1
|
Cheng L, Tao J, Lu P, Liang T, Li X, Chang D, Su H, He W, Qu Z, Li H, Mu W, Zhang W, Liu N, Zhang J, Cao P, Jin J. Manipulation in root-associated microbiome via carbon nanosol for plant growth improvements. J Nanobiotechnology 2024; 22:685. [PMID: 39516921 PMCID: PMC11549841 DOI: 10.1186/s12951-024-02971-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Modulating the microbiome with nanomaterials has been proposed to improve plant growth, and reduce reliance on external inputs. Carbon Nanosol (CNS) was attracted for its potential to improve plant productivity. However, the mechanism between CNS and rhizosphere microorganisms remained largely elusive. RESULTS Here, we tried to systematically explore the effects of CNS (600 and 1200 mg/L by concentration) on tobacco growth, soil physical properties, and root-associated microbiome. The influence of CNS on soil physicochemical properties and plant growth was significant and dose-dependent, leading to a 28.82% increase in biomass accumulation by 600 mg/L CNS. Comparison between the CNS-treated and control plants revealed significant differences in microbiome composition, including 1148 distinct ASVs (923 bacteria and 225 fungi), microbiome interactions, and metabolic function of root-associated microbiomes. Fungal and bacterial communities had different response patterns for CNS treatment, with phased and dose-dependent effects, with the most significant changes in microbial community structure observed at 1200 mg/L after 10 days of treatment. Microbial networks of CNS-treated plants had more nodes and edges, higher connectivity, and more hub microorganisms than those of control plants. Compared with control, CNS significantly elevated abundances of various bacterial biomarkers (such as Sphingomonas and Burkholderia) and fungi biomarkers (including Penicillium, Myceliophthora, and Talaromyces), which were potential plant-beneficial organisms. Functional prediction based on metagenomic data demonstrated pathways related to nutrient cycling being greatly enriched under CNS treatment. Furthermore, 391 culturable bacteria and 44 culturable fungi were isolated from soil and root samples. Among them, six bacteria and two fungi strains enriched upon CNS treatment were validated to have plant growth promotion effect, and two fungi (Cladosporium spp. and Talaromyces spp.) played their roles by mediating volatile organic compounds (VOCs). To some extent, the driving and shaping of the microbiome by CNS contributed to its impact on plant growth and development. CONCLUSION Our results revealed the key role of root-associated microbiota in mediating the interaction between CNS and plants, thus providing valuable insights and strategies for harnessing CNS to enhance plant growth.
Collapse
Affiliation(s)
- Lingtong Cheng
- Beijing Life Science Academy, Beijing, 102200, China
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Jiemeng Tao
- Beijing Life Science Academy, Beijing, 102200, China
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Peng Lu
- Beijing Life Science Academy, Beijing, 102200, China
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Taibo Liang
- Key Laboratory of Ecological Environment and Tobacco Quality, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Xutao Li
- Henan Provincial Tobacco Company, Zhengzhou, 450001, China
| | - Dong Chang
- Henan Provincial Tobacco Company, Zhengzhou, 450001, China
| | - Huan Su
- Beijing Life Science Academy, Beijing, 102200, China
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Wei He
- Fujian Tobacco Industry Co., Ltd, Xiamen, 361001, China
| | - Zechao Qu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - He Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Wenjun Mu
- Beijing Life Science Academy, Beijing, 102200, China
- Key Laboratory of Ecological Environment and Tobacco Quality, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Wei Zhang
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, China
| | - Nan Liu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, China
| | - Jianfeng Zhang
- Beijing Life Science Academy, Beijing, 102200, China
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Peijian Cao
- Beijing Life Science Academy, Beijing, 102200, China.
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Jingjing Jin
- Beijing Life Science Academy, Beijing, 102200, China.
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Adnani M, El Hazzat N, El Alaoui MA, Selmaoui K, Benkirane R, Ouazzani Touhami A, Douira A. In vitro and in vivo study of the antagonistic effects of a Trichoderma strain against four isolates of Fusarium that are pathogenic to chickpea. 3 Biotech 2024; 14:271. [PMID: 39430773 PMCID: PMC11489381 DOI: 10.1007/s13205-024-04112-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024] Open
Abstract
This study investigated the antagonistic activity of Trichoderma asperellum against chickpea Fusarium wilt through in vitro and in vivo experiments. The dual culture test showed that Trichoderma had a significant inhibitory effect on the growth of the tested Fusarium isolates, with an inhibition rate ranging from 71.33% to 80.66%. The volatile and non-volatile metabolites produced by Trichoderma also showed antagonistic effects, with a growth inhibition rate ranging from 47.33% to 51.33% and a colonization rate ranging from 60% to 67%. In vivo experiments demonstrated that treating chickpea seeds with Trichoderma asperellum 48 h after inoculation with Fusarium significantly enhanced chickpea growth compared to seeds inoculated with Fusarium alone. Arial part length enhancement ranged between 69.3% and 92,19% while root length increased by 61,9% and 127%, this implied a significant improvement in biomass. These findings highlight Trichoderma's potential in controlling chickpea Fusarium wilt and enhancing plant growth, making it an environmentally friendly method in sustainable agriculture and crop protection.
Collapse
Affiliation(s)
- Manal Adnani
- Laboratoire des Productions Végétales, Animales et Agro-industrie, Equipe de botanique, Biotechnologie et Protection des Plantes, Département de Biologie, Faculté des Sciences, Université Ibn Tofail, Campus Universitaire, BP 242 Kenitra, Morocco
| | - Naila El Hazzat
- Laboratoire des Productions Végétales, Animales et Agro-industrie, Equipe de botanique, Biotechnologie et Protection des Plantes, Département de Biologie, Faculté des Sciences, Université Ibn Tofail, Campus Universitaire, BP 242 Kenitra, Morocco
| | - Moulay Abdelaziz El Alaoui
- Laboratoire des Productions Végétales, Animales et Agro-industrie, Equipe de botanique, Biotechnologie et Protection des Plantes, Département de Biologie, Faculté des Sciences, Université Ibn Tofail, Campus Universitaire, BP 242 Kenitra, Morocco
| | - Karima Selmaoui
- Laboratoire des Productions Végétales, Animales et Agro-industrie, Equipe de botanique, Biotechnologie et Protection des Plantes, Département de Biologie, Faculté des Sciences, Université Ibn Tofail, Campus Universitaire, BP 242 Kenitra, Morocco
| | - Rachid Benkirane
- Laboratoire des Productions Végétales, Animales et Agro-industrie, Equipe de botanique, Biotechnologie et Protection des Plantes, Département de Biologie, Faculté des Sciences, Université Ibn Tofail, Campus Universitaire, BP 242 Kenitra, Morocco
| | - Amina Ouazzani Touhami
- Laboratoire des Productions Végétales, Animales et Agro-industrie, Equipe de botanique, Biotechnologie et Protection des Plantes, Département de Biologie, Faculté des Sciences, Université Ibn Tofail, Campus Universitaire, BP 242 Kenitra, Morocco
| | - Allal Douira
- Laboratoire des Productions Végétales, Animales et Agro-industrie, Equipe de botanique, Biotechnologie et Protection des Plantes, Département de Biologie, Faculté des Sciences, Université Ibn Tofail, Campus Universitaire, BP 242 Kenitra, Morocco
| |
Collapse
|
3
|
Makhlouf L, El Fakhouri K, Kemal SA, Maafa I, Meftah Kadmiri I, El Bouhssini M. Potential of volatile organic compounds in the management of insect pests and diseases of food legumes: a comprehensive review. FRONTIERS IN PLANT SCIENCE 2024; 15:1430863. [PMID: 39430890 PMCID: PMC11486643 DOI: 10.3389/fpls.2024.1430863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/04/2024] [Indexed: 10/22/2024]
Abstract
Cool season legumes (Faba bean, chickpea, lentil, pea, and grass pea) are important protein harvests for food and nutrition security in many countries. They play key roles in sustainable cereal production through their ecological benefits. However, diseases and pests attack continue to have a substantial impact on crop yield and quality. Although growers used different control options to manage these biotic stresses such as pesticide application, cultural practices, and resistant varieties, there is a pressing need for the development of new, more cost-effective and environmentally friendly solution to help farmers in facing the existing environmental issues. Recently, there is a growing interest among researchers in exploiting Volatile Organic Compounds (VOCs) for the elaboration of disease and pest control strategies in food legumes and other crops. These compounds have important functions in ecological relationships occurring between plants and their surrounding environment, as well as plants and others species, such as pests and pathogens. Due to their unique properties, VOCs can be employed in improving management alternatives for food legume diseases and pests. In this assessment, we investigated the role of VOCs in plant-pest and plant-pathogen interactions and their present applications in pest and diseases control strategies. We emphasized the ecological importance of employing plant VOCs in legume farming and crop breeding. Additionally, we highlighted the potential of microbial VOCs in facilitating microbe-microbe, microbe-plant and microbe-plant-pest interactions, along with their role in food legume protection.
Collapse
Affiliation(s)
- Leila Makhlouf
- Laboratory of Entomology and Phytopathology, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
- AgroBioSciences Program, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Karim El Fakhouri
- AgroBioSciences Program, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Seid Ahmed Kemal
- Laboratory of Entomology and Phytopathology, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Ilyas Maafa
- Laboratory of Entomology and Phytopathology, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Issam Meftah Kadmiri
- Plant and Microbial Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Rescarch (MAScIR), Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Mustapha El Bouhssini
- AgroBioSciences Program, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
4
|
Fan QS, Lin HJ, Hu YJ, Jin J, Yan HH, Zhang RQ. Biocontrol of strawberry Botrytis gray mold and prolong the fruit shelf-life by fumigant Trichoderma spp. Biotechnol Lett 2024; 46:751-766. [PMID: 38811460 DOI: 10.1007/s10529-024-03498-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 02/20/2024] [Accepted: 04/14/2024] [Indexed: 05/31/2024]
Abstract
Objectives To screen high active volatile organic compounds (VOCs)-producing Trichoderma isolates against strawberry gray mold caused by Botrytis cinerea, and to explore their antagonistic mode of action against the pathogen. VOCs produced by nine Trichoderma isolates (Trichoderma atroviride T1 and T3; Trichoderma harzianum T2, T4 and T5; T6, T7, T8 and T9 identified as Trichoderma asperellum in this work) significantly inhibited the mycelial growth (13.9-63.0% reduction) and conidial germination (17.6-96.3% reduction) of B. cinerea, the highest inhibition percentage belonged to VOCs of T7; in a closed space, VOCs of T7 shared 76.9% and 100% biocontrol efficacy against gray mold on strawberry fruits and detached leaves, respectively, prolonged the fruit shelf-life by 3 days in presence of B. cinerea, completely protected the leaves from B. cinerea infecting; volatile metabolites of T7 damaged the cell membrane permeability and integrity of B. cinerea, thereby inhibiting the mycelial growth and conidial germination. Gas chromatography-mass spectrometry (GC-MS) analysis revealed the VOCs contain 23 potential compounds, and the majority of these compounds were categorised as alkenes, alcohols, and esters, including PEA and 6PP, which have been reported as substances produced by Trichoderma spp. T. asperellum T7 showed high biofumigant activity against mycelial growth especially conidial germination of B. cinerea and thus protected strawberry fruits and leaves from gray mold, which acted by damaging the pathogen's plasma membrane and resulting in cytoplasm leakage, was a potential biofumigant for controlling pre- and post-harvest strawberry gray mold.
Collapse
Affiliation(s)
- Q S Fan
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - H J Lin
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Y J Hu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - J Jin
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - H H Yan
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - R Q Zhang
- The Key Laboratory of Integrated Crop Pest Management of Shandong Province, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
5
|
González-Pérez E, Jiménez-Bremont JF. Cladosporium psychrotolerans strain T01 enhances plant biomass and also exhibits antifungal activity against pathogens. Braz J Microbiol 2024; 55:2855-2867. [PMID: 38825649 PMCID: PMC11405581 DOI: 10.1007/s42770-024-01399-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024] Open
Abstract
An increasing number of microorganisms are being identified to enhance plant growth and inhibit phytopathogens. Some Cladosporium species form beneficial associations with plants, either as endophytes or by colonizing the rhizosphere. Herein, we evaluated the influence of the Cladosporium psychrotolerans (T01 strain) fungus on the in vitro growth of Arabidopsis thaliana plantlets through direct and split interactions. After 9 days post-inoculation with C. psychrotolerans, Arabidopsis plantlets exhibited a notable increase in fresh weight and lateral roots, particularly in split interactions. Chlorophyll content increased in both plant-fungus interaction conditions, whereas the primary root was inhibited during direct interaction. We observed an increase in the GUS signal from the Arabidopsis auxin-inducible DR5:uidA marker in lateral root tips in both contact and split fungal interactions, and primary root tips in a split interaction. Arabidopsis and tomato plants cultivated in soil pots and inoculated with C. psychrotolerans (T01 strain) showed a positive effect on biomass production. GC/MS analysis detected that the T01 strain emitted volatile organic compounds (VOCs), predominantly alcohols and aldehydes. These VOCs displayed potent inhibitory effects, with a 60% inhibition against Botrytis cinerea and a 50% inhibition against C. gloeosporioides. Our study demonstrates that C. psychrotolerans T01 has the potential to enhance biomass production and inhibit pathogens, making it a promising candidate for green technology applications.
Collapse
Affiliation(s)
- Enrique González-Pérez
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A. C, San Luis Potosí, SLP, Mexico
| | - Juan Francisco Jiménez-Bremont
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A. C, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
6
|
Andreata MFL, Afonso L, Niekawa ETG, Salomão JM, Basso KR, Silva MCD, Alves LC, Alarcon SF, Parra MEA, Grzegorczyk KG, Chryssafidis AL, Andrade G. Microbial Fertilizers: A Study on the Current Scenario of Brazilian Inoculants and Future Perspectives. PLANTS (BASEL, SWITZERLAND) 2024; 13:2246. [PMID: 39204682 PMCID: PMC11360115 DOI: 10.3390/plants13162246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
The increasing need for sustainable agricultural practices, combined with the demand for enhanced crop productivity, has led to a growing interest in utilizing microorganisms for biocontrol of diseases and pests, as well as for growth promotion. In Brazilian agriculture, the use of plant growth-promoting rhizobacteria (PGPR) and plant growth-promoting fungi (PGPF) has become increasingly prevalent, with a corresponding rise in the number of registered microbial inoculants each year. PGPR and PGPF occupy diverse niches within the rhizosphere, playing a crucial role in soil nutrient cycling and influencing a wide range of plant physiological processes. This review examines the primary mechanisms employed by these microbial agents to promote growth, as well as the strategy of co-inoculation to enhance product efficacy. Furthermore, we provide a comprehensive analysis of the microbial inoculants currently available in Brazil, detailing the microorganisms accessible for major crops, and discuss the market's prospects for the research and development of novel products in light of current challenges faced in the coming years.
Collapse
Affiliation(s)
- Matheus F. L. Andreata
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| | - Leandro Afonso
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| | - Erika T. G. Niekawa
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| | - Julio M. Salomão
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| | - Kawany Roque Basso
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| | - Maria Clara D. Silva
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| | - Leonardo Cruz Alves
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| | - Stefani F. Alarcon
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| | - Maria Eugenia A. Parra
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| | - Kathlen Giovana Grzegorczyk
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| | | | - Galdino Andrade
- Microbial Ecology Laboratory, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (M.F.L.A.); (L.A.); (E.T.G.N.); (J.M.S.); (K.R.B.); (M.C.D.S.); (L.C.A.); (S.F.A.); (M.E.A.P.); (K.G.G.)
| |
Collapse
|
7
|
Santoyo G, Orozco-Mosqueda MDC, Afridi MS, Mitra D, Valencia-Cantero E, Macías-Rodríguez L. Trichoderma and Bacillus multifunctional allies for plant growth and health in saline soils: recent advances and future challenges. Front Microbiol 2024; 15:1423980. [PMID: 39176277 PMCID: PMC11338895 DOI: 10.3389/fmicb.2024.1423980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/24/2024] [Indexed: 08/24/2024] Open
Abstract
Saline soils pose significant challenges to global agricultural productivity, hindering crop growth and efficiency. Despite various mitigation strategies, the issue persists, underscoring the need for innovative and sustainable solutions. One promising approach involves leveraging microorganisms and their plant interactions to reclaim saline soils and bolster crop yields. This review highlights pioneering and recent advancements in utilizing multi-traits Trichoderma and Bacillus species as potent promoters of plant growth and health. It examines the multifaceted impacts of saline stress on plants and microbes, elucidating their physiological and molecular responses. Additionally, it delves into the role of ACC deaminase in mitigating plant ethylene levels by Trichoderma and Bacillus species. Although there are several studies on Trichoderma-Bacillus, much remains to be understood about their synergistic relationships and their potential as auxiliaries in the phytoremediation of saline soils, which is why this work addresses these challenges.
Collapse
Affiliation(s)
- Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán, Mexico
| | | | | | - Debasis Mitra
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Eduardo Valencia-Cantero
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán, Mexico
| | - Lourdes Macías-Rodríguez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán, Mexico
| |
Collapse
|
8
|
Ansari MM, Bisht N, Singh T, Chauhan PS. Symphony of survival: Insights into cross-talk mechanisms in plants, bacteria, and fungi for strengthening plant immune responses. Microbiol Res 2024; 285:127762. [PMID: 38763015 DOI: 10.1016/j.micres.2024.127762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/05/2024] [Accepted: 05/11/2024] [Indexed: 05/21/2024]
Abstract
Plants coexist with a diverse array of microorganisms, predominantly bacteria and fungi, in both natural and agricultural environments. While some microorganisms positively influence plant development and yield, others can cause harm to the host, leading to significant adverse impacts on the environment and the economy. Plant growth-promoting microorganisms (PGPM), including plant growth-promoting bacteria, arbuscular mycorrhizal fungus (AMF), and rhizobia, have been found to increase plant biomass production by synthesizing hormones, fixing nitrogen, and solubilizing phosphate and potassium. Numerous studies have contributed to unraveling the complex process of plant-microbe interactions in recent decades. In light of the increasing global challenges such as population growth, climate change, and resource scarcity, it has become imperative to explore the potential of plant-bacteria-fungi crosstalk in promoting sustainability. This review aims to bridge existing knowledge gaps, providing a roadmap for future research in this dynamic field by synthesizing current knowledge and identifying emerging trends.
Collapse
Affiliation(s)
- Mohd Mogees Ansari
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Nikita Bisht
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India
| | - Tanya Singh
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Puneet Singh Chauhan
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
9
|
Voloshchuk N, Irakoze Z, Kang S, Kellogg JJ, Wee J. Three Ecological Models to Evaluate the Effectiveness of Trichoderma spp. for Suppressing Aflatoxigenic Aspergillus flavus and Aspergillus parasiticus. Toxins (Basel) 2024; 16:314. [PMID: 39057954 PMCID: PMC11281256 DOI: 10.3390/toxins16070314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Chemical pesticides help reduce crop loss during production and storage. However, the carbon footprints and ecological costs associated with this strategy are unsustainable. Here, we used three in vitro models to characterize how different Trichoderma species interact with two aflatoxin producers, Aspergillus flavus and Aspergillus parasiticus, to help develop a climate-resilient biological control strategy against aflatoxigenic Aspergillus species. The growth rate of Trichoderma species is a critical factor in suppressing aflatoxigenic strains via physical interactions. The dual plate assay suggests that Trichoderma mainly suppresses A. flavus via antibiosis, whereas the suppression of A. parasiticus occurs through mycoparasitism. Volatile organic compounds (VOCs) produced by Trichoderma inhibited the growth of A. parasiticus (34.6 ± 3.3%) and A. flavus (20.9 ± 1.6%). The VOCs released by T. asperellum BTU and T. harzianum OSK-34 were most effective in suppressing A. flavus growth. Metabolites secreted by T. asperellum OSK-38, T. asperellum BTU, T. virens OSK-13, and T. virens OSK-36 reduced the growth of both aflatoxigenic species. Overall, T. asperellum BTU was the most effective at suppressing the growth and aflatoxin B1 production of both species across all models. This work will guide efforts to screen for effective biological control agents to mitigate aflatoxin accumulation.
Collapse
Affiliation(s)
- Nataliia Voloshchuk
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA; (N.V.); (Z.I.)
| | - Zilfa Irakoze
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA; (N.V.); (Z.I.)
| | - Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, USA;
- One Health Microbiome Center, HUCK Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Joshua J. Kellogg
- One Health Microbiome Center, HUCK Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA;
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Josephine Wee
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA; (N.V.); (Z.I.)
- One Health Microbiome Center, HUCK Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA;
| |
Collapse
|
10
|
Hu X, Shi H, Zhang Z, Bai C. Antifungal effects of volatile organic compounds produced by Trichoderma hamatum against Neocosmospora solani. Lett Appl Microbiol 2024; 77:ovae063. [PMID: 38942473 DOI: 10.1093/lambio/ovae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/28/2024] [Accepted: 06/27/2024] [Indexed: 06/30/2024]
Abstract
Neocosmospora solani causes Fusarium wilt disease and root rot, which are serious problems worldwide. To determine the growth inhibition of Neocosmospora solani by Trichoderma hamatum volatile organic compounds (VOCs), the major chemical components of Trichoderma hamatum VOCs and the differences in their contents at different times were analysed, and the activity of these components was evaluated. The antifungal activity of Trichoderma hamatum was measured by a screening test, as Trichoderma hamatum exhibited strong antagonism against Neocosmospora solani in vitro. The double plate technique was used to verify the activity of Trichoderma hamatum VOCs, and the inhibition rate was 63.77%. Neocosmospora solani mycelia were uneven and expanded, the contents of the cells leaked, and the mycelia shrank and presented a diaphragm in the hyphae upon Trichoderma hamatum VOCs treatment. Trichoderma hamatum VOCs and their contents at different times were analysed by using gas chromatography-mass spectrometry. 6-Pentyl-2H-pyran-2-one clearly presented in greater amounts than the other components on day 3, 4, 5, and 6. VOCs from Trichoderma hamatum exhibited evident effects on the percentage of healthy fruit after day 3. Moreover, Trichoderma hamatum can improve the biological control of diseases caused by soilborne pathogens, and can be applied in biocontrol fields.
Collapse
Affiliation(s)
- Xian Hu
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, P.R. China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Hongan Shi
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, P.R. China
| | - Zhilin Zhang
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, P.R. China
| | - Cuihua Bai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, P.R. China
| |
Collapse
|
11
|
Mendoza-Mendoza A, Esquivel-Naranjo EU, Soth S, Whelan H, Alizadeh H, Echaide-Aquino JF, Kandula D, Hampton JG. Uncovering the multifaceted properties of 6-pentyl-alpha-pyrone for control of plant pathogens. FRONTIERS IN PLANT SCIENCE 2024; 15:1420068. [PMID: 38957597 PMCID: PMC11217547 DOI: 10.3389/fpls.2024.1420068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024]
Abstract
Some volatile organic compounds (VOCs) produced by microorganisms have the ability to inhibit the growth and development of plant pathogens, induce the activation of plant defenses, and promote plant growth. Among them, 6-pentyl-alpha-pyrone (6-PP), a ketone produced by Trichoderma fungi, has emerged as a focal point of interest. 6-PP has been isolated and characterized from thirteen Trichoderma species and is the main VOC produced, often accounting for >50% of the total VOCs emitted. This review examines abiotic and biotic interactions regulating the production of 6-PP by Trichoderma, and the known effects of 6-PP on plant pathogens through direct and indirect mechanisms including induced systemic resistance. While there are many reports of 6-PP activity against plant pathogens, the vast majority have been from laboratory studies involving only 6-PP and the pathogen, rather than glasshouse or field studies including a host plant in the system. Biopesticides based on 6-PP may well provide an eco-friendly, sustainable management tool for future agricultural production. However, before this can happen, challenges including demonstrating disease control efficacy in the field, developing efficient delivery systems, and determining cost-effective application rates must be overcome before 6-PP's potential for pathogen control can be turned into reality.
Collapse
Affiliation(s)
| | - Edgardo Ulises Esquivel-Naranjo
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Queretaro, Queretaro, Mexico
| | - Sereyboth Soth
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | - Helen Whelan
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | - Hossein Alizadeh
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | | | - Diwakar Kandula
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | - John G. Hampton
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| |
Collapse
|
12
|
Lochmann F, Flatschacher D, Speckbacher V, Zeilinger S, Heuschneider V, Bereiter S, Schiller A, Ruzsanyi V. Demonstrating the Applicability of Proton Transfer Reaction Mass Spectrometry to Quantify Volatiles Emitted by the Mycoparasitic Fungus Trichoderma atroviride in Real Time: Monitoring of Trichoderma-Based Biopesticides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1168-1177. [PMID: 38708575 PMCID: PMC11157538 DOI: 10.1021/jasms.3c00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024]
Abstract
The present study aims to explore the potential application of proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) for real-time monitoring of microbial volatile organic compounds (MVOCs). This investigation can be broadly divided into two parts. First, a selection of 14 MVOCs was made based on previous research that characterized the MVOC emissions of Trichoderma atroviride, which is a filamentous fungus widely used as a biocontrol agent. The analysis of gas-phase standards using PTR-ToF-MS allowed for the categorization of these 14 MVOCs into two groups: the first group primarily undergoes nondissociative proton transfer, resulting in the formation of protonated parent ions, while the second group mainly undergoes dissociative proton transfer, leading to the formation of fragment ions. In the second part of this investigation, the emission of MVOCs from samples of T. atroviride was continuously monitored over a period of five days using PTR-ToF-MS. This also included the first quantitative online analysis of 6-amyl-α-pyrone (6-PP), a key MVOC emitted by T. atroviride. The 6-PP emissions of T. atroviride cultures were characterized by a gradual increase over the first two days of cultivation, reaching a plateau-like maximum with volume mixing ratios exceeding 600 ppbv on days three and four. This was followed by a marked decrease, where the 6-PP volume mixing ratios plummeted to below 50 ppbv on day five. This observed sudden decrease in 6-PP emissions coincided with the start of sporulation of the T. atroviride cultures as well as increasing intensities of product ions associated with 1-octen-3-ol and 3-octanone, whereas both these MVOCs were previously associated with sporulation in T. atroviride. The study also presents the observations and discussion of further MVOC emissions from the T. atroviride samples and concludes with a critical assessment of the possible applications and limitations of PTR-ToF-MS for the online monitoring of MVOCs from biological samples in real time.
Collapse
Affiliation(s)
- Franziska Lochmann
- Institut
für Atemgasanalytik, Universität
Innsbruck, Innrain 52a and 80-82, A-6020 Innsbruck, Austria
| | - Daniel Flatschacher
- Institut
für Mikrobiologie, Universität
Innsbruck, Technikerstrasse
25d, A-6020 Innsbruck, Austria
| | - Verena Speckbacher
- Institut
für Mikrobiologie, Universität
Innsbruck, Technikerstrasse
25d, A-6020 Innsbruck, Austria
| | - Susanne Zeilinger
- Institut
für Mikrobiologie, Universität
Innsbruck, Technikerstrasse
25d, A-6020 Innsbruck, Austria
| | - Valentina Heuschneider
- Institut
für Atemgasanalytik, Universität
Innsbruck, Innrain 52a and 80-82, A-6020 Innsbruck, Austria
| | - Stephanie Bereiter
- Institut
für Atemgasanalytik, Universität
Innsbruck, Innrain 52a and 80-82, A-6020 Innsbruck, Austria
| | - Arne Schiller
- Institut
für Atemgasanalytik, Universität
Innsbruck, Innrain 52a and 80-82, A-6020 Innsbruck, Austria
| | - Veronika Ruzsanyi
- Institut
für Atemgasanalytik, Universität
Innsbruck, Innrain 52a and 80-82, A-6020 Innsbruck, Austria
| |
Collapse
|
13
|
Bouaicha O, Maver M, Mimmo T, Cesco S, Borruso L. Microplastic influences the ménage à trois among the plant, a fungal pathogen, and a plant growth-promoting fungal species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116518. [PMID: 38820874 DOI: 10.1016/j.ecoenv.2024.116518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/14/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024]
Abstract
Microplastics (MP) can influence a plethora of fungal species within the rhizosphere. Nevertheless, there are few studies on the direct impacts of MPs on soil fungi and their intricate interplay with plants. Here, we investigated the impact of polyethylene microspheres (PEMS) on the ecological interactions between Fusarium solani, a plant pathogenic fungus, and Trichoderma viride, a fungal plant growth promotor, within the rhizosphere of Solanum lycopersicum (tomato). Spores of F. solani and T. viride were pre-incubated with PEMS at two concentrations, 100 and 1000 mg L-1. Mycelium growth, sporulation, spore germination, and elongation were evaluated. Tomato seeds were exposed to fungal spore suspensions treated with PEMS, and plant development was subsequently assessed after 4 days. The results showed that PEMS significantly enhanced the sporulation (106.0 % and 70.1 %) but compromised the spore germination (up to 27.3 % and 32.2 %) and radial growth (up to -5.2% and -21.7 %) of F. solani and T. viride, respectively. Furthermore, the 100 and 1000 mg L-1 concentrations of PEMS significantly (p<0.05) enhanced the mycelium density of T. viride (9.74 % and 22.30 %, respectively), and impaired the germ-tube elongation of F. solani after 4 h (16.16 % and 11.85 %, respectively) and 8 h (4 % and 17.10 %, respectively). In addition, PEMS amplified the pathogenicity of F. solani and boosted the bio-enhancement effect of T. viride on tomato root growth. Further, PEMS enhanced the bio-fungicidal effect of T. viride toward F. solani (p<0.05). In summary, PEMS had varying effects on F. solani and T. viride, impacting their interactions and influencing their relationship with tomato plants. It intensified the beneficial effects of T. viride and increased the aggressiveness of F. solani. This study highlights concerns regarding the effects of MPs on fungal interactions in the rhizosphere, which are essential for crop soil colonization and resource utilization.
Collapse
Affiliation(s)
- Oussama Bouaicha
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy.
| | - Mauro Maver
- Competence Centre for Plant Health, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Tanja Mimmo
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy; Competence Centre for Plant Health, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Stefano Cesco
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Luigimaria Borruso
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy.
| |
Collapse
|
14
|
Wang X, Zhang J, Lu X, Bai Y, Wang G. Two diversities meet in the rhizosphere: root specialized metabolites and microbiome. J Genet Genomics 2024; 51:467-478. [PMID: 37879496 DOI: 10.1016/j.jgg.2023.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/15/2023] [Accepted: 10/15/2023] [Indexed: 10/27/2023]
Abstract
Plants serve as rich repositories of diverse chemical compounds collectively referred to as specialized metabolites. These compounds are of importance for adaptive processes, including interactions with various microbes both beneficial and harmful. Considering microbes as bioreactors, the chemical diversity undergoes dynamic changes when root-derived specialized metabolites (RSMs) and microbes encounter each other in the rhizosphere. Recent advancements in sequencing techniques and molecular biology tools have not only accelerated the elucidation of biosynthetic pathways of RSMs but also unveiled the significance of RSMs in plant-microbe interactions. In this review, we provide a comprehensive description of the effects of RSMs on microbe assembly in the rhizosphere and the influence of corresponding microbial changes on plant health, incorporating the most up-to-date information available. Additionally, we highlight open questions that remain for a deeper understanding of and harnessing the potential of RSM-microbe interactions to enhance plant adaptation to the environment. Finally, we propose a pipeline for investigating the intricate associations between root exometabolites and the rhizomicrobiome.
Collapse
Affiliation(s)
- Xiaochen Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingying Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China
| | - Xinjun Lu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China
| | - Yang Bai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China; College of Advanced Agricultural Sciences, Chinese Academy of Sciences, Beijing 100049, China.
| | - Guodong Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
15
|
Adra C, Panchalingam H, Foster K, Tomlin R, Hayes RA, Kurtböke Dİ. In vitro biological control of Pyrrhoderma noxium using volatile compounds produced by termite gut-associated streptomycetes. FRONTIERS IN PLANT SCIENCE 2024; 15:1371285. [PMID: 38510434 PMCID: PMC10953824 DOI: 10.3389/fpls.2024.1371285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/12/2024] [Indexed: 03/22/2024]
Abstract
Introduction Pyrrhoderma noxium is a plant pathogen that causes economic losses in agricultural and forestry industries, including significant destruction to amenity trees within the city of Brisbane in Australia. Use of chemical control agents are restricted in public areas, there is therefore an urgent need to investigate biological control approaches. Members of the phylum Actinomycetota, commonly known as actinomycetes, are known for their industrially important secondary metabolites including antifungal agents. They have proven to be ideal candidates to produce environmentally friendly compounds including the volatile organic compounds (VOCs) which can be used as biofumigants. Methods Different Streptomyces species (n=15) previously isolated from the guts of termites and stored in the University of the Sunshine Coast'sMicrobial Library were tested for their antifungal VOCs against Pyrrhoderma noxium. Results Fourteen of them were found to display inhibition (39.39-100%) to the mycelial development of the pathogen. Strongest antifungal activity displaying isolates USC-592, USC-595, USC-6910 and USC-6928 against the pathogen were selected for further investigations. Their VOCs were also found to have plant growth promotional activity observed for Arabidopsis thaliana with an increase of root length (22-36%) and shoot length (26-57%). The chlorophyll content of the test plant had a slight increase of 11.8% as well. Identified VOCs included geosmin, 2-methylisoborneol, 2-methylbutyrate, methylene cyclopentane, β-pinene, dimethyl disulfide, ethyl isovalerate, methoxyphenyl-oxime and α-pinene. Additionally, all 15 Streptomyces isolates were found to produce siderophores and indole acetic acid as well as the enzyme chitinase which is known to break down the fungal cell wall. Discussion Findings indicate that termite gut-associated streptomycetes might be used to control Pyrrhoderma noxium by utilizing their wide range of inhibitory mechanisms.
Collapse
Affiliation(s)
- Cherrihan Adra
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Harrchun Panchalingam
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Keith Foster
- Brisbane City Council, Program, Planning and Integration, Brisbane Square, Brisbane, QLD, Australia
| | - Russell Tomlin
- Brisbane City Council, Program, Planning and Integration, Brisbane Square, Brisbane, QLD, Australia
| | - R. Andrew Hayes
- Forest Industries Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - D. İpek Kurtböke
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| |
Collapse
|
16
|
Fukada F. Mitigating the Trade-Off between Growth and Stress Resistance in Plants by Fungal Volatile Compounds. PLANT & CELL PHYSIOLOGY 2024; 65:175-178. [PMID: 38288618 DOI: 10.1093/pcp/pcae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Affiliation(s)
- Fumi Fukada
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046 Japan
| |
Collapse
|
17
|
Maruri-López I, Romero-Contreras YJ, Napsucialy-Mendivil S, González-Pérez E, Aviles-Baltazar NY, Chávez-Martínez AI, Flores-Cuevas EJ, Schwan-Estrada KRF, Dubrovsky JG, Jiménez-Bremont JF, Serrano M. A biostimulant yeast, Hanseniaspora opuntiae, modifies Arabidopsis thaliana root architecture and improves the plant defense response against Botrytis cinerea. PLANTA 2024; 259:53. [PMID: 38294549 PMCID: PMC10830669 DOI: 10.1007/s00425-023-04326-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024]
Abstract
MAIN CONCLUSION The biostimulant Hanseniaspora opuntiae regulates Arabidopsis thaliana root development and resistance to Botrytis cinerea. Beneficial microbes can increase plant nutrient accessibility and uptake, promote abiotic stress tolerance, and enhance disease resistance, while pathogenic microorganisms cause plant disease, affecting cellular homeostasis and leading to cell death in the most critical cases. Commonly, plants use specialized pattern recognition receptors to perceive beneficial or pathogen microorganisms. Although bacteria have been the most studied plant-associated beneficial microbes, the analysis of yeasts is receiving less attention. This study assessed the role of Hanseniaspora opuntiae, a fermentative yeast isolated from cacao musts, during Arabidopsis thaliana growth, development, and defense response to fungal pathogens. We evaluated the A. thaliana-H. opuntiae interaction using direct and indirect in vitro systems. Arabidopsis growth was significantly increased seven days post-inoculation with H. opuntiae during indirect interaction. Moreover, we observed that H. opuntiae cells had a strong auxin-like effect in A. thaliana root development during in vitro interaction. We show that 3-methyl-1-butanol and ethanol are the main volatile compounds produced by H. opuntiae. Subsequently, it was determined that A. thaliana plants inoculated with H. opuntiae have a long-lasting and systemic effect against Botrytis cinerea infection, but independently of auxin, ethylene, salicylic acid, or jasmonic acid pathways. Our results demonstrate that H. opuntiae is an important biostimulant that acts by regulating plant development and pathogen resistance through different hormone-related responses.
Collapse
Affiliation(s)
- Israel Maruri-López
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | | | - Enrique González-Pérez
- Laboratorio de Biología Molecular de Hongos y Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científca y Tecnológica AC, San Luis Potosí, Mexico
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí (UASLP), Av. Chapultepec 1570, Priv. del Pedregal, 78295, San Luis Potosí, Mexico
| | | | - Ana Isabel Chávez-Martínez
- Laboratorio de Biología Molecular de Hongos y Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científca y Tecnológica AC, San Luis Potosí, Mexico
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | | | | | - Joseph G Dubrovsky
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Juan Francisco Jiménez-Bremont
- Laboratorio de Biología Molecular de Hongos y Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científca y Tecnológica AC, San Luis Potosí, Mexico
| | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
18
|
Ferreira NCDF, Ramos MLG, Gatto A. Use of Trichoderma in the Production of Forest Seedlings. Microorganisms 2024; 12:237. [PMID: 38399641 PMCID: PMC10893047 DOI: 10.3390/microorganisms12020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 02/25/2024] Open
Abstract
Forest production has great relevance in the Brazilian economy, characterized by several production sectors, including the production of seedlings. With the focus on maximizing the capacity of survival, development, and adaptation of seedlings, Trichoderma is highlighted as a potentially useful genus of microorganisms for promoting growth and higher product quality. In this sense, this review aims to describe the main mechanisms of fungi action in forest seedlings' production. The different species of the genus Trichoderma have specific mechanisms of action, and the current scenario points to more advances in the number of species. The interaction process mediated by different mechanisms of action begins in the communication with plants, from the colonization process. After the interaction, chemical dialogues allow the plant to develop better because, from colonization, the forest seedlings can maximize height and increase shoot and root development. Fungi promote solubilization and availability of nutrients to seedlings, which show numerous benefits to the development. The use of beneficial microorganisms, such as fungi of the genus Trichoderma, has become a sustainable strategy to enhance seedling development, reducing the use of agrochemicals and industrial fertilizers.
Collapse
Affiliation(s)
| | | | - Alcides Gatto
- Department of Forestry Engineering, Faculty of Technology, University of Brasilia, Brasilia 70910-900, DF, Brazil
| |
Collapse
|
19
|
Sousa TF, Vieira Reça BNP, Castro GS, da Silva IJS, Caniato FF, de Araújo Júnior MB, Yamagishi MEB, Koolen HHF, Bataglion GA, Hanada RE, da Silva GF. Trichoderma agriamazonicum sp. nov. (Hypocreaceae), a new ally in the control of phytopathogens. Microbiol Res 2023; 275:127469. [PMID: 37543005 DOI: 10.1016/j.micres.2023.127469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
The genus Trichoderma comprises more than 500 valid species and is commonly used in agriculture for the control of plant diseases. In the present study, a Trichoderma species isolated from Scleronema micranthum (Malvaceae) has been extensively characterized and the morphological and phylogenetic data support the proposition of a new fungal species herein named Trichoderma agriamazonicum. This species inhibited the mycelial growth of all the nine phytopathogens tested both by mycoparasitism and by the production of VOCs, with a highlight for the inhibition of Corynespora cassiicola and Colletotrichum spp. The VOCs produced by T. agriamazonicum were able to control Capsicum chinense fruit rot caused by Colletotrichum scovillei and no symptoms were observed after seven days of phytopathogen inoculation. GC-MS revealed the production of mainly 6-amyl-α-pyrone, 1-octen-3-ol and 3-octanone during interaction with C. scovillei in C. chinense fruit. The HLPC-MS/MS analysis allowed us to annotate trikoningin KBII, hypocrenone C, 5-hydroxy-de-O-methyllasiodiplodin and unprecedented 7-mer peptaibols and lipopeptaibols. Comparative genomic analysis of five related Trichoderma species reveals a high number of proteins shared only with T. koningiopsis, mainly the enzymes related to oxidative stress. Regarding the CAZyme composition, T. agriamazonicum is most closely related to T. atroviride. A high protein copy number related to lignin and chitin degradation is observed for all Trichoderma spp. analyzed, while the presence of licheninase GH12 was observed only in T. agriamazonicum. Genome mining analysis identified 33 biosynthetic gene clusters (BGCs) of which 27 are new or uncharacterized, and the main BGCs are related to the production of polyketides. These results demonstrate the potential of this newly described species for agriculture and biotechnology.
Collapse
Affiliation(s)
- Thiago Fernandes Sousa
- Programa de Pós-graduação em Biotecnologia, Universidade Federal do Amazonas (UFAM), 69080-900 Manaus, Brazil; Embrapa Amazônia Ocidental, 69010-970 Manaus, Brazil
| | - Bruna Nayara Pantoja Vieira Reça
- Programa de Pós-graduação em Agricultura no Trópico Úmido (ATU), Instituto Nacional de Pesquisas da Amazônia (INPA), 69067-375 Manaus, Brazil
| | - Gleucinei Santos Castro
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas (UEA), 690065-130 Manaus, Brazil
| | - Ingride Jarline Santos da Silva
- Programa de Pós-graduação em Biotecnologia, Universidade Federal do Amazonas (UFAM), 69080-900 Manaus, Brazil; Embrapa Amazônia Ocidental, 69010-970 Manaus, Brazil
| | - Fernanda Fátima Caniato
- Departamento de Ciências Fundamentais e Desenvolvimento Agrícola, Faculdade de Ciências Agrárias, Universidade Federal do Amazonas (UFAM), 69080-900 Manaus, Brazil
| | | | | | - Hector Henrique Ferreira Koolen
- Grupo de Pesquisas em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas (UEA), 690065-130 Manaus, Brazil
| | - Giovana Anceski Bataglion
- Departamento de Química do Instituto de Ciências Exatas, Universidade Federal do Amazonas (UFAM), 69080-900 Manaus, Brazil
| | - Rogério Eiji Hanada
- Instituto Nacional de Pesquisas da Amazônia (INPA), 69067-375 Manaus, Brazil.
| | | |
Collapse
|
20
|
Sheikh TMM, Zhou D, Ali H, Hussain S, Wang N, Chen S, Zhao Y, Wen X, Wang X, Zhang J, Wang L, Deng S, Feng H, Raza W, Fu P, Peng H, Wei L, Daly P. Volatile Organic Compounds Emitted by the Biocontrol Agent Pythium oligandrum Contribute to Ginger Plant Growth and Disease Resistance. Microbiol Spectr 2023; 11:e0151023. [PMID: 37534988 PMCID: PMC10433877 DOI: 10.1128/spectrum.01510-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/26/2023] [Indexed: 08/04/2023] Open
Abstract
The oomycete Pythium oligandrum is a potential biocontrol agent to control a wide range of fungal and oomycete-caused diseases, such as Pythium myriotylum-caused rhizome rot in ginger, leading to reduced yields and compromised quality. Previously, P. oligandrum has been studied for its plant growth-promoting potential by auxin production and induction of disease resistance by elicitors such as oligandrin. Volatile organic compounds (VOCs) play beneficial roles in sustainable agriculture by enhancing plant growth and resistance. We investigated the contribution of P. oligandrum-produced VOCs on plant growth and disease suppression by initially using Nicotiana benthamiana plants for screening. P. oligandrum VOCs significantly enhanced tobacco seedling and plant biomass contents. Screening of the individual VOCs showed that 3-octanone and hexadecane promoted the growth of tobacco seedlings. The total VOCs from P. oligandrum also enhanced the shoot and root growth of ginger plants. Transcriptomic analysis showed a higher expression of genes related to plant growth hormones and stress responses in the leaves of ginger plants exposed to P. oligandrum VOCs. The concentrations of plant growth hormones such as auxin, zeatin, and gibberellic acid were higher in the leaves of ginger plants exposed to P. oligandrum VOCs. In a ginger disease biocontrol assay, the VOC-exposed ginger plants infected with P. myriotylum had lower levels of disease severity. We conclude that this study contributes to understanding the growth-promoting mechanisms of P. oligandrum on ginger and tobacco, priming of ginger plants against various stresses, and the mechanisms of action of P. oligandrum as a biocontrol agent. IMPORTANCE Plant growth promotion plays a vital role in enhancing production of agricultural crops, and Pythium oligandrum is known for its plant growth-promoting potential through production of auxins and induction of resistance by elicitors. This study highlights the significance of P. oligandrum-produced VOCs in plant growth promotion and disease resistance. Transcriptomic analyses of leaves of ginger plants exposed to P. oligandrum VOCs revealed the upregulation of genes involved in plant growth hormone signaling and stress responses. Moreover, the concentration of growth hormones significantly increased in P. oligandrum VOC-exposed ginger plants. Additionally, the disease severity was reduced in P. myriotylum-infected ginger plants exposed to P. oligandrum VOCs. In ginger, P. myriotylum-caused rhizome rot disease results in severe losses, and biocontrol has a role as part of an integrated pest management strategy for rhizome rot disease. Overall, growth enhancement and disease reduction in plants exposed to P. oligandrum-produced VOCs contribute to its role as a biocontrol agent.
Collapse
Affiliation(s)
- Taha Majid Mahmood Sheikh
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Dongmei Zhou
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Haider Ali
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Sarfraz Hussain
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Nan Wang
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Siqiao Chen
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Fungal Genomics Laboratory (FungiG), Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yishen Zhao
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Xian Wen
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Xiaoyu Wang
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jinfeng Zhang
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lunji Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Sheng Deng
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hui Feng
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Waseem Raza
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Pengxiao Fu
- Jiangsu Coastal Ecological Science and Technology Development Co., Ltd., Nanjing, China
| | - Hao Peng
- Jiangsu Coastal Ecological Science and Technology Development Co., Ltd., Nanjing, China
| | - Lihui Wei
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Paul Daly
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
21
|
Lakhdari W, Benyahia I, Bouhenna MM, Bendif H, Khelafi H, Bachir H, Ladjal A, Hammi H, Mouhoubi D, Khelil H, Alomar TS, AlMasoud N, Boufafa N, Boufahja F, Dehliz A. Exploration and Evaluation of Secondary Metabolites from Trichoderma harzianum: GC-MS Analysis, Phytochemical Profiling, Antifungal and Antioxidant Activity Assessment. Molecules 2023; 28:5025. [PMID: 37446686 DOI: 10.3390/molecules28135025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/07/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
In this study, we investigated in vitro the potential of Trichoderma harzianum to produce bioactive secondary metabolites that can be used as alternatives to synthetic compounds. The study focused on analyzing two extracts of T. harzianum using ethyl acetate and n-butanol solvents with different polarities. The extracts were examined using phytochemical analysis to determine the content of polyphenols, flavonoids, tannins, and alkaloids. Thin-layer chromatography (TLC) and Gas chromatography-mass spectroscopy (GC-MS) analysis were used to profile volatile organic metabolites (VOCs) present in the extracts. Furthermore, the extracts were tested for their antifungal ability using the poison food technique. For measuring antioxidant activity, the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) test was used. Trichoderma harzianum was shown to have a significantly high content of tannins and alkaloids, with a noticeable difference between the two extracts. GC-MS analysis identified 33 potential compounds with numerous benefits that could be used in agriculture and the medicinal industry. Moreover, strong antifungal activity was identified against Sclerotinia sclerotiorum by 94.44%, Alternaria sp. by 77.04%, and Fusarium solani by 51.48; similarly, the IC50 of antioxidant activity was estimated for ethyl acetate extract by 71.47% and n-butanol extract by 56.01%. This leads to the conclusion that Trichoderma harzianum VOCs play a significant role as an antifungal and antioxidant agent when taking into account the advantageous bioactive chemicals noted in the extracts. However, to our knowledge, this is the first study in Algeria presenting detailed phytochemical analysis and GC-MS profiling of Trichoderma harzianum for two extracts, ethyl acetate and n-butanol.
Collapse
Affiliation(s)
- Wassima Lakhdari
- National Institute of Agronomic Research of Algeria, Touggourt 30200, Algeria
- Valcore Laboratory, Biology Department, Faculty of Life and Nature Sciences, University of Boumerdes, Boumerdes 35000, Algeria
| | - Ibtissem Benyahia
- Laboratory of Biogeochemistry and Desert Environments, Department of Chemistry, Faculty of Mathematics and Material Sciences, University of Kasdi Merbah, Ouargla 30000, Algeria
| | - Mustapha Mounir Bouhenna
- Scientific and Technical Center of Research in Physical and Chemical Analysis (CRAPC), Bou-Ismail 42004, Algeria
| | - Hamdi Bendif
- Department of Natural and Life Sciences, Faculty of Science, University of M'sila, M'sila 28000, Algeria
| | - Hafida Khelafi
- Valcore Laboratory, Biology Department, Faculty of Life and Nature Sciences, University of Boumerdes, Boumerdes 35000, Algeria
| | - Hakim Bachir
- Division of Hydraulic and Bioclimatology, National Institute of Agronomic Research (INRA), Algers 16000, Algeria
| | - Amel Ladjal
- Valcore Laboratory, Biology Department, Faculty of Life and Nature Sciences, University of Boumerdes, Boumerdes 35000, Algeria
| | - Hamida Hammi
- National Institute of Agronomic Research of Algeria, Touggourt 30200, Algeria
| | | | | | - Taghrid S Alomar
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84427, Riyadh 11671, Saudi Arabia
| | - Najla AlMasoud
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84427, Riyadh 11671, Saudi Arabia
| | | | - Fehmi Boufahja
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Abderrahmene Dehliz
- National Institute of Agronomic Research of Algeria, Touggourt 30200, Algeria
| |
Collapse
|
22
|
Wang K, Lin Z, Dou J, Jiang M, Shen N, Feng J. Identification and Surveys of Promoting Plant Growth VOCs from Biocontrol Bacteria Paenibacillus peoriae GXUN15128. Microbiol Spectr 2023; 11:e0434622. [PMID: 36988498 PMCID: PMC10269716 DOI: 10.1128/spectrum.04346-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/25/2023] [Indexed: 03/30/2023] Open
Abstract
The role of microbial volatile organic compounds (MVOCs) in promoting plant growth has received much attention. We isolated Paenibacillus peoriae from mangrove rhizosphere soil, which can produce VOCs to promote the growth of Arabidopsis thaliana seedlings, increase the aboveground biomass of A. thaliana, and increase the number of lateral roots of A. thaliana. The effects of different inoculation amounts and different media on the composition of MVOCs were studied by solid-phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) and headspace sampler/GC-MS. We found that the growth medium influences the function and composition of MVOCs. To survey the growth-promoting functions, the transcriptome of the receptor A. thaliana was then determined. We also verified the inhibitory effect of the soluble compounds produced by P. peoriae on the growth of 10 pathogenic fungi. The ability of P. peoriae to produce volatile and soluble compounds to promote plant growth and disease resistance has shown great potential for application in the sustainability of agricultural production. IMPORTANCE Microbial volatile organic compounds (MVOCs) have great potential as "gas fertilizers" for agricultural applications, and it is a promising research direction for the utilization of microbial resources. This study is part of the field of interactions between microorganisms and plants. To study the function and application of microorganisms from the perspective of VOCs is helpful to break the bottleneck of traditional microbial application. At present, the study of MVOCs is lacking; there is a lack of functional strains, especially with plant-protective functions and nonpathogenic application value. The significance of this study is that it provides Paenibacillus peoriae, which produces VOCs with plant growth-promoting effects and broad-spectrum antifungal activity against plant-pathogenic fungi. Our study provides a more comprehensive, new VOC component analysis method and explains how MVOCs promote plant growth through transcriptome analysis. This will greatly increase our understanding of MVOC applications as a model for other MVOC research.
Collapse
Affiliation(s)
- Kun Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Ziyan Lin
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Jin Dou
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Naikun Shen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Jing Feng
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| |
Collapse
|
23
|
Rubio MB, Monti MM, Gualtieri L, Ruocco M, Hermosa R, Monte E. Trichoderma harzianum Volatile Organic Compounds Regulated by the THCTF1 Transcription Factor Are Involved in Antifungal Activity and Beneficial Plant Responses. J Fungi (Basel) 2023; 9:654. [PMID: 37367590 DOI: 10.3390/jof9060654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/30/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023] Open
Abstract
The transcription factor THCTF1 from Trichoderma harzianum, previously linked to the production of 6-pentyl-2H-pyran-2-one (6-PP) derivatives and antifungal activity against Fusarium oxysporum, has been related in this study to conidiation, production of an array of volatile organic compounds (VOCs) and expression of methyltransferase genes. VOCs emitted by three T. harzianum strains (wild type T34, transformant ΔD1-38 that is disrupted in the Thctf1 gene encoding the transcription factor THCTF1, and ectopic integration transformant ΔJ3-16) were characterized by Proton Transfer Reaction-Quadrupole interface-Time-Of-Flight-Mass Spectrometry (PTR-Qi-TOF-MS). Thctf1 disruption affected the production of numerous VOCs such as the antifungal volatiles 2-pentyl furan and benzaldehyde which were under-emitted, and acetoine, a plant systemic defense inductor, which was over-emitted. Biological assays show that VOCs regulated by THCTF1 are involved in the T. harzianum antifungal activity against Botrytis cinerea and in the beneficial effects leading to Arabidopsis plant development. The VOC blend from the disruptant ΔD1-38: (i) inhibited Arabidopsis seed germination for at least 26 days and (ii) when applied to Arabidopsis seedlings resulted in increased jasmonic acid- and salicylic acid-dependent defenses.
Collapse
Affiliation(s)
- María Belén Rubio
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, Campus de Villamayor, C/Duero, 12, 37185 Salamanca, Spain
| | - Maurilia Maria Monti
- Institute for Sustainable Plant Protection (CNR-IPSP), Piazzale Enrico Fermi 1, 80055 Naples, Italy
| | - Liberata Gualtieri
- Institute for Sustainable Plant Protection (CNR-IPSP), Piazzale Enrico Fermi 1, 80055 Naples, Italy
| | - Michelina Ruocco
- Institute for Sustainable Plant Protection (CNR-IPSP), Piazzale Enrico Fermi 1, 80055 Naples, Italy
| | - Rosa Hermosa
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, Campus de Villamayor, C/Duero, 12, 37185 Salamanca, Spain
| | - Enrique Monte
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, Campus de Villamayor, C/Duero, 12, 37185 Salamanca, Spain
| |
Collapse
|
24
|
Saadaoui M, Faize M, Bonhomme L, Benyoussef NO, Kharrat M, Chaar H, Label P, Venisse JS. Assessment of Tunisian Trichoderma Isolates on Wheat Seed Germination, Seedling Growth and Fusarium Seedling Blight Suppression. Microorganisms 2023; 11:1512. [PMID: 37375014 DOI: 10.3390/microorganisms11061512] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Beneficial microorganisms, including members of the Trichoderma genus, are known for their ability to promote plant growth and disease resistance, as well as being alternatives to synthetic inputs in agriculture. In this study, 111 Trichoderma strains were isolated from the rhizospheric soil of Florence Aurore, an ancient wheat variety that was cultivated in an organic farming system in Tunisia. A preliminary ITS analysis allowed us to cluster these 111 isolates into three main groups, T. harzianum (74 isolates), T. lixii (16 isolates) and T. sp. (21 isolates), represented by six different species. Their multi-locus analysis (tef1, translation elongation factor 1; rpb2, RNA polymerase B) identified three T. afroharzianum, one T. lixii, one T. atrobrunneum and one T. lentinulae species. These six new strains were selected to determine their suitability as plant growth promoters (PGP) and biocontrol agents (BCA) against Fusarium seedling blight disease (FSB) in wheat caused by Fusarium culmorum. All of the strains exhibited PGP abilities correlated to ammonia and indole-like compound production. In terms of biocontrol activity, all of the strains inhibited the development of F. culmorum in vitro, which is linked to the production of lytic enzymes, as well as diffusible and volatile organic compounds. An in planta assay was carried out on the seeds of a Tunisian modern wheat variety (Khiar) by coating them with Trichoderma. A significant increase in biomass was observed, which is associated with increased chlorophyll and nitrogen. An FSB bioprotective effect was confirmed for all strains (with Th01 being the most effective) by suppressing morbid symptoms in germinated seeds and seedlings, as well as by limiting F. culmorum aggressiveness on overall plant growth. Plant transcriptome analysis revealed that the isolates triggered several SA- and JA-dependent defense-encoding genes involved in F. culmorum resistance in the roots and leaves of three-week-old seedlings. This finding makes these strains very promising in promoting growth and controlling FSB disease in modern wheat varieties.
Collapse
Affiliation(s)
- Mouadh Saadaoui
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
- Université de Tunis El Manar, Campus Universitaire Farhat Hached, B.P. n° 94-ROMMANA, Tunis 1068, Tunisia
- Field Crops Laboratory, National Institute for Agricultural Research of Tunisia (INRAT), Hedi Karray Street, El Menzah, Ariana 1004, Tunisia
| | - Mohamed Faize
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization URL-CNRST 10, Faculty of Sciences, University Chouaib Doukkali, El Jadida 24000, Morocco
| | - Ludovic Bonhomme
- UMR 1095 Génétique Diversité Ecophysiologie des Céréales, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Noura Omri Benyoussef
- Field Crops Laboratory, National Institute for Agricultural Research of Tunisia (INRAT), Hedi Karray Street, El Menzah, Ariana 1004, Tunisia
- National Institute of Agronomy of Tunisia (INAT), Tunis 1082, Tunisia
| | - Mohamed Kharrat
- Field Crops Laboratory, National Institute for Agricultural Research of Tunisia (INRAT), Hedi Karray Street, El Menzah, Ariana 1004, Tunisia
| | - Hatem Chaar
- Field Crops Laboratory, National Institute for Agricultural Research of Tunisia (INRAT), Hedi Karray Street, El Menzah, Ariana 1004, Tunisia
- National Institute of Agronomy of Tunisia (INAT), Tunis 1082, Tunisia
| | - Philippe Label
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| | | |
Collapse
|
25
|
Woo SL, Hermosa R, Lorito M, Monte E. Trichoderma: a multipurpose, plant-beneficial microorganism for eco-sustainable agriculture. Nat Rev Microbiol 2023; 21:312-326. [PMID: 36414835 DOI: 10.1038/s41579-022-00819-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 11/24/2022]
Abstract
Trichoderma is a cosmopolitan and opportunistic ascomycete fungal genus including species that are of interest to agriculture as direct biological control agents of phytopathogens. Trichoderma utilizes direct antagonism and competition, particularly in the rhizosphere, where it modulates the composition of and interactions with other microorganisms. In its colonization of plants, on the roots or as an endophyte, Trichoderma has evolved the capacity to communicate with the plant and produce numerous multifaceted benefits to its host. The intricacy of this plant-microorganism association has stimulated a marked interest in research on Trichoderma, ranging from its capacity as a plant growth promoter to its ability to prime local and systemic defence responses against biotic and abiotic stresses and to activate transcriptional memory affecting plant responses to future stresses. This Review discusses the ecophysiology and diversity of Trichoderma and the complexity of its relationships in the agroecosystem, highlighting its potential as a direct and indirect biological control agent, biostimulant and biofertilizer, which are useful multipurpose properties for agricultural applications. We also highlight how the present legislative framework might accommodate the demonstrated evidence of Trichoderma proficiency as a plant-beneficial microorganism contributing towards eco-sustainable agriculture.
Collapse
Affiliation(s)
- Sheridan L Woo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy.
| | - Rosa Hermosa
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, Salamanca, Spain
| | - Matteo Lorito
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Enrique Monte
- Department of Microbiology and Genetics, Institute for Agribiotechnology Research (CIALE), University of Salamanca, Salamanca, Spain
| |
Collapse
|
26
|
Chóez-Guaranda I, Espinoza-Lozano F, Reyes-Araujo D, Romero C, Manzano P, Galarza L, Sosa D. Chemical Characterization of Trichoderma spp. Extracts with Antifungal Activity against Cocoa Pathogens. Molecules 2023; 28:molecules28073208. [PMID: 37049971 PMCID: PMC10095870 DOI: 10.3390/molecules28073208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Ecuador is one of the major cocoa producers worldwide, but its productivity has lately been affected by diseases. Endophytic biocontrol agents have been used to minimize pathogenic effects; however, compounds produced by endophytes are minimally understood. This work presents the chemical characterization of the Trichoderma species extracts that proved inhibition against cocoa pathogens. Solid-liquid extraction was performed as a partitioning method using medium with the fungal mycelia of Trichoderma reesei (C2A), Trichoderma sp. (C3A), Trichoderma harzianum (C4A), and Trichoderma spirale (C10) in ethyl acetate individually. The extract of T. spirale (C10) exhibited the growth inhibition (32.97-47.02%) of Moniliophthora perniciosa at 10 µg/mL, while a slight stimulation of Moniliophthora roreri was shown by the extracts of T. reesei (C2A) and T. harzianum (C4A) at higher concentrations. The inhibitory activity could be related to alkaloids, lactones, quinones, flavonoids, triterpenes, and sterols, as indicated by chemical screening and antifungal compounds, such as widdrol, β-caryophyllene, tyrosol, butyl isobutyrate, sorbic acid, palmitic acid, palmitelaidic acid, linoleic acid, and oleic acid, which were identified by gas chromatography-mass spectrometry (GC-MS). The results showed that the extracts, particularly T. spirale (C10), have the potential as biocontrol agents against witches' broom disease; however, further studies are needed to confirm their effectiveness.
Collapse
Affiliation(s)
- Ivan Chóez-Guaranda
- Centro de Investigaciones Biotecnológicas del Ecuador, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil P.O. Box 091050, Ecuador
| | - Fernando Espinoza-Lozano
- Centro de Investigaciones Biotecnológicas del Ecuador, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil P.O. Box 091050, Ecuador
| | - Dennys Reyes-Araujo
- Departamento de Ciencias de la Vida y de la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí P.O. Box 171-5-231B, Ecuador
| | - Christian Romero
- Centro de Investigaciones Biotecnológicas del Ecuador, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil P.O. Box 091050, Ecuador
- Facultad de Ciencias de la Vida, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil P.O. Box 091050, Ecuador
| | - Patricia Manzano
- Centro de Investigaciones Biotecnológicas del Ecuador, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil P.O. Box 091050, Ecuador
- Facultad de Ciencias de la Vida, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil P.O. Box 091050, Ecuador
| | - Luis Galarza
- Centro de Investigaciones Biotecnológicas del Ecuador, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil P.O. Box 091050, Ecuador
- Facultad de Ciencias de la Vida, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil P.O. Box 091050, Ecuador
| | - Daynet Sosa
- Centro de Investigaciones Biotecnológicas del Ecuador, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil P.O. Box 091050, Ecuador
- Facultad de Ciencias de la Vida, ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil P.O. Box 091050, Ecuador
| |
Collapse
|
27
|
Santos M, Diánez F, Sánchez-Montesinos B, Huertas V, Moreno-Gavira A, Esteban García B, Garrido-Cárdenas JA, Gea FJ. Biocontrol of Diseases Caused by Phytophthora capsici and P. parasitica in Pepper Plants. J Fungi (Basel) 2023; 9:jof9030360. [PMID: 36983528 PMCID: PMC10051450 DOI: 10.3390/jof9030360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
The main objective of this study was to evaluate the ability of Trichoderma aggressivum f. europaeum, T. longibrachiatum, Paecilomyces variotii, and T. saturnisporum as biological control agents (BCAs) against diseases caused by P. capsici and P. parasitica in pepper. For this purpose, their antagonistic activities were evaluated both in vitro and in vivo. We analysed the expression patterns of five defence related genes, CaBGLU, CaRGA1, CaBPR1, CaPTI1, and CaSAR8.2, in leaves. All BCAs showed a high in vitro antagonistic activity, significantly reducing the mycelial growth of P. capsici and P. parasitica. The treatments with T. aggressivum f. europaeum, T. longibrachiatum, and P. variotii substantially reduced the severity of the disease caused by P. capsici by 54, 76, and 70%, respectively, and of the disease caused by P. parasitica by 66, 55, and 64%, respectively. T. saturnisporum had the lowest values of disease reduction. Reinoculation with the four BCAs increased the control of both plant pathogens. Markedly different expression patterns were observed in the genes CaBGLU, CaRGA1, and CaSAR8.2. Based on the results, all four BCAs under study could be used as a biological alternative to chemicals for the control of P. capsici and P. parasitica in pepper with a high success rate.
Collapse
Affiliation(s)
- Mila Santos
- Departamento de Agronomía, Escuela Superior de Ingeniería, Universidad de Almería, 04120 Almería, Spain
- Correspondence: ; Tel.: +34-628188339
| | - Fernando Diánez
- Departamento de Agronomía, Escuela Superior de Ingeniería, Universidad de Almería, 04120 Almería, Spain
| | - Brenda Sánchez-Montesinos
- Departamento de Agronomía, División Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato 36500, Guanajuato, Mexico
| | - Victoria Huertas
- Departamento de Agronomía, Escuela Superior de Ingeniería, Universidad de Almería, 04120 Almería, Spain
| | - Alejandro Moreno-Gavira
- Departamento de Agronomía, Escuela Superior de Ingeniería, Universidad de Almería, 04120 Almería, Spain
| | - Belén Esteban García
- Departamento de Biología y Geología, Edificio CITE IIB, Universidad de Almería, 04120 Almería, Spain
| | - José A. Garrido-Cárdenas
- Departamento de Biología y Geología, Edificio CITE IIB, Universidad de Almería, 04120 Almería, Spain
| | - Francisco J. Gea
- Centro de Investigación, Experimentación y Servicios del Champiñón (CIES), Quintanar del Rey, 16220 Cuenca, Spain
| |
Collapse
|
28
|
Rios-Navarro A, Gonzalez M, Carazzone C, Celis Ramírez AM. Why Do These Yeasts Smell So Good? Volatile Organic Compounds (VOCs) Produced by Malassezia Species in the Exponential and Stationary Growth Phases. Molecules 2023; 28:2620. [PMID: 36985592 PMCID: PMC10056951 DOI: 10.3390/molecules28062620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/23/2023] [Accepted: 03/04/2023] [Indexed: 03/18/2023] Open
Abstract
Malassezia synthesizes and releases volatile organic compounds (VOCs), small molecules that allow them to carry out interaction processes. These lipid-dependent yeasts belong to the human skin mycobiota and are related to dermatological diseases. However, knowledge about VOC production and its function is lacking. This study aimed to determine the volatile profiles of Malassezia globosa, Malassezia restricta, and Malassezia sympodialis in the exponential and stationary growth phases. The compounds were separated and characterized in each growth phase through headspace solid-phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS). We found a total of 54 compounds, 40 annotated. Most of the compounds identified belong to alcohols and polyols, fatty alcohols, alkanes, and unsaturated aliphatic hydrocarbons. Unsupervised and supervised statistical multivariate analyses demonstrated that the volatile profiles of Malassezia differed between species and growth phases, with M. globosa being the species with the highest quantity of VOCs. Some Malassezia volatiles, such as butan-1-ol, 2-methylbutan-1-ol, 3-methylbutan-1-ol, and 2-methylpropan-1-ol, associated with biological interactions were also detected. All three species show at least one unique compound, suggesting a unique metabolism. The ecological functions of the compounds detected in each species and growth phase remain to be studied. They could interact with other microorganisms or be an important clue in understanding the pathogenic role of these yeasts.
Collapse
Affiliation(s)
- Andrea Rios-Navarro
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Universidad de los Andes, Cra 1 No. 18A-12, Bogotá 111711, Cundinamarca, Colombia
| | - Mabel Gonzalez
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Universidad de los Andes, Cra 1 No. 18A-12, Bogotá 111711, Cundinamarca, Colombia
| | - Chiara Carazzone
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Universidad de los Andes, Cra 1 No. 18A-12, Bogotá 111711, Cundinamarca, Colombia
| | - Adriana Marcela Celis Ramírez
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Universidad de los Andes, Cra 1 No. 18A-12, Bogotá 111711, Cundinamarca, Colombia
| |
Collapse
|
29
|
Molecular Approaches for Detection of Trichoderma Green Mold Disease in Edible Mushroom Production. BIOLOGY 2023; 12:biology12020299. [PMID: 36829575 PMCID: PMC9953464 DOI: 10.3390/biology12020299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/16/2023]
Abstract
Due to the evident aggressive nature of green mold and the consequently huge economic damage it causes for producers of edible mushrooms, there is an urgent need for prevention and infection control measures, which should be based on the early detection of various Trichoderma spp. as green mold causative agents. The most promising current diagnostic tools are based on molecular methods, although additional optimization for real-time, in-field detection is still required. In the first part of this review, we briefly discuss cultivation-based methods and continue with the secondary metabolite-based methods. Furthermore, we present an overview of the commonly used molecular methods for Trichoderma species/strain detection. Additionally, we also comment on the potential of genomic approaches for green mold detection. In the last part, we discuss fast screening molecular methods for the early detection of Trichoderma infestation with the potential for in-field, point-of-need (PON) application, focusing on isothermal amplification methods. Finally, current challenges and future perspectives in Trichoderma diagnostics are summarized in the conclusions.
Collapse
|
30
|
van Zijll de Jong E, Kandula J, Rostás M, Kandula D, Hampton J, Mendoza-Mendoza A. Fungistatic Activity Mediated by Volatile Organic Compounds Is Isolate-Dependent in Trichoderma sp. " atroviride B". J Fungi (Basel) 2023; 9:jof9020238. [PMID: 36836354 PMCID: PMC9965825 DOI: 10.3390/jof9020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Trichoderma spp. produce multiple bioactive volatile organic compounds (VOCs). While the bioactivity of VOCs from different Trichoderma species is well documented, information on intraspecific variation is limited. The fungistatic activity of VOCs emitted by 59 Trichoderma sp. "atroviride B" isolates against the pathogen Rhizoctonia solani was investigated. Eight isolates representing the two extremes of bioactivity against R. solani were also assessed against Alternaria radicina, Fusarium oxysporum f. sp. lycopersici and Sclerotinia sclerotiorum. VOCs profiles of these eight isolates were analyzed using gas chromatography-mass spectrometry (GC-MS) to identify a correlation between specific VOCs and bioactivity, and 11 VOCs were evaluated for bioactivity against the pathogens. Bioactivity against R. solani varied among the fifty-nine isolates, with five being strongly antagonistic. All eight selected isolates inhibited the growth of all four pathogens, with bioactivity being lowest against F. oxysporum f. sp. lycopersici. In total, 32 VOCs were detected, with individual isolates producing between 19 and 28 VOCs. There was a significant direct correlation between VOC number/quantity and bioactivity against R. solani. 6-pentyl-α-pyrone was the most abundant VOC produced, but 15 other VOCs were also correlated with bioactivity. All 11 VOCs tested inhibited R. solani growth, some by >50%. Some of the VOCs also inhibited the growth of the other pathogens by >50%. This study demonstrates significant intraspecific differences in VOC profiles and fungistatic activity supporting the existence of biological diversity within Trichoderma isolates from the same species, a factor in many cases ignored during the development of biological control agents.
Collapse
Affiliation(s)
- Eline van Zijll de Jong
- Bio-Protection Research Centre, Lincoln University, Lincoln 7647, New Zealand
- Linnaeus Laboratory Ltd., Gisborne 4010, New Zealand
| | - Janaki Kandula
- Bio-Protection Research Centre, Lincoln University, Lincoln 7647, New Zealand
| | - Michael Rostás
- Bio-Protection Research Centre, Lincoln University, Lincoln 7647, New Zealand
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, 37077 Göttingen, Germany
| | - Diwakar Kandula
- Bio-Protection Research Centre, Lincoln University, Lincoln 7647, New Zealand
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - John Hampton
- Bio-Protection Research Centre, Lincoln University, Lincoln 7647, New Zealand
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
- Correspondence: (J.H.); (A.M.-M.)
| | - Artemio Mendoza-Mendoza
- Bio-Protection Research Centre, Lincoln University, Lincoln 7647, New Zealand
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
- Correspondence: (J.H.); (A.M.-M.)
| |
Collapse
|
31
|
da Silva LR, de Barros Rodrigues LL, Botelho AS, de Castro BS, Muniz PHPC, Moraes MCB, de Mello SCM. Colony Age of Trichoderma azevedoi Alters the Profile of Volatile Organic Compounds and Ability to Suppress Sclerotinia sclerotiorum in Bean Plants. THE PLANT PATHOLOGY JOURNAL 2023; 39:39-51. [PMID: 36760048 PMCID: PMC9929164 DOI: 10.5423/ppj.oa.08.2022.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 06/18/2023]
Abstract
Common bean (Phaseolus vulgaris L.) is one of the most important crops in human food production. The occurrence of diseases, such as white mold, caused by Sclerotinia sclerotiorum can limit the production of this legume. The use of Trichoderma has become an important strategy in the suppression of this disease. The aim of the present study was to evaluate the effect of volatile organic compounds (VOCs) emitted by Trichoderma azevedoi CEN1241 in five different growth periods on the severity of white mold in common bean. The in vitro assays were carried out in double-plate and split-plate, and the in vivo assays, through the exposure of the mycelia of S. sclerotiorum to the VOCs of T. azevedoi CEN1241 and subsequent inoculation in bean plants. Chemical analysis by gas chromatography coupled to mass spectrometry detected 37 VOCs produced by T. azevedoi CEN1241, covering six major chemical classes. The profile of VOCs produced by T. azevedoi CEN1241 varied according to colony age and was shown to be related to the ability of the biocontrol agent to suppress S. sclerotiorum. T. azevedoi CEN1241 VOCs reduced the size of S. sclerotiorum lesions on bean fragments in vitro and reduced disease severity in a greenhouse. This study demonstrated in a more applied way that the mechanism of antibiosis through the production of volatile compounds exerted by Trichoderma can complement other mechanisms, such as parasitism and competition, thus contributing to a better efficiency in the control of white mold in bean plants.
Collapse
Affiliation(s)
- Lincon Rafael da Silva
- Embrapa Genetic Resources and Biotechnology, Brasília/Federal District 70770-917,
Brazil
| | | | | | | | | | | | | |
Collapse
|
32
|
Almeida OAC, de Araujo NO, Dias BHS, de Sant’Anna Freitas C, Coerini LF, Ryu CM, de Castro Oliveira JV. The power of the smallest: The inhibitory activity of microbial volatile organic compounds against phytopathogens. Front Microbiol 2023; 13:951130. [PMID: 36687575 PMCID: PMC9845590 DOI: 10.3389/fmicb.2022.951130] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/20/2022] [Indexed: 01/06/2023] Open
Abstract
Plant diseases caused by phytopathogens result in huge economic losses in agriculture. In addition, the use of chemical products to control such diseases causes many problems to the environment and to human health. However, some bacteria and fungi have a mutualistic relationship with plants in nature, mainly exchanging nutrients and protection. Thus, exploring those beneficial microorganisms has been an interesting and promising alternative for mitigating the use of agrochemicals and, consequently, achieving a more sustainable agriculture. Microorganisms are able to produce and excrete several metabolites, but volatile organic compounds (VOCs) have huge biotechnology potential. Microbial VOCs are small molecules from different chemical classes, such as alkenes, alcohols, ketones, organic acids, terpenes, benzenoids and pyrazines. Interestingly, volatilomes are species-specific and also change according to microbial growth conditions. The interaction of VOCs with other organisms, such as plants, insects, and other bacteria and fungi, can cause a wide range of effects. In this review, we show that a large variety of plant pathogens are inhibited by microbial VOCs with a focus on the in vitro and in vivo inhibition of phytopathogens of greater scientific and economic importance in agriculture, such as Ralstonia solanacearum, Botrytis cinerea, Xanthomonas and Fusarium species. In this scenario, some genera of VOC-producing microorganisms stand out as antagonists, including Bacillus, Pseudomonas, Serratia and Streptomyces. We also highlight the known molecular and physiological mechanisms by which VOCs inhibit the growth of phytopathogens. Microbial VOCs can provoke many changes in these microorganisms, such as vacuolization, fungal hyphal rupture, loss of intracellular components, regulation of metabolism and pathogenicity genes, plus the expression of proteins important in the host response. Furthermore, we demonstrate that there are aspects to investigate by discussing questions that are still not very clear in this research area, especially those that are essential for the future use of such beneficial microorganisms as biocontrol products in field crops. Therefore, we bring to light the great biotechnological potential of VOCs to help make agriculture more sustainable.
Collapse
Affiliation(s)
- Octávio Augusto Costa Almeida
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Natália Oliveira de Araujo
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Bruno Henrique Silva Dias
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Carla de Sant’Anna Freitas
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Luciane Fender Coerini
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, South Korea,Biosystems and Bioengineering Program, University of Science and Technology, Daejeon, South Korea
| | - Juliana Velasco de Castro Oliveira
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil,*Correspondence: Juliana Velasco de Castro Oliveira,
| |
Collapse
|
33
|
Sanó L, Oliveira LLBD, Leão MDM, Santos JEDÁD, Medeiros SCD, Schneider F, Sousa ABOD, Taniguchi CAK, Muniz CR, Grangeiro TB, Silva CDFBD. Trichoderma longibrachiatum as a biostimulant of micropropagated banana seedlings under acclimatization. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 190:184-192. [PMID: 36126463 DOI: 10.1016/j.plaphy.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/01/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
The use of growth-promoting microorganisms with biostimulant characteristics is an important biological asset for the acclimatization of micropropagated seedlings. The present study aimed to evaluate the efficacy of the application of Trichoderma spp. on the promotion of the growth of micropropagated banana seedlings during acclimatization. The experiment was performed in an 8 × 6 completely randomized design using the following treatments: water, seedlings fertilized with controlled-release fertilizer, commercial biological inputs (A: T. asperellum, B/C: T. harzianum), and LPPC299 and LPPC300 strains. Plant height, pseudostem diameter, number of leaves, total leaf area, root length, fresh and dry mass of the plant, and accumulation of sodium, macronutrients, and micronutrients were evaluated 60 days after inoculation. Strains LPPC299 and LPPC300 were subjected to molecular identification by DNA sequencing of the ITS/5.8S locus. In vitro detection of growth promotion-related mechanisms and mycelial growth of biostimulants were performed using scanning electron microscopy. LPPC299 and LPPC300 had a greater similarity to T. longibrachiatum. LPPC299 was able to promote greater pseudostem diameter, number of leaves, and total leaf area in banana seedlings. T. asperellum (A) favored seedling performance in terms of fresh and dry mass of the plants. The strains were able to produce siderophores, indoleacetic acid, and catalase in vitro. Seedlings inoculated with the strains accumulated Mn, S (LPPC300), and Mg (LPPC299). LPPC299 from the banana rhizosphere was efficient in promoting performance in banana seedlings, showing its potential as a biostimulant for this crop.
Collapse
Affiliation(s)
- Lamine Sanó
- Universidade do Estado de Santa Catarina, Lages, Santa Catarina, Brazil.
| | | | | | | | | | - Fernanda Schneider
- Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Instituto de Desenvolvimento Rural, Redenção, Ceará, Brazil.
| | | | | | | | | | | |
Collapse
|
34
|
Funneliformis mosseae Inoculation Enhances Cucurbita pepo L. Plant Growth and Fruit Yield by Reshaping Rhizosphere Microbial Community Structure. DIVERSITY 2022. [DOI: 10.3390/d14110932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Arbuscular mycorrhizal fungi (AMF) are essential components of the soil microbiome that can facilitate plant growth and enhance abiotic and biotic stress resistance. However, the mechanisms via which AMF inoculation influences Cucurbita pepo L. plant growth and fruit yield remain unclear. Here, we conducted pot experiments to investigate bacterial and fungal community structure in the rhizosphere of C. pepo plants inoculated with Funneliformis mosseae (Nicoll. & Gerd.) Gerd. & Trappe based on 16S ribosomal RNA and internal transcribed spacer gene sequencing. The α-diversity of bacteria increased significantly following F. mosseae inoculation, whereas the α-diversity of fungi exhibited an opposite trend (p < 0.01). The relative abundances of major bacterial phyla, Actinobacteria, Acidobacteria, and Chloroflexi, together with the fungal phylum Ascomycota, were all higher in inoculated samples than in uninoculated controls. F. mosseae inoculation led to remarkable enrichment of potentially beneficial taxa (e.g., Streptomyces, Sphingomonas, Lysobacter, and Trichoderma), in stark contrast to depletion of fungal pathogens (e.g., Botryotrichum, Acremonium, Fusarium, and Plectosphaerella). Pathways related to amino acid metabolism and antibiotic biosynthesis were upregulated by F. mosseae inoculation, whereas pathways involved in infectious diseases were downregulated. The results suggest that F. mosseae inoculation reshapes the rhizosphere microbiome, thereby augmenting C. pepo plant growth and fruit yield.
Collapse
|
35
|
Panchalingam H, Powell D, Adra C, Foster K, Tomlin R, Quigley BL, Nyari S, Hayes RA, Shapcott A, Kurtböke Dİ. Assessing the Various Antagonistic Mechanisms of Trichoderma Strains against the Brown Root Rot Pathogen Pyrrhoderma noxium Infecting Heritage Fig Trees. J Fungi (Basel) 2022; 8:jof8101105. [PMID: 36294670 PMCID: PMC9605450 DOI: 10.3390/jof8101105] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/09/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
A wide range of phytopathogenic fungi exist causing various plant diseases, which can lead to devastating economic, environmental, and social impacts on a global scale. One such fungus is Pyrrhoderma noxium, causing brown root rot disease in over 200 plant species of a variety of life forms mostly in the tropical and subtropical regions of the globe. The aim of this study was to discover the antagonistic abilities of two Trichoderma strains (#5001 and #5029) found to be closely related to Trichoderma reesei against P. noxium. The mycoparasitic mechanism of these Trichoderma strains against P. noxium involved coiling around the hyphae of the pathogen and producing appressorium like structures. Furthermore, a gene expression study identified an induced expression of the biological control activity associated genes in Trichoderma strains during the interaction with the pathogen. In addition, volatile and diffusible antifungal compounds produced by the Trichoderma strains were also effective in inhibiting the growth of the pathogen. The ability to produce Indole-3-acetic acid (IAA), siderophores and the volatile compounds related to plant growth promotion were also identified as added benefits to the performance of these Trichoderma strains as biological control agents. Overall, these results show promise for the possibility of using the Trichoderma strains as potential biological control agents to protect P. noxium infected trees as well as preventing new infections.
Collapse
Affiliation(s)
- Harrchun Panchalingam
- School of Science, Technology and Engineering, The University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia
| | - Daniel Powell
- School of Science, Technology and Engineering, The University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia
| | - Cherrihan Adra
- School of Science, Technology and Engineering, The University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia
| | - Keith Foster
- Brisbane City Council, Program, Planning and Integration, Brisbane Square, Level 10, 266 George Street, Brisbane, QLD 4000, Australia
| | - Russell Tomlin
- Brisbane City Council, Program, Planning and Integration, Brisbane Square, Level 10, 266 George Street, Brisbane, QLD 4000, Australia
| | - Bonnie L. Quigley
- School of Science, Technology and Engineering, The University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia
| | - Sharon Nyari
- School of Science, Technology and Engineering, The University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia
| | - R. Andrew Hayes
- Forest Industries Research Centre, The University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia
| | - Alison Shapcott
- School of Science, Technology and Engineering, The University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia
| | - D. İpek Kurtböke
- School of Science, Technology and Engineering, The University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia
- Correspondence:
| |
Collapse
|
36
|
De Palma M, Scotti R, D’Agostino N, Zaccardelli M, Tucci M. Phyto-Friendly Soil Bacteria and Fungi Provide Beneficial Outcomes in the Host Plant by Differently Modulating Its Responses through (In)Direct Mechanisms. PLANTS (BASEL, SWITZERLAND) 2022; 11:2672. [PMID: 36297696 PMCID: PMC9612229 DOI: 10.3390/plants11202672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Sustainable agricultural systems based on the application of phyto-friendly bacteria and fungi are increasingly needed to preserve soil fertility and microbial biodiversity, as well as to reduce the use of chemical fertilizers and pesticides. Although there is considerable attention on the potential applications of microbial consortia as biofertilizers and biocontrol agents for crop management, knowledge on the molecular responses modulated in host plants because of these beneficial associations is still incomplete. This review provides an up-to-date overview of the different mechanisms of action triggered by plant-growth-promoting microorganisms (PGPMs) to promote host-plant growth and improve its defense system. In addition, we combined available gene-expression profiling data from tomato roots sampled in the early stages of interaction with Pseudomonas or Trichoderma strains to develop an integrated model that describes the common processes activated by both PGPMs and highlights the host's different responses to the two microorganisms. All the information gathered will help define new strategies for the selection of crop varieties with a better ability to benefit from the elicitation of microbial inoculants.
Collapse
Affiliation(s)
- Monica De Palma
- Institute of Biosciences and BioResources, Research Division Portici, National Research Council, 80055 Portici, Italy
| | - Riccardo Scotti
- CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano Faiano (SA), Italy
| | - Nunzio D’Agostino
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Massimo Zaccardelli
- CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano Faiano (SA), Italy
| | - Marina Tucci
- Institute of Biosciences and BioResources, Research Division Portici, National Research Council, 80055 Portici, Italy
| |
Collapse
|
37
|
Gualtieri L, Monti MM, Mele F, Russo A, Pedata PA, Ruocco M. Volatile Organic Compound (VOC) Profiles of Different Trichoderma Species and Their Potential Application. J Fungi (Basel) 2022; 8:jof8100989. [PMID: 36294554 PMCID: PMC9605199 DOI: 10.3390/jof8100989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/07/2022] [Accepted: 09/15/2022] [Indexed: 12/04/2022] Open
Abstract
Fungi emit a broad spectrum of volatile organic compounds (VOCs), sometimes producing species-specific volatile profiles. Volatilomes have received over the last decade increasing attention in ecological, environmental and agricultural studies due to their potential to be used in the biocontrol of plant pathogens and pests and as plant growth-promoting factors. In the present study, we characterised and compared the volatilomes from four different Trichoderma species: T. asperellum B6; T. atroviride P1; T. afroharzianum T22; and T. longibrachiatum MK1. VOCs were collected from each strain grown both on PDA and in soil and analysed using proton transfer reaction quadrupole interface time-of-flight mass spectrometry (PTR-Qi-TOF-MS). Analysis of the detected volatiles highlighted a clear separation of the volatilomes of all the four species grown on PDA whereas the volatilomes of the soil-grown fungi could be only partially separated. Moreover, a limited number of species-specific peaks were found and putatively identified. In particular, each of the four Trichoderma species over-emitted somevolatiles involved in resistance induction, promotion of plant seed germination and seedling development and antimicrobial activity, as 2-pentyl-furan, 6PP, acetophenone and p-cymene by T. asperellum B6, T. atroviride P1, T. afroharzianum T22 and T. longibrachiatum MK1, respectively. Their potential role in interspecific interactions from the perspective of biological control is briefly discussed.
Collapse
Affiliation(s)
- Liberata Gualtieri
- Institute for Sustainable Plant Protection (CNR-IPSP), Piazzale Enrico Fermi 1, 80055 Portici, Naples, Italy
| | - Maurilia Maria Monti
- Institute for Sustainable Plant Protection (CNR-IPSP), Piazzale Enrico Fermi 1, 80055 Portici, Naples, Italy
- Correspondence: ; Tel.: +39-06-499-327-824
| | - Francesca Mele
- Institute for Sustainable Plant Protection (CNR-IPSP), Piazzale Enrico Fermi 1, 80055 Portici, Naples, Italy
| | - Assunta Russo
- Institute for Sustainable Plant Protection (CNR-IPSP), Piazzale Enrico Fermi 1, 80055 Portici, Naples, Italy
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Naples, Italy
| | - Paolo Alfonso Pedata
- Institute for Sustainable Plant Protection (CNR-IPSP), Piazzale Enrico Fermi 1, 80055 Portici, Naples, Italy
| | - Michelina Ruocco
- Institute for Sustainable Plant Protection (CNR-IPSP), Piazzale Enrico Fermi 1, 80055 Portici, Naples, Italy
| |
Collapse
|
38
|
Nones S, Sousa E, Holighaus G. Symbiotic Fungi of an Ambrosia Beetle Alter the Volatile Bouquet of Cork Oak Seedlings. PHYTOPATHOLOGY 2022; 112:1965-1978. [PMID: 35357159 DOI: 10.1094/phyto-08-21-0345-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In Portugal, fungal symbionts of the ambrosia beetle Platypus cylindrus affect tree vigor of cork oak (Quercus suber) and are linked with the cork oak decline process. Fungal symbionts play crucial roles in the life history of bark and ambrosia beetles and recent work indicates complex interactions on the fungal and plant metabolic level. Colonized trees may respond with an array of currently unknown volatile metabolites being indicative of such interactions, acting as infochemicals with their environment. In this study, we examined volatile organic compounds (VOCs) of cork oak seedlings wound inoculated with strains of three fungal associates of P. cylindrus (Raffaelea montetyi, R. quercina, and Ceratocystiopsis sp. nov.) over a 45-day period by means of thermodesorption gas chromatography-mass spectrometry techniques. Fungal strains induced largely quantitative but species-specific changes among the 58 VOCs characterized. Overall, monoterpenes-the major volatiles of cork oak foliage-were significantly reduced, possibly a result of fungal biotransformation. Acetophenone, sulcatone, and nonanal-volatiles known for mediating ambrosia beetle behavior-increased in response to fungal inoculation. Qualitative VOC profiles of excised tissue of wood lesions (21 VOCs) and pure fungal cultures (60 VOCs) showed little overlap with seedling VOCs, indicating their plant-derived but fungal-induced origin. This chemoecological study expands on the limited knowledge of VOCs as infochemicals emitted from oak trees threatened by oak decline in relation to beetle-vectored ophiostomatoid fungi. It opens new avenues of research to clarify mutualistic or pathogenic aspects of these complex symbiotic interactions and develop new control strategies for P. cylindrus, including its mycobiota.
Collapse
Affiliation(s)
- Stefano Nones
- Agrarian and Forestry Systems and Vegetal Health Unit, National Institute for Agricultural and Veterinary Research (INIAV, I.P.), Av. da República, Quinta do Marquês, 2780-159 Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Av. da República, 2780-157 Oeiras, Portugal
- Institute of Chemical and Biological Technology António Xavier, NOVA University of Lisbon, Av. da República, 2780-157 Oeiras, Portugal
| | - Edmundo Sousa
- Agrarian and Forestry Systems and Vegetal Health Unit, National Institute for Agricultural and Veterinary Research (INIAV, I.P.), Av. da República, Quinta do Marquês, 2780-159 Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Av. da República, 2780-157 Oeiras, Portugal
| | - Gerrit Holighaus
- Department of Forest Zoology and Forest Conservation, Büsgen Institute, Georg-August-University Göttingen, Büsgenweg 3, 37077 Göttingen, Germany
- Northwest German Forest Research Institute, Department of Forest Protection, Grätzelstraße 2, 37079 Göttingen, Germany
| |
Collapse
|
39
|
Liu J, Clarke JA, McCann S, Hillier NK, Tahlan K. Analysis of Streptomyces Volatilomes Using Global Molecular Networking Reveals the Presence of Metabolites with Diverse Biological Activities. Microbiol Spectr 2022; 10:e0055222. [PMID: 35900081 PMCID: PMC9431705 DOI: 10.1128/spectrum.00552-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/09/2022] [Indexed: 12/20/2022] Open
Abstract
Streptomyces species produce a wide variety of specialized metabolites, some of which are used for communication or competition for resources in their natural environments. In addition, many natural products used in medicine and industry are derived from Streptomyces, and there has been interest in their capacity to produce volatile organic compounds (VOCs) for different industrial and agricultural applications. Recently, a machine-learning workflow called MSHub/GNPS was developed, which enables auto-deconvolution of gas chromatography-mass spectrometry (GC-MS) data, molecular networking, and library search capabilities, but it has not been applied to Streptomyces volatilomes. In this study, 131 Streptomyces isolates from the island of Newfoundland were phylogenetically typed, and 37 were selected based on their phylogeny and growth characteristics for VOC analysis using both a user-guided (conventional) and an MSHub/GNPS-based approach. More VOCs were annotated by MSHub/GNPS than by the conventional method. The number of unknown VOCs detected by the two methods was higher than those annotated, suggesting that many novel compounds remain to be identified. The molecular network generated by GNPS can be used to guide the annotation of such unknown VOCs in future studies. However, the number of overlapping VOCs annotated by the two methods is relatively small, suggesting that a combination of analysis methods might be required for robust volatilome analysis. More than half of the VOCs annotated with high confidence by the two approaches are plant-associated, many with reported bioactivities such as insect behavior modulation. Details regarding the properties and reported functions of such VOCs are described. IMPORTANCE This study represents the first detailed analysis of Streptomyces volatilomes using MSHub/GNPS, which in combination with a routinely used conventional method led to many annotations. More VOCs could be annotated using MSHub/GNPS as compared to the conventional method, many of which have known antimicrobial, anticancer, and insect behavior-modulating activities. The identification of numerous plant-associated VOCs by both approaches in the current study suggests that their production could be a more widespread phenomenon by members of the genus, highlighting opportunities for their large-scale production using Streptomyces. Plant-associated VOCs with antimicrobial activities, such as 1-octen-3-ol, octanol, and phenylethyl alcohol, have potential applications as fumigants. Furthermore, many of the annotated VOCs are reported to influence insect behavior, alluding to a possible explanation for their production based on the functions of other recently described Streptomyces VOCs in dispersal and nutrient acquisition.
Collapse
Affiliation(s)
- Jingyu Liu
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Jody-Ann Clarke
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Sean McCann
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| | - N. Kirk Hillier
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| |
Collapse
|
40
|
Li X, Leng J, Yu L, Bai H, Li X, Wisniewski M, Liu J, Sui Y. Efficacy of the biocontrol agent Trichoderma hamatum against Lasiodiplodia theobromae on macadamia. Front Microbiol 2022; 13:994422. [PMID: 36118222 PMCID: PMC9470996 DOI: 10.3389/fmicb.2022.994422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/15/2022] [Indexed: 11/27/2022] Open
Abstract
Macadamia (Macadamia integrifolia) trees are an important source of revenue in rainforest ecosystems. Their nuts are rich in vitamins, minerals, fiber, antioxidants, and monounsaturated oils. The fungus Lasiodiplodia theobromae, however, is a major disease problem, causing kernel rot and other disease symptoms. In the present study, a dual confrontation assay was used to evaluate the inhibitory effect of an endophytic strain of Trichoderma hamatum C9 from macadamia root against L. theobromae. Volatiles and cell-free culture filtrate of T. hamatum were also used to assess their antifungal activity against L. theobromae. Results suggested that T. hamatum exhibited a significant inhibitory effect against L. theobromae in vitro. Further results of a biocontrol assay indicated that a spray treatment of T. hamatum conidial suspension significantly decreased the size of lesions caused by artificially inoculated L. theobromae on macadamia leaves, as well as the disease index in young trees inoculated with L. theobromae, relative to sterile water controls. Collectively, our findings indicate that T. hamatum C9 represents a potential biocontrol agent that can be used to manage L. theobromae on macadamia.
Collapse
Affiliation(s)
- Xiaojiao Li
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, China
| | - Jinsong Leng
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, China
| | - Longfeng Yu
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, China
| | | | - Xiaojun Li
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, China
| | - Michael Wisniewski
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Jia Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, China
| | - Yuan Sui
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, China
| |
Collapse
|
41
|
Joo JH, Hussein KA. Biological Control and Plant Growth Promotion Properties of Volatile Organic Compound-Producing Antagonistic Trichoderma spp. FRONTIERS IN PLANT SCIENCE 2022; 13:897668. [PMID: 35958189 PMCID: PMC9360753 DOI: 10.3389/fpls.2022.897668] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/20/2022] [Indexed: 05/25/2023]
Abstract
Trichoderma is environmentally vital due to their plant growth-promoting effects (such as enhancement of nutrients supply, suppression of plant pathogens, and promotion of plant defense). Biogenic volatile organic compounds (VOCs) are diverse chemical substances emitted by Trichoderma spp. The potential role of VOCs in biological control and plant growth promotion has recently been recognized. Here, the Trichoderma-VOCs' performance for plant growth promotion and suppression of plant pathogens are evaluated. We further investigated VOC emission profiles of T. harzianum using GC-MS. The Trichoderma-VOCs exhibited significant (p < 0.05) antifungal properties against all tested pathogenic fungi. T. atroviride-VOCs showed a decisive inhibition of Alternaria panax, Botrytis cinerea, Cylindrocarpon destructans, and Sclerotinia nivalis. The germinating seeds demonstrated growth enhancement in the presence of Trichoderma-VOCs emitted by different strains. Low levels of cyclopentasiloxane, decamethyl, cyclotetrasiloxane, and octamethyl were found in T. harzianum KNU1 strain whereas cyclopentasiloxane, decamethyl, cyclotetrasiloxane, and octamethyl showed higher emission levels as Si-containing compounds. The results reveal the potentiality of VOCs as a biocontrol resource against deleterious rhizosphere microorganisms and underline the importance of Trichoderma-VOCs emissions in regulating plant growth and development.
Collapse
Affiliation(s)
- Jin Ho Joo
- Soil Biochemistry Lab, Department of Biological Environment, Kangwon National University, Chuncheon, South Korea
| | - Khalid Abdallah Hussein
- Soil Biochemistry Lab, Department of Biological Environment, Kangwon National University, Chuncheon, South Korea
- Botany and Microbiology Department, Faculty of Science, Assiut University, Asyut, Egypt
| |
Collapse
|
42
|
Rao Y, Zeng L, Jiang H, Mei L, Wang Y. Trichoderma atroviride LZ42 releases volatile organic compounds promoting plant growth and suppressing Fusarium wilt disease in tomato seedlings. BMC Microbiol 2022; 22:88. [PMID: 35382732 PMCID: PMC8981656 DOI: 10.1186/s12866-022-02511-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/30/2022] [Indexed: 11/17/2022] Open
Abstract
Background The promotion of plant growth and suppression of plant disease using beneficial microorganisms is considered an alternative to the application of chemical fertilizers or pesticides in the field. Results A coconut-scented antagonistic Trichoderma strain LZ42, previously isolated from Ganoderma lucidum-cultivated soil, was investigated for biostimulatory and biocontrol functions in tomato seedlings. Morphological and phylogenetic analyses suggested that strain LZ42 is closely related to T. atroviride. Tomato seedlings showed increased aerial and root dry weights in greenhouse trials after treatment with T. atroviride LZ42 formulated in talc, indicating the biostimulatory function of this fungus. T. atroviride LZ42 effectively suppressed Fusarium wilt disease in tomato seedlings, with an 82.69% control efficiency, which is similar to that of the carbendazim treatment. The volatile organic compounds (VOCs) emitted by T. atroviride LZ42 were found to affect the primary root growth direction and promote the root growth of tomato seedlings in root Y-tube olfactometer assays. The fungal VOCs from T. atroviride LZ42 were observed to significantly inhibit F. oxysporum in a sandwiched Petri dish assay. SPME–GC–MS analysis revealed several VOCs emitted by T. atroviride LZ42; the dominant compound was tentatively identified as 6-pentyl-2H-pyran-2-one (6-PP). The VOC 6-PP exhibited a stronger ability to influence the direction of the primary roots of tomato seedlings but not the length of the primary roots. The inhibitory effect of 6-PP on F. oxysporum was the highest among the tested pure VOCs, showing a 50% effective concentration (EC50) of 5.76 μL mL−1 headspace. Conclusions Trichoderma atroviride LZ42, which emits VOCs with multiple functions, is a promising agent for the biostimulation of vegetable plants and integrated management of Fusarium wilt disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02511-3.
Collapse
Affiliation(s)
- Yuxin Rao
- College of Forestry and Biotechnology, Zhejiang Agricultural and Forestry University, Hangzhou, 311300, China
| | - Linzhou Zeng
- College of Forestry and Biotechnology, Zhejiang Agricultural and Forestry University, Hangzhou, 311300, China
| | - Hong Jiang
- College of Forestry and Biotechnology, Zhejiang Agricultural and Forestry University, Hangzhou, 311300, China
| | - Li Mei
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agricultural and Forestry University, Hangzhou, 311300, China
| | - Yongjun Wang
- College of Forestry and Biotechnology, Zhejiang Agricultural and Forestry University, Hangzhou, 311300, China.
| |
Collapse
|
43
|
González-Pérez E, Ortega-Amaro MA, Bautista E, Delgado-Sánchez P, Jiménez-Bremont JF. The entomopathogenic fungus Metarhizium anisopliae enhances Arabidopsis, tomato, and maize plant growth. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 176:34-43. [PMID: 35217328 DOI: 10.1016/j.plaphy.2022.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/27/2022] [Accepted: 02/09/2022] [Indexed: 05/28/2023]
Abstract
Species of the entomopathogenic fungi Metarhizium are used worldwide as biocontrol agents. Recently, other lifestyles have been associated with some Metarhizium species, which include their role as saprophytes, endophytes, and plant growth promoters. Herein, the effect of three Metarhizium anisopliae strains on the growth of Arabidopsis thaliana plantlets was evaluated using an in vitro split system. Arabidopsis fresh weight and total chlorophyll content significantly increased 7 days post-inoculation with the three Metarhizium anisopliae strains evaluated. The primary root length was promoted by all fungal strains without physical contact, whereas in direct contact primary root growth was inhibited. Volatile organic compounds identification revealed that during the interaction of Arabidopsis with Ma-20 and Ma-25 strains only β-caryophyllene was produced, whereas in the Arabidopsis-Ma-28 interaction o-cymene was mainly emitted. The plant growth promoting effect induced by Metarhizium anisopliae strains was also achieved in Arabidopsis, tomato and maize plants grown in soil pots. Our results showed that three Metarhizium anisopliae strains were able to increase plant fresh weight, opening promising perspectives for field production, with the advantages of insect biocontrol and plant growth promotion induced by this species of fungus.
Collapse
Affiliation(s)
- Enrique González-Pérez
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí, SLP, Mexico
| | - María Azucena Ortega-Amaro
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí, SLP, Mexico; Coordinación Académica Región Altiplano Oeste, Universidad Autónoma de San Luis Potosí, Salinas de Hidalgo, SLP, México
| | - Elihú Bautista
- CONACYT-Consorcio de Investigación, Innovación y Desarrollo para las Zonas Áridas (CIIDZA), Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí, SLP, Mexico
| | - Pablo Delgado-Sánchez
- Laboratorio de Biotecnología, Facultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí, Soledad de Graciano Sánchez, SLP, Mexico
| | - Juan Francisco Jiménez-Bremont
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A. C., San Luis Potosí, SLP, Mexico.
| |
Collapse
|
44
|
Pérez-Corral DA, Ornelas-Paz JDJ, Olivas GI, Acosta-Muñiz CH, Salas-Marina MÁ, Berlanga-Reyes DI, Sepulveda DR, Mares-Ponce de León Y, Rios-Velasco C. Growth Promotion of Phaseolus vulgaris and Arabidopsis thaliana Seedlings by Streptomycetes Volatile Compounds. PLANTS (BASEL, SWITZERLAND) 2022; 11:875. [PMID: 35406854 PMCID: PMC9002626 DOI: 10.3390/plants11070875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Streptomyces are recognized as antipathogenic agents and plant-growth-promoting rhizobacteria. The objective of this study was to evaluate the capacities of four antifungal Streptomyces strains to: produce the substances that are involved in plant growth; solubilize phosphates; and fix nitrogen. The effects of the volatile organic compounds (VOCs) that are emitted by these strains on the growth promotion of Arabidopsis thaliana and Phaseolus vulgaris L. (var. Pinto Saltillo) seedlings were also tested. All of the Streptomyces strains produced indole-3-acetic acid (IAA) (10.0 mg/L to 77.5 mg/L) and solubilized phosphates, but they did not fix nitrogen. In vitro assays showed that the VOCs from Streptomyces increased the shoot fresh weights (89-399%) and the root fresh weights (94-300%) in A. thaliana seedlings; however, these effects were less evident in P. vulgaris. In situ experiments showed that all the Streptomyces strains increased the shoot fresh weight (11.64-43.92%), the shoot length (11.39-29.01%), the root fresh weight (80.11-140.90%), the root length (40.06-59.01%), the hypocotyl diameter (up to 6.35%), and the chlorophyll content (up to 10.0%) in P. vulgaris seedlings. 3-Methyl-2-butanol had the highest effect among the ten pure VOCs on the growth promotion of A. thaliana seedlings. The tested Streptomyces strains favored biomass accumulation in A. thaliana and P. vulgaris seedlings.
Collapse
Affiliation(s)
- Daniel Alonso Pérez-Corral
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Av. Río Conchos, S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Chihuahua, Mexico; (D.A.P.-C.); (J.d.J.O.-P.); (G.I.O.); (C.H.A.-M.); (D.I.B.-R.); (D.R.S.); (Y.M.-P.d.L.)
| | - José de Jesús Ornelas-Paz
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Av. Río Conchos, S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Chihuahua, Mexico; (D.A.P.-C.); (J.d.J.O.-P.); (G.I.O.); (C.H.A.-M.); (D.I.B.-R.); (D.R.S.); (Y.M.-P.d.L.)
| | - Guadalupe Isela Olivas
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Av. Río Conchos, S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Chihuahua, Mexico; (D.A.P.-C.); (J.d.J.O.-P.); (G.I.O.); (C.H.A.-M.); (D.I.B.-R.); (D.R.S.); (Y.M.-P.d.L.)
| | - Carlos Horacio Acosta-Muñiz
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Av. Río Conchos, S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Chihuahua, Mexico; (D.A.P.-C.); (J.d.J.O.-P.); (G.I.O.); (C.H.A.-M.); (D.I.B.-R.); (D.R.S.); (Y.M.-P.d.L.)
| | - Miguel Ángel Salas-Marina
- División de Ingeniería, Universidad de Ciencias y Artes de Chiapas, Carretera Villacorzo-Ejido Monterrey Km 3.0., Tuxtla Gutiérrez C.P. 30520, Chiapas, Mexico;
| | - David Ignacio Berlanga-Reyes
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Av. Río Conchos, S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Chihuahua, Mexico; (D.A.P.-C.); (J.d.J.O.-P.); (G.I.O.); (C.H.A.-M.); (D.I.B.-R.); (D.R.S.); (Y.M.-P.d.L.)
| | - David Roberto Sepulveda
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Av. Río Conchos, S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Chihuahua, Mexico; (D.A.P.-C.); (J.d.J.O.-P.); (G.I.O.); (C.H.A.-M.); (D.I.B.-R.); (D.R.S.); (Y.M.-P.d.L.)
| | - Yericka Mares-Ponce de León
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Av. Río Conchos, S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Chihuahua, Mexico; (D.A.P.-C.); (J.d.J.O.-P.); (G.I.O.); (C.H.A.-M.); (D.I.B.-R.); (D.R.S.); (Y.M.-P.d.L.)
| | - Claudio Rios-Velasco
- Centro de Investigación en Alimentación y Desarrollo A.C., Unidad Cuauhtémoc, Av. Río Conchos, S/N, Parque Industrial, Cd. Cuauhtémoc C.P. 31570, Chihuahua, Mexico; (D.A.P.-C.); (J.d.J.O.-P.); (G.I.O.); (C.H.A.-M.); (D.I.B.-R.); (D.R.S.); (Y.M.-P.d.L.)
| |
Collapse
|
45
|
Al-Askar AA, Rashad EM, Moussa Z, Ghoneem KM, Mostafa AA, Al-Otibi FO, Arishi AA, Saber WIA. A Novel Endophytic Trichoderma longibrachiatum WKA55 With Biologically Active Metabolites for Promoting Germination and Reducing Mycotoxinogenic Fungi of Peanut. Front Microbiol 2022; 13:772417. [PMID: 35401430 PMCID: PMC8993229 DOI: 10.3389/fmicb.2022.772417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Plant residuals comprise the natural habitat of the plant pathogen; therefore, attention is currently focusing on biological-based bioprocessing of biomass residuals into benefit substances. The current study focused on the biodegradation of peanut plant residual (PNR) into citric acid (CA) through a mathematical modeling strategy. Novel endophytic Trichoderma longibrachiatum WKA55 (GenBank accession number: MZ014020.1), having lytic (cellulase, protease, and polygalacturonase) activity, and tricalcium phosphate (TCP) solubilization ability were isolated from peanut seeds and used during the fermentation process. As reported by HPLC, the maximum CA (5505.1 μg/g PNR) was obtained after 9 days in the presence of 15.49 mg TCP, and 15.68 mg glucose. GC–MS analysis showed other bioactive metabolites in the filtrate of the fermented PNR. Practically, the crude product (40%) fully inhibited (100%) the growth and spore germination of three mycotoxinogenic fungi. On peanuts, it improved the seed germination (91%), seedling features, and vigor index (70.45%) with a reduction of abnormal seedlings (9.33%). The current study presents the fundamentals for large-scale production in the industry for the sustainable development of PNR biomass as a natural source of bioactive metabolites, and safe consumption of lignocellulosic-proteinaceous biomass, as well. T. longibrachiatum WKA55 was also introduced as a novel CA producer specified on PNR. Application of the resulting metabolite is encouraged on a large scale.
Collapse
Affiliation(s)
- Abdulaziz A. Al-Askar
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
- *Correspondence: Abdulaziz A. Al-Askar,
| | - Ehsan M. Rashad
- Department of Seed Pathology Research, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Zeiad Moussa
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, Egypt
| | - Khalid M. Ghoneem
- Department of Seed Pathology Research, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Ashraf A. Mostafa
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fatimah O. Al-Otibi
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | - Amr Abker Arishi
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - WesamEldin I. A. Saber
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, Egypt
- WesamEldin I. A. Saber,
| |
Collapse
|
46
|
Vicente I, Baroncelli R, Hermosa R, Monte E, Vannacci G, Sarrocco S. Role and genetic basis of specialised secondary metabolites in Trichoderma ecophysiology. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2021.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
47
|
Taylor L, Gutierrez S, McCormick SP, Bakker MG, Proctor RH, Teresi J, Kurtzman B, Hao G, Vaughan MM. Use of the volatile trichodiene to reduce Fusarium head blight and trichothecene contamination in wheat. Microb Biotechnol 2022; 15:513-527. [PMID: 33528888 PMCID: PMC8867995 DOI: 10.1111/1751-7915.13742] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/30/2020] [Accepted: 12/12/2020] [Indexed: 12/11/2022] Open
Abstract
Fusarium graminearum is the primary cause of Fusarium head blight (FHB), one of the most economically important diseases of wheat worldwide. FHB reduces yield and contaminates grain with the trichothecene mycotoxin deoxynivalenol (DON), which poses a risk to plant, human and animal health. The first committed step in trichothecene biosynthesis is formation of trichodiene (TD). The volatile nature of TD suggests that it could be a useful intra or interspecies signalling molecule, but little is known about the potential signalling role of TD during F. graminearum-wheat interactions. Previous work using a transgenic Trichoderma harzianum strain engineered to emit TD (Th + TRI5) indicated that TD can function as a signal that can modulate pathogen virulence and host plant resistance. Herein, we demonstrate that Th + TRI5 has enhanced biocontrol activity against F. graminearum and reduced DON contamination by 66% and 70% in a moderately resistant and a susceptible cultivar, respectively. While Th + TRI5 volatiles significantly influenced the expression of the pathogenesis-related 1 (PR1) gene, the effect was dependent on cultivar. Th + TRI5 volatiles strongly reduced DON production in F. graminearum plate cultures and downregulated the expression of TRI genes. Finally, we confirm that TD fumigation reduced DON accumulation in a detached wheat head assay.
Collapse
Affiliation(s)
- Laurie Taylor
- Mycotoxin Prevention and Applied Microbiology Research UnitNational Center for Agricultural Utilization ResearchUnited States Department of AgricultureAgricultural Research Service1815 N University StPeoriaIL61604USA
| | - Santiago Gutierrez
- Molecular Biology DepartmentUniversity of LeonCampus de Ponferrada, Avda. Astorga s/n 24400PonferradaSpain
| | - Susan P. McCormick
- Mycotoxin Prevention and Applied Microbiology Research UnitNational Center for Agricultural Utilization ResearchUnited States Department of AgricultureAgricultural Research Service1815 N University StPeoriaIL61604USA
| | - Matthew G. Bakker
- Mycotoxin Prevention and Applied Microbiology Research UnitNational Center for Agricultural Utilization ResearchUnited States Department of AgricultureAgricultural Research Service1815 N University StPeoriaIL61604USA
- Present address:
Department of MicrobiologyUniversity of Manitoba45 Chancellor’s CircleWinnipegMBR3T 2N2Canada
| | - Robert H. Proctor
- Mycotoxin Prevention and Applied Microbiology Research UnitNational Center for Agricultural Utilization ResearchUnited States Department of AgricultureAgricultural Research Service1815 N University StPeoriaIL61604USA
| | - Jennifer Teresi
- Mycotoxin Prevention and Applied Microbiology Research UnitNational Center for Agricultural Utilization ResearchUnited States Department of AgricultureAgricultural Research Service1815 N University StPeoriaIL61604USA
| | - Ben Kurtzman
- Mycotoxin Prevention and Applied Microbiology Research UnitNational Center for Agricultural Utilization ResearchUnited States Department of AgricultureAgricultural Research Service1815 N University StPeoriaIL61604USA
| | - Guixia Hao
- Mycotoxin Prevention and Applied Microbiology Research UnitNational Center for Agricultural Utilization ResearchUnited States Department of AgricultureAgricultural Research Service1815 N University StPeoriaIL61604USA
| | - Martha M. Vaughan
- Mycotoxin Prevention and Applied Microbiology Research UnitNational Center for Agricultural Utilization ResearchUnited States Department of AgricultureAgricultural Research Service1815 N University StPeoriaIL61604USA
| |
Collapse
|
48
|
Galindo-Solís JM, Fernández FJ. Endophytic Fungal Terpenoids: Natural Role and Bioactivities. Microorganisms 2022; 10:microorganisms10020339. [PMID: 35208794 PMCID: PMC8875210 DOI: 10.3390/microorganisms10020339] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 02/01/2023] Open
Abstract
Endophytic fungi are a highly diverse group of fungi that intermittently colonize all plants without causing symptoms of the disease. They sense and respond to physiological and environmental changes of their host plant and microbiome. The inter-organism interactions are largely driven by chemical networks mediated by specialized metabolites. The balance of these complex interactions leads to healthy and strong host plants. Endophytic strains have particular machinery to produce a plethora of secondary metabolites with a variety of bioactivities and unknown functions in an ecological niche. Terpenoids play a key role in endophytism and represent an important source of bioactive molecules for human health and agriculture. In this review, we describe the role of endophytic fungi in plant health, fungal terpenoids in multiple interactions, and bioactive fungal terpenoids recently reported from endophytes, mainly from plants used in traditional medicine, as well as from algae and mangroves. Additionally, we highlight endophytic fungi as producers of important chemotherapeutic terpenoids, initially discovered in plants. Despite advances in understanding endophytism, we still have much to learn in this field. The study of the role, the evolution of interactions of endophytic fungi and their terpenoids provide an opportunity for better applications in human health and agriculture.
Collapse
Affiliation(s)
- Juan M. Galindo-Solís
- Posgrado en Biotecnología, Universidad Autonoma Metropolitana, Unidad Iztapalapa, Mexico City CP 09340, Mexico;
| | - Francisco J. Fernández
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, Mexico City CP 09340, Mexico
- Correspondence: ; Tel.: +52-(55)-5804-6453
| |
Collapse
|
49
|
Biological Control and Plant Growth Promotion by Volatile Organic Compounds of Trichoderma koningiopsis T-51. J Fungi (Basel) 2022; 8:jof8020131. [PMID: 35205885 PMCID: PMC8875031 DOI: 10.3390/jof8020131] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
Trichoderma spp. are widely used in plant disease control and growth promotion due to their high efficacy and multiple biocontrol mechanisms. Trichoderma koningiopsis T-51 is an effective biocontrol agent against gray mold disease by direct contact. However, the indirect physical contact biocontrol potential of Trichoderma spp. is not clear. In this study, the volatile organic compounds (VOCs) produced by T-51 showed high inhibitory activity against plant pathogenic fungi Botrytis cinerea and Fusarium oxysporum. The percentage of B. cinerea and F. oxysporum mycelial growth inhibition by T-51 VOCs was 73.78% and 43.68%, respectively. In both B. cinerea and F. oxysporum, conidial germination was delayed, and germ tube elongation was suppressed when exposed to T-51 VOCs, and the final conidial germination rate of B. cinerea decreased significantly after T-51 treatment. The VOCs from T-51 reduced the Botrytis fruit rot of tomato compared with that noted when using the control. Moreover, the T-51 VOCs significantly increased the size and weight of Arabidopsis thaliana seedlings. Twenty-four possible compounds, which were identified as alkenes, alkanes, and esters, were detected in VOCs of T-51. These results indicate that T. koningiopsis T-51 can exert biological control by integrating actions to suppress plant disease and promote plant growth.
Collapse
|
50
|
Pennerman KK, Yin G, Bennett JW. Eight-carbon volatiles: prominent fungal and plant interaction compounds. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:487-497. [PMID: 34727164 DOI: 10.1093/jxb/erab438] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Signaling via volatile organic compounds (VOCs) has historically been studied mostly by entomologists; however, botanists and mycologists are increasingly aware of the physiological potential of chemical communication in the gas phase. Most research to date focuses on the observed effects of VOCs on different organisms such as differential growth or metabolite production. However, with the increased interest in volatile signaling, more researchers are investigating the molecular mechanisms for these effects. Eight-carbon VOCs are among the most prevalent and best-studied fungal volatiles. Therefore, this review emphasizes examples of eight-carbon VOCs affecting plants and fungi. These compounds display different effects that include growth suppression in both plants and fungi, induction of defensive behaviors such as accumulation of mycotoxins, phytohormone signaling cascades, and the inhibition of spore and seed germination. Application of '-omics' and other next-generation sequencing techniques is poised to decipher the mechanistic basis of volatiles in plant-fungal communication.
Collapse
Affiliation(s)
- Kayla K Pennerman
- Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park, MD 20742, USA
- United States Department of Agriculture, Toxicology and Mycotoxin Research Unit, Athens, GA 30605, USA
| | - Guohua Yin
- United States Department of Agriculture, Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Peoria, IL 61604, USA
- Department of Plant Biology, Rutgers University, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Joan W Bennett
- Department of Plant Biology, Rutgers University, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|