1
|
Gil J, Solis M, Strong R, Davis SC. Coblation Versus Surgical Debridement Against MRSA Infection in Wounds With Shrapnel: A Preliminary Study. Mil Med 2024; 189:2482-2487. [PMID: 38861411 DOI: 10.1093/milmed/usae302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 06/13/2024] Open
Abstract
INTRODUCTION Debridement plays a critical role in wound management. In addition to removing necrotic tissue, debridement can eliminate bacteria frequently harbored within the tissue. This study evaluated a novel debridement method that uses plasma-based radiofrequency technology to remove tissue and bacteria. Coblation is a technology that uses radiofrequency energy to excite the electrolytes in a conductive medium, such as saline, to create a precisely focused plasma. This plasma field contains highly energized particles that possess sufficient energy to break tissue molecular bonds, causing the tissue to dissolve at relatively low temperatures (typically 40 °C to 70 °C). MATERIALS AND METHODS Eighteen deep dermal wounds measuring 22 mm × 22 mm × 3 mm deep were created on pigs. Wounds were inoculated with methicillin-resistant Staphylococcus aureus USA300 (MRSA USA300) in combination with shrapnel and then covered with a polyurethane dressing for 24 hours. Wounds were then randomly assigned to one of the 3 treatment groups: (1) Coblation, (2) surgical debridement, and (3) no debridement. Wounds were biopsied on days 0, 5, 9, and 12, and specimens were processed for MRSA counts using selective media. Statistical analysis was performed using IBM SPSS statistics 27 using one-way ANOVA. RESULTS Comparison between coblation and surgical debridement showed a decrease in bacterial count in all assessment times. The lowest bacterial count in all assessment times was observed in wounds debrided with coblation showing a statistically significant (P ≤ .05) decrease in more than 2 Log CFU/g on days 0, 5, and 9 compared to no debridement. On day 12, coblation-debrided wounds exhibited 6.10 ± 0.22 Log CFU/g, and this value represents 99.99% of reduction compared with non-debrided wounds (P ≤ .05). More than 96% of reduction (P ≤ .05) resulted in wounds treated with coblation compared with surgically debrided. CONCLUSIONS Reducing MRSA bacterial infection counts, especially of biofilm-associated organisms, in combination with shrapnel may have important clinical implications, especially for the military personnel. Further research into the use of this technology in wound management is warranted.
Collapse
Affiliation(s)
- Joel Gil
- Dr. Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michael Solis
- Dr. Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ryan Strong
- Dr. Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Stephen C Davis
- Dr. Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
2
|
Sun B, Lei M, Wang L, Wang X, Li X, Mao Z, Kang H, Liu H, Sun S, Zhou F. Prediction of sepsis among patients with major trauma using artificial intelligence: a multicenter validated cohort study. Int J Surg 2024; 111:01279778-990000000-01726. [PMID: 38920319 PMCID: PMC11745725 DOI: 10.1097/js9.0000000000001866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/08/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Sepsis remains a significant challenge in patients with major trauma in the ICU. Early detection and treatment are crucial for improving outcomes and reducing mortality rates. Nonetheless, clinical tools for predicting sepsis among patients with major trauma are limited. This study aimed to develop and validate an artificial intelligence (AI) platform for predicting the risk of sepsis among patients with major trauma. METHODS This study involved 961 patients, with prospective analysis of data from 244 patients with major trauma at our hospital and retrospective analysis of data from 717 patients extracted from a database in the United States. The patients from our hospital constituted the model development cohort, and the patients from the database constituted the external validation cohort. The patients in the model development cohort were randomly divided into a training cohort and an internal validation cohort at a ratio of 8:2. The machine learning algorithms used to train models included logistic regression (LR), decision tree (DT), extreme gradient boosting machine (eXGBM), neural network (NN), random forest (RF), and light gradient boosting machine (LightGBM). RESULTS The incidence of sepsis for the model development cohort was 43.44%. Twelve predictors, including gender, abdominal trauma, open trauma, red blood cell count, heart rate, respiratory rate, injury severity score, sequential organ failure assessment score, Glasgow coma scale, smoking, total protein concentrations, and hematocrit, were used as features in the final model. Internal validation showed that the NN model had the highest area under the curve (AUC) of 0.932 (95% CI: 0.917-0.948), followed by the LightGBM and eXGBM models with AUCs of 0.913 (95% CI: 0.883-0.930) and 0.912 (95% CI: 0.880-0.935), respectively. In the external validation cohort, the eXGBM model (AUC: 0.891, 95% CI: 0.866-0.914) had the highest AUC value, followed by the LightGBM model (AUC: 0.886, 95% CI: 0.860-0.906), and the AUC value of the NN model was only 0.787 (95% CI: 0.751-0.829). Considering the predictive performance for both the internal and external validation cohorts, the LightGBM model had the highest score of 82, followed by the eXGBM (81) and NN (76) models. Thus, the LightGBM was emerged as the optimal model, and it was deployed online as an AI application. CONCLUSIONS This study develops and validates an AI application to effectively assess the susceptibility of patients with major trauma to sepsis. The AI application equips healthcare professionals with a valuable tool to promptly identify individuals at high risk of developing sepsis. This will facilitate clinical decision-making and enable early intervention.
Collapse
Affiliation(s)
- Baisheng Sun
- Chinese PLA Medical School
- Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital
| | - Mingxing Lei
- Chinese PLA Medical School
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Chinese PLA General Hospital
- Department of Orthopedics, Hainan Hospital of Chinese PLA General Hospital, Hanan
| | - Li Wang
- Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital
| | - Xiaoli Wang
- Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital
| | - Xiaoming Li
- Department of Critical Care Medicine, Chongqing University Cancer Hospital, Chongqing, People’s Republic of China
| | - Zhi Mao
- Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital
| | - Hongjun Kang
- Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital
| | - Hui Liu
- Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital
| | - Shiying Sun
- State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences
| | - Feihu Zhou
- Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital
- Medical Engineering Laboratory of Chinese PLA General Hospital, Beijing
| |
Collapse
|
3
|
Wakeley ME, Denning NL, Jiang J, De Paepe ME, Chung CS, Wang P, Ayala A. Herpes virus entry mediator signaling blockade produces mortality in neonatal sepsis through induced cardiac dysfunction. Front Immunol 2024; 15:1365174. [PMID: 38774873 PMCID: PMC11106455 DOI: 10.3389/fimmu.2024.1365174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/15/2024] [Indexed: 05/24/2024] Open
Abstract
Introduction Sepsis remains a major source of morbidity and mortality in neonates, and characterization of immune regulation in the neonatal septic response remains limited. HVEM is a checkpoint regulator which can both stimulate or inhibit immune responses and demonstrates altered expression after sepsis. We hypothesized that signaling via HVEM would be essential for the neonatal response to sepsis, and that therefore blockade of this pathway would improve survival to septic challenge. Methods To explore this, neonatal mice were treated with cecal slurry (CS), CS with Anti-HVEM antibody (CS-Ab) or CS with isotype (CS-IT) and followed for 7-day survival. Mice from all treatment groups had thymus, lung, kidney and peritoneal fluid harvested, weighed, and stained for histologic evaluation, and changes in cardiac function were assessed with echocardiography. Results Mortality was significantly higher for CS-Ab mice (72.2%) than for CS-IT mice (22.2%). CS resulted in dysregulated alveolar remodeling, but CS-Ab lungs demonstrated significantly less dysfunctional alveolar remodeling than CS alone (MCL 121.0 CS vs. 87.6 CS-Ab), as well as increased renal tubular vacuolization. No morphologic differences in alveolar septation or thymic karyorrhexis were found between CS-Ab and CS-IT. CS-Ab pups exhibited a marked decrease in heart rate (390.3 Sh vs. 342.1 CS-Ab), stroke volume (13.08 CS-IT vs. 8.83 CS-Ab) and ultimately cardiac output (4.90 Sh vs. 3.02 CS-Ab) as well as a significant increase in ejection fraction (73.74 Sh vs. 83.75 CS-Ab) and cardiac strain (40.74 Sh vs. 51.16 CS-Ab) as compared to CS-IT or Sham animals. Discussion While receptor ligation of aspects of HVEM signaling, via antibody blockade, appears to mitigate aspects of lung injury and thymic involution, stimulatory signaling via HVEM still seems to be necessary for vascular and hemodynamic resilience and overall neonatal mouse survival in response to this experimental polymicrobial septic insult. This dissonance in the activity of anti-HVEM neutralizing antibody in neonatal animals speaks to the differences in how septic cardiac dysfunction should be considered and approached in the neonatal population.
Collapse
Affiliation(s)
- Michelle E. Wakeley
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, RI, United States
| | - Naomi-Liza Denning
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Jihong Jiang
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, RI, United States
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Monique E. De Paepe
- Department of Pathology, Women and Infants Hospital, Providence, RI, United States
| | - Chun-Shiang Chung
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, RI, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Alfred Ayala
- Division of Surgical Research, Department of Surgery, Brown University, Rhode Island Hospital, Providence, RI, United States
| |
Collapse
|
4
|
Li J, Xuan R, Wu W, Zhang H, Zhao J, Zhang S. Geldanamycin ameliorates multiple organ dysfunction and microthrombosis in septic mice by inhibiting the formation of the neutrophil extracellular network by activating heat shock factor 1 HSF1. Clin Exp Pharmacol Physiol 2023; 50:698-707. [PMID: 37308449 DOI: 10.1111/1440-1681.13798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/13/2023] [Accepted: 05/15/2023] [Indexed: 06/14/2023]
Abstract
Sepsis and septic shock are common critical illnesses in the intensive care unit with a high mortality rate. Geldanamycin (GA) has a broad spectrum of antibacterial and antiviral activity and has inhibitory effects on various viruses. However, whether GA affects sepsis due to infections remains unknown. In this study, alanine aminotransferase, aspartate aminotransferase, blood urea nitrogen and creatinine in serum; neutrophil gelatinase-associated lipocalin and kidney injury molecule-1 in the urine, cytokines (tumour necrosis factor alpha, interleukin-1β and interleukin-6) in the bronchoalveolar lavage fluid and myeloperoxidase in the lung tissues were measured using enzyme-linked immunosorbent assay kits. Pathological injury was measured by hematoxylin and eosin staining and neutrophils were measured by flow cytometry analysis; related expressions were analysed by qPCR, western blot and immunofluorescence assay. The results showed that GA significantly ameliorated cecum ligation and puncture (CLP)-triggered liver, kidney and lung injury in septic mice. In addition, we found that GA dose-dependently inhibited microthrombosis and alleviated coagulopathy in septic mice. Further molecular mechanism analysis suggests that GA may act through upregulation of heat shock factor 1 and tissue-type plasminogen activator. In conclusion, our study elucidated the protective effects of GA in a mouse model established using CLP, and the results reveal that GA may be a promising agent for sepsis.
Collapse
Affiliation(s)
- Jing Li
- Department of Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruijing Xuan
- Department of Experimental Zoology, Laboratory Animal Center, Shanxi Medical University, Taiyuan, China
| | - Weidong Wu
- Department of Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Hailong Zhang
- Department of Clinical Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jie Zhao
- Department of Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Shan Zhang
- Department of Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
5
|
Abbasi MY, Wiwattanawongsa K, Chaijamorn W, Charoensareerat T, Doungngern T. What is the right gentamicin dose for multiple trauma patients? A Monte Carlo simulation exploration study. Int J Crit Illn Inj Sci 2023; 13:118-124. [PMID: 38023581 PMCID: PMC10664035 DOI: 10.4103/ijciis.ijciis_14_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 12/01/2023] Open
Abstract
Background The appropriate dose of gentamicin is important to prevent and treat infections. The study aimed to determine the optimal dose of gentamicin to achieve the probability of pharmacokinetic/pharmacodynamic (PK) targets for efficacy and safety in multiple trauma patients. Methods PK parameters of gentamicin in multiple trauma patients were gathered to develop a one-compartment PK model for prediction. The Monte Carlo simulation method was performed. The 24-h area under the concentration time curve to the minimum inhibitory concentration ratio (AUC24h/MIC) ≥50 was defined for the infection prevention target. AUC24h/MIC ≥110 or the maximum serum concentration to MIC ratio ≥8-10 was for the treatment of serious Gram-negative infection target. The risk of nephrotoxicity was the minimum serum concentration ≥2 mg/L. The optimal dose of gentamicin was determined when the efficacy target was >90% and the risk of nephrotoxicity was lowest. Results The optimal gentamicin dose to prevent infection when the MIC was <1 mg/L was 6-7 mg/kg/day. A higher dose of gentamicin up to 10 mg/kg/day could not reach the target for treating serious Gram-negative infection when the expected MIC was ≥1 mg/L. The probability of nephrotoxicity was minimal at 0.2-4% with gentamicin doses of 5-10 mg/kg/day for 3 days. Conclusions Once daily gentamicin doses of 6-7 mg/kg are recommended to prevent infections in patients with multiple trauma. Gentamicin monotherapy could not be recommended for serious infections. Further clinical studies are required to confirm our results.
Collapse
Affiliation(s)
- Mohammad Yaseen Abbasi
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Prince Songkla University, Hat Yai, Songkhla, Thailand
| | - Kamonthip Wiwattanawongsa
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Prince Songkla University, Hat Yai, Songkhla, Thailand
| | - Weerachai Chaijamorn
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathum Wan, Bangkok, Thailand
| | | | - Thitima Doungngern
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Prince Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
6
|
Wakeley ME, Armstead BE, Gray CC, Tindal EW, Heffernan DS, Chung CS, Ayala A. Lymphocyte HVEM/BTLA co-expression after critical illness demonstrates severity indiscriminate upregulation, impacting critical illness-induced immunosuppression. Front Med (Lausanne) 2023; 10:1176602. [PMID: 37305124 PMCID: PMC10248445 DOI: 10.3389/fmed.2023.1176602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/25/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction The co-regulatory molecule, HVEM, can stimulate or inhibit immune function, but when co-expressed with BTLA, forms an inert complex preventing signaling. Altered HVEM or BTLA expression, separately have been associated with increased nosocomial infections in critical illness. Given that severe injury induces immunosuppression, we hypothesized that varying severity of shock and sepsis in murine models and critically ill patients would induce variable increases in HVEM/BTLA leukocyte co-expression. Methods In this study, varying severities of murine models of critical illness were utilized to explore HVEM+BTLA+ co-expression in the thymic and splenic immune compartments, while circulating blood lymphocytes from critically ill patients were also assessed for HVEM+BTLA+ co-expression. Results Higher severity murine models resulted in minimal change in HVEM+BTLA+ co-expression, while the lower severity model demonstrated increased HVEM+BTLA+ co-expression on thymic and splenic CD4+ lymphocytes and splenic B220+ lymphocytes at the 48-hour time point. Patients demonstrated increased co-expression of HVEM+BTLA+ on CD3+ lymphocytes compared to controls, as well as CD3+Ki67- lymphocytes. Both L-CLP 48hr mice and critically ill patients demonstrated significant increases in TNF-α. Discussion While HVEM increased on leukocytes after critical illness in mice and patients, changes in co-expression did not relate to degree of injury severity of murine model. Rather, co-expression increases were seen at later time points in lower severity models, suggesting this mechanism evolves temporally. Increased co-expression on CD3+ lymphocytes in patients on non-proliferating cells, and associated TNF-α level increases, suggest post-critical illness co-expression does associate with developing immune suppression.
Collapse
Affiliation(s)
- Michelle E. Wakeley
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Brown University, Providence, RI, United States
| | - Brandon E. Armstead
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Brown University, Providence, RI, United States
- Graduate Pathobiology Program, Brown University, Providence, RI, United States
| | - Chyna C. Gray
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Brown University, Providence, RI, United States
- Molecular, Cellular and Developmental Biology Graduate Program, Brown University, Providence, RI, United States
| | - Elizabeth W. Tindal
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Brown University, Providence, RI, United States
| | - Daithi S. Heffernan
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Brown University, Providence, RI, United States
| | - Chun-Shiang Chung
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Brown University, Providence, RI, United States
| | - Alfred Ayala
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Brown University, Providence, RI, United States
| |
Collapse
|
7
|
Trabace L, Roviezzo F, Rossi A. Editorial: Sex Differences in Inflammatory Diseases. Front Pharmacol 2022; 13:962869. [PMID: 35903339 PMCID: PMC9315380 DOI: 10.3389/fphar.2022.962869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- *Correspondence: Luigia Trabace,
| | | | - Antonietta Rossi
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
8
|
Bhattacharjee B, Mukherjee R, Haldar J. Biocompatible Hemostatic Sponge Exhibiting Broad-Spectrum Antibacterial Activity. ACS Biomater Sci Eng 2022; 8:3596-3607. [PMID: 35802178 DOI: 10.1021/acsbiomaterials.2c00410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hemorrhage during accidents or surgery is a significant challenge that can contribute to mortality. This is further aggravated due to bacterial infections at the injured site. Therefore, rapid application of a hemostatic and antibacterial material is highly necessary as a pretreatment for patients' survival. Herein, we have developed a hemostatic sponge (Hemobac) through amide crosslinking of gelatin and an N-(2-hydroxy) propyl-3-trimethylammonium chitosan (HTCC)-silver chloride nanocomposite (QAm1-Ag0.1) to mitigate bacterial infections, while aiding hemostasis. This Hemobac sponge completely eradicated (∼4-5 log) a wide range of Gram-positive and Gram-negative bacteria encompassing various clinical isolates within 6 h. The antihemorrhagic ability of Hemobac was ascertained through SEM images, which exhibited the presence of agglomerated blood cells onto the sponge with a significantly low blood-clotting index value (∼23 ± 1). Notably, Hemobac reduced the blood loss by ∼70-80% in the liver puncture model and femoral vein injury model in mice, displaying its improved hemostatic ability over a marketed gelatin-based sponge. Negligible hemolytic activity (∼6%) and retained healthy morphology of mammalian cells were observed upon exposure to the Hemobac sponge. Minimal immune response was noticed at the Hemobac-treated wound in mice through histopathology analysis. Collectively, these findings indicate that this biocompatible Hemobac sponge can stop the bleeding instantaneously and combat bacterial infections.
Collapse
Affiliation(s)
- Brinta Bhattacharjee
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Riya Mukherjee
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
9
|
Lv ZY, Shi YL, Bassi GS, Chen YJ, Yin LM, Wang Y, Ulloa L, Yang YQ, Xu YD. Electroacupuncture at ST36 ( Zusanli) Prevents T-Cell Lymphopenia and Improves Survival in Septic Mice. J Inflamm Res 2022; 15:2819-2833. [PMID: 35535053 PMCID: PMC9078867 DOI: 10.2147/jir.s361466] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose Sepsis is the main cause of death in intensive care unit. Maladaptive cytokine storm and T-cell lymphopenia are critical prognosis predictors of sepsis. Electroacupuncture (EA) is expected to be an effective intervention to prevent sepsis. This study aims to determine the potential of EA at ST36 (Zusanli) to prevent experimental septic mice. Methods Mice were randomly assigned into PBS, LPS, or EA+LPS group. EA (0.1 mA, continuous wave, 10 Hz) was performed stimulating the ST36 for 30 min, once a day for 3 days. After the third day, all mice were challenged with PBS or LPS (4 mg/kg) simultaneously. Mice were evaluated for survival, ear temperature, and other clinical symptoms. Lung and small intestine tissue injuries were analyzed by hematoxylin and eosin staining. Bio-Plex cytokine assay was used to analyze the concentration of cytokines. T lymphocytes were analyzed by flow cytometry and Western blot assays. The role of T cells in preventing sepsis by EA was analyzed by using nude mice lacking T lymphocytes. Results EA at ST36 improved survival, symptom scores, and ear temperature of endotoxemic mice. EA also improved dramatically pulmonary and intestinal injury by over 50% as compared to untreated mice. EA blunted the inflammatory cytokine storm by inducing a lasting inhibition of the production of major inflammatory factors (TNF-α, IL-1β, IL-5, IL-6, IL-10, IL-17A, eotaxin, IFN-γ, MIP-1β and KC). Flow cytometry and Western blot analyses showed EA significantly reduced T-lymphocyte apoptosis and pyroptosis. Furthermore, T lymphocytes were critical for the effects of EA at ST36 stimulation blunted serum TNF-α levels in wild-type but not in nude mice. Conclusion EA halted systemic inflammation and improved survival in endotoxemic mice. These effects are associated with the protective effect of EA on T lymphocytes, and T cells are required in the anti-inflammatory effects of EA in sepsis.
Collapse
Affiliation(s)
- Zhi-Ying Lv
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yang-Lin Shi
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Gabriel Shimizu Bassi
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yan-Jiao Chen
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Lei-Miao Yin
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yu Wang
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Luis Ulloa
- Department of Anesthesiology, Duke University, Durham, NC, USA
| | - Yong-Qing Yang
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yu-Dong Xu
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
10
|
Slade EA, Thorn RMS, Young AE, Reynolds DM. Real-time detection of volatile metabolites enabling species-level discrimination of bacterial biofilms associated with wound infection. J Appl Microbiol 2022; 132:1558-1572. [PMID: 34617369 PMCID: PMC9298000 DOI: 10.1111/jam.15313] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/19/2021] [Accepted: 09/13/2021] [Indexed: 01/25/2023]
Abstract
AIMS The main aim of this study was to investigate the real-time detection of volatile metabolites for the species-level discrimination of pathogens associated with clinically relevant wound infection, when grown in a collagen wound biofilm model. METHODS AND RESULTS This work shows that Staphylococcus aureus, Pseudomonas aeruginosa and Streptococcus pyogenes produce a multitude of volatile compounds when grown as biofilms in a collagen-based biofilm model. The real-time detection of these complex volatile profiles using selected ion flow tube mass spectrometry and the use of multivariate statistical analysis on the resulting data can be used to successfully differentiate between the pathogens studied. CONCLUSIONS The range of bacterial volatile compounds detected between the species studied vary and are distinct. Discrimination between bacterial species using real-time detection of volatile metabolites and multivariate statistical analysis was successfully demonstrated. SIGNIFICANCE AND IMPACT OF THE STUDY Development of rapid point-of-care diagnostics for wound infection would improve diagnosis and patient care. Such technological approaches would also facilitate the appropriate use of antimicrobials, minimizing the emergence of antimicrobial resistance. This study further develops the use of volatile metabolite detection as a new diagnostic approach for wound infection.
Collapse
Affiliation(s)
- Elisabeth A. Slade
- Centre for Research in BiosciencesUniversity of the West of EnglandBristolUK
| | - Robin M. S. Thorn
- Centre for Research in BiosciencesUniversity of the West of EnglandBristolUK
| | - Amber E. Young
- Bristol Centre for Surgical ResearchPopulation Health SciencesBristol Medical SchoolUniversity of BristolBristolUK
| | - Darren M. Reynolds
- Centre for Research in BiosciencesUniversity of the West of EnglandBristolUK
| |
Collapse
|
11
|
Yin BF, Wan XH, Yang MZ, Qian CC, Sohan ASMMF. Wave-shaped microfluidic chip assisted point-of-care testing for accurate and rapid diagnosis of infections. Mil Med Res 2022; 9:8. [PMID: 35144683 PMCID: PMC8831027 DOI: 10.1186/s40779-022-00368-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/26/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Early diagnosis and classification of infections increase the cure rate while decreasing complications, which is significant for severe infections, especially for war surgery. However, traditional methods rely on laborious operations and bulky devices. On the other hand, point-of-care (POC) methods suffer from limited robustness and accuracy. Therefore, it is of urgent demand to develop POC devices for rapid and accurate diagnosis of infections to fulfill on-site militarized requirements. METHODS We developed a wave-shaped microfluidic chip (WMC) assisted multiplexed detection platform (WMC-MDP). WMC-MDP reduces detection time and improves repeatability through premixing of the samples and reaction of the reagents. We further combined the detection platform with the streptavidin-biotin (SA-B) amplified system to enhance the sensitivity while using chemiluminescence (CL) intensity as signal readout. We realized simultaneous detection of C-reactive protein (CRP), procalcitonin (PCT), and interleukin-6 (IL-6) on the detection platform and evaluated the sensitivity, linear range, selectivity, and repeatability. Finally, we finished detecting 15 samples from volunteers and compared the results with commercial ELISA kits. RESULTS Detection of CRP, PCT, and IL-6 exhibited good linear relationships between CL intensities and concentrations in the range of 1.25-40 μg/ml, 0.4-12.8 ng/ml, and 50-1600 pg/ml, respectively. The limit of detection of CRP, PCT, and IL-6 were 0.54 μg/ml, 0.11 ng/ml, and 16.25 pg/ml, respectively. WMC-MDP is capable of good adequate selectivity and repeatability. The whole detection procedure takes only 22 min that meets the requirements of a POC device. Results of 15 samples from volunteers were consistent with the results detected by commercial ELISA kits. CONCLUSIONS WMC-MDP allows simultaneous, rapid, and sensitive detection of CRP, PCT, and IL-6 with satisfactory selectivity and repeatability, requiring minimal manipulation. However, WMC-MDP takes advantage of being a microfluidic device showing the coefficients of variation less than 10% enabling WMC-MDP to be a type of point-of-care testing (POCT). Therefore, WMC-MDP provides a promising alternative to POCT of multiple biomarkers. We believe the practical application of WMC-MDP in militarized fields will revolutionize infection diagnosis for soldiers.
Collapse
Affiliation(s)
- Bin-Feng Yin
- School of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China.
| | - Xin-Hua Wan
- School of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Ming-Zhu Yang
- Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, 100005, China
| | - Chang-Cheng Qian
- School of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | | |
Collapse
|
12
|
Fouladseresht H, Ghamar Talepoor A, Eskandari N, Norouzian M, Ghezelbash B, Beyranvand MR, Nejadghaderi SA, Carson-Chahhoud K, Kolahi AA, Safiri S. Potential Immune Indicators for Predicting the Prognosis of COVID-19 and Trauma: Similarities and Disparities. Front Immunol 2022; 12:785946. [PMID: 35126355 PMCID: PMC8815083 DOI: 10.3389/fimmu.2021.785946] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022] Open
Abstract
Although cellular and molecular mediators of the immune system have the potential to be prognostic indicators of disease outcomes, temporal interference between diseases might affect the immune mediators, and make them difficult to predict disease complications. Today one of the most important challenges is predicting the prognosis of COVID-19 in the context of other inflammatory diseases such as traumatic injuries. Many diseases with inflammatory properties are usually polyphasic and the kinetics of inflammatory mediators in various inflammatory diseases might be different. To find the most appropriate evaluation time of immune mediators to accurately predict COVID-19 prognosis in the trauma environment, researchers must investigate and compare cellular and molecular alterations based on their kinetics after the start of COVID-19 symptoms and traumatic injuries. The current review aimed to investigate the similarities and differences of common inflammatory mediators (C-reactive protein, procalcitonin, ferritin, and serum amyloid A), cytokine/chemokine levels (IFNs, IL-1, IL-6, TNF-α, IL-10, and IL-4), and immune cell subtypes (neutrophil, monocyte, Th1, Th2, Th17, Treg and CTL) based on the kinetics between patients with COVID-19 and trauma. The mediators may help us to accurately predict the severity of COVID-19 complications and follow up subsequent clinical interventions. These findings could potentially help in a better understanding of COVID-19 and trauma pathogenesis.
Collapse
Affiliation(s)
- Hamed Fouladseresht
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefe Ghamar Talepoor
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nahid Eskandari
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marzieh Norouzian
- Department of Laboratory Sciences, School of Allied Medical Sciences, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Behrooz Ghezelbash
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Reza Beyranvand
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Aria Nejadghaderi
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kristin Carson-Chahhoud
- Australian Centre for Precision Health, Allied Health and Human Performance, University of South Australia, Adelaide, SA, Australia
- School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Ali-Asghar Kolahi
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Safiri
- Social Determinants of Health Research Center, Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Kamel NA, Soliman MM, Abo-Zeid MA, Shaaban MI. Effect of Anti-Inflammatory and Antimicrobial Cosupplementations on Sepsis Prevention in Critically Ill Trauma Patients at High Risk for Sepsis. Front Pharmacol 2021; 12:792741. [PMID: 34912231 PMCID: PMC8666620 DOI: 10.3389/fphar.2021.792741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 12/25/2022] Open
Abstract
Background: Sepsis development in patients with trauma is associated with bad prognosis. This study investigated the effect of immunomodulatory interventions in major trauma patients at high risk for sepsis. Methods: In a randomized, double-blinded, controlled design, severe trauma patients were stratified by leukocyte anti-sedimentation rate (LAR) test into high risk (HR) and low risk (LR) for sepsis. The HR patients were randomly allocated into intravenous vitamin C plus vitamin B1 (HR-CB), intramuscular vitamin D plus oral Lactobacillus probiotics (HR-DP), or control (HR-C) groups. The clinical trial was registered at clinicaltrials.gov (https://clinicaltrials.gov/show/NCT04216459). Outcomes: The primary outcome was Acute Physiologic Assessment and Chronic Health Evaluation score II (APACHE II) score. Secondary outcomes included sepsis incidence, changes in Sequential Organ Failure Assessment (SOFA) score, and serum monocyte chemoattractant protein-1 (MCP-1) on day 6 from baseline, 28-day mortality, intensive care unit (ICU), and hospital discharge. Results: The HR-DP, HR-CB, and LR groups showed a significantly lower incidence of sepsis development (20%, 20%, and 16%, respectively, versus 60% in the HR-C group, p-value = 0.004). The three groups also showed a significant improvement in APACHE II and SOFA scores. Besides, MCP-1 levels were significantly decreased in HR-DP and HR-CB groups compared to the HR-C group (p-value ≤ 0.05). Significantly decreased mortality (10% and 16% versus 60% in the HR-C group) and increased ICU discharge (95% and 84% versus 45% in the HR-C group) were observed in HR-CB and LR groups (p-value = 0.001). Conclusion: Both combinations of interventions improved APACHE II scores and reduced sepsis incidence in trauma patients. The LAR combined with injury severity score were good sepsis predictors.
Collapse
Affiliation(s)
- Noha A Kamel
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Moetaza M Soliman
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Maha A Abo-Zeid
- Department of Anesthesia, Surgical Intensive Care Unit and Pain Management, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mona I Shaaban
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
14
|
Schindler CR, Woschek M, Franz JN, Störmann P, Henrich D, Marzi I. Influence of Antibiotic Management on Microbial Selection and Infectious Complications After Trauma. Front Med (Lausanne) 2021; 8:678382. [PMID: 34568354 PMCID: PMC8461005 DOI: 10.3389/fmed.2021.678382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/17/2021] [Indexed: 12/03/2022] Open
Abstract
Background: The inflammatory response and post-traumatic complications like infections play an important role in the pathophysiology of severe injuries. This study examines the microbiological aspects in anti-infective treatment of trauma patients and their inflammatory response in post-traumatic infections complications. Patients and Methods: A retrospective analysis of prospectively collected data in trauma patients (ISS ≥ 16) over a 1-year period (01/2018 to 12/2018) is provided. Patient population was stratified into severely injured patients without post-traumatic infection (inf-PT), and severely injured patients who developed an infection (inf+PT). Results: Of 114 trauma patients, 45 suffered from post-traumatic infection during the first 10 days of hospitalization. Severely injured patients with concomitant traumatic brain injury (PT+TBI) showed the highest rate of post-traumatic infection. Pro-inflammatory reaction was tracked by levels of Interleukin (IL-)6 (day 3: inf+T 190.8 ± 359.4 pg/dL > inf-PT 56.2 ± 57.7 pg/mL (mean ± SD); p = 0.008) and C-Reactive-Protein (CRP, day 3: inf+PT 15.3 mg/dL > inf-PT 6.7 mg/dL, p = 0.001) which were significantly higher in trauma patients who develop an infectious complication and showed a significant positive correlation with the occurrence of infection. The leading entity of infection was pneumonia followed by infections of the urinary tract mainly caused by gram-negative Enterobacteriaceae. 67.5% of all trauma patients received single-shot antibiosis during initial care in trauma bay. The development of secondary colonization was not relevant positively correlated with single-shot antibiosis (r = 0.013, p = 0.895) and prophylactically calculated antibiotic administration (r = 0.066, p = 0.500). Conclusion: Severely injured trauma patients have an increased risk for development of infectious complications, which mainly is pneumonia followed by infection of the urinary tract mainly caused by gram-negative Enterobacteriaceae. Based on the data in this study, the one-time antibiotic and prophylactic calculated use of antibiotics, like Cephalosporins must be critically discussed in terms of their role in the development of post-traumatic infections and microbial selection.
Collapse
Affiliation(s)
- Cora Rebecca Schindler
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - Mathias Woschek
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - Jan-Niklas Franz
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - Philipp Störmann
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - Dirk Henrich
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
15
|
Noteworthy enhancement of wound-healing activity of triphala biomass metabolite-loaded hydroxyapatite nanocomposite. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01813-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Grolman JM, Singh M, Mooney DJ, Eriksson E, Nuutila K. Antibiotic-Containing Agarose Hydrogel for Wound and Burn Care. J Burn Care Res 2020; 40:900-906. [PMID: 31250003 DOI: 10.1093/jbcr/irz113] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Wound infections cause inflammation, tissue damage, and delayed healing that can lead to invasive infection and even death. The efficacy of systemic antibiotics is limited due to poor tissue penetration that is especially a problem in burn and blast wounds where the microcirculation is disrupted. Topical administration of antimicrobials is an attractive approach because it prevents infection and avoids systemic toxicity, while hydrogels are an appealing vehicle for topical drug delivery. They are easy to apply to the wound site by being injectable, the drug release properties can be controlled, and their many characteristics, such as biodegradation, mechanical strength, and chemical and biological response to stimuli can be tailored. Hydrogels also create a moist wound environment that is beneficial for healing. The purpose of this study was to formulate an agarose hydrogel that contains high concentrations of minocycline or gentamicin and study its characteristics. Subsequently, the minocycline agarose hydrogel was tested in a porcine burn model and its effect as a prophylactic treatment was studied. The results demonstrated that 0.5% agarose in water was the optimal concentration in terms of viscosity and pH. Bench testing at room temperature demonstrated that both antibiotics remained stable in the hydrogel for at least 7 days and both antibiotics demonstrated sustained release over the time of the experiment. The porcine burn experiment showed that prophylactic treatment with the agarose minocycline hydrogel decreased the burn depth and reduced the number of bacteria as efficiently as the commonly used silver sulfadiazine cream.
Collapse
Affiliation(s)
- Joshua M Grolman
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Mansher Singh
- Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - David J Mooney
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | | | - Kristo Nuutila
- Division of Plastic Surgery, Department of Surgery, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
17
|
Moghadam F, LeGraw R, Velazquez JJ, Yeo NC, Xu C, Park J, Chavez A, Ebrahimkhani MR, Kiani S. Synthetic immunomodulation with a CRISPR super-repressor in vivo. Nat Cell Biol 2020; 22:1143-1154. [PMID: 32884147 PMCID: PMC7480217 DOI: 10.1038/s41556-020-0563-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 07/24/2020] [Indexed: 12/19/2022]
Abstract
Transient modulation of the genes involved in immunity, without exerting a permanent change in the DNA code, can be an effective strategy to modulate the course of many inflammatory conditions. CRISPR-Cas9 technology represents a promising platform for achieving this goal. Truncation of guide RNA (gRNA) from the 5' end enables the application of a nuclease competent Cas9 protein for transcriptional modulation of genes, allowing multifunctionality of CRISPR. Here, we introduce an enhanced CRISPR-based transcriptional repressor to reprogram immune homeostasis in vivo. In this repressor system, two transcriptional repressors-heterochromatin protein 1 (HP1a) and Krüppel-associated box (KRAB)-are fused to the MS2 coat protein and subsequently recruited by gRNA aptamer binding to a nuclease competent CRISPR complex containing truncated gRNAs. With the enhanced repressor, we demonstrate transcriptional repression of the Myeloid differentiation primary response 88 (Myd88) gene in vitro and in vivo. We demonstrate that this strategy can efficiently downregulate Myd88 expression in lung, blood and bone marrow of Cas9 transgenic mice that receive systemic injection of adeno-associated virus (AAV)2/1-carrying truncated gRNAs targeting Myd88 and the MS2-HP1a-KRAB cassette. This downregulation is accompanied by changes in downstream signalling elements such as TNF-α and ICAM-1. Myd88 repression leads to a decrease in immunoglobulin G (IgG) production against AAV2/1 and AAV2/9 and this strategy modulates the IgG response against AAV cargos. It improves the efficiency of a subsequent AAV9/CRISPR treatment for repression of proprotein convertase subtilisin/kexin type 9 (PCSK9), a gene that, when repressed, can lower blood cholesterol levels. We also demonstrate that CRISPR-mediated Myd88 repression can act as a prophylactic measure against septicaemia in both Cas9 transgenic and C57BL/6J mice. When delivered by nanoparticles, this repressor can serve as a therapeutic modality to influence the course of septicaemia. Collectively, we report that CRISPR-mediated repression of endogenous Myd88 can effectively modulate the host immune response against AAV-mediated gene therapy and influence the course of septicaemia. The ability to control Myd88 transcript levels using a CRISPR-based synthetic repressor can be an effective strategy for AAV-based CRISPR therapies, as this pathway serves as a key node in the induction of humoral immunity against AAV serotypes.
Collapse
Affiliation(s)
- Farzaneh Moghadam
- Pittsburgh Liver Research Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Experimental Pathology, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, USA
| | - Ryan LeGraw
- Pittsburgh Liver Research Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Experimental Pathology, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, USA
| | - Jeremy J Velazquez
- Pittsburgh Liver Research Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Experimental Pathology, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, USA
| | - Nan Cher Yeo
- Department of Pharmacology and Toxicology, University of Alabama, Birmingham, AL, USA
- Precision Medicine Institute, University of Alabama, Birmingham, AL, USA
| | - Chenxi Xu
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Jin Park
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Alejandro Chavez
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Mo R Ebrahimkhani
- Pittsburgh Liver Research Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Division of Experimental Pathology, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Samira Kiani
- Pittsburgh Liver Research Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Division of Experimental Pathology, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- School of Biological and Health Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
18
|
Wakeley ME, Shubin NJ, Monaghan SF, Gray CC, Ayala A, Heffernan DS. Herpes Virus Entry Mediator (HVEM): A Novel Potential Mediator of Trauma-Induced Immunosuppression. J Surg Res 2020; 245:610-618. [PMID: 31522034 PMCID: PMC6900447 DOI: 10.1016/j.jss.2019.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/10/2019] [Accepted: 07/05/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND Herpes virus entry mediator (HVEM) is a coinhibitory molecule which can both stimulate and inhibit host immune responses. Altered expression of HVEM and its ligands is associated with increased nosocomial infections in septic patients. We hypothesize critically ill trauma patients will display increased lymphocyte HVEM expression and that such alteration is predictive of infectious events. MATERIALS AND METHODS Trauma patients prospectively enrolled from the ICU were compared with healthy controls. Leukocytes were isolated from whole blood, stained for CD3 (lymphocytes) and HVEM, and evaluated by flow cytometry. Charts were reviewed for injuries sustained, APACHE II score, hospital course, and secondary infections. RESULTS Trauma patients (n = 31) were older (46.7 ± 2.4 versus 36.8 ± 2.1 y; P = 0.03) than healthy controls (n = 10), but matched for male sex (74% versus 60%; P = 0.4). Trauma patients had higher presenting WBC (13.9 ± 1.3 versus 5.6 ± 0.5 × 106/mL; P = 0.002), lower percentage of CD3+ lymphocytes (7.5% ± 0.8 versus 22.5% ± 0.9; P < 0.001), but significantly greater expression of HVEM+/CD3+ lymphocytes (89.6% ± 1.46 versus 67.3% ± 1.7; P < 0.001). Among trauma patients, secondary infection during the hospitalization was associated with higher APACHE II scores (20.6 ± 1.6 versus 13.6 ± 1.4; P = 0.03) and markedly lower CD3+ lymphocyte HVEM expression (75% ± 2.6 versus 93% ± 0.7; P < 0.01). CONCLUSIONS HVEM expression on CD3+ cells increases after trauma. Patients developing secondary infections have less circulating HVEM+CD3+. This implies HVEM signaling in lymphocytes plays a role in maintaining host defense to infection in after trauma. HVEM expression may represent a marker of infectious risk as well as a potential therapeutic target, modulating immune responses to trauma.
Collapse
Affiliation(s)
- Michelle E Wakeley
- Division of Surgical Research, Department of Surgery, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Nicholas J Shubin
- Division of Surgical Research, Department of Surgery, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Sean F Monaghan
- Division of Surgical Research, Department of Surgery, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Chyna C Gray
- Division of Surgical Research, Department of Surgery, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Alfred Ayala
- Division of Surgical Research, Department of Surgery, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Daithi S Heffernan
- Division of Surgical Research, Department of Surgery, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island.
| |
Collapse
|
19
|
Thompson KB, Krispinsky LT, Stark RJ. Late immune consequences of combat trauma: a review of trauma-related immune dysfunction and potential therapies. Mil Med Res 2019; 6:11. [PMID: 31014397 PMCID: PMC6480837 DOI: 10.1186/s40779-019-0202-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/07/2019] [Indexed: 12/29/2022] Open
Abstract
With improvements in personnel and vehicular body armor, robust casualty evacuation capabilities, and damage control resuscitation strategies, more combat casualties are surviving to reach higher levels of care throughout the casualty evacuation system. As such, medical centers are becoming more accustomed to managing the deleterious late consequences of combat trauma related to the dysregulation of the immune system. In this review, we aim to highlight these late consequences and identify areas for future research and therapeutic strategies. Trauma leads to the dysregulation of both the innate and adaptive immune responses, which places the injured at risk for several late consequences, including delayed wound healing, late onset sepsis and infection, multi-organ dysfunction syndrome, and acute respiratory distress syndrome, which are significant for their association with the increased morbidity and mortality of wounded personnel. The mechanisms by which these consequences develop are complex but include an imbalance of the immune system leading to robust inflammatory responses, triggered by the presence of damage-associated molecules and other immune-modifying agents following trauma. Treatment strategies to improve outcomes have been difficult to develop as the immunophenotype of injured personnel following trauma is variable, fluid and difficult to determine. As more information regarding the triggers that lead to immune dysfunction following trauma is elucidated, it may be possible to identify the immunophenotype of injured personnel and provide targeted treatments to reduce the late consequences of trauma, which are known to lead to significant morbidity and mortality.
Collapse
Affiliation(s)
- Kelly B Thompson
- Division of Critical Care Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, 2200 Children's Way, Nashville, TN, 37232, USA.
| | - Luke T Krispinsky
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Uniformed Services University, Naval Medical Center Portsmouth, Portsmouth, VA, 23708, USA
| | - Ryan J Stark
- Division of Critical Care Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, 2200 Children's Way, Nashville, TN, 37232, USA
| |
Collapse
|
20
|
Bashiardes S, Tuganbaev T, Federici S, Elinav E. The microbiome in anti-cancer therapy. Semin Immunol 2017; 32:74-81. [PMID: 28431920 DOI: 10.1016/j.smim.2017.04.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/21/2017] [Accepted: 04/05/2017] [Indexed: 02/07/2023]
Abstract
The commensal microbiome constitutes an important modulator of host physiology and risk of disease, including cancer development and progression. Lately, the microbiome has been suggested to modulate the efficacy of anti-cancer treatment. Examples include chemotherapy and total body irradiation-induced barrier function disruption, leading to microbial efflux that drives activation of anti-tumorigenic T cells; Microbiome-driven release of reactive oxygen species contributing to the efficacy of platinum salts; and microbiome-induced immune priming promoting the anti-tumor effects of alkylating chemotherapy and immune checkpoint inhibitors. Furthermore, selected commensals are able to colonize solid tumors. This 'tumor microbiome' may further impact local tumor responses to treatment and potentially be harnessed for tumor-specific targeting and therapeutic delivery. In this review, we present recent advances in understanding of the intricate role of microbiome in modulating efficacy of a number of anti-cancer treatments, and discuss how anti-cancer treatment approaches utilizing the tumor microbiome may enhance oncological treatment efficacy.
Collapse
Affiliation(s)
- Stavros Bashiardes
- Immunology Department, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Timur Tuganbaev
- Immunology Department, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Sara Federici
- Immunology Department, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, 76100 Rehovot, Israel.
| |
Collapse
|