1
|
Lee FS, Cruz CJ, Allen KD, Wachs RA. Gait assessment in a female rat Sprague Dawley model of disc-associated low back pain. Connect Tissue Res 2024; 65:407-420. [PMID: 39287332 PMCID: PMC11533987 DOI: 10.1080/03008207.2024.2395287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/11/2024] [Accepted: 08/18/2024] [Indexed: 09/19/2024]
Abstract
PURPOSE Gait disturbances are common in human low back pain (LBP) patients, suggesting potential applicability to rodent LBP models. This study aims to assess the influence of disc-associated LBP on gait in female Sprague Dawley rats and explore the utility of the open-source Gait Analysis Instrumentation and Technology Optimized for Rodents (GAITOR) suite as a potential alternative tool for spontaneous pain assessment in a previously established LBP model. MATERIALS AND METHODS Disc degeneration was surgically induced using a one-level disc scrape injury method, and microcomputed tomography was used to assess disc volume loss. After disc injury, axial hypersensitivity was evaluated using the grip strength assay, and an open field test was used to detect spontaneous pain-like behavior. RESULTS Results demonstrated that injured animals exhibit a significant loss in disc volume and reduced grip strength. Open field test did not detect significant differences in distance traveled between sham and injured animals. Concurrently, animals with injured discs did not display significant gait abnormalities in stance time imbalance, temporal symmetry, spatial symmetry, step width, stride length, and duty factor compared to sham. However, comparisons with reference values of normal gait reported in prior literature reveal that injured animals exhibit mild deviations in forelimb and hindlimb stance time imbalance, forelimb temporal symmetry, and hindlimb spatial symmetry at some time points. CONCLUSIONS This study concludes that the disc injury may have very mild effects on gait in female rats within 9 weeks post-injury and recommends future in depth dynamic gait analysis and longer studies beyond 9 weeks to potentially detect gait.
Collapse
Affiliation(s)
- Fei San Lee
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, USA
| | - Carlos J Cruz
- J. Crayton Pruitt Family Department of Biomedical Engineering, Biomedical Sciences Building, University of Florida, Gainesville, FL, USA
| | - Kyle D Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, Biomedical Sciences Building, University of Florida, Gainesville, FL, USA
| | - Rebecca A Wachs
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, USA
| |
Collapse
|
2
|
Lou Y, Li Z, Zheng H, Yuan Z, Li W, Zhang J, Shen W, Gao Y, Ran N, Kong X, Feng S. New strategy to treat spinal cord injury: Nafamostat mesilate suppressed NLRP3-mediated pyroptosis during acute phase. Int Immunopharmacol 2024; 134:112190. [PMID: 38703569 DOI: 10.1016/j.intimp.2024.112190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Spinal cord injury (SCI) is a devastating condition for which effective clinical treatment is currently lacking. During the acute phase of SCI, myriad pathological changes give rise to subsequent secondary injury. The results of our previous studies indicated that treating rats post-SCI with nafamostat mesilate (NM) protected the blood-spinal cord barrier (BSCB) and exerted an antiapoptotic effect. However, the optimal dosage for mice with SCI and the underlying mechanisms potentially contributing to recovery, especially during the acute phase of SCI, have not been determined. In this study, we first determined the optimal dosage of NM for mice post-SCI (5 mg/kg/day). Subsequently, our RNA-seq findings revealed that NM has the potential to inhibit pyroptosis after SCI. These findings were further substantiated by subsequent Western blot (WB) and Immunofluorescence (IF) analyses in vivo. These results indicate that NM can alleviate NLRP3 (NOD-like receptor thermal protein domain associated protein 3)-mediated pyroptosis by modulating the NF-κB signaling pathway and reducing the protein expression levels of NIMA-related kinase 7 (NEK7) and cathepsin B (CTSB). In vitro experimental results supported our in vivo findings, revealing the effectiveness of NM in suppressing pyroptosis induced by adenosine triphosphate (ATP) and lipopolysaccharide (LPS) in BV2 cells. These results underscore the potential of NM to regulate NLRP3-mediated pyroptosis following SCI. Notably, compared with other synthetic compounds, NM exhibits greater versatility, suggesting that it is a promising clinical treatment option for SCI.
Collapse
Affiliation(s)
- Yongfu Lou
- Department of Orthopedics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China; Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Zonghao Li
- Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University, Shandong, China
| | - Han Zheng
- Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University, Shandong, China
| | - Zhongze Yuan
- Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University, Shandong, China
| | - Wenxiang Li
- Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University, Shandong, China
| | - Jianping Zhang
- Division of Surgery and Interventional Science, University College London, London HA7 4LP, United Kingdom
| | - Wenyuan Shen
- Department of Orthopedics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China; Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Yiming Gao
- Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University, Shandong, China
| | - Ning Ran
- Department of Orthopedics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China; Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China.
| | - Xiaohong Kong
- Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University, Shandong, China.
| | - Shiqing Feng
- Department of Orthopedics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China; Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University, Shandong, China.
| |
Collapse
|
3
|
Xu Z, Liu X, Pang Y, Chen Z, Jiang Y, Liu T, Zhang J, Xiong H, Gao X, Liu J, Liu S, Ning G, Feng S, Yao X, Guo S. Long-Acting Heterodimeric Paclitaxel-Idebenone Prodrug-Based Nanomedicine Promotes Functional Recovery after Spinal Cord Injury. NANO LETTERS 2024; 24:3548-3556. [PMID: 38457277 DOI: 10.1021/acs.nanolett.4c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
After spinal cord injury (SCI), successive systemic administration of microtubule-stabilizing agents has been shown to promote axon regeneration. However, this approach is limited by poor drug bioavailability, especially given the rapid restoration of the blood-spinal cord barrier. There is a pressing need for long-acting formulations of microtubule-stabilizing agents in treating SCI. Here, we conjugated the antioxidant idebenone with microtubule-stabilizing paclitaxel to create a heterodimeric paclitaxel-idebenone prodrug via an acid-activatable, self-immolative ketal linker and then fabricated it into chondroitin sulfate proteoglycan-binding nanomedicine, enabling drug retention within the spinal cord for at least 2 weeks and notable enhancement in hindlimb motor function and axon regeneration after a single intraspinal administration. Additional investigations uncovered that idebenone can suppress the activation of microglia and neuronal ferroptosis, thereby amplifying the therapeutic effect of paclitaxel. This prodrug-based nanomedicine simultaneously accomplishes neuroprotection and axon regeneration, offering a promising therapeutic strategy for SCI.
Collapse
Affiliation(s)
- Zunkai Xu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xinjie Liu
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Yilin Pang
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Zhixia Chen
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yaoyao Jiang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Tao Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jiawei Zhang
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Haoning Xiong
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Xiang Gao
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Jiao Liu
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing 100191, China
| | - Shen Liu
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Guangzhi Ning
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Shiqing Feng
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
- Orthopedic Research Center of Shandong University and Department of Orthopedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xue Yao
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
- Orthopedic Research Center of Shandong University and Department of Orthopedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Shutao Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
4
|
Molina LA, Milla-Cruz JJ, Ghavasieh Z, Kim LH, Cheng N, Whelan PJ. High-throughput gait acquisition system for freely moving mice. J Neurophysiol 2023; 130:1081-1091. [PMID: 37728487 DOI: 10.1152/jn.00133.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/30/2023] [Accepted: 09/15/2023] [Indexed: 09/21/2023] Open
Abstract
Normal and pathological locomotion can be discriminated by analyzing an animal's gait on a linear walkway. This step is labor intensive and introduces experimental bias due to the handling involved while placing and removing the animal between trials. We designed a system consisting of a runway embedded within a larger arena, which can be traversed ad libitum by unsupervised, freely moving mice, triggering the recording of short clips of locomotor activity. Multiple body parts were tracked using DeepLabCut and fed to an analysis pipeline (GaitGrapher) to extract gait metrics. We compared the results from unsupervised against the standard experimenter-supervised approach and found that gait parameters analyzed via the new approach were similar to a previously validated approach (Visual Gait Lab). These data show the utility of incorporating an unsupervised, automated, approach for collecting kinematic data for gait analysis.NEW & NOTEWORTHY The acquisition and analysis of walkway data is a time-consuming task. Here, we provide an unmonitored approach for collecting gait metrics that reduces the handling and stress of mice and saves time. A detailed pipeline is outlined that provides for the collection and analysis of data using an integrated suite of tools.
Collapse
Affiliation(s)
- Leonardo A Molina
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan J Milla-Cruz
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Zahra Ghavasieh
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Linda H Kim
- Department of Neuroscience, University of Calgary, Calgary, Alberta, Canada
| | - Ning Cheng
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Patrick J Whelan
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Cui Z, Guo Z, Wei L, Zou X, Zhu Z, Liu Y, Wang J, Chen L, Wang D, Ke Z. Altered pain sensitivity in 5×familial Alzheimer disease mice is associated with dendritic spine loss in anterior cingulate cortex pyramidal neurons. Pain 2022; 163:2138-2153. [PMID: 35384934 PMCID: PMC9578529 DOI: 10.1097/j.pain.0000000000002648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT Chronic pain is highly prevalent. Individuals with cognitive disorders such as Alzheimer disease are a susceptible population in which pain is frequently difficult to diagnosis. It is still unclear whether the pathological changes in patients with Alzheimer disease will affect pain processing. Here, we leverage animal behavior, neural activity recording, optogenetics, chemogenetics, and Alzheimer disease modeling to examine the contribution of the anterior cingulate cortex (ACC) neurons to pain response. The 5× familial Alzheimer disease mice show alleviated mechanical allodynia which can be regained by the genetic activation of ACC excitatory neurons. Furthermore, the lower peak neuronal excitation, delayed response initiation, as well as the dendritic spine reduction of ACC pyramidal neurons in 5×familial Alzheimer disease mice can be mimicked by Rac1 or actin polymerization inhibitor in wild-type (WT) mice. These findings indicate that abnormal of pain sensitivity in Alzheimer disease modeling mice is closely related to the variation of neuronal activity and dendritic spine loss in ACC pyramidal neurons, suggesting the crucial role of dendritic spine density in pain processing.
Collapse
Affiliation(s)
- Zhengyu Cui
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Internal Medicine of Traditional Chinese Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Zhongzhao Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Luyao Wei
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang Zou
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zilu Zhu
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuchen Liu
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Deheng Wang
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zunji Ke
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Ran N, Li W, Zhang R, Lin C, Zhang J, Wei Z, Li Z, Yuan Z, Wang M, Fan B, Shen W, Li X, Zhou H, Yao X, Kong X, Feng S. Autologous exosome facilitates load and target delivery of bioactive peptides to repair spinal cord injury. Bioact Mater 2022; 25:766-782. [PMID: 37056263 PMCID: PMC10086682 DOI: 10.1016/j.bioactmat.2022.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/03/2022] [Accepted: 07/03/2022] [Indexed: 11/30/2022] Open
Abstract
Spinal cord injury (SCI) causes motor, sensory and automatic impairment due to rarely axon regeneration. Developing effective treatment for SCI in the clinic is extremely challenging because of the restrictive axonal regenerative ability and disconnection of neural elements after injury, as well as the limited systemic drug delivery efficiency caused by blood spinal cord barrier. To develop an effective non-invasive treatment strategy for SCI in clinic, we generated an autologous plasma exosome (AP-EXO) based biological scaffold where AP-EXO was loaded with neuron targeting peptide (RVG) and growth-facilitating peptides (ILP and ISP). This scaffold can be targeted delivered to neurons in the injured area and elicit robust axon regrowth across the lesion core to the levels over 30-fold greater than naïve treatment, thus reestablish the intraspinal circuits and promote motor functional recovery after spinal cord injury in mice. More importantly, in ex vivo, human plasma exosomes (HP-EXO) loaded with combinatory peptides of RVG, ILP and ISP showed safety and no liver and kidney toxicity in the application to nude SCI mice. Combining the efficacy and safety, the AP-EXO-based personalized treatment confers functional recovery after SCI and showed immense promising in biomedical applications in treating SCI. It is helpful to expand the application of combinatory peptides and human plasma derived autologous exosomes in promoting regeneration and recovery upon SCI treatment.
Collapse
Affiliation(s)
- Ning Ran
- Orthopedic Research Center of Shandong University &Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wenxiang Li
- Orthopedic Research Center of Shandong University &Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Renjie Zhang
- Orthopedic Research Center of Shandong University &Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Caorui Lin
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Jianping Zhang
- Tianjin Key Laboratory of Spine and Spinal Cord, National Spinal Cord Injury International Cooperation Base, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhijian Wei
- Orthopedic Research Center of Shandong University &Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Tianjin Key Laboratory of Spine and Spinal Cord, National Spinal Cord Injury International Cooperation Base, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zonghao Li
- Orthopedic Research Center of Shandong University &Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhongze Yuan
- Orthopedic Research Center of Shandong University &Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Min Wang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Baoyou Fan
- Tianjin Key Laboratory of Spine and Spinal Cord, National Spinal Cord Injury International Cooperation Base, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenyuan Shen
- Tianjin Key Laboratory of Spine and Spinal Cord, National Spinal Cord Injury International Cooperation Base, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xueying Li
- Orthopedic Research Center of Shandong University &Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hengxing Zhou
- Orthopedic Research Center of Shandong University &Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Tianjin Key Laboratory of Spine and Spinal Cord, National Spinal Cord Injury International Cooperation Base, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xue Yao
- Orthopedic Research Center of Shandong University &Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Tianjin Key Laboratory of Spine and Spinal Cord, National Spinal Cord Injury International Cooperation Base, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaohong Kong
- Orthopedic Research Center of Shandong University &Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, China
- Corresponding author. Orthopedic Research Center of Shandong University &Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Shiqing Feng
- Orthopedic Research Center of Shandong University &Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Tianjin Key Laboratory of Spine and Spinal Cord, National Spinal Cord Injury International Cooperation Base, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- Corresponding author. Orthopedic Research Center of Shandong University &Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
7
|
Huang Y, Zhu L, Zhang W, Tang Q, Zhong Y. IL-10 alleviates radicular pain by inhibiting TNF-α/p65 dependent Nav1.7 up-regulation in DRG neurons of rats. Brain Res 2022; 1791:147997. [PMID: 35779581 DOI: 10.1016/j.brainres.2022.147997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/21/2022] [Accepted: 06/26/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Lumbar disc herniation (LDH) may induce radicular pain, the upregulation of voltage-gated sodium channels (VGSCs) in dorsal root ganglion (DRG) contributes to radicular pain by generating ectopic discharge of neurons, but the mechanism is unclear. Previously, we reported pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) up-regulated VGSCs in diabetic neuropathy. In this study, we explored the effect of anti-inflammatory cytokine interleukin-10 (IL-10) on radicular pain and the possible mechanisms. METHODS Rat model of LDH was induced by implanting autologous nucleus pulposus (NP). Mechanical and thermal pain thresholds were assessed by von Frey filaments and hotplate test respectively. IL-10 and TNF-α level in DRG and cerebrospinal fluid (CSF) were assessed by Enzyme-linked immunosorbent assay (ELISA). IL-10 was intrathecally delivered for 12 days. The expression of IL-10R1 and sodium channel Nav1.7 was displayed by immunofluorescence staining. The protein level of TNF-α and p-p65 was measured by western blotting. RESULTS NP implantation increased Nav1.7 expression in DRG neurons, decreased IL-10 level and increased TNF-α level in DRG and CSF. IL-10 significantly alleviated pain behaviors of rats with NP. IL-10R1 was co-localized with neurons but not with satellite cells in DRG. IL-10 decreased Nav1.7 and TNF-α/p-p65 expression in DRG of rats with NP. Co-administration of TNF-α with IL-10 counteracted the effect of IL-10 on pain behaviors, Nav1.7 and TNF-α/p-p65 expression of rats with NP. CONCLUSIONS The study revealed that IL-10 alleviated radicular pain by inhibiting TNF-α/p-p65 dependent Nav1.7 up-regulation in DRG neurons.
Collapse
Affiliation(s)
- Yangliang Huang
- Department of Spine Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Lirong Zhu
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Weili Zhang
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Qian Tang
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yi Zhong
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.
| |
Collapse
|
8
|
Chan AK, Ballatori A, Nyayapati P, Mummaneni NV, Coughlin D, Liebenberg E, Külling FA, Zhang N, Waldorff EI, Ryaby JT, Lotz JC. Pulsed Electromagnetic Fields Accelerate Sensorimotor Recovery Following Experimental Disc Herniation. Spine (Phila Pa 1976) 2021; 46:E222-E233. [PMID: 33475275 DOI: 10.1097/brs.0000000000003762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN An experimental animal study. OBJECTIVE The aim of this study was to investigate the effect of pulsed electromagnetic fields (PEMF) on recovery of sensorimotor function in a rodent model of disc herniation (DH). SUMMARY OF BACKGROUND DATA Radiculopathy associated with DH is mediated by proinflammatory cytokines. Although we have demonstrated the anti-inflammatory effects of PEMF on various tissues, we have not investigated the potential therapeutic effect of PEMF on radiculopathy resulting from DH. METHODS Nineteen rats were divided into three groups: positive control (PC; left L4 nerve ligation) (n = 6), DH alone (DH; exposure of left L4 dorsal root ganglion [DRG] to harvested nucleus pulposus and DRG displacement) (n = 6), and DH + PEMF (n = 7). Rodents from the DH + PEMF group were exposed to PEMF immediately postoperatively and for 3 hours/day until the end of the study. Sensory function was assessed via paw withdrawal thresholds to non-noxious stimuli preoperatively and 1 and 3 days postoperatively, and every 7 days thereafter until 7 weeks after surgery. Motor function was assessed via DigiGait treadmill analysis preoperatively and weekly starting 7 days following surgery until 7 weeks following surgery. RESULTS All groups demonstrated marked increases in the left hindlimb response threshold postoperatively. However, 1 week following surgery, there was a significant effect of condition on left hindlimb withdrawal thresholds (one-way analysis of variance: F = 3.82, df = 2, P = 0.044) where a more rapid recovery to baseline threshold was evident for DH + PEMF compared to PC and DH alone. All groups demonstrated gait disturbance postoperatively. However, DH + PEMF rodents were able to regain baseline gait speeds before DH and PC rodents. When comparing gait parameters, DH + PEMF showed consistently less impairment postoperatively suggesting that PEMF treatment was associated with less severe gait disturbance. CONCLUSION These data demonstrate that PEMF accelerates sensorimotor recovery in a rodent model of DH, suggesting that PEMF may be reasonable to evaluate for the clinical management of patients with herniation-associated radiculopathy.Level of Evidence: N/A.
Collapse
Affiliation(s)
- Andrew K Chan
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA
- Department of Orthopaedic Surgery University of California, San Francisco, San Francisco, CA
| | - Alexander Ballatori
- Department of Orthopaedic Surgery University of California, San Francisco, San Francisco, CA
| | - Priya Nyayapati
- Department of Orthopaedic Surgery University of California, San Francisco, San Francisco, CA
| | - Nikhil V Mummaneni
- Department of Orthopaedic Surgery University of California, San Francisco, San Francisco, CA
| | - Dezba Coughlin
- Department of Orthopaedic Surgery University of California, San Francisco, San Francisco, CA
| | - Ellen Liebenberg
- Department of Orthopaedic Surgery University of California, San Francisco, San Francisco, CA
| | - Fabrice A Külling
- Department of Orthopaedics and Traumatology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | | | | | | | - Jeffrey C Lotz
- Department of Orthopaedic Surgery University of California, San Francisco, San Francisco, CA
| |
Collapse
|
9
|
Laliberte AM, Karadimas SK, Vidal PM, Satkunendrarajah K, Fehlings MG. Mir21 modulates inflammation and sensorimotor deficits in cervical myelopathy: data from humans and animal models. Brain Commun 2021; 3:fcaa234. [PMID: 33604572 PMCID: PMC7878254 DOI: 10.1093/braincomms/fcaa234] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
Degenerative cervical myelopathy is a common condition resulting from chronic compression of the spinal cord by degenerating structures of the spine. Degenerative cervical myelopathy present a wide range of outcomes, and the biological factors underlying this variability are poorly understood. Previous studies have found elevated MIR21-5p in the sub-acute and chronic neuroinflammatory environment after spinal cord injury. As chronic spinal cord neuroinflammation is a major feature of degenerative cervical myelopathy, we hypothesized that MIR21-5p may be particularly relevant to disease pathobiology, and could serve as a potential biomarker. A prospective cohort study of 69 human degenerative cervical myelopathy patients (36 male:33 female) between the ages of 30 and 78 years was performed to identify the relationship between MIR21-5p expression, symptom severity and treatment outcomes. Results from this study identified a positive correlation between elevated plasma MIR21-5p expression, initial symptom severity and poor treatment outcomes. Subsequent validation of these relationships using a mouse model of degenerative cervical myelopathy identified a similar elevation of MIR21-5p expression at 6 and 12 weeks after onset, corresponding to moderate to severe neurological deficits. To further determine how MIR21-5p affects cervical myelopathy pathobiology, this mouse model was applied to a Mir21 knockout mouse line. Deletion of the Mir21 gene preserved locomotor function on rotarod and forced swim tests, but also resulted in increased nociception based on tail flick, Von Frey filament and electrophysiological testing. Critically, Mir21 knockout mice also had reduced spinal cord inflammation, demonstrated by the reduction of Iba1+ microglia by ∼50% relative to wild-type controls. In vitro experiments using primary microglial cultures confirmed that MIR21-5p expression was greatly increased after exposure to lipopolysaccharide (pro-inflammatory), Il4 (anti-inflammatory) and hypoxia. Mir21 knockout did not appear to alter the ability of microglia to respond to these stimuli, as expression of key pro- and anti-inflammatory response genes was not significantly altered. However, target prediction algorithms identified the IL6/STAT3 pathway as a potential downstream target of MIR21-5p, and subsequent in vitro testing found that expression of components of the IL6 receptor complex, Il6ra and Il6st, were significantly higher in Mir21 knockout microglia. In aggregate, these data show that Mir21 plays a role in the progression of motor deficits and neuroinflammatory modulation in degenerative cervical myelopathy. Given this role in neuroinflammation, and its association with poor patient outcomes, MIR21-5p represents a potential therapeutic target and a new marker for prognostication.
Collapse
Affiliation(s)
- Alex M Laliberte
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T2S8, Canada
| | - Spyridon K Karadimas
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T2S8, Canada
| | - Pia M Vidal
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T2S8, Canada
| | - Kajana Satkunendrarajah
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T2S8, Canada
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T2S8, Canada
| |
Collapse
|
10
|
Heinzel JC, Oberhauser V, Keibl C, Swiadek N, Längle G, Frick H, Kolbenschlag J, Prahm C, Grillari J, Hercher D. Evaluation of Functional Recovery in Rats After Median Nerve Resection and Autograft Repair Using Computerized Gait Analysis. Front Neurosci 2021; 14:593545. [PMID: 33551723 PMCID: PMC7859340 DOI: 10.3389/fnins.2020.593545] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Computerized gait analysis is a common evaluation method in rat models of hind limb nerve injuries, but its use remains unpublished in models of segmental nerve injury of the forelimb. It was the aim of this work to investigate if computerized gait analysis is a feasible evaluation method in a rat model of segmental median nerve injury and autograft repair. Ten male Lewis rats underwent 7-mm resection of the right median nerve with immediate autograft repair. The left median nerve was resected without repair and served as an internal control. Animals were assessed for 12 weeks after surgery via CatWalk (CW) gait analysis every 2 weeks. Evaluation of motor recovery by means of the grasping test was performed weekly while electrophysiological measurements were performed at the end of the observation period. CW data were correlated with grasping strength at each post-operative time point. CW data were also correlated with electrophysiology using linear regression analysis. Principal component analysis was performed to identify clusters of outcome metrics. Recovery of motor function was observable 4 weeks after surgery, but grasping strength was significantly reduced (p < 0.01) compared to baseline values until post-operative week 6. In terms of sensory recovery, the pain-related parameter Duty Cycle showed significant (p < 0.05) recovery starting from post-operative week 8. The Print Area of the right paw was significantly (p < 0.05) increased compared to the left side starting from post-operative week 10. Various parameters of gait correlated significantly (p < 0.05) with mean and maximum grasping strength. However, only Stand Index showed a significant correlation with compound muscle action potential (CMAP) amplitude (p < 0.05). With this work, we prove that computerized gait analysis is a valid and feasible method to evaluate functional recovery after autograft repair of the rat median nerve. We were able to identify parameters such as Print Area, Duty Cycle, and Stand Index, which allow assessment of nerve regeneration. The course of these parameters following nerve resection without repair was also assessed. Additionally, external paw rotation was identified as a valid parameter to evaluate motor reinnervation. In summary, computerized gait analysis is a valuable additional tool to study nerve regeneration in rats with median nerve injury.
Collapse
Affiliation(s)
- Johannes C Heinzel
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Viola Oberhauser
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Claudia Keibl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Nicole Swiadek
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Gregor Längle
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Helen Frick
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Jonas Kolbenschlag
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Cosima Prahm
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Department of Biotechnology, Institute of Molecular Biotechnology, BOKU-University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - David Hercher
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
11
|
Chambers NE, Coyle M, Sergio J, Lanza K, Saito C, Topping B, Clark SD, Bishop C. Effects of pedunculopontine nucleus cholinergic lesion on gait and dyskinesia in hemiparkinsonian rats. Eur J Neurosci 2021; 53:2835-2847. [PMID: 33426708 DOI: 10.1111/ejn.15106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 11/30/2022]
Abstract
Pedunculopontine nucleus (PPN) cholinergic neurons are implicated in freezing of gait in Parkinson's disease (PD) and motor stereotypy in normal animals, but the causal role of these neurons on specific gait parameters and treatment-induced dyskinesia remains speculative. Therefore, we examined whether selective cholinergic lesion of the rostral PPN affects PD motor and gait deficits, L-DOPA-induced dyskinesia and motor improvement, and DA-agonist-induced dyskinesia. Sprague-Dawley rats were assigned to one unilaterally lesioned group: Sham lesion, PPN cholinergic lesion with diphtheria urotensin II fusion toxin, medial forebrain bundle dopamine lesion with 6-hydroxydopamine, or dual acetylcholine and dopamine lesion. We used gait analysis and forepaw adjusting steps to examine PD gait and motor deficits. Forepaw adjusting steps were also used to assess motor improvement with L-DOPA treatment. The abnormal involuntary movements scale measured L-DOPA and dopamine D1- and D2-receptor agonist-induced dyskinesia. Lesions, verified via tyrosine hydroxylase and choline acetyltransferase immunohistochemistry reduced an average of 95% of nigral dopamine neurons and 80% of PPN cholinergic neurons, respectively. Rats receiving acetylcholine and dual lesion demonstrated enhanced freezing, and acetylcholine lesioned rats exhibited increased print area and stand index. Dopamine and dual lesion produced similar forepaw adjusting steps task on and off L-DOPA. Relative to DA lesioned rats, dual lesioned rats displayed reduced L-DOPA and DA agonist-induced dyskinesia at specific time points. Our results indicate that PPN cholinergic neurons affect gait parameters related to postural stability. Therefore, therapeutically targeting PPN cholinergic neurons could reduce intractable postural instability in PD without affecting motor benefits or side effects of L-DOPA treatment.
Collapse
Affiliation(s)
- Nicole E Chambers
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, Binghamton, NY, USA
| | - Michael Coyle
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, Binghamton, NY, USA
| | - Jordan Sergio
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, Binghamton, NY, USA
| | - Kathryn Lanza
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, Binghamton, NY, USA
| | - Carolyn Saito
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, Binghamton, NY, USA
| | - Brent Topping
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, Binghamton, NY, USA
| | - Stewart D Clark
- Department of Pharmacology and Toxicology, Jacobs School of Medicine & Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Christopher Bishop
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, Binghamton, NY, USA
| |
Collapse
|
12
|
Vieira WF, Malange KF, de Magalhães SF, dos Santos GG, de Oliveira ALR, da Cruz-Höfling MA, Parada CA. Gait analysis correlates mechanical hyperalgesia in a model of streptozotocin-induced diabetic neuropathy: A CatWalk dynamic motor function study. Neurosci Lett 2020; 736:135253. [DOI: 10.1016/j.neulet.2020.135253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/02/2020] [Accepted: 07/14/2020] [Indexed: 01/03/2023]
|
13
|
Li JH, Yang JL, Wei SQ, Li ZL, Collins AA, Zou M, Wei F, Cao DY. Contribution of central sensitization to stress-induced spreading hyperalgesia in rats with orofacial inflammation. Mol Brain 2020; 13:106. [PMID: 32723345 PMCID: PMC7385893 DOI: 10.1186/s13041-020-00645-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
Temporomandibular disorder (TMD) is commonly comorbid with fibromyalgia syndrome (FMS). The incidence of these pain conditions is prevalent in women and prone to mental stress. Chronic pain symptoms in patients with FMS and myofascial TMD (mTMD) are severe and debilitating. In the present study, we developed a new animal model to mimic the comorbidity of TMD and FMS. In ovariectomized female rats, repeated forced swim (FS) stress induced mechanical allodynia and thermal hyperalgesia in the hindpaws of the 17β-estradiol (E2) treated rats with orofacial inflammation. Subcutaneous injection of E2, injection of complete Freund’s adjuvant (CFA) into masseter muscles or FS alone did not induce somatic hyperalgesia. We also found that the somatic hyperalgesia was accompanied by upregulation of GluN1 receptor and serotonin (5-hydroxytryptamine, 5-HT)3A receptor expression in the dorsal horn of spinal cord at L4-L5 segments. Intrathecal injection of N-methyl-D-aspartic acid receptor (NMDAR) antagonist 2-amino-5-phosphonovaleric acid (APV) or 5-HT3 receptor antagonist Y-25130 blocked stress-induced wide-spreading hyperalgesia. These results suggest that NMDAR-dependent central sensitization in the spinal dorsal horn and 5-HT-dependent descending facilitation contribute to the development of wide-spreading hyperalgesia in this comorbid pain model.
Collapse
Affiliation(s)
- Jia-Heng Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, People's Republic of China.,Department of Orthodontics, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, People's Republic of China.,Department of Neural and Pain Sciences, University of Maryland School of Dentistry; the UM Center to Advance Chronic Pain Research, 650 West Baltimore Street, Baltimore, MD, 21201, USA
| | - Jia-Le Yang
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry; the UM Center to Advance Chronic Pain Research, 650 West Baltimore Street, Baltimore, MD, 21201, USA
| | - Si-Qi Wei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Zhuo-Lin Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Anna A Collins
- Department of Orthodontics, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Min Zou
- Department of Orthodontics, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Feng Wei
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry; the UM Center to Advance Chronic Pain Research, 650 West Baltimore Street, Baltimore, MD, 21201, USA.
| | - Dong-Yuan Cao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi, 710004, People's Republic of China.
| |
Collapse
|
14
|
Zhu J, Zhen G, An S, Wang X, Wan M, Li Y, Chen Z, Guan Y, Dong X, Hu Y, Cao X. Aberrant subchondral osteoblastic metabolism modifies Na V1.8 for osteoarthritis. eLife 2020; 9:57656. [PMID: 32441256 PMCID: PMC7308086 DOI: 10.7554/elife.57656] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/19/2020] [Indexed: 01/15/2023] Open
Abstract
Pain is the most prominent symptom of osteoarthritis (OA) progression. However, the relationship between pain and OA progression remains largely unknown. Here we report osteoblast secret prostaglandin E2 (PGE2) during aberrant subchondral bone remodeling induces pain and OA progression in mice. Specific deletion of the major PGE2 producing enzyme cyclooxygenase 2 (COX2) in osteoblasts or PGE2 receptor EP4 in peripheral nerve markedly ameliorates OA symptoms. Mechanistically, PGE2 sensitizes dorsal root ganglia (DRG) neurons by modifying the voltage-gated sodium channel NaV1.8, evidenced by that genetically or pharmacologically inhibiting NaV1.8 in DRG neurons can substantially attenuate OA. Moreover, drugs targeting aberrant subchondral bone remodeling also attenuates OA through rebalancing PGE2 production and NaV1.8 modification. Thus, aberrant subchondral remodeling induced NaV1.8 neuronal modification is an important player in OA and is a potential therapeutic target in multiple skeletal degenerative diseases. Many people will suffer from joint pain as they age, particularly in their knees. The most common cause of this pain is osteoarthritis, a disease that affects a tissue inside joints called cartilage. In a healthy knee, cartilage acts as a shock absorber. It cushions the ends of bones and enables them to move smoothly against one another. But in osteoarthritis, cartilage gradually wears away. As a result, the bones within a joint rub against each other whenever a person moves. This makes activities such as running or climbing stairs painful. But how does this pain arise? Previous work has implicated cells called osteoblasts. Osteoblasts are found in the area of the bone just below the cartilage. They produce new bone tissue throughout our lives, enabling our bones to regenerate and repair. Each time we move, forces acting on the knee joint activate osteoblasts. The cells respond by releasing a key molecule called PGE2, which is a factor in pain pathways. The joints of people with osteoarthritis produce too much PGE2. But exactly how this leads to increased pain sensation has been unclear. Zhu et al. now complete this story by working out how PGE2 triggers pain. Experiments in mice reveal that PGE2 irritates the nerve fibers that carry pain signals from the knee joint to the brain. It does this by activating a channel protein called Nav1.8, which allows sodium ions through the membranes of those nerve fibers. Zhu et al. show that, in a mouse model of osteoarthritis, Nav1.8 opens too widely in response to binding of PGE2, so the nerve cells become overactive and transmit a stronger pain sensation. This means that even small movements cause intense pain signals to travel from the joints to the brain. Building on their findings, Zhu et al. developed a drug that acts directly on bone to reduce PGE2 production, and show that this drug reduces pain in mice with osteoarthritis. At present, there are no treatments that reverse the damage that occurs during osteoarthritis, but further testing will determine whether this new drug could one day relieve joint pain in patients.
Collapse
Affiliation(s)
- Jianxi Zhu
- Departments of Orthopaedic Surgery and Biomedical Engineering and Institute of Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Orthopaedic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Gehua Zhen
- Departments of Orthopaedic Surgery and Biomedical Engineering and Institute of Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Senbo An
- Departments of Orthopaedic Surgery and Biomedical Engineering and Institute of Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Orthopaedic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Wang
- Departments of Orthopaedic Surgery and Biomedical Engineering and Institute of Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Mei Wan
- Departments of Orthopaedic Surgery and Biomedical Engineering and Institute of Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Yusheng Li
- Departments of Orthopaedic Surgery and Biomedical Engineering and Institute of Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Orthopaedic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhiyong Chen
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Xinzhong Dong
- Department of Neuroscience, Neurosurgery, and Dermatology, Center of Sensory Biology, The Johns Hopkins University School of Medicine, Howard Hughes Medical Institute, Baltimore, United States
| | - Yihe Hu
- Department of Orthopaedic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xu Cao
- Departments of Orthopaedic Surgery and Biomedical Engineering and Institute of Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
15
|
Li H, Meng H, Yang YY, Huang JX, Chen YJ, Yang F, Yan JZ. A double-network hydrogel for the dynamic compression of the lumbar nerve root. Neural Regen Res 2020; 15:1724-1731. [PMID: 32209779 PMCID: PMC7437591 DOI: 10.4103/1673-5374.276361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Current animal models of nerve root compression due to lumbar disc herniation only assess the mechanical compression of nerve roots and the inflammatory response. Moreover, the pressure applied in these models is static, meaning that the nerve root cannot be dynamically compressed. This is very different from the pathogenesis of lumbar disc herniation. In this study, a chitosan/polyacrylamide double-network hydrogel was prepared by a simple two-step method. The swelling ratio of the double-network hydrogel increased with prolonged time, reaching 140. The compressive strength and compressive modulus of the hydrogel reached 53.6 and 0.34 MPa, respectively. Scanning electron microscopy revealed the hydrogel’s crosslinked structure with many interconnecting pores. An MTT assay demonstrated that the number of viable cells in contact with the hydrogel extracts did not significantly change relative to the control surface. Thus, the hydrogel had good biocompatibility. Finally, the double-network hydrogel was used to compress the L4 nerve root of male sand rats to simulate lumbar disc herniation nerve root compression. The hydrogel remained in its original position after compression, and swelled with increasing time. Edema appeared around the nerve root and disappeared 3 weeks after operation. This chitosan/polyacrylamide double-network hydrogel has potential as a new implant material for animal models of lumbar nerve root compression. All animal experiments were approved by the Animal Ethics Committee of Neurosurgical Institute of Beijing, Capital Medical University, China (approval No. 201601006) on July 29, 2016.
Collapse
Affiliation(s)
- Hui Li
- Department of Orthopedic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hua Meng
- Department of Orthopedic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yan-Yu Yang
- Institute of Chemistry, Chinese Academy of Science, Beijing; Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jia-Xi Huang
- Department of Orthopedic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong-Jie Chen
- Department of Orthopedic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fei Yang
- Institute of Chemistry, Chinese Academy of Science, Beijing, China
| | - Jia-Zhi Yan
- Department of Orthopedic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Huang Y, Zhong Z, Yang D, Huang L, Hu F, Luo D, Yan L, Wang R, Zhang L, Hu X, He J. Effects of swimming on pain and inflammatory factors in rats with lumbar disc herniation. Exp Ther Med 2019; 18:2851-2858. [PMID: 31555376 PMCID: PMC6755409 DOI: 10.3892/etm.2019.7893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/08/2019] [Indexed: 12/25/2022] Open
Abstract
The aim of the present study was to identify the effect of swimming on nerve root pain in rats with lumbar disc herniation (LDH). A total of 72 male Sprague Dawley rats (215±15 g) were randomly divided into three groups (n=24/group): The sham operation, model and exercise intervention groups, with the latter undergoing 4 weeks of swimming training. On days 0, 7, 14 and 28 following surgery, the changes in the post-limb mechanical claw threshold, the phospholipase A2 (PLA2), interleukin (IL)-6 and tumor necrosis factor (TNF)-α mRNA expression levels, the secretory PLA2 (sPLA2) expression, the IL-6 and TNF-α content, the nuclear factor (NF)-κBp65 protein expression level in the nucleus pulposus, and the apoptotic rate of the nucleus pulposus cells were detected. The results demonstrated that, in the model group, the threshold of hind paw withdrawal was decreased, and that the sPLA2 expression, IL-6 and TNF-α content, PLA2, IL-6 and TNF-α mRNA and NF-κBp65 protein expression levels in the nucleus pulposus were increased. The apoptotic rate of the nucleus pulposus cells was increased from day 7 following surgery, as compared with the sham operation group. In the exercise intervention group, the hind paw withdrawal threshold increased and the TNF-α and IL-6 content, sPLA2 expression and PLA2, IL-6 and TNF-α mRNA and NF-κBp65 protein expression levels were decreased from day 14 following surgery, and the apoptotic nucleus pulposus cells were decreased from day 7 following surgery, as compared with the model group. Collectively, the present data suggest that swimming can significantly reduce nerve root pain and inhibit inflammatory reaction in LDH, which can have positive effects on the treatment of LDH.
Collapse
Affiliation(s)
- Yizhuan Huang
- Department of Spinal Specialty, The Affiliated Sports Hospital of Chengdu Sport Institute, Chengdu, Sichuan 610041, P.R. China
| | - Zhendong Zhong
- Institute of Laboratory Animals of Sichuan Academy of Medical Science, Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Dandan Yang
- Chengdu Lilai Biotechnology Co., Ltd., Chengdu, Sichuan 610000, P.R. China
| | - Lingyuan Huang
- Chengdu Lilai Biotechnology Co., Ltd., Chengdu, Sichuan 610000, P.R. China
| | - Fengjiao Hu
- Chengdu Lilai Biotechnology Co., Ltd., Chengdu, Sichuan 610000, P.R. China
| | - Dan Luo
- Chengdu Lilai Biotechnology Co., Ltd., Chengdu, Sichuan 610000, P.R. China
| | - Linxia Yan
- Chengdu Lilai Biotechnology Co., Ltd., Chengdu, Sichuan 610000, P.R. China
| | - Rong Wang
- Chengdu Lilai Biotechnology Co., Ltd., Chengdu, Sichuan 610000, P.R. China
| | - Lijie Zhang
- Chengdu Lilai Biotechnology Co., Ltd., Chengdu, Sichuan 610000, P.R. China
| | - Xuemei Hu
- Chengdu Lilai Biotechnology Co., Ltd., Chengdu, Sichuan 610000, P.R. China
| | - Jinli He
- Chengdu Lilai Biotechnology Co., Ltd., Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
17
|
Li SD, Sheng YH, Liu XM, Ye ZG. Ability of Tong Luo Jiu Nao Oral Solution to Improve Cognitive and Gait Deficits in a Rat Model of Focal Cerebral Ischemia. DIGITAL CHINESE MEDICINE 2018. [DOI: 10.1016/s2589-3777(19)30009-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|