1
|
Wang X, Nie X, Wang H, Ren Z. Roles of small GTPases in cardiac hypertrophy (Review). Mol Med Rep 2024; 30:208. [PMID: 39301654 PMCID: PMC11425065 DOI: 10.3892/mmr.2024.13332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
Cardiac hypertrophy results from the heart reacting and adapting to various pathological stimuli and its persistent development is a major contributing factor to heart failure. However, the molecular mechanisms of cardiac hypertrophy remain unclear. Small GTPases in the Ras, Rho, Rab, Arf and Ran subfamilies exhibit GTPase activity and play crucial roles in regulating various cellular responses. Previous studies have shown that Ras, Rho and Rab are closely linked to cardiac hypertrophy and that their overexpression can induce cardiac hypertrophy. Here, we review the functions of small GTPases in cardiac hypertrophy and provide additional insights and references for the prevention and treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Xin Wang
- School of Mathematics and Statistics, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Xinwen Nie
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Hao Wang
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Zhanhong Ren
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| |
Collapse
|
2
|
Han Y, Gong J, Pan M, Fang Z, Ou X, Cai W, Peng X. EMP1 knockdown mitigated high glucose-induced pyroptosis and oxidative stress in rat H9c2 cardiomyocytes by inhibiting the RAS/RAF/MAPK signaling pathway. J Biochem Mol Toxicol 2024; 38:e70002. [PMID: 39415664 DOI: 10.1002/jbt.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/06/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
The purpose of this study was to investigate the mechanism of EMP1 action in high glucose (HG)-induced H9c2 cardiac cell pyroptosis and oxidative injury. Rat cardiomyocytes H9c2 were exposed to 33 mM glucose for 24, 48, or 72 h to induce cytotoxicity. EMP1-siRNA, NLRP3 agonist Nigericin, and pcNDA-RAS were used to treat H9c2 cells under HG conditions. Cell Counting Kit (CCK)-8 assay showed that cell proliferation was decreased following HG induction, which was rescued by EMP1 knockdown. Our results also suggested that EMP1 siRNA transfection significantly decreased the apoptosis and pyroptosis of HG-induced cells, as indicated by the reduction of NLRP3 IL-1β, ASC, GSDMD, cleaved-caspase1 and cleaved-caspase3 levels in HG-induced H9c2 cells. In addition, EMP1 knockdown alleviated HG-induced mitochondrial damage and oxidative stress in H9c2 cells. NLRP3 activation reversed the inhibitory effects of EMP1 knockdown on pyroptosis and oxidative stress in HG-induced H9c2 cells. Mechanistically, we found that EMP1 knockdown suppressed the RAS/RAF/MAPK signaling pathway in HG-induced H9c2 cells. RAS overexpression blocked the protective effect of EMP1 knockdown on HG-induced H9c2 cell apoptosis, pyroptosis, and oxidative injury. Our findings suggest that EMP1 knockdown treatment might provide a novel therapy for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Ying Han
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jin Gong
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Min Pan
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhoufei Fang
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiaowen Ou
- Department of General Practice, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Wenqin Cai
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiane Peng
- Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
3
|
Cheng Y, Lin G, Xie Y, Xuan B, He S, Shang Z, Yan M, Lin J, Wei L, Peng J, Shen A. Baicalin ameliorates angiotensin II-induced cardiac hypertrophy and mitogen-activated protein kinase signaling pathway activation: A target-based network pharmacology approach. Eur J Pharmacol 2024; 981:176876. [PMID: 39127302 DOI: 10.1016/j.ejphar.2024.176876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/20/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
Baicalin, a flavonoid glycoside from Scutellaria baicalensis Georgi., exerts anti-hypertensive effects. The present study aimed to assess the cardioprotective role of baicalin and explore its potential mechanisms. Network pharmacology analysis pointed out a total of 477 potential targets of baicalin were obtained from the PharmMapper and SwissTargetPrediction databases, while 11,280 targets were identified associating with hypertensive heart disease from GeneCards database. Based on the above 382 common targets, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed enrichment in the regulation of cardiac hypertrophy, cardiac contraction, cardiac relaxation, as well as the mitogen-activated protein kinase (MAPK) and other signaling pathways. Moreover, baicalin treatment exhibited the amelioration of increased cardiac index and pathological alterations in angiotensin II (Ang II)-infused C57BL/6 mice. Furthermore, baicalin treatment demonstrated a reduction in cell surface area and a down-regulation of hypertrophy markers (including atrial natriuretic peptide and brain natriuretic peptide) in vivo and in vitro. In addition, baicalin treatment led to a decrease in the expression of phosphorylated c-Jun N-terminal kinase (p-JNK)/JNK, phosphorylated p38 (p-p38)/p38, and phosphorylated extracellular signal-regulated kinase (p-ERK)/ERK in the cardiac tissues of Ang II-infused mice and Ang II-stimulated H9c2 cells. These findings highlight the cardioprotective effects of baicalin, as it alleviates hypertensive cardiac injury, cardiac hypertrophy, and the activation of the MAPK pathway.
Collapse
Affiliation(s)
- Ying Cheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Guosheng Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Yi Xie
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Bihan Xuan
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Shuyu He
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Zucheng Shang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Mengchao Yan
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Jing Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China
| | - Lihui Wei
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China; Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China.
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China; Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| |
Collapse
|
4
|
Hu Y, Chen L, Wu Y, Zhang J, Sheng Z, Zhou Z, Xie Y, Tian G, Wan J, Zhang X, Cai N, Zhou Y, Cao Y, Yang T, Chen X, Liao D, Ge Y, Cheng B, Zhong K, Tian E, Lu J, Lu H, Zhao Y, Yuan W. Palmatine reverse aristolochic acid-induced heart failure through activating EGFR pathway via upregulating IKBKB. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117100. [PMID: 39332194 DOI: 10.1016/j.ecoenv.2024.117100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/11/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
Aristolochic acid (AA) is renowned for engendering nephrotoxicity and teratogenicity. Previous literature has reported that AA treatment resulted in heart failure (HF) via inflammatory pathways. Yet, its implications in HF remain comparatively uncharted territory, particularly with respect to underlying mechanisms. In our study, the zebrafish model was employed to delineate the cardiotoxicity of AA exposure and the restorative capacity of a phytogenic alkaloid palmatine (PAL). PAL restored morphology and blood supply in AA-damaged hearts by o-dianisidine staining, fluorescence imaging, and Hematoxylin and Eosin staining. Furthermore, PAL attenuated the detrimental effects of AA on ATPase activity, implying myocardial energy metabolism recovery. PAL decreased the co-localization of neutrophils with cardiomyocytes, implying an attenuation of the inflammatory response induced by AA. A combination of network pharmacological analysis and qPCR validation shed light on the therapeutic mechanism of PAL against AA-induced heart failure via upregulation of the epidermal growth factor receptor (EGFR) signaling pathway. Subsequent evaluations using a transcriptological testing, inhibitor model, and molecular docking assay corroborated PAL as an IKBKB enzyme activator. The study underscores the possible exploitation of the EGFR pathway as a potential therapeutic target for PAL against AA-induced HF, thus furthering the continued investigation of the toxicology and advancement of protective pharmaceuticals for AA.
Collapse
Affiliation(s)
- Ying Hu
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Lixin Chen
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Yulin Wu
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Jun Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, Jiangsu 210042, China
| | - Zhixia Sheng
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Ziyi Zhou
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Yufeng Xie
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Guiyou Tian
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Jiaxing Wan
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Xiaorun Zhang
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Na Cai
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Yatong Zhou
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Yi Cao
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Tengjiang Yang
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Xiaomei Chen
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Dalong Liao
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Yurui Ge
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Bo Cheng
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Keyuan Zhong
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Erli Tian
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Jin Lu
- Department of Pharmacy, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Huiqiang Lu
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China; The First Clinical College of Gannan Medical Uinversity, Ganzhou, Jiangxi 341000, China.
| | - Yan Zhao
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China.
| | - Wei Yuan
- Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China.
| |
Collapse
|
5
|
Zhao X, Yang Y, Xie Q, Qiu J, Sun X. Identification of Biomarkers and Mechanisms Associated with Apoptosis in Recurrent Pregnancy Loss. Biochem Genet 2024:10.1007/s10528-024-10932-0. [PMID: 39400681 DOI: 10.1007/s10528-024-10932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 09/15/2024] [Indexed: 10/15/2024]
Abstract
In this study, we employed bioinformatics techniques to identify genes associated with apoptosis in recurrent pregnancy loss (RPL). We retrieved the RPL expression profile datasets GSE165004 and GSE73025 from the Gene Expression Omnibus (GEO) database. We also obtained data from the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway of Apoptosis (hsa04210) to identify apoptosis-related genes. In addition, we performed Friends analysis to explore the interactions between differential apoptosis genes and other genes in the functional pathway. We identified six differentially expressed genes related to apoptosis, including CTSZ, BCL2, PIK3CD, KRAS, GADD45G, and CASP8, with GADD45G as the most gene. Functional fertility analysis revealed that differentially expressed genes primarily regulated protein stability, cell number homeostasis, myeloid cell homeostasis, hematopoietic progenitor cell differentiation, lytic vacuole and lysosome functions, vacuolar and lysosomal membranes, transmembrane transporter binding, protein domain-specific binding, G-protein beta-subunit binding, phospholipid binding, and were involved in pathways such as Rap1 signaling, regulation of actin cytoskeleton, and NOD-like receptor signaling. KRAS exhibited the highest mutation rate in RPL-related cancer CESC. There was also a positive correlation between differentially expressed genes and B cell memory, CD4 memory resting T cells, follicular helper T cells, naïve B cells, and resting dendritic cells. We identified six differentially expressed genes related to apoptosis in RPL, with GADD45G as the most important. NOD-like receptor signaling pathway and regulation of actin cytoskeleton could be therapeutic targets for RPL.
Collapse
Affiliation(s)
- Xiaofeng Zhao
- Obstetrics Department, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Yunhong Yang
- Acupuncture and moxibustion Department, Shanghai University of Traditional Chinese Medicine, Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Qiuyue Xie
- Obstetrics Department, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiahan Qiu
- Gynaecology Department, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaofeng Sun
- Obstetrics Department, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Akawi N, Al Mansoori G, Al Zaabi A, Badics A, Al Dhaheri N, Al Shamsi A, Al Tenaiji A, Alzohily B, Almesmari FSA, Al Hammadi H, Al Dhahouri N, Irshaid M, Kizhakkedath P, Al Shibli F, Tabouni M, Allam M, Baydoun I, Alblooshi H, Ali BR, Foo RS, Al Jasmi F. Profiling genetic variants in cardiovascular disease genes among a Heterogeneous cohort of Mendelian conditions patients and electronic health records. Front Mol Biosci 2024; 11:1451457. [PMID: 39411402 PMCID: PMC11473968 DOI: 10.3389/fmolb.2024.1451457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction This study addresses the rising cardiovascular disease (CVD) rates in the United Arab Emirates (UAE) by investigating the occurrence and impact of genetic variants in CVD-related genes. Methods We collected all genes linked to heritable CVD from public and diagnostic databases and mapped them to their corresponding biological processes and molecular pathways. We then evaluated the types and burden of genetic variants within these genes in 343 individuals from the Emirati Mendelian Study Cohort and 3,007 national electronic health records. Results We identified a total of 735 genes associated with heritable CVD, covering a range of cardiovascular conditions. Enrichment analysis revealed key biological processes and pathways, including Apelin, FoxO, and Ras signaling, that are implicated across all forms of heritable CVD. Analysis of a UAE cohort of 3,350 individuals showed a predominance of rare and unique CVD variants specific to the population. The study found a significant burden of pathogenic variants in families with CVD within the Emirati Mendelian cohort and re-assessed the pathogenicity of 693 variants from national health records, leading to the discovery of new CVD-causing variants. Discussion This study underscores the importance of continuously updating our understanding of genes and pathways related to CVD. It also highlights the significant underrepresentation of the UAE population in public databases and clinical literature on CVD genetics, offering valuable insights that can inform future research and intervention strategies.
Collapse
Affiliation(s)
- Nadia Akawi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | - Ghadeera Al Mansoori
- Department of Cardiology, Sheikh Shakhbout Medical City, Abu Dhabi, United Arab Emirates
| | - Anwar Al Zaabi
- Department of Cardiology, Tawam Hospital, Al Ain, United Arab Emirates
| | - Andrea Badics
- Department of Cardiology, Tawam Hospital, Al Ain, United Arab Emirates
| | - Noura Al Dhaheri
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Genetic Metabolic Division, Pediatrics Department, Tawam Hospital, Al Ain, United Arab Emirates
| | - Aisha Al Shamsi
- Genetic Metabolic Division, Pediatrics Department, Tawam Hospital, Al Ain, United Arab Emirates
| | - Amal Al Tenaiji
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Department of Pediatrics, Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | - Bashar Alzohily
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Fatmah S. A. Almesmari
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hamad Al Hammadi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Nahid Al Dhahouri
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Manal Irshaid
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Praseetha Kizhakkedath
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Fatema Al Shibli
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed Tabouni
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mushal Allam
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Antimicrobial Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ibrahim Baydoun
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hiba Alblooshi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R. Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Roger S. Foo
- Cardiovascular Research Institute, Centre for Translational Medicine, National University Health System, Singapore, Singapore
- Genome Institute of Singapore, and Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Fatma Al Jasmi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
7
|
Iqbal MK, Ambreen A, Mujahid M, Zarlashat Y, Abid M, Yasin A, Ullah MN, Shahzad R, Harlina PW, Khan SU, Alissa M, Algopishi UB, Almubarak HA. Cardiomegaly: Navigating the uncharted territories of heart failure - A multimodal radiological journey through advanced imaging, pathophysiological landscapes, and innovative therapeutic frontiers. Curr Probl Cardiol 2024; 49:102748. [PMID: 39009253 DOI: 10.1016/j.cpcardiol.2024.102748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
Cardiomegaly is among the disorders categorized by a structural enlargement of the heart by any of the situations including pregnancy, resulting in damage to heart muscles and causing trouble in normal heart functioning. Cardiomegaly can be defined in terms of dilatation with an enlarged heart and decreased left or biventricular contraction. The genetic origin of cardiomegaly is becoming more evident due to extensive genomic research opening up new avenues to ensure the use of precision medicine. Cardiomegaly is usually assessed by using an array of radiological modalities, including computed tomography (CT) scans, chest X-rays, and MRIs. These imaging techniques have provided an important opportunity for the physiology and anatomy of the heart. This review aims to highlight the complexity of cardiomegaly, highlighting the contribution of both ecological and genetic variables to its progression. Moreover, we further highlight the worth of precise clinical diagnosis, which comprises blood biomarkers and electrocardiograms (EKG ECG), demonstrating the significance of distinguishing between numerous basic causes. Finally, the analysis highlights the extensive variation of treatment lines, such as lifestyle modifications, prescription drugs, surgery, and implantable devices, although highlighting the critical need for individualized and personalized care.
Collapse
Affiliation(s)
- Muhammad Khalid Iqbal
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University Liaoning Provence China; Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Alia Ambreen
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Mujahid
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Yusra Zarlashat
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Abid
- Academy of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Ayesha Yasin
- Department of Pathology and Forensic Medicine, Dalian Medical University Liaoning Provence, China
| | | | - Raheel Shahzad
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), KST-Cibinong, JI Raya Bogor KM46, Cibinong 16911, Indonesia
| | - Putri Widyanti Harlina
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, 45363 Bandung, Indonesia
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China; Women Medical and Dental College, Khyber Medical University, Peshawar, KPK, 22020, Pakistan.
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Hassan Ali Almubarak
- Division of Radiology, Department of Medicine, College of Medicine and Surgery, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
8
|
Faienza MF, Meliota G, Mentino D, Ficarella R, Gentile M, Vairo U, D’amato G. Cardiac Phenotype and Gene Mutations in RASopathies. Genes (Basel) 2024; 15:1015. [PMID: 39202376 PMCID: PMC11353738 DOI: 10.3390/genes15081015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Cardiac involvement is a major feature of RASopathies, a group of phenotypically overlapping syndromes caused by germline mutations in genes encoding components of the RAS/MAPK (mitogen-activated protein kinase) signaling pathway. In particular, Noonan syndrome (NS) is associated with a wide spectrum of cardiac pathologies ranging from congenital heart disease (CHD), present in approximately 80% of patients, to hypertrophic cardiomyopathy (HCM), observed in approximately 20% of patients. Genotype-cardiac phenotype correlations are frequently described, and they are useful indicators in predicting the prognosis concerning cardiac disease over the lifetime. The aim of this review is to clarify the molecular mechanisms underlying the development of cardiac diseases associated particularly with NS, and to discuss the main morphological and clinical characteristics of the two most frequent cardiac disorders, namely pulmonary valve stenosis (PVS) and HCM. We will also report the genotype-phenotype correlation and its implications for prognosis and treatment. Knowing the molecular mechanisms responsible for the genotype-phenotype correlation is key to developing possible targeted therapies. We will briefly address the first experiences of targeted HCM treatment using RAS/MAPK pathway inhibitors.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Giovanni Meliota
- Department of Pediatric Cardiology, Giovanni XXIII Pediatric Hospital, 70126 Bari, Italy; (G.M.); (U.V.)
| | - Donatella Mentino
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Romina Ficarella
- U.O.C. Laboratorio di Genetica Medica, PO Di Venere-ASL Bari, 70012 Bari, Italy; (R.F.); (M.G.)
| | - Mattia Gentile
- U.O.C. Laboratorio di Genetica Medica, PO Di Venere-ASL Bari, 70012 Bari, Italy; (R.F.); (M.G.)
| | - Ugo Vairo
- Department of Pediatric Cardiology, Giovanni XXIII Pediatric Hospital, 70126 Bari, Italy; (G.M.); (U.V.)
| | - Gabriele D’amato
- Neonatal Intensive Care Unit, Di Venere Hospital, 70012 Bari, Italy;
| |
Collapse
|
9
|
Wu Y, Zou Y, Song C, Cao K, Cai K, Chen S, Zhang Z, Geng D, Zhang N, Feng H, Tang M, Li Z, Sun G, Zhang Y, Sun Y, Zhang Y. The role of serine/threonine protein kinases in cardiovascular disease and potential therapeutic methods. Biomed Pharmacother 2024; 177:117093. [PMID: 38971012 DOI: 10.1016/j.biopha.2024.117093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024] Open
Abstract
Protein phosphorylation is an important link in a variety of signaling pathways, and most of the important life processes in cells involve protein phosphorylation. Based on the amino acid residues of phosphorylated proteins, protein kinases can be categorized into the following families: serine/threonine protein kinases, tyrosine-specific protein kinases, histidine-specific protein kinases, tryptophan kinases, and aspartate/glutamyl protein kinases. Of all the protein kinases, most are serine/threonine kinases, where serine/threonine protein kinases are protein kinases that catalyze the phosphorylation of serine or threonine residues on target proteins using ATP as a phosphate donor. The current socially accepted classification of serine/threonine kinases is to divide them into seven major groups: protein kinase A, G, C (AGC), CMGC, Calmodulin-dependent protein kinase (CAMK), Casein kinase (CK1), STE, Tyrosine kinase (TKL) and others. After decades of research, a preliminary understanding of the specific classification and respective functions of serine/threonine kinases has entered a new period of exploration. In this paper, we review the literature of the previous years and introduce the specific signaling pathways and related therapeutic modalities played by each of the small protein kinases in the serine/threonine protein kinase family, respectively, in some common cardiovascular system diseases such as heart failure, myocardial infarction, ischemia-reperfusion injury, and diabetic cardiomyopathy. To a certain extent, the current research results, including molecular mechanisms and therapeutic methods, are fully summarized and a systematic report is made for the prevention and treatment of cardiovascular diseases in the future.
Collapse
Affiliation(s)
- Yanjiao Wu
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Yuanming Zou
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Kexin Cai
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Shuxian Chen
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Zhaobo Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Naijin Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China; Institute of health sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang 110004, China.
| | - Hao Feng
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Man Tang
- Department of clinical pharmacology, College of Pharmacy, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Zhao Li
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Guozhe Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning Province 110004, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China; Institute of health sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Ying Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China; Institute of health sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China.
| |
Collapse
|
10
|
Jiwaganont P, Roytrakul S, Thaisakun S, Sukumolanan P, Petchdee S. Investigation of coagulation and proteomics profiles in symptomatic feline hypertrophic cardiomyopathy and healthy control cats. BMC Vet Res 2024; 20:292. [PMID: 38970022 PMCID: PMC11225243 DOI: 10.1186/s12917-024-04170-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/01/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is a crucial heart disease in cats. The clinical manifestations of HCM comprise pulmonary edema, dyspnea, syncope, arterial thromboembolism (ATE), and sudden cardiac death. D-dimer and prothrombin time (PT) are powerful biomarkers used to assess coagulation function. Dysregulation in these two biomarkers may be associated with HCM in cats. This study aims to assess D-dimer levels, PT, and proteomic profiling in healthy cats in comparison to cats with symptomatic HCM. RESULTS Twenty-nine client-owned cats with HCM were enrolled, including 15 healthy control and 14 symptomatic HCM cats. The D-dimer concentration and PT were examined. Proteomic analysis was conducted by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry and liquid chromatography-tandem mass spectrometry (LC-MS/MS). In symptomatic cats, D-dimer levels were statistically significantly higher (mean ± SEM: 372.19 ng/ml ± 58.28) than in healthy cats (mean ± SEM: 208.54 ng/ml ± 10.92) with P-value of less than 0.01, while PT was statistically significantly lower in symptomatic cats (mean ± SEM: 9.8 s ± 0.15) compared to healthy cats (mean ± SEM: 11.08 s ± 0.23) with P-value of less than 0.0001. The proteomics analysis revealed upregulation of integrin subunit alpha M (ITGAM), elongin B (ELOB), and fibrillin 2 (FBN2) and downregulation of zinc finger protein 316 (ZNF316) and ectonucleoside triphosphate diphosphohydrolase 8 (ENTPD8) in symptomatic HCM cats. In addition, protein-drug interaction analysis identified the Ras signaling pathway and PI3K-Akt signaling pathway. CONCLUSIONS Cats with symptomatic HCM have higher D-dimer and lower PT than healthy cats. Proteomic profiles may be used as potential biomarkers for the detection and management of HCM in cats. The use of D-dimer as a biomarker for HCM detection and the use of proteomic profiling for a better understanding of disease mechanisms remain to be further studied in cats.
Collapse
Affiliation(s)
- Palin Jiwaganont
- Graduate School, Veterinary Clinical Studies Program, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakorn Pathom, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Siriwan Thaisakun
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Pratch Sukumolanan
- Graduate School, Veterinary Clinical Studies Program, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakorn Pathom, Thailand
| | - Soontaree Petchdee
- Department of Large Animal and Wildlife Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakorn Pathom, Thailand.
| |
Collapse
|
11
|
Liu Y, Fan X, Qian K, Wu C, Zhang L, Yuan L, Man Z, Wu S, Li P, Wang X, Li W, Zhang Y, Sun S, Yu C. Deciphering the pathogenic role of rare RAF1 heterozygous missense mutation in the late-presenting DDH. Front Genet 2024; 15:1375736. [PMID: 38952713 PMCID: PMC11215071 DOI: 10.3389/fgene.2024.1375736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/17/2024] [Indexed: 07/03/2024] Open
Abstract
Background Developmental Dysplasia of the Hip (DDH) is a skeletal disorder where late-presenting forms often escape early diagnosis, leading to limb and pain in adults. The genetic basis of DDH is not fully understood despite known genetic predispositions. Methods We employed Whole Genome Sequencing (WGS) to explore the genetic factors in late-presenting DDH in two unrelated families, supported by phenotypic analyses and in vitro validation. Results In both cases, a novel de novo heterozygous missense mutation in RAF1 (c.193A>G [p.Lys65Glu]) was identified. This mutation impacted RAF1 protein structure and function, altering downstream signaling in the Ras/ERK pathway, as demonstrated by bioinformatics, molecular dynamics simulations, and in vitro validations. Conclusion This study contributes to our understanding of the genetic factors involved in DDH by identifying a novel mutation in RAF1. The identification of the RAF1 mutation suggests a possible involvement of the Ras/ERK pathway in the pathogenesis of late-presenting DDH, indicating its potential role in skeletal development.
Collapse
Affiliation(s)
- Yuzhao Liu
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xuesong Fan
- Shandong Mental Health Center, Shandong University, Jinan, China
| | - Kun Qian
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Changshun Wu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Laibo Zhang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Lin Yuan
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhentao Man
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shuai Wu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ping Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xianquan Wang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wei Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yuanqing Zhang
- Shandong Mental Health Center, Shandong University, Jinan, China
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Chenxi Yu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Digital Health Laboratory, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
12
|
Liu Y, Xiao T, Wang Z, Ou Y, Tan Y, Chen L, Zhou N, Zou R. A circular network of adenosine-mediated mitochondrial dysfunction as coregulators of acute myocardial infarction. Int J Med Sci 2024; 21:1353-1365. [PMID: 38818463 PMCID: PMC11134589 DOI: 10.7150/ijms.97066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/10/2024] [Indexed: 06/01/2024] Open
Abstract
This study aims to explore the molecular mechanisms and associated pathways of myocardial infarction (MI). We employed a variety of analytical methods, including Mendelian Randomization (MR) analysis, transcriptome microarray data analysis, gene function and pathway enrichment analysis, untargeted metabolomic mass spectrometry analysis, and gene-metabolite interaction network analysis. The MR analysis results revealed a significant impact of mitochondrial DNA copy number on MI and coronary artery bypass grafting. Transcriptome analysis unveiled numerous differentially expressed genes associated with myocardial ischemia, with enrichment observed in cardiac function and energy metabolism pathways. Metabolomic analysis indicated a significant downregulation of mitochondrial regulation pathways in ischemic myocardium. T500 metabolite quantification analysis identified 90 differential metabolites between MI and Sham groups, emphasizing changes in metabolites associated with energy metabolism. Gene-metabolite interaction network analysis revealed the significant roles of key regulatory molecules such as HIF1A, adenosine, TBK1, ATP, NRAS, and EIF2AK3, in the pathogenesis of myocardial ischemia. In summary, this study provides important insights into the molecular mechanisms of MI and highlights interactions at multiple molecular levels, contributing to the establishment of new theoretical foundations for the diagnosis and treatment of MI.
Collapse
Affiliation(s)
- Yang Liu
- The Traditional Chinese Medicine Department, Zhongshan Huangpu People's Hospital, Zhongshan,528429, Guangdong, China
| | - Tianci Xiao
- The Traditional Chinese Medicine Department, Zhongshan Huangpu People's Hospital, Zhongshan,528429, Guangdong, China
| | - Zili Wang
- The Traditional Chinese Medicine Department, Zhongshan Huangpu People's Hospital, Zhongshan,528429, Guangdong, China
| | - Yangbin Ou
- The Traditional Chinese Medicine Department, Zhongshan Huangpu People's Hospital, Zhongshan,528429, Guangdong, China
| | - Ying Tan
- School of Medicine, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Liting Chen
- The Traditional Chinese Medicine Department, Zhongshan Huangpu People's Hospital, Zhongshan,528429, Guangdong, China
| | - Na Zhou
- Heart Center, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Rongjun Zou
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| |
Collapse
|
13
|
Wang S, Wang X, Ling L, Li C, Ren Z. RICH1 is a novel key suppressor of isoproterenol‑ or angiotensin II‑induced cardiomyocyte hypertrophy. Mol Med Rep 2024; 29:69. [PMID: 38456539 PMCID: PMC10955514 DOI: 10.3892/mmr.2024.13193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/31/2024] [Indexed: 03/09/2024] Open
Abstract
Cardiac hypertrophy is one of the key processes in the development of heart failure. Notably, small GTPases and GTPase‑activating proteins (GAPs) serve essential roles in cardiac hypertrophy. RhoGAP interacting with CIP4 homologs protein 1 (RICH1) is a RhoGAP that can regulate Cdc42/Rac1 and F‑actin dynamics. RICH1 is involved in cell proliferation and adhesion; however, to the best of our knowledge, its role in cardiac hypertrophy remains unknown. In the present study, the role of RICH1 in cardiomyocyte hypertrophy was assessed. Cell viability was analyzed using the Cell Counting Kit‑8 assay and cells surface area (CSA) was determined by cell fluorescence staining. Reverse transcription‑quantitative PCR and western blotting were used to assess the mRNA expression levels of hypertrophic marker genes, such as Nppa, Nppb and Myh7, and the protein expression levels of RICH1, respectively. RICH1 was shown to be downregulated in isoproterenol (ISO)‑ or angiotensin II (Ang II)‑treated H9c2 cells. Notably, overexpression of RICH1 attenuated the upregulation of hypertrophy‑related markers, such as Nppa, Nppb and Myh7, and the enlargement of CSA induced by ISO and Ang II. By contrast, the knockdown of RICH1 exacerbated these effects. These findings suggested that RICH1 may be a novel suppressor of ISO‑ or Ang II‑induced cardiomyocyte hypertrophy. The results of the present study will be beneficial to further studies assessing the role of RICH1 and its downstream molecules in inhibiting cardiac hypertrophy.
Collapse
Affiliation(s)
- Siqi Wang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Xin Wang
- School of Mathematics and Statistics, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Li Ling
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Cairong Li
- School of Clinical Medicine, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Zhanhong Ren
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| |
Collapse
|
14
|
Al Ashmar S, Anlar GG, Krzyslak H, Djouhri L, Kamareddine L, Pedersen S, Zeidan A. Proteomic Analysis of Prehypertensive and Hypertensive Patients: Exploring the Role of the Actin Cytoskeleton. Int J Mol Sci 2024; 25:4896. [PMID: 38732116 PMCID: PMC11084483 DOI: 10.3390/ijms25094896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 05/13/2024] Open
Abstract
Hypertension is a pervasive and widespread health condition that poses a significant risk factor for cardiovascular disease, which includes conditions such as heart attack, stroke, and heart failure. Despite its widespread occurrence, the exact cause of hypertension remains unknown, and the mechanisms underlying the progression from prehypertension to hypertension require further investigation. Recent proteomic studies have shown promising results in uncovering potential biomarkers related to disease development. In this study, serum proteomic data collected from Qatar Biobank were analyzed to identify altered protein expression between individuals with normal blood pressure, prehypertension, and hypertension and to elucidate the biological pathways contributing to this disease. The results revealed a cluster of proteins, including the SRC family, CAMK2B, CAMK2D, TEC, GSK3, VAV, and RAC, which were markedly upregulated in patients with hypertension compared to those with prehypertension (fold change ≥ 1.6 or ≤-1.6, area under the curve ≥ 0.8, and q-value < 0.05). Pathway analysis showed that the majority of these proteins play a role in actin cytoskeleton remodeling. Actin cytoskeleton reorganization affects various biological processes that contribute to the maintenance of blood pressure, including vascular tone, endothelial function, cellular signaling, inflammation, fibrosis, and mechanosensing. Therefore, the findings of this study suggest a potential novel role of actin cytoskeleton-related proteins in the progression from prehypertension to hypertension. The present study sheds light on the underlying pathological mechanisms involved in hypertension and could pave the way for new diagnostic and therapeutic approaches for the treatment of this disease.
Collapse
Affiliation(s)
- Sarah Al Ashmar
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (S.A.A.); (G.G.A.); (L.D.)
| | - Gulsen Guliz Anlar
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (S.A.A.); (G.G.A.); (L.D.)
| | - Hubert Krzyslak
- Department of Clinical Biochemistry, Aalborg University Hospital, 9000 Aalborg, Denmark;
| | - Laiche Djouhri
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (S.A.A.); (G.G.A.); (L.D.)
| | - Layla Kamareddine
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Shona Pedersen
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (S.A.A.); (G.G.A.); (L.D.)
| | - Asad Zeidan
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (S.A.A.); (G.G.A.); (L.D.)
| |
Collapse
|
15
|
Mėlinytė-Ankudavičė K, Šukys M, Kasputytė G, Krikštolaitis R, Ereminienė E, Galnaitienė G, Mizarienė V, Šakalytė G, Krilavičius T, Jurkevičius R. Association of uncertain significance genetic variants with myocardial mechanics and morphometrics in patients with nonischemic dilated cardiomyopathy. BMC Cardiovasc Disord 2024; 24:224. [PMID: 38664609 PMCID: PMC11044472 DOI: 10.1186/s12872-024-03888-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Careful interpretation of the relation between phenotype changes of the heart and gene variants detected in dilated cardiomyopathy (DCM) is important for patient care and monitoring. OBJECTIVE We sought to assess the association between cardiac-related genes and whole-heart myocardial mechanics or morphometrics in nonischemic dilated cardiomyopathy (NIDCM). METHODS It was a prospective study consisting of patients with NIDCM. All patients were referred for genetic testing and a genetic analysis was performed using Illumina NextSeq 550 and a commercial gene capture panel of 233 genes (Systems Genomics, Cardiac-GeneSGKit®). It was analyzed whether there are significant differences in clinical, two-dimensional (2D) echocardiographic, and magnetic resonance imaging (MRI) parameters between patients with the genes variants and those without. 2D echocardiography and MRI were used to analyze myocardial mechanics and morphometrics. RESULTS The study group consisted of 95 patients with NIDCM and the average age was 49.7 ± 10.5. All echocardiographic and MRI parameters of myocardial mechanics (left ventricular ejection fraction 28.4 ± 8.7 and 30.7 ± 11.2, respectively) were reduced and all values of cardiac chambers were increased (left ventricular end-diastolic diameter 64.5 ± 5.9 mm and 69.5 ± 10.7 mm, respectively) in this group. It was noticed that most cases of whole-heart myocardial mechanics and morphometrics differences between patients with and without gene variants were in the genes GATAD1, LOX, RASA1, KRAS, and KRIT1. These genes have not been previously linked to DCM. It has emerged that KRAS and KRIT1 genes were associated with worse whole-heart mechanics and enlargement of all heart chambers. GATAD1, LOX, and RASA1 genes variants showed an association with better cardiac function and morphometrics parameters. It might be that these variants alone do not influence disease development enough to be selective in human evolution. CONCLUSIONS Combined variants in previously unreported genes related to DCM might play a significant role in affecting clinical, morphometrics, or myocardial mechanics parameters.
Collapse
Affiliation(s)
- Karolina Mėlinytė-Ankudavičė
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, LT-44307, Lithuania.
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, LT-50162, Lithuania.
| | - Marius Šukys
- Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, Kaunas, LT-50161, Lithuania
| | - Gabrielė Kasputytė
- Faculty of Informatics, Vytautas Magnus University, Kaunas, LT-44248, Lithuania
| | | | - Eglė Ereminienė
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, LT-44307, Lithuania
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, LT-50162, Lithuania
| | - Grytė Galnaitienė
- Department of Radiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, LT-44307, Lithuania
| | - Vaida Mizarienė
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, LT-44307, Lithuania
| | - Gintarė Šakalytė
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, LT-44307, Lithuania
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, LT-50162, Lithuania
| | - Tomas Krilavičius
- Faculty of Informatics, Vytautas Magnus University, Kaunas, LT-44248, Lithuania
| | - Renaldas Jurkevičius
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, LT-44307, Lithuania
| |
Collapse
|
16
|
Pepe G, Appierdo R, Ausiello G, Helmer-Citterich M, Gherardini PF. A Meta-Analysis Approach to Gene Regulatory Network Inference Identifies Key Regulators of Cardiovascular Diseases. Int J Mol Sci 2024; 25:4224. [PMID: 38673810 PMCID: PMC11049946 DOI: 10.3390/ijms25084224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Cardiovascular diseases (CVDs) represent a major concern for global health, whose mechanistic understanding is complicated by a complex interplay between genetic predisposition and environmental factors. Specifically, heart failure (HF), encompassing dilated cardiomyopathy (DC), ischemic cardiomyopathy (ICM), and hypertrophic cardiomyopathy (HCM), is a topic of substantial interest in basic and clinical research. Here, we used a Partial Correlation Coefficient-based algorithm (PCC) within the context of a meta-analysis framework to construct a Gene Regulatory Network (GRN) that identifies key regulators whose activity is perturbed in Heart Failure. By integrating data from multiple independent studies, our approach unveiled crucial regulatory associations between transcription factors (TFs) and structural genes, emphasizing their pivotal roles in regulating metabolic pathways, such as fatty acid metabolism, oxidative stress response, epithelial-to-mesenchymal transition, and coagulation. In addition to known associations, our analysis also identified novel regulators, including the identification of TFs FPM315 and OVOL2, which are implicated in dilated cardiomyopathies, and TEAD1 and TEAD2 in both dilated and ischemic cardiomyopathies. Moreover, we uncovered alterations in adipogenesis and oxidative phosphorylation pathways in hypertrophic cardiomyopathy and discovered a role for IL2 STAT5 signaling in heart failure. Our findings underscore the importance of TF activity in the initiation and progression of cardiac disease, highlighting their potential as pharmacological targets.
Collapse
Affiliation(s)
- Gerardo Pepe
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.P.); (R.A.)
| | - Romina Appierdo
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.P.); (R.A.)
- PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Gabriele Ausiello
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (G.P.); (R.A.)
| | | | | |
Collapse
|
17
|
Li S, Shi Y, Yuan S, Ruan J, Pan H, Ma M, Huang G, Ji Q, Zhong Y, Jiang T. Inhibiting the MAPK pathway improves heart failure with preserved ejection fraction induced by salt-sensitive hypertension. Biomed Pharmacother 2024; 170:115987. [PMID: 38056241 DOI: 10.1016/j.biopha.2023.115987] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023] Open
Abstract
Heart failure (HF) preserved ejection fraction (HFpEF) accounts for almost 50% of HF, and hypertension is one of the pathogenies. The MAPK signaling pathway is closely linked to heart failure and hypertension; however, its function in HEpEF resulting from salt-sensitive hypertension is not well understood. In this work, a salt-sensitive hypertension-induced HEpEF model was established based on deoxycorticosterone acetate-salt (DOCA-salt) hypertension mice. The impact of the MAPK inhibitor (Doramapimod) on HEpEF induced by salt-sensitive hypertension was assessed through various measures, such as blood pressure, transthoracic echocardiography, running distance, and histological analysis, to determine its therapeutic effectiveness on cardiac function. In addition, the effects of high salt on myogenic cells were also evaluated in vitro using qRTPCR. The LV ejection fractions (LVEF) in DOCA-salt hypertension mice were over 50%, indicating that the salt-sensitive hypertension-induced HFpEF model was successful. RNA-seq revealed that the MAPK signaling pathway was upregulated in the HFpEF model compared with the normal mice, accompanied by hypertension, impaired running distance, restricted cardiac function, increased cross-sectional and fibrosis area, and upregulation of heart failure biomarkers, including GAL-3, LDHA and BNP. The application of Doramapimod could improve blood pressure, cardiomyocyte hypertrophy, and myocardial fibrosis, as well as decrease the aforementioned heart failure biomarkers. The qRTPCR results showed similar findings to these observations. Our findings suggest that the use of a MAPK inhibitor (Doramapimod) could be a potential treatment for salt-sensitive hypertension-induced HFpEF.
Collapse
Affiliation(s)
- Shicheng Li
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region; Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences, Nanning 530021, China
| | - Ying Shi
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region; Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences, Nanning 530021, China
| | - Shanshan Yuan
- Department of Cardiology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266011, China
| | - Jiangwen Ruan
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region; Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences, Nanning 530021, China
| | - Honglian Pan
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region; Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences, Nanning 530021, China
| | - Mengxiao Ma
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region; Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences, Nanning 530021, China
| | - Guoxiu Huang
- Health Management Center, The People's Hospital of Guangxi Zhuang Autonomous Region; Guangxi Health Examination Center, Nanning 530021, China
| | - Qingwei Ji
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region; Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences, Nanning 530021, China
| | - You Zhong
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region; Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences, Nanning 530021, China; Department of Cardiology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Tongmeng Jiang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China; Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
18
|
Bazgir F, Nau J, Nakhaei-Rad S, Amin E, Wolf MJ, Saucerman JJ, Lorenz K, Ahmadian MR. The Microenvironment of the Pathogenesis of Cardiac Hypertrophy. Cells 2023; 12:1780. [PMID: 37443814 PMCID: PMC10341218 DOI: 10.3390/cells12131780] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Pathological cardiac hypertrophy is a key risk factor for the development of heart failure and predisposes individuals to cardiac arrhythmia and sudden death. While physiological cardiac hypertrophy is adaptive, hypertrophy resulting from conditions comprising hypertension, aortic stenosis, or genetic mutations, such as hypertrophic cardiomyopathy, is maladaptive. Here, we highlight the essential role and reciprocal interactions involving both cardiomyocytes and non-myocardial cells in response to pathological conditions. Prolonged cardiovascular stress causes cardiomyocytes and non-myocardial cells to enter an activated state releasing numerous pro-hypertrophic, pro-fibrotic, and pro-inflammatory mediators such as vasoactive hormones, growth factors, and cytokines, i.e., commencing signaling events that collectively cause cardiac hypertrophy. Fibrotic remodeling is mediated by cardiac fibroblasts as the central players, but also endothelial cells and resident and infiltrating immune cells enhance these processes. Many of these hypertrophic mediators are now being integrated into computational models that provide system-level insights and will help to translate our knowledge into new pharmacological targets. This perspective article summarizes the last decades' advances in cardiac hypertrophy research and discusses the herein-involved complex myocardial microenvironment and signaling components.
Collapse
Affiliation(s)
- Farhad Bazgir
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (F.B.); (J.N.)
| | - Julia Nau
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (F.B.); (J.N.)
| | - Saeideh Nakhaei-Rad
- Stem Cell Biology, and Regenerative Medicine Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran;
| | - Ehsan Amin
- Institute of Neural and Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Matthew J. Wolf
- Department of Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA;
| | - Jeffry J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA;
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, Leibniz Institute for Analytical Sciences, 97078 Würzburg, Germany;
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (F.B.); (J.N.)
| |
Collapse
|
19
|
Kim D, Jeong W, Kim Y, Lee J, Cho SW, Oh CM, Park R. Pharmacologic Activation of Angiotensin-Converting Enzyme II Alleviates Diabetic Cardiomyopathy in db/db Mice by Reducing Reactive Oxidative Stress. Diabetes Metab J 2023; 47:487-499. [PMID: 37096378 PMCID: PMC10404524 DOI: 10.4093/dmj.2022.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/29/2022] [Indexed: 04/26/2023] Open
Abstract
BACKGRUOUND Diabetes mellitus is one of the most common chronic diseases worldwide, and cardiovascular disease is the leading cause of morbidity and mortality in diabetic patients. Diabetic cardiomyopathy (DCM) is a phenomenon characterized by a deterioration in cardiac function and structure, independent of vascular complications. Among many possible causes, the renin-angiotensin-aldosterone system and angiotensin II have been proposed as major drivers of DCM development. In the current study, we aimed to investigate the effects of pharmacological activation of angiotensin-converting enzyme 2 (ACE2) on DCM. METHODS The ACE2 activator diminazene aceturate (DIZE) was administered intraperitoneally to male db/db mice (8 weeks old) for 8 weeks. Transthoracic echocardiography was used to assess cardiac mass and function in mice. Cardiac structure and fibrotic changes were examined using histology and immunohistochemistry. Gene and protein expression levels were examined using quantitative reverse transcription polymerase chain reaction and Western blotting, respectively. Additionally, RNA sequencing was performed to investigate the underlying mechanisms of the effects of DIZE and identify novel potential therapeutic targets for DCM. RESULTS Echocardiography revealed that in DCM, the administration of DIZE significantly improved cardiac function as well as reduced cardiac hypertrophy and fibrosis. Transcriptome analysis revealed that DIZE treatment suppresses oxidative stress and several pathways related to cardiac hypertrophy. CONCLUSION DIZE prevented the diabetes mellitus-mediated structural and functional deterioration of mouse hearts. Our findings suggest that the pharmacological activation of ACE2 could be a novel treatment strategy for DCM.
Collapse
Affiliation(s)
- Donghyun Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Wooju Jeong
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Yumin Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jibeom Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Sung Woo Cho
- Division of Cardiology, Department of Internal Medicine, Inje University Ilsan Paik Hospital, College of Medicine, Inje University, Goyang, Korea
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutics Center, Inje University, Busan, Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Raekil Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
20
|
Wang Y, Li X, Qi M, Li X, Zhang F, Wang Y, Wu J, Shu L, Fan S, Li Y, Li Y. Pharmacological effects and mechanisms of YiYiFuZi powder in chronic heart disease revealed by metabolomics and network pharmacology. Front Mol Biosci 2023; 10:1203208. [PMID: 37426419 PMCID: PMC10327484 DOI: 10.3389/fmolb.2023.1203208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction: YiYiFuZi powder (YYFZ) is a classical formula in Chinese medicine, which is commonly used clinically for the treatment of Chronic Heart Disease (CHD), but it's pharmacological effects and mechanism of action are currently unclear. Methods: An adriamycin-induced CHD model rat was established to evaluate the pharmacological effects of YYFZ on CHD by the results of inflammatory factor level, histopathology and echocardiography. Metabolomic studies were performed on rat plasma using UPLC-Q-TOF/MS to screen biomarkers and enrich metabolic pathways; network pharmacology analysis was also performed to obtain the potential targets and pathways of YYFZ for the treatment of CHD. Results: The results showed that YYFZ significantly reduced the levels of TNF-α and BNP in the serum of rats, alleviated the disorder of cardiomyocyte arrangement and inflammatory cell infiltration, and improved the cardiac function of rats with CHD. The metabolomic analysis identified a total of 19 metabolites, related to amino acid metabolism, fatty acid metabolism, and other metabolic pathways. Network pharmacology showed that YYFZ acts through PI3K/Akt signaling pathway, MAPK signaling pathway and Ras signaling pathway. Discussion: YYFZ treatment of CHD modulates blood metabolic pattern and several protein phosphorylation cascades but importance specific changes for therapeutic effect require further studies.
Collapse
Affiliation(s)
- Yuming Wang
- School of Chinese Materia, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xue Li
- School of Chinese Materia, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Min Qi
- TIPRHUYA Advancing Innovative Medicines Ltd., Tianjin, China
| | - Xiaokai Li
- School of Chinese Materia, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fangfang Zhang
- School of Chinese Materia, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuyu Wang
- School of Chinese Materia, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junke Wu
- School of Chinese Materia, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lexin Shu
- School of Chinese Materia, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Simiao Fan
- School of Chinese Materia, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunfei Li
- School of Chinese Materia, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yubo Li
- School of Chinese Materia, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
21
|
Zhang L, Yang Y, Zhang L, Ma J, Sun R, Tian Y, Yuan X, Liu B, Yu T, Jiang Z. Identification of long non-coding RNA in formaldehyde-induced cardiac dysplasia in rats. Food Chem Toxicol 2023; 174:113653. [PMID: 36758786 DOI: 10.1016/j.fct.2023.113653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/09/2023]
Abstract
Formaldehyde exposure during pregnancy can cause fetal congenital heart disease (CHD). However, the regulatory mechanism remains unclear. Studies on the biology of long non-coding RNAs (lncRNAs) show that lncRNAs can influence cardiac development and disease. However, expression patterns and regulatory mechanisms of action of lncRNAs in formaldehyde-induced CHD remain unclear. We used high-throughput sequencing strategies as a means of identifying lncRNA expression profiles in heart tissues of normal and formaldehyde-exposed newborn rats. Overall, 763 differentially expressed lncRNAs were identified, including 325 and 438 that were respectively up-regulated and down-regulated. GO and KEGG analyses indicated that the Ras and hedgehog signaling pathways may be important regulatory pathways in CHD caused by exposure to formaldehyde. A lncRNA-miRNA-mRNA co-expression network was constructed and a key miRNA, rno-miR-665, was identified. Furthermore, qRT-PCR analysis verified that the novel lncRNAs: MSTRG.27313.2, MSTRG.30629.2, MSTRG.36520.33, MSTRG.91234.1, and MSTRG.91233.9, were upregulated in the formaldehyde-exposed group. These differentially expressed lncRNAs identified during formaldehyde-induced CHD in newborn rats help explain CHD pathogenesis and provide an effective reference for diagnosing and treating CHD.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China
| | - Yanyan Yang
- Department of Immunology, Basic Medicine School, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, PR China
| | - Lin Zhang
- Department of Microbiology, Linyi Center for Disease Control and Prevention, Linyi, 276000, PR China
| | - Jianmin Ma
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China
| | - Ruicong Sun
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China
| | - Yu Tian
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China
| | - Xiaoli Yuan
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China
| | - Bingyu Liu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Road No. 38 Dengzhou, Qingdao, 266021, PR China.
| | - Zhirong Jiang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266100, Shandong, PR China.
| |
Collapse
|
22
|
Bian R, Xu X, Li W. Uncovering the molecular mechanisms between heart failure and end-stage renal disease via a bioinformatics study. Front Genet 2023; 13:1037520. [PMID: 36704339 PMCID: PMC9871391 DOI: 10.3389/fgene.2022.1037520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Background: Heart failure (HF) is not only a common complication in patients with end-stage renal disease (ESRD) but also a major cause of death. Although clinical studies have shown that there is a close relationship between them, the mechanism of its occurrence is unclear. The aim of this study is to explore the molecular mechanisms between HF and ESRD through comprehensive bioinformatics analysis, providing a new perspective on the crosstalk between these two diseases. Methods: The HF and ESRD datasets were downloaded from the Gene Expression Omnibus (GEO) database; we identified and analyzed common differentially expressed genes (DEGs). First, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set variation analyses (GSVA) were applied to explore the potential biological functions and construct protein-protein interaction (PPI) networks. Also, four algorithms, namely, random forest (RF), Boruta algorithm, logical regression of the selection operator (LASSO), and support vector machine-recursive feature elimination (SVM-RFE), were used to identify the candidate genes. Subsequently, the diagnostic efficacy of hub genes for HF and ESRD was evaluated using eXtreme Gradient Boosting (XGBoost) algorithm. CIBERSORT was used to analyze the infiltration of immune cells. Thereafter, we predicted target microRNAs (miRNAs) using databases (miRTarBase, TarBase, and ENOCRI), and transcription factors (TFs) were identified using the ChEA3 database. Cytoscape software was applied to construct mRNA-miRNA-TF regulatory networks. Finally, the Drug Signatures Database (DSigDB) was used to identify potential drug candidates. Results: A total of 68 common DEGs were identified. The enrichment analysis results suggest that immune response and inflammatory factors may be common features of the pathophysiology of HF and ESRD. A total of four hub genes (BCL6, CCL5, CNN1, and PCNT) were validated using RF, LASSO, Boruta, and SVM-RFE algorithms. Their AUC values were all greater than 0.8. Immune infiltration analysis showed that immune cells such as macrophages, neutrophils, and NK cells were altered in HF myocardial tissue, while neutrophils were significantly correlated with all four hub genes. Finally, 11 target miRNAs and 10 TFs were obtained, and miRNA-mRNA-TF regulatory network construction was performed. In addition, 10 gene-targeted drugs were discovered. Conclusion: Our study revealed important crosstalk between HF and ESRD. These common pathways and pivotal genes may provide new ideas for further clinical treatment and experimental studies.
Collapse
|
23
|
The Traditional Chinese Medicine Gedan Jiangya Decoction Alleviates Left Ventricular Hypertrophy via Suppressing the Ras/ERK1/2 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6924197. [PMID: 36437833 PMCID: PMC9699742 DOI: 10.1155/2022/6924197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/31/2022] [Accepted: 08/07/2022] [Indexed: 11/19/2022]
Abstract
Gedan Jiangya Decoction (GJD), a Chinese herbal medicine composed of six botanical medicines, was designed to treat hypertension (patent published number (CN114246896A)). The overexpression of the ERK (extracellular signal-regulated kinase) signaling pathway is essential in developing left ventricular hypertrophy (LVH). This study aimed to evaluate GJD's effects on LVH in spontaneously hypertensive rats (SHRs) and examine its potential mechanisms on Ras/ERK1/2 pathway regulation. Thirty-five ten-week-old SHRs were randomly assigned to one of five groups: GJD low dosage, medium dose, high dose, model, and captopril. Wistar–Kyoto (WKY) rats served as the control group. All rats received a 6-week treatment. The following parameters were measured: systolic (SBP) and diastolic blood pressure (DBP), left ventricular mass index (LVMI), and serum TGF-beta1. The pathologic structure was determined by H & E staining and Masson. TGF-beta1, Ras, ERK1/2, and C-Fos levels were determined using western blotting and real-time qPCR. SBP, DBP, and LVMI were reduced significantly in the GJD group compared with the model group. GJD inhibited TGF-beta1, Ras, ERK1/2, and C-Fos expression in LVH. In conclusion, GJD reduced the Ras/ERK1/2 pathway expression, which decreased hypertension-induced heart hypertrophy. GJD may protect hypertension-induced myocardial hypertrophy by altering gene expression patterns in the heart.
Collapse
|
24
|
Shimozawa H, Sato T, Osaka H, Takeda A, Miyauchi A, Omika N, Yada Y, Kono Y, Murayama K, Okazaki Y, Kishita Y, Yamagata T. A Case of Infantile Mitochondrial Cardiomyopathy Treated with a Combination of Low-Dose Propranolol and Cibenzoline for Left Ventricular Outflow Tract Stenosis. Int Heart J 2022; 63:970-977. [DOI: 10.1536/ihj.21-859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
| | | | | | - Atsuhito Takeda
- Department of Pediatrics, Faculty of Medicine and Graduate School of Medicine, Hokkaido University
| | | | - Narumi Omika
- Department of Pediatrics, Jichi Medical University
| | - Yukari Yada
- Department of Pediatrics, Jichi Medical University
| | - Yumi Kono
- Department of Pediatrics, Jichi Medical University
| | - Kei Murayama
- Center for Medical Genetics and Department of Metabolism, Chiba Children's Hospital
| | - Yasushi Okazaki
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University
| | - Yoshihito Kishita
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University
| | | |
Collapse
|
25
|
Stagi S, Ferrari V, Ferrari M, Priolo M, Tartaglia M. Inside the Noonan "universe": Literature review on growth, GH/IGF axis and rhGH treatment: Facts and concerns. Front Endocrinol (Lausanne) 2022; 13:951331. [PMID: 36060964 PMCID: PMC9434367 DOI: 10.3389/fendo.2022.951331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/18/2022] [Indexed: 12/21/2022] Open
Abstract
Noonan syndrome (NS) is a disorder characterized by a typical facial gestalt, congenital heart defects, variable cognitive deficits, skeletal defects, and short stature. NS is caused by germline pathogenic variants in genes coding proteins with a role in the RAS/mitogen-activated protein kinase signaling pathway, and it is typically associated with substantial genetic and clinical complexity and variability. Short stature is a cardinal feature in NS, with evidence indicating that growth hormone (GH) deficiency, partial GH insensitivity, and altered response to insulin-like growth factor I (IGF-1) are contributing events for growth failure in these patients. Decreased IGF-I, together with low/normal responses to GH pharmacological provocation tests, indicating a variable presence of GH deficiency/resistance, in particular in subjects with pathogenic PTPN11 variants, are frequently reported. Nonetheless, short- and long-term studies have demonstrated a consistent and significant increase in height velocity (HV) in NS children and adolescents treated with recombinant human GH (rhGH). While the overall experience with rhGH treatment in NS patients with short stature is reassuring, it is difficult to systematically compare published data due to heterogeneous protocols, potential enrolment bias, the small size of cohorts in many studies, different cohort selection criteria and varying durations of therapy. Furthermore, in most studies, the genetic information is lacking. NS is associated with a higher risk of benign and malignant proliferative disorders and hypertrophic cardiomyopathy, and rhGH treatment may further increase risk in these patients, especially as dosages vary widely. Herein we provide an updated review of aspects related to growth, altered function of the GH/IGF axis and cell response to GH/IGF stimulation, rhGH treatment and its possible adverse events. Given the clinical variability and genetic heterogeneity of NS, treatment with rhGH should be personalized and a conservative approach with judicious surveillance is recommended. Depending on the genotype, an individualized follow-up and close monitoring during rhGH treatments, also focusing on screening for neoplasms, should be considered.
Collapse
Affiliation(s)
- Stefano Stagi
- Department of Health Sciences, University of Florence, Anna Meyer Children’s University Hospital, Florence, Italy
| | - Vittorio Ferrari
- Department of Health Sciences, University of Florence, Anna Meyer Children’s University Hospital, Florence, Italy
| | - Marta Ferrari
- Department of Health Sciences, University of Florence, Anna Meyer Children’s University Hospital, Florence, Italy
| | - Manuela Priolo
- Medical Genetics Unit, Grande Ospedale Metropolitano “Bianchi-Melacrino-Morelli”, Reggio Calabria, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| |
Collapse
|
26
|
Marfella R, D'Onofrio N, Mansueto G, Grimaldi V, Trotta MC, Sardu C, Sasso FC, Scisciola L, Amarelli C, Esposito S, D'Amico M, Golino P, De Feo M, Signoriello G, Paolisso P, Gallinoro E, Vanderheyden M, Maiello C, Balestrieri ML, Barbato E, Napoli C, Paolisso G. Glycated ACE2 reduces anti-remodeling effects of renin-angiotensin system inhibition in human diabetic hearts. Cardiovasc Diabetol 2022; 21:146. [PMID: 35932065 PMCID: PMC9356400 DOI: 10.1186/s12933-022-01573-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High glycated-hemoglobin (HbA1c) levels correlated with an elevated risk of adverse cardiovascular outcomes despite renin-angiotensin system (RAS) inhibition in type-2 diabetic (T2DM) patients with reduced ejection fraction. Using the routine biopsies of non-T2DM heart transplanted (HTX) in T2DM recipients, we evaluated whether the diabetic milieu modulates glycosylated ACE2 (GlycACE2) levels in cardiomyocytes, known to be affected by non-enzymatic glycosylation, and the relationship with glycemic control. OBJECTIVES We investigated the possible effects of GlycACE2 on the anti-remodeling pathways of the RAS inhibitors by evaluating the levels of Angiotensin (Ang) 1-9, Ang 1-7, and Mas receptor (MasR), Nuclear-factor of activated T-cells (NFAT), and fibrosis in human hearts. METHODS We evaluated 197 first HTX recipients (107 non-T2DM, 90 T2DM). All patients were treated with angiotensin-converting enzyme inhibitor (ACE-I) or angiotensin receptor blocker (ARB) at hospital discharge. Patients underwent clinical evaluation (metabolic status, echocardiography, coronary CT-angiography, and endomyocardial biopsies). Biopsies were used to evaluate ACE2, GlycACE2, Ang 1-9, Ang 1-7, MasR, NAFT, and fibrosis. RESULTS GlycACE2 was higher in T2DM compared tonon-T2DM cardiomyocytes. Moreover, reduced expressions of Ang 1-9, Ang 1-7, and MasR were observed, suggesting impaired effects of RAS-inhibition in diabetic hearts. Accordingly, biopsies from T2DM recipients showed higher fibrosis than those from non-T2DM recipients. Notably, the expression of GlycACE2 in heart biopsies was strongly dependent on glycemic control, as reflected by the correlation between mean plasma HbA1c, evaluated quarterly during the 12-month follow-up, and GlycACE2 expression. CONCLUSION Poor glycemic control, favoring GlycACE2, may attenuate the cardioprotective effects of RAS-inhibition. However, the achievement of tight glycemic control normalizes the anti-remodeling effects of RAS-inhibition. TRIAL REGISTRATION https://clinicaltrials.gov/ NCT03546062.
Collapse
Affiliation(s)
- Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, Università degli Studi della Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138, Naples, Italy.,Mediterranea Cardiocentro, Naples, Italy
| | - Nunzia D'Onofrio
- Department of Precision Medicine, The University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Gelsomina Mansueto
- Department of Advanced Medical and Surgical Sciences, Università degli Studi della Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138, Naples, Italy
| | - Vincenzo Grimaldi
- Department of Advanced Medical and Surgical Sciences, Università degli Studi della Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138, Naples, Italy
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, Università degli Studi della Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138, Naples, Italy.
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, Università degli Studi della Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138, Naples, Italy
| | - Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, Università degli Studi della Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138, Naples, Italy
| | - Cristiano Amarelli
- Unit of Cardiac Surgery and Transplants, AORN Ospedali dei Colli-Monaldi Hospital, 80131, Naples, Italy
| | | | - Michele D'Amico
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Paolo Golino
- Cardiology Division, University "L. Vanvitelli" - Monaldi Hospital, 80131, Naples, Italy
| | - Marisa De Feo
- Department of Cardio-Thoracic Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Signoriello
- Statistical Unit-Department of Mental Health and Public Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Pasquale Paolisso
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium.,Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Emanuele Gallinoro
- Cardiology Division, University "L. Vanvitelli" - Monaldi Hospital, 80131, Naples, Italy.,Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium
| | | | - Ciro Maiello
- Unit of Cardiac Surgery and Transplants, AORN Ospedali dei Colli-Monaldi Hospital, 80131, Naples, Italy
| | - Maria Luisa Balestrieri
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Emanuele Barbato
- Cardiovascular Center Aalst, OLV-Clinic, Aalst, Belgium.,Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences, Università degli Studi della Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138, Naples, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, Università degli Studi della Campania "Luigi Vanvitelli", Piazza Miraglia, 2, 80138, Naples, Italy.,Mediterranea Cardiocentro, Naples, Italy
| |
Collapse
|
27
|
Silva GF, da Silva JS, de Alencar AKN, de Moraes Carvalho da Silva M, Montagnoli TL, de Souza Rocha B, de Freitas RHCN, Sudo RT, Fraga CAM, Zapata-Sudo G. Novel p38 Mitogen-Activated Protein Kinase Inhibitor Reverses Hypoxia-Induced Pulmonary Arterial Hypertension in Rats. Pharmaceuticals (Basel) 2022; 15:ph15070900. [PMID: 35890198 PMCID: PMC9316801 DOI: 10.3390/ph15070900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/05/2022] [Accepted: 07/16/2022] [Indexed: 11/22/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) signaling is strongly implicated in cardiovascular remodeling in pulmonary hypertension (PH) and right ventricle (RV) failure. The effects of a newly designed p38 inhibitor, LASSBio-1824, were investigated in experimentally induced PH. Male Wistar rats were exposed to hypoxia and SU5416 (SuHx), and normoxic rats were used as controls. Oral treatment was performed for 14 days with either vehicle or LASSBio-1824 (50 mg/kg). Pulmonary vascular resistance and RV structure and function were assessed by echocardiography and catheterization. Histological, immunohistochemical and Western blot analysis of lung and RV were performed to investigate cardiovascular remodeling and inflammation. Treatment with LASSBio-1824 normalized vascular resistance by attenuating vessel muscularization and endothelial dysfunction. In the heart, treatment decreased RV systolic pressure, hypertrophy and collagen content, improving cardiac function. Protein content of TNF-α, iNOS, phosphorylated p38 and caspase-3 were reduced both in lung vessels and RV tissues after treatment and a reduced activation of transcription factor c-fos was found in cardiomyocytes of treated SuHx rats. Therefore, LASSBio-1824 represents a potential candidate for remodeling-targeted treatment of PH.
Collapse
Affiliation(s)
- Grazielle Fernandes Silva
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.F.S.); (J.S.d.S.); (A.K.N.d.A.); (M.d.M.C.d.S.); (T.L.M.); (B.d.S.R.); (R.H.C.N.d.F.); or (R.T.S.)
- Programa de Pós-Graduação em Cardiologia, Instituto do Coração Edson Saad, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil
| | - Jaqueline Soares da Silva
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.F.S.); (J.S.d.S.); (A.K.N.d.A.); (M.d.M.C.d.S.); (T.L.M.); (B.d.S.R.); (R.H.C.N.d.F.); or (R.T.S.)
- Programa de Pós-Graduação em Cardiologia, Instituto do Coração Edson Saad, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil
| | - Allan Kardec Nogueira de Alencar
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.F.S.); (J.S.d.S.); (A.K.N.d.A.); (M.d.M.C.d.S.); (T.L.M.); (B.d.S.R.); (R.H.C.N.d.F.); or (R.T.S.)
| | - Marina de Moraes Carvalho da Silva
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.F.S.); (J.S.d.S.); (A.K.N.d.A.); (M.d.M.C.d.S.); (T.L.M.); (B.d.S.R.); (R.H.C.N.d.F.); or (R.T.S.)
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Tadeu Lima Montagnoli
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.F.S.); (J.S.d.S.); (A.K.N.d.A.); (M.d.M.C.d.S.); (T.L.M.); (B.d.S.R.); (R.H.C.N.d.F.); or (R.T.S.)
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Bruna de Souza Rocha
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.F.S.); (J.S.d.S.); (A.K.N.d.A.); (M.d.M.C.d.S.); (T.L.M.); (B.d.S.R.); (R.H.C.N.d.F.); or (R.T.S.)
- Programa de Pós-Graduação em Cardiologia, Instituto do Coração Edson Saad, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil
| | - Rosana Helena Coimbra Nogueira de Freitas
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.F.S.); (J.S.d.S.); (A.K.N.d.A.); (M.d.M.C.d.S.); (T.L.M.); (B.d.S.R.); (R.H.C.N.d.F.); or (R.T.S.)
| | - Roberto Takashi Sudo
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.F.S.); (J.S.d.S.); (A.K.N.d.A.); (M.d.M.C.d.S.); (T.L.M.); (B.d.S.R.); (R.H.C.N.d.F.); or (R.T.S.)
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Carlos Alberto Manssour Fraga
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.F.S.); (J.S.d.S.); (A.K.N.d.A.); (M.d.M.C.d.S.); (T.L.M.); (B.d.S.R.); (R.H.C.N.d.F.); or (R.T.S.)
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Correspondence: (C.A.M.F.); or (G.Z.-S.); Tel./Fax: +55-21-39386478 (C.A.M.F.); +55-21-39386505 (G.Z.-S.)
| | - Gisele Zapata-Sudo
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (G.F.S.); (J.S.d.S.); (A.K.N.d.A.); (M.d.M.C.d.S.); (T.L.M.); (B.d.S.R.); (R.H.C.N.d.F.); or (R.T.S.)
- Programa de Pós-Graduação em Cardiologia, Instituto do Coração Edson Saad, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, RJ, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Correspondence: (C.A.M.F.); or (G.Z.-S.); Tel./Fax: +55-21-39386478 (C.A.M.F.); +55-21-39386505 (G.Z.-S.)
| |
Collapse
|
28
|
Guler MN, Tscheiller NM, Sabater-Molina M, Gimeno JR, Nebigil CG. Evidence for reciprocal network interactions between injured hearts and cancer. Front Cardiovasc Med 2022; 9:929259. [PMID: 35911555 PMCID: PMC9334681 DOI: 10.3389/fcvm.2022.929259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Heart failure (HF) and cancer are responsible for 50% of all deaths in middle-aged people. These diseases are tightly linked, which is supported by recent epidemiological studies and case control studies, demonstrating that HF patients have a higher risk to develop cancer such as lung and breast cancer. For HF patients, a one-size-fits-all clinical management strategy is not effective and patient management represents a major economical and clinical burden. Anti-cancer treatments-mediated cardiotoxicity, leading to HF have been extensively studied. However, recent studies showed that even before the initiation of cancer therapy, cancer patients presented impairments in the cardiovascular functions and exercise capacity. Thus, the optimal cardioprotective and surveillance strategies should be applied to cancer patients with pre-existing HF. Recently, preclinical studies addressed the hypothesis that there is bilateral interaction between cardiac injury and cancer development. Understanding of molecular mechanisms of HF-cancer interaction can define the profiles of bilateral signaling networks, and identify the disease-specific biomarkers and possibly therapeutic targets. Here we discuss the shared pathological events, and some treatments of cancer- and HF-mediated risk incidence. Finally, we address the evidences on bilateral connection between cardiac injury (HF and early cardiac remodeling) and cancer through secreted factors (secretoms).
Collapse
Affiliation(s)
- Melisa N. Guler
- Faculty of Medicine, University of Campania Luigi Vanvitelli, Caserta, Italy
- University of Strasbourg, INSERM, UMR 1260, Nanoregenerative Medicine, Strasbourg, France
- Fédération de Médecine Translationnelle de l’Université de Strasbourg, Strasbourg, France
| | - Nathalie M. Tscheiller
- University of Strasbourg, INSERM, UMR 1260, Nanoregenerative Medicine, Strasbourg, France
- Fédération de Médecine Translationnelle de l’Université de Strasbourg, Strasbourg, France
| | - Maria Sabater-Molina
- Servicio de Cardiología, Laboratorio de Cardiogenética, Centro de Investigacion Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Hospital Clínico Universitario Virgen de la Arrixaca-IMIB, Murcia, Spain
| | - Juan R. Gimeno
- Servicio de Cardiología, Laboratorio de Cardiogenética, Centro de Investigacion Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Hospital Clínico Universitario Virgen de la Arrixaca-IMIB, Murcia, Spain
| | - Canan G. Nebigil
- University of Strasbourg, INSERM, UMR 1260, Nanoregenerative Medicine, Strasbourg, France
- Fédération de Médecine Translationnelle de l’Université de Strasbourg, Strasbourg, France
- *Correspondence: Canan G. Nebigil,
| |
Collapse
|
29
|
The Rab GTPase in the heart: Pivotal roles in development and disease. Life Sci 2022; 306:120806. [PMID: 35841978 DOI: 10.1016/j.lfs.2022.120806] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/03/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022]
Abstract
Rab proteins are a family of small GTPases that function as molecular switches of intracellular vesicle formation and membrane trafficking. As a key factor, Rab GTPase participates in autophagy and protein transport and acts as the central hub of membrane trafficking in eukaryotes. The role of Rab GTPase in neurodegenerative disorders, such as Alzheimer's and Parkinson's, has been extensively investigated; however, its implication in cardiovascular embryogenesis and diseases remains largely unknown. In this review, we summarize previous findings and reveal their importance in the onset and progression of cardiac diseases, as well as their emergence as potential therapeutic targets for cardiovascular disease.
Collapse
|
30
|
Zhang X, Gao Y, Wu H, Mao Y. Hsa_circ_0003748 promotes disease progression in rheumatic valvular heart disease by sponging miR-577. J Clin Lab Anal 2022; 36:e24487. [PMID: 35535387 PMCID: PMC9169177 DOI: 10.1002/jcla.24487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/07/2022] Open
Abstract
The diagnosis and treatment of rheumatic valvular heart disease (RVHD) require substantial improvements. Studies found that circular RNAs (circRNAs) are involved in the progression of cardiovascular diseases. We screened target hsa_circ_0003748 by circRNA microarrays uploaded to a database. We used fluorescence in situ hybridization to determine the cellular location of hsa_circ_0003748. A dual-luciferase reporter gene assay revealed that has_circ_0003748 might bind the miRNA miR-577. In hVIC cells (an RVHD cell line), Cell Counting Kit-8, Transwell, and flow cytometry assays measured proliferation, migration, and cell cycle and apoptosis, respectively. We found that hsa_circ_0003748 was localized in the cytoplasm; hsa_circ_0003748 promoted the proliferation and migration of hVIC cells, arrested the cell cycle in the G2/M phase, and inhibited apoptosis. These phenomena may result from hsa_circ_0003748 promoting RVHD after sponging miR-577. Bioinformatic analysis revealed that hsa_circ_0003748 might affect RVHD progression by affecting transcription and the MAPK signaling pathway, the Ras signaling pathway, the cAMP signaling pathway, the Rap1 signaling pathway, and other signaling pathways.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- Cardio-vascular Surgery, Ningbo First Hospital, Ningbo, China
| | - Yakun Gao
- Cardio-vascular Surgery, Ningbo First Hospital, Ningbo, China
| | - Hongyu Wu
- Cardio-vascular Surgery, Ningbo First Hospital, Ningbo, China
| | - Yong Mao
- Cardio-vascular Surgery, Ningbo First Hospital, Ningbo, China
| |
Collapse
|
31
|
Szczawińska-Popłonyk A, Popłonyk N, Niedziela M, Sowińska-Seidler A, Sztromwasser P, Jamsheer A, Obara-Moszyńska M. Case report: The cardio-facio-cutaneous syndrome due to a novel germline mutation in MAP2K1: A multifaceted disease with immunodeficiency and short stature. Front Pediatr 2022; 10:990111. [PMID: 36313893 PMCID: PMC9614356 DOI: 10.3389/fped.2022.990111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022] Open
Abstract
Cardio-facio-cutaneous syndrome (CFCS) belongs to the group of RASopathies, clinical disorders defined by disruptions in the RAS/MAPK signaling pathway. It is caused by heterozygous gain-of-function germline mutations in genes encoding protein kinases: BRAF, MAP2K1 (MEK1), MAP2K2 (MEK2), and in the GTPase-encoding gene KRAS. CFCS is characterized by craniofacial dysmorphic features, congenital heart defects, severe malnutrition, proportionate short stature, anomalies within the structure of skin and hair, and psychomotor disability. The pathophysiology of growth impairment is multifactorial with feeding difficulties, growth hormone deficiency, and insensitivity. Immunodeficiency has not been hitherto reported as an integral part of CFCS yet an increased activation of the RAS/MAPK signaling pathway may contribute to explaining the causal relationship between RASopathy and the dysfunctions within the B and T lymph cell compartments resulting in a deficiency in T cell costimulation and B cell maturation with impaired class switch recombination, somatic hypermutation, and high-affinity antibody production. We report on a boy born prematurely at 32 WGA, with the perinatal period complicated by pneumonia, respiratory distress syndrome, and valvular pulmonary stenosis. The boy suffered from recurrent pneumonia, obstructive bronchitis, sepsis, urinary tract infection, and recurrent fevers. He presented with severe hypotrophy, psychomotor disability, short stature, craniofacial dysmorphism, dental hypoplasia, sparse hair, and cryptorchidism. Whole genome sequencing showed a novel heterozygous pathogenic germline missense variant: c.364A > G; p.Asn122Asp in the MAP2K1 gene, supporting the diagnosis of CFCS. The immunological workup revealed hypogammaglobulinemia, IgG subclass, and specific antibody deficiency accompanied by decreased numbers of T helper cells and naive and memory B cells. Replacement immunoglobulin therapy with timely antibiotic prophylaxis were instituted. At the age of six years, growth hormone deficiency was diagnosed and the rGH therapy was started. The ever-increasing progress in genetic studies contributes to establishing the definitive CFCS diagnosis and sheds the light on the interrelated genotype-phenotype heterogeneity of RASopathies. Herein, we add new phenotypic features of predominating humoral immunodeficiency to the symptomatology of CFCS with a novel mutation in MAP2K1. While CFCS is a multifaceted disease, increased pediatricians' awareness is needed to prevent the delay in diagnostics and therapeutic interventions.
Collapse
Affiliation(s)
- Aleksandra Szczawińska-Popłonyk
- Department of Pediatric Pneumonology, Allergy and Clinical Immunology, Institute of Pediatrics, Poznań University of Medical Sciences, Poznań, Poland
| | - Natalia Popłonyk
- Student Scientific Society for Pediatric Endocrinology, Poznań University of Medical Sciences, Poznań, Poland
| | - Marek Niedziela
- Department of Pediatric Endocrinology and Rheumatology, Institute of Pediatrics, Poznań University of Medical Sciences, Poznań, Poland
| | - Anna Sowińska-Seidler
- Department of Medical Genetics, Poznań University of Medical Sciences, Poznań, Poland
| | - Paweł Sztromwasser
- Department of Biostatistics and Translational Medicine, Medical University of Łódź, Łódź, Poland.,MNM Diagnostics, Poznań, Poland
| | - Aleksander Jamsheer
- Department of Medical Genetics, Poznań University of Medical Sciences, Poznań, Poland
| | - Monika Obara-Moszyńska
- Department of Pediatric Endocrinology and Rheumatology, Institute of Pediatrics, Poznań University of Medical Sciences, Poznań, Poland
| |
Collapse
|