl)propyl] tetrasulfide (BTES), providing large-sized mesopores and disulfide bonds cleavable by GSH. Additionally, we introduced a new β-cyclodextrin-hyaluronic acid (CDHA) gatekeeper system, enabling nanocomposites to form the specific interaction with the ferrocene (Fc) molecule, control the drug release by the HAase and H2O2 environment, as well as provide the targeting ability against the CD44-overexpressing melanoma (B16F10) cells. Indocyanine green (ICG) and doxorubicin (Dox) were loaded in the MOS-Fc-CDHA (ID@MOS-Fc-CDHA) nanocomposites, allowing for hyperthermia and cytotoxic reactive oxygen species (ROS) under an 808 nm NIR laser irradiation. Therefore, we demonstrated that the ID@MOS-Fc-CDHA nanocomposites were internalized to the B16F10 cells via the CD44 receptor-mediated endocytosis, showing the controlled drug release by GSH, HAase, and H2O2 to enhance the cancer therapeutic efficacy via the synergistic chemo-, photothermal, and photodynamic therapy effect.
Collapse
Affiliation(s)
- Hyung Woo Choi
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Korea
| | - Jae Hyun Lim
- Department of Biomedical Engineering, Sogang University, Seoul 04107, Korea
| | - Taewook Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
- Institute of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
| | - Bong Geun Chung
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Korea
- Institute of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
| |
Collapse
|
47
|
Kumawat M, Madhyastha H, Singh M, Jain D, Daima HK. Functional Silver Nanozymes Regulate Cell Inflammatory Cytokines Expression In Mouse Macrophages. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Wang Z, Yang L, Li Y, Song S, Qu J, He R, Ren S, Gong P. An activatable, carrier-free, triple-combination nanomedicine for ALK/EGFR-mutant non-small cell lung cancer highly permeable targeted chemotherapy. NEW J CHEM 2022. [DOI: 10.1039/d2nj03231g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly permeable targeted chemotherapy is highly desired for treating non-small cell lung cancer (NSCLC).
Collapse
Affiliation(s)
- Zhonglei Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, Handong, 273165, China
| | - Yake Li
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Shaohua Song
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Juan Qu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Rui He
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Shanshan Ren
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Peiwei Gong
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi’an, 710072, China
| |
Collapse
|