1
|
Obonyo NG, Raman S, Suen JY, Peters KM, Phan MD, Passmore MR, Bouquet M, Wilson ES, Hyslop K, Palmieri C, White N, Sato K, Farah SM, Gandini L, Liu K, Fior G, Heinsar S, Ijuin S, Kyun Ro S, Abbate G, Ainola C, Sato N, Lundon B, Portatadino S, Rachakonda RH, Schneider B, Harley A, See Hoe LE, Schembri MA, Li Bassi G, Fraser JF. An ovine septic shock model of live bacterial infusion. Intensive Care Med Exp 2024; 12:94. [PMID: 39467921 PMCID: PMC11519284 DOI: 10.1186/s40635-024-00684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Escherichia coli is the most common cause of human bloodstream infections and bacterial sepsis/septic shock. However, translation of preclinical septic shock resuscitative therapies remains limited mainly due to low-fidelity of available models in mimicking clinical illness. To overcome the translational barrier, we sought to replicate sepsis complexity by creating an acutely critically-ill preclinical bacterial septic shock model undergoing active 48-h intensive care management. AIM To develop a clinically relevant large-animal (ovine) live-bacterial infusion model for septic shock. METHODS Septic shock was induced by intravenous infusion of the live antibiotic resistant extra-intestinal pathogenic E. coli sequence type 131 strain EC958 in eight anesthetised and mechanically ventilated sheep. A bacterial dose range of 2 × 105-2 × 109 cfu/mL was used for the dose optimisation phase (n = 4) and upon dose confirmation the model was developed (n = 5). Post-shock the animals underwent an early-vasopressor and volume-restriction resuscitation strategy with active haemodynamic management and monitoring over 48 h. Serial blood samples were collected for testing of pro-inflammatory (IL-6, IL-8, VEGFA) and anti-inflammatory (IL-10) cytokines and hyaluronan assay to assess endothelial integrity. Tissue samples were collected for histopathology and transmission electron microscopy. RESULTS The 2 × 107 cfu/mL bacterial dose led to a reproducible distributive shock within a pre-determined 12-h period. Five sheep were used to demonstrate consistency of the model. Bacterial infusion led to development of septic shock in all animals. The baseline mean arterial blood pressure reduced from a median of 91 mmHg (71, 102) to 50 mmHg (48, 57) (p = 0.004) and lactate levels increased from a median of 0.5 mM (0.3, 0.8) to 2.1 mM (2.0, 2.3) (p = 0.02) post-shock. The baseline median hyaluronan levels increased significantly from 25 ng/mL (18, 86) to 168 ng/mL (86, 569), p = 0.05 but not the median vasopressor dependency index which increased within 1 h of resuscitation from zero to 0.39 mmHg-1 (0.06, 5.13), p = 0.065, and. Over the 48 h, there was a significant decrease in the systemic vascular resistance index (F = 7.46, p = 0.01) and increase in the pro-inflammatory cytokines [IL-6 (F = 8.90, p = 0.02), IL-8 (F = 5.28, p = 0.03), and VEGFA (F = 6.47, p = 0.02)]. CONCLUSIONS This critically ill large-animal model was consistent in reproducing septic shock and will be applied in investigating advanced resuscitation and therapeutic interventions.
Collapse
Affiliation(s)
- Nchafatso G Obonyo
- Critical Care Research Group, The Prince Charles Hospital, 627 Rode Road, Level 3 Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia.
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia.
- KEMRI-Wellcome Trust Research Programme and Initiative to Develop African Research Leaders, Kilifi, Kenya.
- Wellcome Trust Centre for Global Health Research, Imperial College London, London, UK.
| | - Sainath Raman
- Critical Care Research Group, The Prince Charles Hospital, 627 Rode Road, Level 3 Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Children's Intensive Care Research Program, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Paediatric Intensive Care Unit, Queensland Children's Hospital, Brisbane, QLD, Australia
- Queensland Paediatric Sepsis Program, Children's Health and Youth Network, Children's Health Queensland, Brisbane, Queensland, Australia
| | - Jacky Y Suen
- Critical Care Research Group, The Prince Charles Hospital, 627 Rode Road, Level 3 Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
| | - Kate M Peters
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Minh-Duy Phan
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Margaret R Passmore
- Critical Care Research Group, The Prince Charles Hospital, 627 Rode Road, Level 3 Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
| | - Mahe Bouquet
- Critical Care Research Group, The Prince Charles Hospital, 627 Rode Road, Level 3 Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
| | - Emily S Wilson
- Critical Care Research Group, The Prince Charles Hospital, 627 Rode Road, Level 3 Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
| | - Kieran Hyslop
- Critical Care Research Group, The Prince Charles Hospital, 627 Rode Road, Level 3 Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
| | - Chiara Palmieri
- School of Veterinary Science, Faculty of Science, University of Queensland, Gatton, QLD, Australia
| | - Nicole White
- Critical Care Research Group, The Prince Charles Hospital, 627 Rode Road, Level 3 Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Australian Centre for Health Services Innovation and Centre for Healthcare Transformation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kei Sato
- Critical Care Research Group, The Prince Charles Hospital, 627 Rode Road, Level 3 Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
| | - Samia M Farah
- Critical Care Research Group, The Prince Charles Hospital, 627 Rode Road, Level 3 Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
| | - Lucia Gandini
- Critical Care Research Group, The Prince Charles Hospital, 627 Rode Road, Level 3 Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
| | - Keibun Liu
- Critical Care Research Group, The Prince Charles Hospital, 627 Rode Road, Level 3 Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
| | - Gabriele Fior
- Critical Care Research Group, The Prince Charles Hospital, 627 Rode Road, Level 3 Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
| | - Silver Heinsar
- Critical Care Research Group, The Prince Charles Hospital, 627 Rode Road, Level 3 Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
- Department of Intensive Care, North Estonia Medical Centre, Tallinn, Estonia
- Intensive Care Unit, St. Andrew's War Memorial Hospital, Brisbane, QLD, Australia
| | - Shinichi Ijuin
- Critical Care Research Group, The Prince Charles Hospital, 627 Rode Road, Level 3 Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
| | - Sun Kyun Ro
- Critical Care Research Group, The Prince Charles Hospital, 627 Rode Road, Level 3 Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
| | - Gabriella Abbate
- Critical Care Research Group, The Prince Charles Hospital, 627 Rode Road, Level 3 Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
| | - Carmen Ainola
- Critical Care Research Group, The Prince Charles Hospital, 627 Rode Road, Level 3 Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
| | - Noriko Sato
- Critical Care Research Group, The Prince Charles Hospital, 627 Rode Road, Level 3 Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
| | - Brooke Lundon
- Critical Care Research Group, The Prince Charles Hospital, 627 Rode Road, Level 3 Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
| | - Sofia Portatadino
- Critical Care Research Group, The Prince Charles Hospital, 627 Rode Road, Level 3 Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
| | - Reema H Rachakonda
- Critical Care Research Group, The Prince Charles Hospital, 627 Rode Road, Level 3 Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Bailey Schneider
- Critical Care Research Group, The Prince Charles Hospital, 627 Rode Road, Level 3 Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Amanda Harley
- Children's Intensive Care Research Program, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Queensland Paediatric Sepsis Program, Children's Health and Youth Network, Children's Health Queensland, Brisbane, Queensland, Australia
- Critical Care Nursing Management Team, Queensland Children's Hospital, Brisbane, QLD, Australia
- School of Nursing, Midwifery and Social Work, University of Queensland, Brisbane, QLD, Australia
| | - Louise E See Hoe
- Critical Care Research Group, The Prince Charles Hospital, 627 Rode Road, Level 3 Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
| | - Mark A Schembri
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Gianluigi Li Bassi
- Critical Care Research Group, The Prince Charles Hospital, 627 Rode Road, Level 3 Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
- Intensive Care Unit, St. Andrew's War Memorial Hospital, Brisbane, QLD, Australia
| | - John F Fraser
- Critical Care Research Group, The Prince Charles Hospital, 627 Rode Road, Level 3 Clinical Sciences Building, Chermside, Brisbane, QLD, 4032, Australia.
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia.
- Intensive Care Unit, St. Andrew's War Memorial Hospital, Brisbane, QLD, Australia.
| |
Collapse
|
2
|
Hanieh H, Alfwuaires MA, Abduh MS, Abdrabu A, Qinna NA, Alzahrani AM. Protective Effects of a Dihydrodiazepine Against Endotoxin Shock Through Suppression of TLR4/NF-κB/IRF3 Signaling Pathways. Inflammation 2024:10.1007/s10753-024-02160-w. [PMID: 39400777 DOI: 10.1007/s10753-024-02160-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
Sepsis and septic shock are life-threatening systemic inflammatory conditions and among the most frequent causes of morbidity and mortality globally. Preclinical evidence has identified a number of diazepine-based compounds with therapeutic potential in inflammatory diseases. However, the potential anti-inflammatory properties of diazepines in the overwhelming immune response during sepsis have been rarely examined. Thus, the current study aimed to identify a new diazepine compound with therapeutic potential in sepsis. Assessing the inflammatory response of macrophages to Lipopolysaccharides (LPS) in vitro identified 2-[7-(trifluoromethyl)-2,3-dihydro-1H-1,4-diazepin-5-yl]phenol (2-TDDP) as a potential anti-inflammatory agent. It reduced secretion of Interleukin-1β (IL-1β), IL-6, IL-12p70, IL-18, Tumor necrosis factor-α (TNF-α), Interferon-γ (IFN-γ), IFN-β, and increased the secretion of IL-10. In a mouse model of LPS-induced endotoxin shock, 2-TDDP reduced mortality and attenuated inflammation-induced tissue injury in the spleen, liver, kidney, and lung. This was accompanied by reduced serum levels of IL-1β, IL-6, IL-12p70, TNF-α, IFN-γ, IFN-β, and increased levels of IL-10. Importantly, 2-TDDP suppressed the Toll-like receptor 4 (TLR4)/Nuclear factor-κB (NF-κB) and TLR4/Interferon regulatory factor 3 (IRF3) signaling pathways through a reduction in the expression of TLR4, Myeloid differentiation primary response 88 (MyD88), P65, and TNF receptor-associated factor 3 (Traf3). Moreover, 2-TDDP suppressed the expression of CD86, Programmed death-ligand 1 (PD-L1) and C5a receptor (C5aR), but not Major histocompatibility complex II (MHCII). Analysis of splenic lymphocyte populations revealed a decrease in the number of CD4+, CD8+, and B cells. Collectively, these findings introduced the dihydrodiazepine 2-TDDP as a new anti-inflammatory agent with potent therapeutic potential in endotoxin shock, paving an avenue for future clinical application.
Collapse
Affiliation(s)
- Hamza Hanieh
- Basic Medical Sciences Department, Faculty of Medicine, Aqaba Medical Sciences University, Aqaba, 77110, Jordan.
| | - Manal A Alfwuaires
- Department of Biological Sciences, College of Science, King Faisal University, 31982, Hofuf, Saudi Arabia
| | - Maisa S Abduh
- Immune Responses in Different Diseases Research Group, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Alyaa Abdrabu
- Basic Medical Sciences Department, Faculty of Medicine, Aqaba Medical Sciences University, Aqaba, 77110, Jordan
| | - Nidal A Qinna
- University of Petra Pharmaceutical Center (UPPC), Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Abdullah M Alzahrani
- Department of Biological Sciences, College of Science, King Faisal University, 31982, Hofuf, Saudi Arabia
| |
Collapse
|
3
|
Phipps AJ. Bleeding disorder in a Holstein calf comparable to bovine neonatal pancytopenia. Aust Vet J 2024. [PMID: 39365055 DOI: 10.1111/avj.13374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024]
Abstract
The clinical findings associated with a bleeding disorder, suspected to be an immune mediated pathogenesis comparable to bovine neonatal pancytopenia (BNP), in a 14-day-old Holstein calf are summarised. The clinical examination, clinical laboratory findings, treatment, postmortem findings and referral laboratory diagnostics are reported and discussed in relation to existing knowledge of bleeding disorders in cattle. Veterinary attention was required for a twin 14-day-old Holstein calf that was lethargic, weak and had pale mucous membranes. On clinical examination the calf was tachycardic had pale mucous membranes with petechial and ecchymotic haemorrhages on the ventral surface of the tongue, petechial haemorrhages on the vulval membranes and scleral haemorrhage. The calf received 1.1 L of whole blood from a donor cow to which the calf initially responded. The calf's health appeared to wax and wane over the following 19 days and despite further intervention, the calf died. A postmortem was carried out and samples were submitted to the state laboratory for cytological, histopathological, parasitological and serological examination. Although no exact aetiology was found, there is evidence to suggest that the bleeding disorder was immune-mediated, with a pathogenesis comparable to BNP. To the author's knowledge, this case report is the first peer-reviewed manuscript to describe the clinical presentation similar to BNP in an Australian Holstein calf.
Collapse
Affiliation(s)
- A J Phipps
- Rochester Veterinary Practice, Rochester, Victoria, Australia
| |
Collapse
|
4
|
Shankar-Hari M, Calandra T, Soares MP, Bauer M, Wiersinga WJ, Prescott HC, Knight JC, Baillie KJ, Bos LDJ, Derde LPG, Finfer S, Hotchkiss RS, Marshall J, Openshaw PJM, Seymour CW, Venet F, Vincent JL, Le Tourneau C, Maitland-van der Zee AH, McInnes IB, van der Poll T. Reframing sepsis immunobiology for translation: towards informative subtyping and targeted immunomodulatory therapies. THE LANCET. RESPIRATORY MEDICINE 2024; 12:323-336. [PMID: 38408467 PMCID: PMC11025021 DOI: 10.1016/s2213-2600(23)00468-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 02/28/2024]
Abstract
Sepsis is a common and deadly condition. Within the current model of sepsis immunobiology, the framing of dysregulated host immune responses into proinflammatory and immunosuppressive responses for the testing of novel treatments has not resulted in successful immunomodulatory therapies. Thus, the recent focus has been to parse observable heterogeneity into subtypes of sepsis to enable personalised immunomodulation. In this Personal View, we highlight that many fundamental immunological concepts such as resistance, disease tolerance, resilience, resolution, and repair are not incorporated into the current sepsis immunobiology model. The focus for addressing heterogeneity in sepsis should be broadened beyond subtyping to encompass the identification of deterministic molecular networks or dominant mechanisms. We explicitly reframe the dysregulated host immune responses in sepsis as altered homoeostasis with pathological disruption of immune-driven resistance, disease tolerance, resilience, and resolution mechanisms. Our proposal highlights opportunities to identify novel treatment targets and could enable successful immunomodulation in the future.
Collapse
Affiliation(s)
- Manu Shankar-Hari
- Institute for Regeneration and Repair, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK.
| | - Thierry Calandra
- Service of Immunology and Allergy, Center of Human Immunology Lausanne, Department of Medicine and Department of Laboratory Medicine and Pathology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | | | - Michael Bauer
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - W Joost Wiersinga
- Center for Experimental and Molecular Medicine and Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Hallie C Prescott
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Julian C Knight
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Kenneth J Baillie
- Institute for Regeneration and Repair, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Lieuwe D J Bos
- Department of Intensive Care, Academic Medical Center, Amsterdam, Netherlands
| | - Lennie P G Derde
- Intensive Care Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Simon Finfer
- Critical Care Division, The George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia
| | - Richard S Hotchkiss
- Department of Anesthesiology and Critical Care Medicine, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - John Marshall
- Interdepartmental Division of Critical Care, University of Toronto, Toronto, ON, Canada
| | | | - Christopher W Seymour
- Department of Critical Care Medicine, The Clinical Research, Investigation, and Systems Modeling of Acute illness (CRISMA) Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fabienne Venet
- Immunology Laboratory, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | | | - Christophe Le Tourneau
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris-Saclay University, Paris, France
| | - Anke H Maitland-van der Zee
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Iain B McInnes
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine and Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
5
|
Mainali R, Buechler N, Otero C, Edwards L, Key CC, Furdui C, Quinn MA. Itaconate stabilizes CPT1a to enhance lipid utilization during inflammation. eLife 2024; 12:RP92420. [PMID: 38305778 PMCID: PMC10945551 DOI: 10.7554/elife.92420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
One primary metabolic manifestation of inflammation is the diversion of cis-aconitate within the tricarboxylic acid (TCA) cycle to synthesize the immunometabolite itaconate. Itaconate is well established to possess immunomodulatory and metabolic effects within myeloid cells and lymphocytes, however, its effects in other organ systems during sepsis remain less clear. Utilizing Acod1 knockout mice that are deficient in synthesizing itaconate, we aimed to understand the metabolic role of itaconate in the liver and systemically during sepsis. We find itaconate aids in lipid metabolism during sepsis. Specifically, Acod1 KO mice develop a heightened level of hepatic steatosis when induced with polymicrobial sepsis. Proteomics analysis reveals enhanced expression of enzymes involved in fatty acid oxidation in following 4-octyl itaconate (4-OI) treatment in vitro. Downstream analysis reveals itaconate stabilizes the expression of the mitochondrial fatty acid uptake enzyme CPT1a, mediated by its hypoubiquitination. Chemoproteomic analysis revealed itaconate interacts with proteins involved in protein ubiquitination as a potential mechanism underlying its stabilizing effect on CPT1a. From a systemic perspective, we find itaconate deficiency triggers a hypothermic response following endotoxin stimulation, potentially mediated by brown adipose tissue (BAT) dysfunction. Finally, by use of metabolic cage studies, we demonstrate Acod1 KO mice rely more heavily on carbohydrates versus fatty acid sources for systemic fuel utilization in response to endotoxin treatment. Our data reveal a novel metabolic role of itaconate in modulating fatty acid oxidation during polymicrobial sepsis.
Collapse
Affiliation(s)
- Rabina Mainali
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston Salem, United States
| | - Nancy Buechler
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston Salem, United States
| | - Cristian Otero
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston Salem, United States
| | - Laken Edwards
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston Salem, United States
| | - Chia-Chi Key
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston Salem, United States
| | - Cristina Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston Salem, United States
| | - Matthew A Quinn
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston Salem, United States
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston Salem, United States
| |
Collapse
|
6
|
Çevik D, Gümral N, Aslankoç R, Özmen Ö, Yalçın A, Kavrık O. Protective effect of pregabalin on renal and renal endothelial damage in sepsis induced by lipopolysaccharide. Immunopharmacol Immunotoxicol 2024; 46:55-66. [PMID: 37606510 DOI: 10.1080/08923973.2023.2250911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
OBJECTIVE We investigated the protective effects of pregabalin (PRG) on kidney and renal endothelial damage in sepsis induced by Lipopolysaccharide (LPS). MATERIALS AND METHODS Rats were randomly divided into three groups as control, LPS and LPS+PRG. Saline solution was administered 30 mg/kg orally and 5 mg/kg intraperitoneally (i.p.) to the control group. LPS was applied as 5 mg/kg, i.p. to the LPS group. In the LPS+PRG group, PRG at 30 mg/kg orally and one hour before LPS administration, one hour later 5 mg/kg i.p. LPS was applied. Rats were sacrificed 6 hours after LPS administration. RESULTS White Blood Cell (WBC), granulocyte, Blood Urea Nitrogen (BUN), creatinine, uric asid, Total Oxidant Status (TOS) and Oxidative Stress Index (OSI) significantly increased (p<0.05); platelets (PLT), activated partial thromboplastin time (aPTT) and Total Antioxidant Status (TAS) significantly decreased in the LPS group compared to the control group (p<0.05). In the LPS+PRG group WBC, granulocyte, BUN, creatinine, uric asid, TOS and OSI significantly decreased (p<0.05); PLT, aPTT and TAS significantly increased compared to the LPS group(p<0.05). Histopathological examinations showed that kidney and renal endothelial damage in the LPS group decreased in the LPS+PRG group. Immunohistochemically IL1-β, IL-6, IL-10, TNF-α expressions in kidney tissue and Toll-Like Receptors-4 (TLR-4) and NF-κB expressions in the renal endothelial tissue significantly increased in the LPS group compared to the control group and significantly decreased in the LPS+PRG group compared to the LPS group (p<0.001). CONCLUSIONS Sepsis causes kidney and renal endothelial damage and PRG reduces this damage. Therefore PRG can be used in prophylactic treatment in sepsis, supported by more studies.
Collapse
Affiliation(s)
- Dilek Çevik
- Department of Physiology, Suleyman Demirel University, Isparta, Turkey
| | - Nurhan Gümral
- Department of Physiology, Suleyman Demirel University, Isparta, Turkey
| | - Rahime Aslankoç
- Department of Physiology, Suleyman Demirel University, Isparta, Turkey
| | - Özlem Özmen
- Department of Pathology, Burdur Mehmet Akif Ersoy University Faculty of Veterinary, Burdur, Turkey
| | - Arzu Yalçın
- Department of Physiology, Suleyman Demirel University, Isparta, Turkey
| | - Oğuzhan Kavrık
- Department of Physiology, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
7
|
Porschen C, Strauss C, Meersch M, Zarbock A. Personalized acute kidney injury treatment. Curr Opin Crit Care 2023; 29:551-558. [PMID: 37861191 DOI: 10.1097/mcc.0000000000001089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
PURPOSE OF REVIEW Acute kidney injury (AKI) is a complex syndrome that might be induced by different causes and is associated with an increased morbidity and mortality. Therefore, it is a very heterogeneous syndrome and establishing a "one size fits all" treatment approach might not work. This review aims to examine the potential of personalized treatment strategies for AKI. RECENT FINDINGS The traditional diagnosis of AKI is based on changes of serum creatinine and urine output, but these two functional biomarkers have several limitations. Recent research identified different AKI phenotypes based on clinical features, biomarkers, and pathophysiological pathways. Biomarkers, such as Cystatin C, NGAL, TIMP2∗IGFBP7, CCL14, and DKK-3, have shown promise in predicting AKI development, renal recovery, and prognosis. Biomarker-guided interventions, such as the implementation of the KDIGO bundle, have demonstrated an improvement in renal outcomes in specific patient groups. SUMMARY A personalized approach to AKI treatment as well as research is becoming increasingly important as it allows the identification of distinct AKI phenotypes and the potential for targeted interventions. By utilizing biomarkers and clinical features, physicians might be able to stratify patients into subphenotypes, enabling more individualized treatment strategies. This review highlights the potential of personalized AKI treatment, emphasizing the need for further research and large-scale clinical trials to validate the efficacy of these approaches.
Collapse
Affiliation(s)
- Christian Porschen
- Klinik für Anästhesiologie, operative Intensivmedizin und Schmerztherapie, Universitätsklinikum Münster, Münster, Germany
| | - Christian Strauss
- Klinik für Anästhesiologie, operative Intensivmedizin und Schmerztherapie, Universitätsklinikum Münster, Münster, Germany
| | - Melanie Meersch
- Klinik für Anästhesiologie, operative Intensivmedizin und Schmerztherapie, Universitätsklinikum Münster, Münster, Germany
| | - Alexander Zarbock
- Klinik für Anästhesiologie, operative Intensivmedizin und Schmerztherapie, Universitätsklinikum Münster, Münster, Germany
- Outcomes Research Consortium, Cleveland, Ohio, USA
| |
Collapse
|
8
|
Cleuren A, Molema G. Organotypic heterogeneity in microvascular endothelial cell responses in sepsis-a molecular treasure trove and pharmacological Gordian knot. Front Med (Lausanne) 2023; 10:1252021. [PMID: 38020105 PMCID: PMC10665520 DOI: 10.3389/fmed.2023.1252021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
In the last decades, it has become evident that endothelial cells (ECs) in the microvasculature play an important role in the pathophysiology of sepsis-associated multiple organ dysfunction syndrome (MODS). Studies on how ECs orchestrate leukocyte recruitment, control microvascular integrity and permeability, and regulate the haemostatic balance have provided a wealth of knowledge and potential molecular targets that could be considered for pharmacological intervention in sepsis. Yet, this information has not been translated into effective treatments. As MODS affects specific vascular beds, (organotypic) endothelial heterogeneity may be an important contributing factor to this lack of success. On the other hand, given the involvement of ECs in sepsis, this heterogeneity could also be leveraged for therapeutic gain to target specific sites of the vasculature given its full accessibility to drugs. In this review, we describe current knowledge that defines heterogeneity of organ-specific microvascular ECs at the molecular level and elaborate on studies that have reported EC responses across organ systems in sepsis patients and animal models of sepsis. We discuss hypothesis-driven, single-molecule studies that have formed the basis of our understanding of endothelial cell engagement in sepsis pathophysiology, and include recent studies employing high-throughput technologies. The latter deliver comprehensive data sets to describe molecular signatures for organotypic ECs that could lead to new hypotheses and form the foundation for rational pharmacological intervention and biomarker panel development. Particularly results from single cell RNA sequencing and spatial transcriptomics studies are eagerly awaited as they are expected to unveil the full spatiotemporal signature of EC responses to sepsis. With increasing awareness of the existence of distinct sepsis subphenotypes, and the need to develop new drug regimen and companion diagnostics, a better understanding of the molecular pathways exploited by ECs in sepsis pathophysiology will be a cornerstone to halt the detrimental processes that lead to MODS.
Collapse
Affiliation(s)
- Audrey Cleuren
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Grietje Molema
- Department Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
9
|
Kim MJ, Kim YS, Kim SR, Lee DW, Lee SB, Kim IY. β-hydroxybutyrate ameliorates sepsis-induced acute kidney injury. Mol Biol Rep 2023; 50:8915-8923. [PMID: 37704932 DOI: 10.1007/s11033-023-08713-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/26/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Sepsis is a major cause of acute kidney injury (AKI). Recent studies have demonstrated that β-hydroxybutyrate (β-HB) alleviates renal ischemia-reperfusion injury and cisplatin-induced renal injury in murine models. This study aimed to investigate whether β-HB ameliorates sepsis-induced AKI (SIAKI) in a lipopolysaccharide (LPS)-induced mouse sepsis model. METHODS AND RESULTS SIAKI was induced by intraperitoneally injecting LPS to C57BL/6 male mice. β-HB was administrated intraperitoneally before LPS injection. The mice were divided into sham, β-HB, LPS, and β-HB + LPS groups. The histological damage score and serum creatinine level were significantly increased in the LPS group mice, but attenuated in the β-HB + LPS group mice. The expression of phosphorylated nuclear factor-κB tumor necrosis factor-α/interleukin-6 and the number of F4/80-positive macrophages in the β-HB + LPS group mice were lower than those in the LPS group mice. The number of TdT-mediated dUTP nick-end labeling (TUNEL)-positive tubular cells, cleaved caspase-3 expression, and Bax/Bcl-2 ratio in the β-HB + LPS group mice were lower than those in the LPS group mice. CONCLUSION β-HB pre-treatment ameliorates SIAKI by reducing tubular apoptosis and inflammatory responses. Thus, β-HB pre-treatment could be a potential prophylactic strategy against SIAKI.
Collapse
Affiliation(s)
- Min Jeong Kim
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Young Suk Kim
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Seo Rin Kim
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Dong Won Lee
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Soo Bong Lee
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Il Young Kim
- Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea.
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea.
| |
Collapse
|
10
|
Singh D, Tiwari RC, Kumar A, Bhute AR, Meshram RP, Mittal B. The Role of Pathological Examination of the Liver in Medicolegal Autopsy: A Tertiary Care Center Study From North India. Cureus 2023; 15:e48131. [PMID: 38046739 PMCID: PMC10692315 DOI: 10.7759/cureus.48131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND The pathological examination of a medicolegal autopsy is a great learning opportunity for a pathologist as well as for a forensic expert, where the cause of death remains unknown. Liver disease epidemiology differs from one geographic area to another. MATERIAL AND METHODS This was a prospective observational study with 100 medicolegal autopsy cases over a one-year period conducted in the Department of Forensic Medicine and Toxicology (FMT) and Pathology. Representative tissue from the liver was collected in 10% neutral buffered formalin and sent for histopathological examination. RESULTS The mean age of the cases was 41.98 ± 15.39 years, and ages ranged from 20 to 90 years with male preponderance. The most common histopathology and gross findings noted were mild to moderate chronic hepatitis (CH) (54%) and fatty change (36%), respectively. There was a significant association (p ≤ 0.05) between histopathology and gross findings, cause, and manner of death. CONCLUSION Gross and histopathological examination of the liver in a medicolegal autopsy has a significant role in ascertaining the cause and manner of death.
Collapse
Affiliation(s)
- Dezy Singh
- Department of Toxicology and Medical Jurisprudence (Agad Tantra Evam Vidhi Vaidyak), Uttarakhand Ayurved University (UAU) Rishikul Campus, Haridwar, IND
| | - Ramesh C Tiwari
- Department of Toxicology and Medical Jurisprudence (Agad Tantra Evam Vidhi Vaidyak), Uttarakhand Ayurved University (UAU) Rishikul Campus, Haridwar, IND
| | - Arvind Kumar
- Department of Pathology and Laboratory Medicine, All India Institute of Medical Sciences, Rishikesh, IND
| | - Ashish R Bhute
- Department of Forensic Medicine and Toxicology (FMT), All India Institute of Medical Sciences, Rishikesh, IND
| | - Ravi P Meshram
- Department of Forensic Medicine and Toxicology (FMT), All India Institute of Medical Sciences, Rishikesh, IND
| | - Bhawana Mittal
- Department of Toxicology and Medical Jurisprudence (Agad Tantra Evam Vidhi Vaidyak), Uttarakhand Ayurved University (UAU) Rishikul Campus, Haridwar, IND
| |
Collapse
|
11
|
Liu A, Zhang Y, Xun S, Zhou G, Hu J, Liu Y. Targeting of cold-inducible RNA-binding protein alleviates sepsis via alleviating inflammation, apoptosis and oxidative stress in heart. Int Immunopharmacol 2023; 122:110499. [PMID: 37392569 DOI: 10.1016/j.intimp.2023.110499] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/05/2023] [Accepted: 06/11/2023] [Indexed: 07/03/2023]
Abstract
A systemic inflammatory response is observed in patients undergoing shock and sepsis. This study aimed to explore the effects of cold-inducible RNA-binding protein (CIRP) on sepsis-associated cardiac dysfunction and the underlying mechanism. In vivo and in vitro lipopolysaccharide (LPS)-induced sepsis models were established in mice and neonatal rat cardiomyocytes (NRCMs), respectively. CRIP expressions were increased in the mouse heart and NRCMs treated with LPS. CIRP knockdown alleviated LPS-induced decreases of left ventricular ejection fraction and fractional shortening. CIRP downregulation attenuated the increases of inflammatory factors in the LPS-induced septic mouse heart, and NRCMs. The enhanced oxidative stress in the LPS-induced septic mouse heart and NRCMs was suppressed after CIRP knockdown. By contrast, CIRP overexpression yielded the opposite results. Our current study indicates that the knockdown of CIRP protects against sepsis-induced cardiac dysfunction through alleviating inflammation, apoptosis and oxidative stress of cardiomyocytes.
Collapse
Affiliation(s)
- Aijun Liu
- Department of Cardiology, Binhai People's Hospital, Yancheng 224500, China.
| | - Yonglin Zhang
- Department of Cardiology, Binhai People's Hospital, Yancheng 224500, China
| | - Shucan Xun
- Department of Cardiology, Binhai People's Hospital, Yancheng 224500, China
| | - Guangzhi Zhou
- Department of Cardiology, Binhai People's Hospital, Yancheng 224500, China
| | - Jing Hu
- Department of Pharmacy, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yun Liu
- Department of Intensive Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
12
|
Fiel MI, Schiano TD. Systemic Disease and the Liver Part 2: Pregnancy-Related Liver Injury, Sepsis/Critical Illness, Hypoxia, Psoriasis, Scleroderma/Sjogren's Syndrome, Sarcoidosis, Common Variable Immune Deficiency, Cystic Fibrosis, Inflammatory Bowel Disease, and Hematologic Disorders. Surg Pathol Clin 2023; 16:485-498. [PMID: 37536884 DOI: 10.1016/j.path.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The liver is involved in many multisystem diseases and commonly may manifest with abnormal liver chemistry tests. The liver test perturbations may be multifactorial in nature, however, as patients are receiving many different medications and can also have intrinsic liver disease that may be exacerbated by the systemic disorder. Some disorders have typical histologic findings that can be diagnosed on liver biopsy, whereas others will show a more nonspecific histology. Clinicians should be aware of these conditions so as to consider the performance of a liver biopsy at the most opportune time and setting to help establish the diagnosis of acute or chronic liver disease.
Collapse
Affiliation(s)
- Maria Isabel Fiel
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA.
| | - Thomas D Schiano
- Division of Liver Diseases, Recanati-Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place-Box 1104, New York, NY 10029, USA
| |
Collapse
|
13
|
Miao R, Huang J. MCC950 improves lipopolysaccharide‑induced systemic inflammation in mice by relieving pyroptosis in blood neutrophils. Exp Ther Med 2023; 26:417. [PMID: 37602308 PMCID: PMC10433408 DOI: 10.3892/etm.2023.12117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/30/2023] [Indexed: 08/22/2023] Open
Abstract
Sepsis is an infection-induced systemic inflammatory response syndrome accompanied by multiple organ injury and failure. MCC950, an inhibitor of NLR family pyrin domain containing 3 (NLRP3), can alleviate the inflammatory response and relieve inflammation-induced injury. The aim of the present study was to explore the efficacy of MCC950 in lipopolysaccharide (LPS)-induced inflammation and elucidate the underlying mechanisms. Based on a prior study, C57BL/6 mice were divided into three groups: Control, LPS, and LPS + MCC950. The mice were administered 10 mg/kg LPS to induce sepsis and 10 mg/kg MCC950 to treat sepsis 6 h before and after LPS injection. Histopathological imaging revealed organ morphology and damage during inflammation, and MCC950 alleviated organ damage and dysfunction. MCC950 prevented LPS-induced inflammatory responses by reducing inflammatory cytokine levels in the blood. To explore the mechanism by which MCC950 functions, blood neutrophils were isolated and a series of tests were performed. As revealed by measuring reactive oxygen species levels and Annexin V/PI staining of neutrophils, MCC950 reduced oxidative stress and programmed death induced by LPS. Western blotting was used to assess the protein levels of pyroptosis-related markers, including GSDMD, NLRP3, and caspase-1, in neutrophils to further explore the form of death. MCC950 reduced LPS-induced pyroptosis in neutrophils. The results of the survival analysis revealed that MCC950 increased the survival rates of mice within 72 h of LPS injection. MCC950 may be an effective treatment for sepsis that targets neutrophil pyroptosis.
Collapse
Affiliation(s)
- Runfeng Miao
- Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Department of Emergency Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Jian Huang
- Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
14
|
Chao Y, Huang W, Xu Z, Li P, Gu S. Effect of RUNX1/FOXP3 axis on apoptosis of T and B lymphocytes and immunosuppression in sepsis. Open Med (Wars) 2023; 18:20230728. [PMID: 37636994 PMCID: PMC10448307 DOI: 10.1515/med-2023-0728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 04/20/2023] [Accepted: 05/08/2023] [Indexed: 08/29/2023] Open
Abstract
Lymphocyte apoptosis is a latent factor for immunosuppression in sepsis. Forkhead box protein P3 (FOXP3) can interact with RUNX family transcription factor 1 (RUNX1) in regulatory T cells. Our research was to probe whether RUNX1/FOXP3 axis affects immunosuppression in the process of sepsis by modulating T and B lymphocyte apoptosis. We constructed sepsis model in mice and mouse CD4+ T and CD19+ B lymphocytes. RUNX1 and FOXP3 expressions and apoptosis in cells were assessed by western blot, quantitative real-time PCR, and flow cytometer. Inflammation of serum and pathological damage was assessed by ELISA and H&E staining. Relationship between RUNX1 and FOXP3 was assessed by co-immunoprecipitation. The findings showed that RUNX1 ameliorated the survival rate, pathological damage, and decreased inflammation-related factors, and inhibited apoptosis of CD4+ T and CD19+ B cells in cecal ligation and puncture mice. Furthermore, RUNX1 up-regulated the viability and down-regulated apoptotic rate with the changed expressions of apoptosis-related molecules in lipopolysaccharide (LPS)-mediated CD4+ T and CD19+ B cells. Additionally, FOXP3 interacted with RUNX1, and its silencing decreased RUNX1 expression and reversed the inhibitory effect of RUNX1 on apoptosis of LPS-mediated CD4+ T and CD19+ B cells. In summary, the RUNX1/FOXP3 axis alleviated immunosuppression in sepsis progression by weakening T and B lymphocyte apoptosis.
Collapse
Affiliation(s)
- Yangfa Chao
- Department of Surgical Area 4, Shenzhen Bao’an Traditional Chinese Medicine Hospital Group, Shenzhen, Guangdong Province, 518000, China
| | - Wenting Huang
- Department of Acupuncture, Luohu District Chronic Disease Prevention and Treatment Hospital, Shenzhen, China
| | - Zhiheng Xu
- The Second Department of Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Ping Li
- Department of Surgical Area 4, Shenzhen Bao’an Traditional Chinese Medicine Hospital Group, Shenzhen, Guangdong Province, 518000, China
| | - Shaodong Gu
- Department of Surgical Area 4, Shenzhen Bao’an Traditional Chinese Medicine Hospital Group, No. 25
Yu’an 2nd Road, Bao’an District, Shenzhen, Guangdong Province, 518000, China
| |
Collapse
|
15
|
Zurek-Leffers FM, Lehmann F, Brabenec L, Kintrup S, Hellenthal KEM, Mersjann K, Kneifel F, Hessler M, Arnemann PH, Kampmeier TG, Ertmer C, Kellner P, Wagner NM. A model of porcine polymicrobial septic shock. Intensive Care Med Exp 2023; 11:31. [PMID: 37264259 DOI: 10.1186/s40635-023-00513-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/21/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Mortality of patients with sepsis is high and largely unchanged throughout the past decades. Animal models have been widely used for the study of sepsis and septic shock, but translation into effective treatment regimes in the clinic have mostly failed. Pigs are considered as suitable research models for human diseases due to their high comparability and similarity to human anatomy, genetics, and the immune system. We here evaluated the previously reported models of septic shock in pigs and established a novel model of polymicrobial sepsis that meets the clinical criteria of septic shock in pigs. MATERIALS AND METHODS The literature search was performed using the keywords "pig", "sepsis" and "septic shock". For the establishment of septic shock in n = 10 German landrace pigs, mechanical ventilation was initiated, central venous and arterial lines and invasive hemodynamic monitoring via pulse contour cardiac output measurement (PiCCO) established. Peritoneal polymicrobial faecal sepsis was induced by application of 3 g/kg body weight faeces into the abdominal cavity. Septic shock was defined according to the third international consensus definitions (Sepsis-3). Upon shock, pigs underwent the 1-h bundle for the treatment of human sepsis. Cytokine levels were measured by ELISA. RESULTS Published porcine sepsis models exhibited high methodological variability and did not meet the clinical criteria of septic shock. In our model, septic shock developed after an average of 4.8 ± 0.29 h and was associated with a reproducible drop in blood pressure (mean arterial pressure 54 ± 1 mmHg) and significant hyperlactatemia (3.76 ± 0.65 mmol/L). Septic shock was associated with elevated levels of interleukin-6 (IL6) and initial cardiac depression followed by a hyperdynamic phase with significant loss of systemic vascular resistance index after initial resuscitation. In addition, organ dysfunction (acute kidney injury) occurred. CONCLUSIONS We here established a model of septic shock in pigs that meets the clinical criteria of septic shock utilized in human patients. Our model may thus serve as a reference for clinically relevant sepsis research in pigs.
Collapse
Affiliation(s)
- Finnja Marie Zurek-Leffers
- Department for Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Florian Lehmann
- Department for Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Laura Brabenec
- Department for Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Sebastian Kintrup
- Department for Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Katharina E M Hellenthal
- Department for Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Kira Mersjann
- Department for Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Felicia Kneifel
- Department of General, Visceral and Transplant Surgery, University Hospital Münster, Münster, Germany
| | - Michael Hessler
- Department for Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Philip-Helge Arnemann
- Department for Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Tim-Gerald Kampmeier
- Department for Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Christian Ertmer
- Department for Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Patrick Kellner
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Nana-Maria Wagner
- Department for Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
| |
Collapse
|
16
|
Stasi A, Franzin R, Caggiano G, Losapio R, Fiorentino M, Alfieri C, Gesualdo L, Stallone G, Castellano G. New Frontiers in Sepsis-Induced Acute Kidney Injury and Blood Purification Therapies: The Role of Polymethylmethacrylate Membrane Hemofilter. Blood Purif 2023; 52 Suppl 1:71-84. [PMID: 36693337 PMCID: PMC10210082 DOI: 10.1159/000528685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 11/17/2022] [Indexed: 01/25/2023]
Abstract
Acute kidney injury (AKI) is a common consequence of sepsis with a mortality rate of up to 40%. The pathogenesis of septic AKI is complex and involves several mechanisms leading to exacerbated inflammatory response associated with renal injury. A large body of evidence suggests that inflammation is tightly linked to AKI through bidirectional interaction between renal and immune cells. Preclinical data from our and other laboratories have identified in complement system activation a crucial mediator of AKI. Partial recovery following AKI could lead to long-term consequences that predispose to chronic dysfunction and may also accelerate the progression of preexisting chronic kidney disease. Recent findings have revealed striking morphological and functional changes in renal parenchymal cells induced by mitochondrial dysfunction, cell cycle arrest via the activation of signaling pathways involved in aging process, microvascular rarefaction, and early fibrosis. Although major advances have been made in our understanding of the pathophysiology of AKI, there are no available preventive and therapeutic strategies in this field. The identification of ideal clinical biomarkers for AKI enables prompt and effective therapeutic strategy that could prevent the progression of renal injury and promote repair process. Therefore, the use of novel biomarkers associated with clinical and functional criteria could provide early interventions and better outcome. Several new drugs for AKI are currently being investigated; however, the complexity of this disease might explain the failure of pharmacological intervention targeting just one of the many systems involved. The hypothesis that blood purification could improve the outcome of septic AKI has attracted much attention. New relevant findings on the role of polymethylmethacrylate-based continuous veno-venous hemofiltration in septic AKI have been reported. Herein, we provide a comprehensive literature review on advances in the pathophysiology of septic AKI and potential therapeutic approaches in this field.
Collapse
Affiliation(s)
- Alessandra Stasi
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Bari, Italy
| | - Rossana Franzin
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Bari, Italy
| | - Gianvito Caggiano
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Bari, Italy
| | - Rosa Losapio
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Bari, Italy
| | - Marco Fiorentino
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Bari, Italy
| | - Carlo Alfieri
- Nephrology, Dialysis and Renal Transplant Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Loreto Gesualdo
- Renal, Dialysis and Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari, Bari, Italy
| | - Giovanni Stallone
- Nephrology Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, Advanced Research Center on Kidney Aging (A.R.K.A.), University of Foggia, Foggia, Italy
| | - Giuseppe Castellano
- Nephrology, Dialysis and Renal Transplant Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
17
|
Zhang LQ, Zaikos TD, Kannapadi N, Laws L, Shah P, Troncoso JC, Stephens RS, Nyquist P, Cho SM. Neuropathology Associated with Acute Respiratory Distress Syndrome: An Autopsy Study. Ann Am Thorac Soc 2023; 20:155-159. [PMID: 36190782 PMCID: PMC9819270 DOI: 10.1513/annalsats.202205-453rl] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Lucy Q. Zhang
- Johns Hopkins University School of MedicineBaltimore, Maryland
| | | | | | - Lindsay Laws
- Johns Hopkins University School of MedicineBaltimore, Maryland
| | - Pavan Shah
- Johns Hopkins University School of MedicineBaltimore, Maryland
| | | | | | - Paul Nyquist
- Johns Hopkins University School of MedicineBaltimore, Maryland
| | - Sung-Min Cho
- Johns Hopkins University School of MedicineBaltimore, Maryland
| |
Collapse
|
18
|
Li X, Yuan F, Zhou L. Organ Crosstalk in Acute Kidney Injury: Evidence and Mechanisms. J Clin Med 2022; 11:jcm11226637. [PMID: 36431113 PMCID: PMC9693488 DOI: 10.3390/jcm11226637] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Acute kidney injury (AKI) is becoming a public health problem worldwide. AKI is usually considered a complication of lung, heart, liver, gut, and brain disease, but recent findings have supported that injured kidney can also cause dysfunction of other organs, suggesting organ crosstalk existence in AKI. However, the organ crosstalk in AKI and the underlying mechanisms have not been broadly reviewed or fully investigated. In this review, we summarize recent clinical and laboratory findings of organ crosstalk in AKI and highlight the related molecular mechanisms. Moreover, their crosstalk involves inflammatory and immune responses, hemodynamic change, fluid homeostasis, hormone secretion, nerve reflex regulation, uremic toxin, and oxidative stress. Our review provides important clues for the intervention for AKI and investigates important therapeutic potential from a new perspective.
Collapse
|
19
|
Forceville X, Van Antwerpen P, Annane D, Vincent JL. Selenocompounds and Sepsis-Redox Bypass Hypothesis: Part B-Selenocompounds in the Management of Early Sepsis. Antioxid Redox Signal 2022; 37:998-1029. [PMID: 35287478 DOI: 10.1089/ars.2020.8062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: Endothelial barrier damage, which is in part caused by excess production of reactive oxygen, halogen and nitrogen species (ROHNS), especially peroxynitrite (ONOO-), is a major event in early sepsis and, with leukocyte hyperactivation, part of the generalized dysregulated immune response to infection, which may even become a complex maladaptive state. Selenoenzymes have major antioxidant functions. Their synthesis is related to the need to limit deleterious oxidant redox cycling by small selenocompounds, which may be of therapeutic cytotoxic interest. Plasma selenoprotein-P is crucial for selenium transport from the liver to the tissues and for antioxidant endothelial protection, especially against ONOO-. Above micromolar concentrations, sodium selenite (Na2SeO3) becomes cytotoxic, with a lower cytotoxicity threshold in activated cells, which has led to cancer research. Recent Advances: Plasma selenium (<2% of total body selenium) is mainly contained in selenoprotein-P, and concentrations decrease rapidly in the early phase of sepsis, because of increased selenoprotein-P binding and downregulation of hepatic synthesis and excretion. At low concentrations, Na2SeO3 acts as a selenium donor, favoring selenoprotein-P synthesis in physiology, but probably not in the acute phase of sepsis. Critical Issues: The cytotoxic effects of Na2SeO3 against hyperactivated leukocytes, especially the most immature forms that liberate ROHNS, may be beneficial, but they may also be harmful for activated endothelial cells. Endothelial protection against ROHNS by selenoprotein-P may reduce Na2SeO3 toxicity, which is increased in sepsis. Future Direction: The combination of selenoprotein-P for endothelial protection and the cytotoxic effects of Na2SeO3 against hyperactivated leukocytes may be a promising intervention for early sepsis. Antioxid. Redox Signal. 37, 998-1029.
Collapse
Affiliation(s)
- Xavier Forceville
- Medico-surgical Intensive Care Unit, Great Hospital of East Francilien - Meaux site, Meaux, France.,Clinical Investigation Centre (CIC Inserm1414) CHU de Rennes - Université de Rennes 1, Rennes, France
| | - Pierre Van Antwerpen
- Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Univesité libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Djillali Annane
- Service de Réanimation Médicale, Hôpital Raymond Poincaré (APHP), Garches, France.,U1173 Lab. of Inflammation & Infection, (Fédération Hospitalo-Universitaire) FHU SEPSIS, Université Paris Saclay-campus (Université de Versailles Saint-Quentin-en-Yvelines) UVSQ, Versailles, France
| | - Jean Louis Vincent
- Department of Intensive Care, Erasme University Hospital, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
20
|
Nissen EJ, Saeger M, Nölle B, Roider J. Clinicopathological Correlation of Microbial Keratitis and Ahead: Is There a Corneal Sepsis? Klin Monbl Augenheilkd 2022; 239:857-866. [PMID: 35858596 DOI: 10.1055/a-1811-7171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Microbial, infectious keratitis is a relevant indication for penetrating keratoplasty. The requirement for transplantation results in histopathological examination of the entire thickness of the cornea. Although the clinical diagnosis is not always possible to confirm, pathology can support diagnostic evidence of clinical presentation and pathogenesis. This is achieved with multiple methods from cytology, histochemistry, immunohistology, molecular pathology and in rare cases electron microscopy. These allow tissue-based detection of previous and parallel diseases and the responsible pathogens. The failure of satisfactory clinicopathological correlation raises the question whether a suspected pathogen was not ultimately responsible for destroyed corneal tissue. The pathogenesis of keratitis requiring transplantation is not yet completely understood, also on the experimental level. The development of such a keratitis can lead to a clinical symptomatology which can be described as "threatening organ dysfunction", a term used in sepsis research. Considering recent literature, possible correlations between sepsis and microbial keratitis and their relation to histopathology are discussed.
Collapse
Affiliation(s)
- Ebba J Nissen
- Klinik für Ophthalmologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Deutschland
| | - Mark Saeger
- Klinik für Ophthalmologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Deutschland
| | - Bernhard Nölle
- Klinik für Ophthalmologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Deutschland
| | - Johann Roider
- Klinik für Ophthalmologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Deutschland
| |
Collapse
|
21
|
Sekino N, Selim M, Shehadah A. Sepsis-associated brain injury: underlying mechanisms and potential therapeutic strategies for acute and long-term cognitive impairments. J Neuroinflammation 2022; 19:101. [PMID: 35488237 PMCID: PMC9051822 DOI: 10.1186/s12974-022-02464-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/14/2022] [Indexed: 12/29/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis causes cerebral dysfunction in the short and long term and induces disruption of the blood–brain barrier (BBB), neuroinflammation, hypoperfusion, and accumulation of amyloid β (Aβ) and tau protein in the brain. White matter changes and brain atrophy can be detected using brain imaging, but unfortunately, there is no specific treatment that directly addresses the underlying mechanisms of cognitive impairments in sepsis. Here, we review the underlying mechanisms of sepsis-associated brain injury, with a focus on BBB dysfunction and Aβ and tau protein accumulation in the brain. We also describe the neurological manifestations and imaging findings of sepsis-associated brain injury, and finally, we propose potential therapeutic strategies for acute and long-term cognitive impairments associated with sepsis. In the acute phase of sepsis, we suggest using antibiotics (such as rifampicin), targeting proinflammatory cytokines, and preventing ischemic injuries and hypoperfusion. In the late phase of sepsis, we suggest targeting neuroinflammation, BBB dysfunction, Aβ and tau protein phosphorylation, glycogen synthase kinase-3 beta (GSK3β), and the receptor for advanced glycation end products (RAGE). These proposed strategies are meant to bring new mechanism-based directions for future basic and clinical research aimed at preventing or ameliorating acute and long-term cognitive impairments in patients with sepsis.
Collapse
Affiliation(s)
- Nobufumi Sekino
- Department of Medicine, Translational Therapeutics Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Magdy Selim
- Department of Neurology, Stroke and Cerebrovascular Diseases Division, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS-641, Boston, MA, 02215, USA
| | - Amjad Shehadah
- Department of Neurology, Stroke and Cerebrovascular Diseases Division, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS-641, Boston, MA, 02215, USA.
| |
Collapse
|
22
|
Topcu A, Kostakoglu U, Mercantepe T, Yilmaz HK, Tumkaya L, Uydu HA. The cardioprotective effects of perindopril in a model of polymicrobial sepsis: The role of radical oxygen species and the inflammation pathway. J Biochem Mol Toxicol 2022; 36:e23080. [PMID: 35417068 DOI: 10.1002/jbt.23080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/21/2022] [Accepted: 04/01/2022] [Indexed: 11/11/2022]
Abstract
Mortality rates associated with myocardial dysfunction due to sepsis and septic shock are generally high across the world. The present study focused on the antioxidant and anti-inflammatory effects of perindopril (PER) for the purpose of preventing the adverse effects of sepsis on the myocardium and developing new alternatives in treatment. The control group received only saline solution via the oral route for 4 days. The second group underwent cecal ligation puncture (CLP), and the third underwent CLP and received PER (2 mg/kg). Rats in the third group received 2 mg/kg PER per oral (p.o.) from 4 days before induction of sepsis. Thiobarbituric acid reactive species (TBARS), total thiol (-SH), interleukin-1 beta (IL-1β), IL-6, 8-hydroxy-2'-deoxyguanosine (8-OHdG), and nuclear factor kappa B (NF-κB/p65) levels increased in the CLP groups. In contrast, PER (2 mg/kg) decreased the levels of biochemical parameters other than total-SH and decreased 8-OHdG, NF-κB/p65 immunopositivity in rat heart tissues. The data from this study show that impairment of the oxidant/antioxidant balance and inflammatory cytokine levels in favor of inflammation in heart tissue under septic conditions results in severe tissue damage. PER administration before sepsis was shown to exhibit antioxidant and anti-inflammatory properties by reducing these effects. This in turn increased the importance of PER as new evidence of its protective effects in heart tissue.
Collapse
Affiliation(s)
- Atilla Topcu
- Department of Pharmacology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Ugur Kostakoglu
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Hulya K Yilmaz
- Department of Medical Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Levent Tumkaya
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Huseyin A Uydu
- Department of Medical Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
23
|
Chen R, Xu H, Guo Z, Zhang P, Chen J, Chen Z. CID16020046, a GPR55 antagonist, attenuates sepsis‑induced acute kidney injury. Mol Med Rep 2022; 25:155. [PMID: 35244189 PMCID: PMC8941374 DOI: 10.3892/mmr.2022.12671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/17/2021] [Indexed: 11/06/2022] Open
Abstract
Acute kidney injury (AKI) is the most common and serious complication of sepsis, and it is also the main cause of mortality in patients with sepsis. The G protein‑coupled receptor 55 (GPR55) inhibitor CID16020046 was found to suppress the inflammatory response in sepsis models in mice. The aim of the present study was to investigate the effect of CID16020046 on AKI in sepsis mouse models and elucidate the possible underlying mechanisms. A sepsis model in mice was established by cecal ligation/perforation (CLP). The expression levels of GPR55 in the serum of patients with sepsis and the renal tissues of septic mice were determined via reverse transcription‑quantitative PCR and western blot analyses, respectively. The pathological injury of renal tissue was evaluated using H&E and periodic acid‑Schiff staining. ELISA was performed to detect the levels of renal injury‑related factors, including blood urea nitrogen (BUN), creatinine (Cre), kidney injury molecule 1 (KIM1) and neutrophil gelatinase‑associated lipocalin (NGAL) in septic mice. Moreover, the levels of pro‑inflammatory cytokines (TNF‑α, IL‑6 and IL‑1β) were detected via ELISA and western blotting. Apoptosis was determined using TUNEL staining and western blotting. The expression levels of Rho‑associated protein kinase (ROCK) pathway‑related proteins (Ras homolog family member A, ROCK1 and ROCK2) was measured via western blotting. Finally, H&E staining was used to evaluate the effect of CID16020046 on various organs in mice. Compared with the control subjects, the expression level of GPR55 in the serum of patients with sepsis was significantly increased. Compared with the sham group, CID16020046 (20 mg/kg) significantly decreased the levels of BUN and Cre in the serum, as well as the contents of KIM1 and NGAL in the urine. Furthermore, CID16020046 significantly decreased the contents of TNF‑α, IL‑6 and IL‑1β in the serum and renal tissue of septic mice, and reduced cell apoptosis. In addition, CID16020046 effectively suppressed the expression levels of ROCK pathway‑related proteins, and H&E staining revealed that CID16020046 (20 mg/kg) had no toxic effect on the heart, liver, spleen or lung in normal mice. In conclusion, CID16020046 may prove useful for the development of drugs for the treatment of sepsis‑induced AKI.
Collapse
Affiliation(s)
- Rongxin Chen
- Organ Transplant Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 511447, P.R. China
| | - Hailin Xu
- Organ Transplant Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 511447, P.R. China
| | - Zebin Guo
- Department of Intensive Care Unit, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 511447, P.R. China
| | - Peng Zhang
- Organ Transplant Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 511447, P.R. China
| | - Jianxia Chen
- Department of Intensive Care Unit, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 511447, P.R. China
| | - Zheng Chen
- Organ Transplant Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 511447, P.R. China
| |
Collapse
|
24
|
Nedel WL, Strogulski NR, Kopczynski A, Rodolphi MS, Montes THM, Júnior JA, Friedman G, Portela LV. Association Between Hyperlactatemia, Perfusional Parameters, and Lymphocyte Mitochondrial Dysfunction in Septic Shock Patients. Shock 2022; 57:378-383. [PMID: 34628453 DOI: 10.1097/shk.0000000000001868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION In septic shock, mitochondrial dysfunction, and hypoperfusion are the main triggers of multi-organ failure. Little is known about the crosstalk between mitochondrial dysfunction and hemodynamic alterations, especially in the post-resuscitation phase. Here, we assess whether hypoperfusion and lactate levels are associated with oxygen consumption linked to mitochondrial bioenergetic activity in lymphocytes of patients admitted with septic shock. PATIENTS AND METHODS Prospective cohort study in patients with septic shock defined as the requirement of vasopressors to maintain a mean arterial pressure 65 mm Hg after initial fluid administration. Basal mitochondrial and Complex I respiration was measured to evaluate mitochondrial activity. Both variables and capillary refill time were compared with arterial lactate post-fluid resuscitation. We also compared mitochondrial activity measurements between patients with and without hypoperfusion status. RESULTS A total of 90 patients were included in analysis. The median arterial lactate at the time of septic shock diagnosis was 2.0 mmol/Dl (IQR 1.3-3.0). Baseline respiration at the time of septic shock diagnosis was correlated with lactate (Spearman -0.388, 95% CI -0.4893 to -0.1021; P = 0.003), as well as Complex I respiration (Spearman -0.403, 95% CI -0.567 to -0.208; P < 0.001). Patients with hypoperfusion status had no difference in basal respiration when compared with patients who did not have hypoperfusion status (P = 0.22) nor in Complex I respiration (P = 0.09). CONCLUSION Changes in lymphocytic mitochondrial metabolism are associated with post-resuscitation arterial lactate in septic shock; however, they are not associated with the presence of a hypoperfusional status. In this scenario, it is therefore suggested that systemic perfusion and mitochondrial metabolism have different courses.
Collapse
Affiliation(s)
- Wagner Luis Nedel
- Intensive Care Unit, Hospital Nossa Senhora da Conceição, Grupo Hospitalar Conceição, Porto Alegre, RS, Brazil
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, RS, Brazil
| | - Nathan Ryzewski Strogulski
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, RS, Brazil
| | - Afonso Kopczynski
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, RS, Brazil
| | - Marcelo Salimen Rodolphi
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, RS, Brazil
| | - Thiago Hermes Maeso Montes
- Intensive Care Unit, Hospital Nossa Senhora da Conceição, Grupo Hospitalar Conceição, Porto Alegre, RS, Brazil
| | - Jose Abruzzi Júnior
- Intensive Care Unit, Hospital Nossa Senhora da Conceição, Grupo Hospitalar Conceição, Porto Alegre, RS, Brazil
| | - Gilberto Friedman
- Programa de Pós-Graduação em Pneumologia, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, RS, Brazil
| | - Luis Valmor Portela
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, RS, Brazil
| |
Collapse
|
25
|
Molema G, Zijlstra JG, van Meurs M, Kamps JAAM. Renal microvascular endothelial cell responses in sepsis-induced acute kidney injury. Nat Rev Nephrol 2022; 18:95-112. [PMID: 34667283 DOI: 10.1038/s41581-021-00489-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 12/29/2022]
Abstract
Microvascular endothelial cells in the kidney have been a neglected cell type in sepsis-induced acute kidney injury (sepsis-AKI) research; yet, they offer tremendous potential as pharmacological targets. As endothelial cells in distinct cortical microvascular segments are highly heterogeneous, this Review focuses on endothelial cells in their anatomical niche. In animal models of sepsis-AKI, reduced glomerular blood flow has been attributed to inhibition of endothelial nitric oxide synthase activation in arterioles and glomeruli, whereas decreased cortex peritubular capillary perfusion is associated with epithelial redox stress. Elevated systemic levels of vascular endothelial growth factor, reduced levels of circulating sphingosine 1-phosphate and loss of components of the glycocalyx from glomerular endothelial cells lead to increased microvascular permeability. Although coagulation disbalance occurs in all microvascular segments, the molecules involved differ between segments. Induction of the expression of adhesion molecules and leukocyte recruitment also occurs in a heterogeneous manner. Evidence of similar endothelial cell responses has been found in kidney and blood samples from patients with sepsis. Comprehensive studies are needed to investigate the relationships between segment-specific changes in the microvasculature and kidney function loss in sepsis-AKI. The application of omics technologies to kidney tissues from animals and patients will be key in identifying these relationships and in developing novel therapeutics for sepsis.
Collapse
Affiliation(s)
- Grietje Molema
- Dept. Pathology and Medical Biology, Medical Biology section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| | - Jan G Zijlstra
- Dept. Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Matijs van Meurs
- Dept. Pathology and Medical Biology, Medical Biology section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Dept. Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jan A A M Kamps
- Dept. Pathology and Medical Biology, Medical Biology section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
26
|
Liu S, Meng Q, Xu Y, Zhou J. Hepatorenal syndrome in acute-on-chronic liver failure with acute kidney injury: more questions requiring discussion. Gastroenterol Rep (Oxf) 2021; 9:505-520. [PMID: 34925848 PMCID: PMC8677535 DOI: 10.1093/gastro/goab040] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/04/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
In cirrhosis with ascites, hepatorenal syndrome (HRS) is a specific prerenal dysfunction unresponsive to fluid volume expansion. Acute-on-chronic liver failure (ACLF) comprises a group of clinical syndromes with multiple organ failure and early high mortality. There are differences in the characterization of ACLF between the Eastern and Western medical communities. Patients with ACLF and acute kidney injury (AKI) have more structural injuries, contributing to confusion in diagnosing HRS-AKI. In this review, we discuss progress in the pathogenesis, diagnosis, and management of HRS-AKI, especially in patients with ACLF. Controversy regarding HRS-AKI in ACLF and acute liver failure, hepatic carcinoma, shock, sepsis, and chronic kidney disease is also discussed. Research on the treatment of HRS-AKI with ACLF needs to be more actively pursued to improve disease prognosis.
Collapse
Affiliation(s)
- Songtao Liu
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, P. R. China.,Department of Severe Liver Disease, Beijing You'an Hospital, Capital Medical University, Beijing, P. R. China
| | - Qinghua Meng
- Department of Severe Liver Disease, Beijing You'an Hospital, Capital Medical University, Beijing, P. R. China
| | - Yuan Xu
- Department of Critical Care Medicine, Beijing Tsinghua Chang Gung Hospital, Beijing, P. R. China
| | - Jianxin Zhou
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, P. R. China
| |
Collapse
|
27
|
Bian Z, Zhu R, Chen S. The predict value of serum/urocystatin C on acute kidney injury in elderly patients with sepsis. Exp Gerontol 2021; 155:111576. [PMID: 34597711 DOI: 10.1016/j.exger.2021.111576] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To evaluate the predict value of serum/urocystatin C in acute kidney injury (AKI) in elderly patients with sepsis. METHODS A retrospective study was performed and 80 senile patients with sepsis in ** hospital of China was included. According to the diagnosis of AKI, all patients were divided into non-AKI group and AKI group. The clinical characteristics, laboratory and physiological indicators of the two groups were compared. The receiver operating characteristic curve (ROC) was used to analyze the accuracy of the variables, including serum cystatin C, urocystatin C, and serum creatinine, to predict the occurrence of AKI in patients with sepsis. RESULTS Of the 80 elderly patients with sepsis in China, 29 patients had AKI. Compared with the non-AKI group, patients in the AKI group had higher APACHE II scores, higher SOFA scores, higher procalcitonin, and lower mean arterial pressure (P < 0.05). The levels of serum cystatin C, urocystatin C, and serum creatinine in the AKI group were significantly higher than those in the non-AKI group (P < 0.05), while the difference in intensive care unit (ICU) mortality rate between the two groups was not significantly different (P > 0.05). The ROC curve showed that the area under the curve of serum cystatin C was 0.893, the area under the curve of urocystatin C was 0.898, and the area under the curve of serum creatinine was 0.652. CONCLUSION Serum cystatin and urocystatin could be used to predict the occurrence of AKI in elderly patients with sepsis.
Collapse
Affiliation(s)
- Zhixiang Bian
- Department of Nephrology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Rui Zhu
- Department of Nephrology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - Shunjie Chen
- Department of Nephrology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| |
Collapse
|
28
|
Laudanski K. Persistence of Lipoproteins and Cholesterol Alterations after Sepsis: Implication for Atherosclerosis Progression. Int J Mol Sci 2021; 22:ijms221910517. [PMID: 34638860 PMCID: PMC8508791 DOI: 10.3390/ijms221910517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 02/06/2023] Open
Abstract
(1) Background: Sepsis is one of the most common critical care illnesses with increasing survivorship. The quality of life in sepsis survivors is adversely affected by several co-morbidities, including increased incidence of dementia, stroke, cardiac disease and at least temporary deterioration in cognitive dysfunction. One of the potential explanations for their progression is the persistence of lipid profile abnormalities induced during acute sepsis into recovery, resulting in acceleration of atherosclerosis. (2) Methods: This is a targeted review of the abnormalities in the long-term lipid profile abnormalities after sepsis; (3) Results: There is a well-established body of evidence demonstrating acute alteration in lipid profile (HDL-c ↓↓, LDL-C -c ↓↓). In contrast, a limited number of studies demonstrated depression of HDL-c levels with a concomitant increase in LDL-C -c in the wake of sepsis. VLDL-C -c and Lp(a) remained unaltered in few studies as well. Apolipoprotein A1 was altered in survivors suggesting abnormalities in lipoprotein metabolism concomitant to overall lipoprotein abnormalities. However, most of the studies were limited to a four-month follow-up and patient groups were relatively small. Only one study looked at the atherosclerosis progression in sepsis survivors using clinical correlates, demonstrating an acceleration of plaque formation in the aorta, and a large metanalysis suggested an increase in the risk of stroke or acute coronary event between 3% to 9% in sepsis survivors. (4) Conclusions: The limited evidence suggests an emergence and persistence of the proatherogenic lipid profile in sepsis survivors that potentially contributes, along with other factors, to the clinical sequel of atherosclerosis.
Collapse
Affiliation(s)
- Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA; ; Tel.: +1-215-662-8200
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Leonard Davis Institute of Healthcare Economics, Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Gorski Z, Parai JL, Milroy CM. Evaluating small vessel neutrophils as a marker for sepsis. J Forensic Sci 2021; 66:2289-2298. [PMID: 34431519 DOI: 10.1111/1556-4029.14875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 11/30/2022]
Abstract
A retrospective case-control study of 100 sepsis autopsy cases and 103 controls over a 9-year period was conducted to analyze patterns of neutrophils in small caliber vessels of the liver, heart, and lungs in relation to sepsis as the cause of death. Data extracted included demographics of the decedent, cause of death, presence of conditions that could interfere with an inflammatory response, history of hospitalization, and results of microbiology cultures. Histologic sections of the liver, heart, and lungs were assessed. Organs were scored for neutrophilic inflammation based upon a predetermined grading system. Scores of 0, 1, and 2 were assigned according to mild, moderate, and florid neutrophilic presence, respectively; a total score was also assigned based on the sum of the scores from all three organs. Comparing the histologic grading between cases and controls found a statistical difference with the neutrophil grading in the liver (p < 0.001), lung (p < 0.001), and heart (p < 0.001) and between the combined total scores (p < 0.001). Combined neutrophilic scores of 4 and greater showed high specificities (90% to 100%) for sepsis-related deaths. Examining the percentage of sepsis cases as the histologic neutrophilic score increased found a positive slope in all three organs. However, only the linear regression looking at the lung (p = 0.03) and the combined score (p = 0.001) were statistically significant. Despite the above results, sepsis cases with low scores and controls with moderate and florid neutrophilic infiltrates were also seen.
Collapse
Affiliation(s)
- Zuzanna Gorski
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jacqueline L Parai
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON, Canada.,Division of Anatomical Pathology, The Ottawa Hospital, Ottawa, ON, Canada.,Eastern Ontario Regional Forensic Pathology Unit, Ontario Forensic Pathology Service, Ottawa, ON, Canada
| | - Christopher M Milroy
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON, Canada.,Division of Anatomical Pathology, The Ottawa Hospital, Ottawa, ON, Canada.,Eastern Ontario Regional Forensic Pathology Unit, Ontario Forensic Pathology Service, Ottawa, ON, Canada
| |
Collapse
|
30
|
High-Affinity Anti-VISTA Antibody Protects against Sepsis by Inhibition of T Lymphocyte Apoptosis and Suppression of the Inflammatory Response. Mediators Inflamm 2021; 2021:6650329. [PMID: 34366711 PMCID: PMC8339895 DOI: 10.1155/2021/6650329] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/08/2021] [Accepted: 07/06/2021] [Indexed: 12/29/2022] Open
Abstract
Background B7 family members and ligands have been identified as critical checkpoints in orchestrating the immune response during sepsis. V-domain Ig suppressor of T cell activation (VISTA) is a new inhibitory immune checkpoint involved in restraining T cell response. Previous studies demonstrated that VISTA engagement on T cells and myeloid cells could transmit inhibitory signals, resulting in reduced activation and function. The current study was designed to determine the potential therapeutic effects of a high-affinity anti-VISTA antibody (clone MH5A) in a murine model of sepsis. Methods Polymicrobial sepsis was induced in male C57BL/6 mice via cecal ligation and puncture. Expression profiles of VISTA on T lymphocytes and macrophage were examined at 24 and 72 h postsurgery. The effects of anti-VISTA mAb on the 7-day survival, lymphocyte apoptosis, cytokine expression, bacterial burden, and vital organ damage were determined. Furthermore, the effects of anti-VISTA mAb on CD3+ T cell apoptosis and macrophage activation were determined in vitro. Results VISTA was substantially expressed on T cells and macrophages in sham-operated mice; septic peritonitis did not induce significant changes in the expression profiles. Treatment with MH5A improved the survival of septic mice, accompanied by reduced lymphocyte apoptosis, decreased cytokine expression, and enhanced bacterial clearance. Engagement of VISTA receptor with MH5A mitigated CD3+ T cell apoptosis cultured from CLP mice and suppressed LPS-induced cytokine production by macrophage in vitro. Conclusion The present study identified VISTA as a novel immune checkpoint in the regulation of T cell and macrophage response during sepsis. Modulation of the VISTA pathway might offer a promising opportunity in the immunotherapy for sepsis.
Collapse
|
31
|
Acute kidney injury in the critically ill: an updated review on pathophysiology and management. Intensive Care Med 2021; 47:835-850. [PMID: 34213593 PMCID: PMC8249842 DOI: 10.1007/s00134-021-06454-7] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/04/2021] [Indexed: 01/10/2023]
Abstract
Acute kidney injury (AKI) is now recognized as a heterogeneous syndrome that not only affects acute morbidity and mortality, but also a patient’s long-term prognosis. In this narrative review, an update on various aspects of AKI in critically ill patients will be provided. Focus will be on prediction and early detection of AKI (e.g., the role of biomarkers to identify high-risk patients and the use of machine learning to predict AKI), aspects of pathophysiology and progress in the recognition of different phenotypes of AKI, as well as an update on nephrotoxicity and organ cross-talk. In addition, prevention of AKI (focusing on fluid management, kidney perfusion pressure, and the choice of vasopressor) and supportive treatment of AKI is discussed. Finally, post-AKI risk of long-term sequelae including incident or progression of chronic kidney disease, cardiovascular events and mortality, will be addressed.
Collapse
|
32
|
Impact of Cholestasis on the Sensitivity of Percutaneous Transluminal Forceps Biopsy in 93 Patients with Suspected Malignant Biliary Stricture. Cardiovasc Intervent Radiol 2021; 44:1618-1624. [PMID: 33948696 DOI: 10.1007/s00270-021-02845-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/10/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE The aim of this study was to determine the effect of hyperbilirubinemia in the sensitivity of percutaneous transluminal forceps biopsy (PTFB) in patients with suspected malignant biliary stricture. MATERIALS AND METHODS Ninety-three patients with suspicion of malignant biliary stricture underwent percutaneous transhepatic cholangiography followed by PTFB. Sensitivity, specificity and predictive values were analysed based on the presence or absence of hyperbilirubinemia, defined as total bilirubin equal to, or higher than 5 mg/dL. Variables included demographic and clinical features, laboratory, tumour type and localization, stricture length, therapeutic approach and histopathology. Additionally, major morbidity and mortality were assessed. RESULTS The overall sensitivity, specificity, positive predictive value and accuracy of PTFB were 61.1%, 100%, 100%, and 62.4%, respectively. Hyperbilirubinemia affected 57% of patients at the time of PTFB. There were 35 (37%) false negative results, none of them related to tumour type or localization, stricture length, or previous biliary intervention (i.e. PBBD (percutaneous biliary balloon dilatation), ERCP (endoscopic retrograde cholangiopancreatography)) (p > 0.05). However, when bilirubin was < 5 mg/dL, false negative results decreased globally (p = 0.024) and sensitivity increased significantly for intrahepatic and hilar localization, as well as for colorectal metastasis, gallbladder carcinoma, and pancreatic carcinoma. No major morbidity occurred. CONCLUSION The sensitivity of percutaneous transluminal biopsy for diagnosis of malignant stricture may significantly increase if samples are obtained in the absence of hyperbilirubinemia, without adding morbidity to the procedure. LEVEL OF EVIDENCE Level 3, Case- Control studies.
Collapse
|
33
|
TLR4-NLRP3-GSDMD-Mediated Pyroptosis Plays an Important Role in Aggravated Liver Injury of CD38 -/- Sepsis Mice. J Immunol Res 2021; 2021:6687555. [PMID: 33860064 PMCID: PMC8026301 DOI: 10.1155/2021/6687555] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/21/2021] [Accepted: 03/05/2021] [Indexed: 02/08/2023] Open
Abstract
Clinically, severe bacterial infection can cause septicemia and multiple organ dysfunction syndrome, especially liver injury. CD38 is closely related to many inflammatory pathways, but its role in liver injury caused by bacterial infection remains unclear. The purpose of this study is to discuss the specific role of CD38 in bacterial liver injury. Eight-week-old male C57BL/6 mice (WT, CD38−/− and CD38−/−TLR4mut) were used and stimulated with Escherichia coli (ATCC25922) or PBS, intraperitoneally. After 3 hours of bacterial stimulation, serum was collected to detect ALT and AST concentration, and liver tissue was harvested for hematoxylin and eosin staining and bacterial culture. The mRNA expressions of TLR4, NLRP3, IL-1β, IL-18, and GSDMD were quantitatively determined by RT-qPCR. The expressions of TLR4, MyD88, TRIF, NF-κB p65, NLRP3, GSDMD, and cytokines were detected by Western blot. The expression and localization of ERK1/2 were detected by immunohistochemistry and Western blot. The results showed that bacterial stimulation could upregulate the expression of inflammatory cytokines, leading to hepatic dysfunction. Moreover, bacterial stimulation of CD38-deficient mice can aggravate the inflammatory response, the expressions of TLR4, NF-κB, and ERK1/2 were significantly increased, and the biomarkers related to pyroptosis also manifested more obvious pyroptosis. However, TLR4 mutation significantly alleviated inflammation and pyroptosis in the liver caused by bacteria, on the basis of CD38 deficiency. Overall, CD38 knockout exacerbates bacteria-induced liver damage through TLR4-NLRP3-GSDMD-mediated pyroptosis.
Collapse
|
34
|
Fei Y, Wu S, Wang Y, Shen F, Fan G. A fast and high-sensitivity liquid chromatography-tandem mass spectrometry method combined with in vivo microdialysis for quantification of meropenem in rabbits with sepsis under the simultaneous infusion of total parenteral nutrition: Application to a pharmacokinetic study. Biomed Chromatogr 2021; 35:e5100. [PMID: 33624854 DOI: 10.1002/bmc.5100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 11/07/2022]
Abstract
A fast and high-sensitivity liquid chromatography-tandem mass spectrometry (LC-MS/MS) method assisted by microdialysis was established for the determination of meropenem in total parenteral nutrition (TPN) infused plasma. A 10-times dilution was arranged for sample preparation to overcome the severe matrix effect caused by the high salt content in dialysate and complex composition of TPN. This quantification method was proved to be satisfied in selectivity, accuracy, precision, linearity (R2 > 0.998), recovery, matrix effect and stability. In the optimized conditions, the calibration curve range was set from 2 to 2000 ng/ml. This validated method was applied to pharmacokinetics study of meropenem in rabbits with sepsis (induced by cecal ligation and punctures) under simultaneous infusion of TPN to simulate the clinical practice. The results demonstrated that the LC-MS/MS method assisted by microdialysis can be used successfully for the determination of meropenem in TPN-infused plasma. Moreover, the area under the curve and the maximum concentrations in the plasma of meropenem in control rabbits were significantly smaller (P < 0.05), while clearance and distribution volumes were significantly greater (P < 0.05) than in those with sepsis. It could be speculated that drug monitoring in patients with sepsis may be necessary.
Collapse
Affiliation(s)
- Yibo Fei
- Tongji University School of Medicine, Shanghai, China.,Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shengyuan Wu
- Tongji University School of Medicine, Shanghai, China
| | - Yuanyuan Wang
- Tongji University School of Medicine, Shanghai, China.,Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fuming Shen
- Tongji University School of Medicine, Shanghai, China.,Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guorong Fan
- Tongji University School of Medicine, Shanghai, China.,Department of Clinical Pharmacy, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
| |
Collapse
|
35
|
Pretreatment with S-Nitrosoglutathione Attenuates Septic Acute Kidney Injury in Rats by Inhibiting Inflammation, Oxidation, and Apoptosis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6678165. [PMID: 33604382 PMCID: PMC7872741 DOI: 10.1155/2021/6678165] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/11/2021] [Accepted: 01/24/2021] [Indexed: 12/29/2022]
Abstract
Objective We aimed to investigate the protective effect of s-nitrosoglutathione (SNG) pretreatment on acute kidney injury (AKI) in septic rats. Methods We constructed a rat model of sepsis by cecal ligation and puncture and observed the survival of the rats. We obtained kidney and blood samples from rats, observed the pathological damage to the kidney tissues, and evaluated kidney function and the expression levels of inflammatory factors. We also detected the expression of induced nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in the kidneys by immunohistochemistry and evaluated the apoptosis of kidney tubular epithelial cells (KTEC) by TUNEL. Results Pretreatment with SNG significantly reduced the mortality of septic rats, attenuated kidney pathological damage, and decreased the levels of serum creatinine, plasma neutrophil gelatinase-associated lipocalin, and plasma kidney injury molecule-1. Moreover, SNG pretreatment decreased the levels of TNF-α and IL-1β in serum and kidney and reduced the expressions of NO, iNOS, PGE2, and COX-2 in the kidneys. Furthermore, pretreatment with SNG significantly reduced the apoptotic rate of KTEC and decreased the levels of caspase-3 and Bax mRNA, but increased the level of Bcl-2 mRNA. Conclusion Pretreatment with SNG has a protective effect on AKI in septic rats, and the specific mechanisms are related to inhibition of inflammation, oxidation, and apoptosis.
Collapse
|
36
|
Rapalino O, Pourvaziri A, Maher M, Jaramillo-Cardoso A, Edlow BL, Conklin J, Huang S, Westover B, Romero JM, Halpern E, Gupta R, Pomerantz S, Schaefer P, Gonzalez RG, Mukerji SS, Lev MH. Clinical, Imaging, and Lab Correlates of Severe COVID-19 Leukoencephalopathy. AJNR Am J Neuroradiol 2021; 42:632-638. [PMID: 33414226 DOI: 10.3174/ajnr.a6966] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND PURPOSE Patients infected with the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) can develop a spectrum of neurological disorders, including a leukoencephalopathy of variable severity. Our aim was to characterize imaging, lab, and clinical correlates of severe coronavirus disease 2019 (COVID-19) leukoencephalopathy, which may provide insight into the SARS-CoV-2 pathophysiology. MATERIALS AND METHODS Twenty-seven consecutive patients positive for SARS-CoV-2 who had brain MR imaging following intensive care unit admission were included. Seven (7/27, 26%) developed an unusual pattern of "leukoencephalopathy with reduced diffusivity" on diffusion-weighted MR imaging. The remaining patients did not exhibit this pattern. Clinical and laboratory indices, as well as neuroimaging findings, were compared between groups. RESULTS The reduced-diffusivity group had a significantly higher body mass index (36 versus 28 kg/m2, P < .01). Patients with reduced diffusivity trended toward more frequent acute renal failure (7/7, 100% versus 9/20, 45%; P = .06) and lower estimated glomerular filtration rate values (49 versus 85 mL/min; P = .06) at the time of MRI. Patients with reduced diffusivity also showed lesser mean values of the lowest hemoglobin levels (8.1 versus 10.2 g/dL, P < .05) and higher serum sodium levels (147 versus 139 mmol/L, P = .04) within 24 hours before MR imaging. The reduced-diffusivity group showed a striking and highly reproducible distribution of confluent, predominantly symmetric, supratentorial, and middle cerebellar peduncular white matter lesions (P < .001). CONCLUSIONS Our findings highlight notable correlations between severe COVID-19 leukoencephalopathy with reduced diffusivity and obesity, acute renal failure, mild hypernatremia, anemia, and an unusual brain MR imaging white matter lesion distribution pattern. Together, these observations may shed light on possible SARS-CoV-2 pathophysiologic mechanisms associated with leukoencephalopathy, including borderzone ischemic changes, electrolyte transport disturbances, and silent hypoxia in the setting of the known cytokine storm syndrome that accompanies severe COVID-19.
Collapse
Affiliation(s)
- O Rapalino
- From the Department of Radiology (O.R., A.P., M.M., A.J.-C., J.C., S.H., J.M.R., R.G., S.P., P.S., R.G.G., M.H.L.)
| | - A Pourvaziri
- From the Department of Radiology (O.R., A.P., M.M., A.J.-C., J.C., S.H., J.M.R., R.G., S.P., P.S., R.G.G., M.H.L.)
| | - M Maher
- From the Department of Radiology (O.R., A.P., M.M., A.J.-C., J.C., S.H., J.M.R., R.G., S.P., P.S., R.G.G., M.H.L.)
| | - A Jaramillo-Cardoso
- From the Department of Radiology (O.R., A.P., M.M., A.J.-C., J.C., S.H., J.M.R., R.G., S.P., P.S., R.G.G., M.H.L.)
| | | | - J Conklin
- From the Department of Radiology (O.R., A.P., M.M., A.J.-C., J.C., S.H., J.M.R., R.G., S.P., P.S., R.G.G., M.H.L.)
| | - S Huang
- From the Department of Radiology (O.R., A.P., M.M., A.J.-C., J.C., S.H., J.M.R., R.G., S.P., P.S., R.G.G., M.H.L.)
| | | | - J M Romero
- From the Department of Radiology (O.R., A.P., M.M., A.J.-C., J.C., S.H., J.M.R., R.G., S.P., P.S., R.G.G., M.H.L.)
| | - E Halpern
- Institute for Technology Assessment (E.H.), Massachusetts General Hospital, Boston, Massachusetts
| | - R Gupta
- From the Department of Radiology (O.R., A.P., M.M., A.J.-C., J.C., S.H., J.M.R., R.G., S.P., P.S., R.G.G., M.H.L.)
| | - S Pomerantz
- From the Department of Radiology (O.R., A.P., M.M., A.J.-C., J.C., S.H., J.M.R., R.G., S.P., P.S., R.G.G., M.H.L.)
| | - P Schaefer
- From the Department of Radiology (O.R., A.P., M.M., A.J.-C., J.C., S.H., J.M.R., R.G., S.P., P.S., R.G.G., M.H.L.)
| | - R G Gonzalez
- From the Department of Radiology (O.R., A.P., M.M., A.J.-C., J.C., S.H., J.M.R., R.G., S.P., P.S., R.G.G., M.H.L.)
| | | | - M H Lev
- From the Department of Radiology (O.R., A.P., M.M., A.J.-C., J.C., S.H., J.M.R., R.G., S.P., P.S., R.G.G., M.H.L.)
| |
Collapse
|
37
|
Shima H, Kimura T, Nishiuchi T, Iwase T, Hashizume S, Takamori N, Harada M, Higashiguchi Y, Masaki C, Banno T, Nagasaka N, Ito A, Inoue T, Tashiro M, Nishitani M, Kawahara K, Okada K, Minakuchi J. Successful treatment of direct hemoperfusion with polymyxin B-immobilized fiber for septic shock and severe acute kidney injury due to ceftriaxone-resistant Escherichia coli: a case report with literature review. RENAL REPLACEMENT THERAPY 2020. [DOI: 10.1186/s41100-020-00266-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Septic shock is a life-threatening condition and one of the most common causes of acute kidney injury. Polymyxin B-immobilized fiber column direct hemoperfusion (PMX-DHP) is used to reduce endotoxin levels in blood. Here, we report a rare but important case of sepsis-induced acute kidney injury and septic shock, which was successfully treated with PMX-DHP in spite of inappropriate initial antibiotic therapy.
Case presentation
An 84-year-old man was hospitalized for septic shock and acute kidney injury. Although he was treated with ceftriaxone, he did not recover from hypotension and had reduced urine output. After initiating PMX-DHP on days 3 and 4, his blood pressure was immediately elevated and his white blood cell count and C-reactive protein levels improved. Because ceftriaxone-resistant Escherichia coli was identified in blood culture, we changed his antibiotics to levofloxacin on day 7. He successfully recovered from the septic shock and dialysis was withdrawn.
Conclusions
Considering the use of inappropriate initial antibiotics, the early induction of PMX-DHP might have been a key determinant of his outcome. PMX-DHP therapy should be considered in septic shock in addition to antibiotic treatment.
Collapse
|
38
|
Post-Mortem Investigations for the Diagnosis of Sepsis: A Review of Literature. Diagnostics (Basel) 2020; 10:diagnostics10100849. [PMID: 33092081 PMCID: PMC7590167 DOI: 10.3390/diagnostics10100849] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
To date, sepsis is still one of the most important causes of death due to the difficulties concerning the achievement of a correct diagnosis. As well as in a clinical context, also in a medico-legal setting the diagnosis of sepsis can reveal challenging due to the unspecificity of the signs detected during autopsies, especially when no ante-mortem clinical data, laboratory, and cultural results are available. Thus, a systematic review of literature was performed to provide an overview of the main available and updated forensic tools for the post-mortem diagnosis of sepsis. Moreover, the aim of this review was to evaluate whether a marker or a combination of markers exist, specific enough to allow a correct and definite post-mortem diagnosis. The review was conducted searching in PubMed and Scopus databases, and using variable combinations of the keywords "post mortem sepsis diagnosis", "macroscopic signs", "morphology", "histology", "immunohistochemical markers", "biochemical markers", and "forensic microbiology". The article selection was carried out following specific inclusion and exclusion criteria. A total of 44 works was identified, providing data on morphological aspects of the organs examined, histological findings, immunohistochemical and biochemical markers, and cultural assays. The review findings suggested that the post-mortem diagnosis of sepsis can be achieved by a combination of data obtained from macroscopic and microscopic analysis and microbial investigations, associated with the increased levels of at least two of three biochemical and/or immunohistochemical markers evaluated simultaneously on blood samples.
Collapse
|
39
|
Sae-Khow K, Charoensappakit A, Visitchanakun P, Saisorn W, Svasti S, Fucharoen S, Leelahavanichkul A. Pathogen-Associated Molecules from Gut Translocation Enhance Severity of Cecal Ligation and Puncture Sepsis in Iron-Overload β-Thalassemia Mice. J Inflamm Res 2020; 13:719-735. [PMID: 33116751 PMCID: PMC7569041 DOI: 10.2147/jir.s273329] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/12/2020] [Indexed: 12/15/2022] Open
Abstract
Introduction Systemic inflammation induced by gut translocation of lipopolysaccharide (LPS), a major component of Gram-negative bacteria, in thalassemia with iron-overload worsens sepsis. However, the impact of (1→3)-β-D-glucan (BG), a major fungal molecule, in iron-overload thalassemia is still unclear. Hence, the influence of BG was explored in 1) iron-overload mice with sepsis induced by cecal ligation and puncture (CLP) surgery; and 2) in bone marrow-derived macrophages (BMMs). Methods The heterozygous β-globin-deficient mice, Hbbth3/+ mice, were used as representative thalassemia (TH) mice. Iron overload was generated by 6 months of oral iron administration before CLP surgery- induced sepsis in TH mice and wild-type (WT) mice. Additionally, BMMs from both mouse strains were used to explore the impact of BG. Results Without sepsis, iron-overload TH mice demonstrated more severe intestinal mucosal injury (gut leakage) with higher LPS and BG in serum, from gut translocation, when compared with WT mice. With CLP in iron-overload mice, sepsis severity in TH mice was more severe than WT as determined by survival analysis, organ injury (kidney and liver), bacteremia, endotoxemia, gut leakage (FITC-dextran) and serum BG. Activation by LPS plus BG (LPS+BG) in BMMs and in peripheral blood-derived neutrophils (both WT and TH cells) demonstrated more prominent cytokine production when compared with LPS activation alone. In parallel, LPS+BG also prominently induced genes expression of M1 macrophage polarization (iNOS, TNF-α and IL-1β) in both WT and TH cells in comparison with LPS activation alone. In addition, LPS+BG activated macrophage cytokine production was enhanced by a high dose of ferric ion (800 mM), more predominantly in TH macrophages compared with WT cells. Moreover, LPS+BG induced higher glycolysis activity with similar respiratory capacity in RAW264.7 (a macrophage cell line) compared with LPS activation alone. These data support an additive pro-inflammatory effect of BG upon LPS. Conclusion The enhanced-severity of sepsis in iron-overload TH mice was due to 1) increased LPS and BG in serum from iron-induced gut-mucosal injury; and 2) the pro-inflammatory amplification by ferric ion on LPS+BG activation.
Collapse
Affiliation(s)
- Kritsanawan Sae-Khow
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Awirut Charoensappakit
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Peerapat Visitchanakun
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Wilasinee Saisorn
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Saovaros Svasti
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakornpathom, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakornpathom, Thailand
| | - Asada Leelahavanichkul
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand.,Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
40
|
Huang G, Bao J, Shao X, Zhou W, Wu B, Ni Z, Wang L. Inhibiting pannexin-1 alleviates sepsis-induced acute kidney injury via decreasing NLRP3 inflammasome activation and cell apoptosis. Life Sci 2020; 254:117791. [PMID: 32416166 DOI: 10.1016/j.lfs.2020.117791] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022]
Abstract
AIMS Sepsis-induced acute kidney injury (SI-AKI) is the fifth most common cause of hospital-acquired acute kidney injury. Pannexin1 (Panx1) triggers inflammation and apoptosis which act as crucial factors in the pathogenesis of SI-AKI. We aimed to investigate the expression of Panx1 and its role on the inflammation and apoptosis in SI-AKI. MATERIALS AND METHODS SI-AKI model was established by lipopolysaccharide (LPS) injection in mice and LPS-treated HK-2 cells in vitro. Panx1 was inhibited by pretreating with carbenoxolone (CBX) or small interfering RNA in vivo and vitro, respectively. The expression of Panx1 was determined by qPCR, western blot and immunohistochemistry (IHC). Kidney damage was evaluated by kidney function, histopathological examination and AKI biomarkers. Inflammatory cytokines were detected by qPCR and ELISA. Apoptosis was detected by TUNEL staining and the expression of apoptosis-related proteins. The activation of nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome was measured by western blot. KEY FINDINGS Panx1 increased in LPS-induced SI-AKI mice and HK-2 cells, as well as in SI-AKI patients. CBX alleviated the renal function and pathological damage, as well as decreased the mRNA of kidney injury molecule (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL). Inhibiting Panx1 decreased the production of IL-1β, IL-6 and TNF-α, as well as tubular cell apoptosis in SI-AKI. Inhibiting Panx1 suppressed inflammatory cytokines and apoptosis via inhibiting NLRP3 inflammasome activation and regulating apoptotic protein Bax and Bcl2 expression, respectively. SIGNIFICANCE These observations suggest that pharmacological inhibition of Panx1 might be a potential approach in the clinical therapy of SI-AKI.
Collapse
Affiliation(s)
- Guanwen Huang
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jiwen Bao
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xinghua Shao
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wenyan Zhou
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Bei Wu
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhaohui Ni
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ling Wang
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
41
|
SIKIAT1/miR-96/FOXA1 axis regulates sepsis-induced kidney injury through induction of apoptosis. Inflamm Res 2020; 69:645-656. [PMID: 32342116 DOI: 10.1007/s00011-020-01350-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/10/2020] [Accepted: 04/16/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE AND DESIGN Nowadays, sepsis-induced acute kidney injury (AKI) has gradually become a global problem for its high incidence and increasing mortality. Previous study has reported lncRNA ENST00000452391.1 in sepsis patients. However, its potential biological function and downstream molecular mechanism are still mysterious. METHODS AND RESULTS: Our study found that it was upregulated in sepsis-induced AKI patients, so it was identified as "sepsis-induced kidney injury associated transcript 1 (SIKIAT1)". We used lipopolysaccharide (LPS) stimulated HK-2 cells as an in vitro model to demonstrated that SIKIAT1 acts as a ceRNA for miR-96-3p to enhance FOXA1 expression and promote HK-2 cell apoptosis. CONCLUSION Therefore, it could be a potential biomarker and therapeutic target for sepsis-induced AKI in the development of disease.
Collapse
|
42
|
MitoQ Modulates Lipopolysaccharide-Induced Intestinal Barrier Dysfunction via Regulating Nrf2 Signaling. Mediators Inflamm 2020; 2020:3276148. [PMID: 32351320 PMCID: PMC7171662 DOI: 10.1155/2020/3276148] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/18/2020] [Accepted: 02/26/2020] [Indexed: 01/12/2023] Open
Abstract
Background Gut barrier dysfunction with alterant mucosal permeability during sepsis is a challenge problem in clinical practice. Intestinal epithelial cells (IECs) are strongly involved in mucosal oxidative stress and inflammatory response. The current study aimed at investigating the effect of MitoQ, a mitochondrial targeted antioxidant, in the treatment of intestinal injury and its potential mechanism during sepsis. Methods 30 minutes before sepsis induction by lipopolysaccharide (LPS) treatment, mice were treated with MitoQ. Intestinal histopathology, mucosal permeability, inflammatory cytokines, and mucosal barrier proteins were evaluated in the present study. Results MitoQ pretreatment significantly decreased the levels of plasma diamine oxidase, D-lactate, and intestinal histological damage and markedly restored the levels of tight junction proteins (ZO-1 and occludin) following LPS challenge. Furthermore, MitoQ inhibited the LPS-induced intestinal oxidative stress and inflammatory response, evidenced by increased levels of intestinal superoxide dismutase and glutathione, and decreased levels of intestinal IL-1, IL-6, TNF-α, and nitric oxide levels. Mechanically, we found that MitoQ inhibited the oxidative stress via activating nuclear factor E2-related factor 2 (Nrf2) signaling pathway and its downstream antioxidant genes, including HO-1, NQO-1, and GCLM. Conclusions MitoQ exerts antioxidative and anti-inflammatory effects against sepsis-associated gut barrier injury by promoting Nrf2 signaling pathway.
Collapse
|
43
|
Stark JE, Opoka AM, Mallela J, Devarajan P, Ma Q, Levinsky NC, Stringer KF, Wong HR, Alder MN. Juvenile OLFM4-null mice are protected from sepsis. Am J Physiol Renal Physiol 2020; 318:F809-F816. [PMID: 32068457 PMCID: PMC7099509 DOI: 10.1152/ajprenal.00443.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pediatric sepsis is a leading cause of morbidity and mortality in children. One of the most common and devastating morbidities is sepsis-related acute kidney injury (AKI). AKI was traditionally thought to be related to low perfusion and acute tubular necrosis. However, little acute tubular necrosis can be found following septic AKI, and little is known about the mechanism of septic AKI. Olfactomedin-4 (OLFM4) is a secreted glycoprotein that marks a subset of neutrophils. Increased expression of OLFM4 in the blood is associated with worse outcomes in sepsis. Here, we investigated a pediatric model of murine sepsis using murine pups to investigate the mechanisms of OLFM4 in sepsis. When sepsis was induced in murine pups, survival was significantly increased in OLFM4-null pups. Immunohistochemistry at 24 h after the induction of sepsis demonstrated increased expression of OLFM4 in the kidney, which was localized to the loop of Henle. Renal cell apoptosis and plasma creatinine were significantly increased in wild-type versus OLFM4-null pups. Finally, bone marrow transplant suggested that increased OLFM4 in the kidney reflects local production rather than filtered from the plasma. These results demonstrate renal expression of OLFM4 for the first time and suggest that a kidney-specific mechanism may contribute to survival differences in OLFM4-null animals.
Collapse
Affiliation(s)
- Julie E Stark
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Amy M Opoka
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jaya Mallela
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Prasad Devarajan
- Division of Nephrology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Qing Ma
- Division of Nephrology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Nick C Levinsky
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Keith F Stringer
- Division of Pathology and Laboratory Medicine, University of Cincinnati Department of Pediatrics, Cincinnati, Ohio
| | - Hector R Wong
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Matthew N Alder
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|