1
|
Richard V, Mitsa G, Eshghi A, Chaplygina D, Mohammed Y, Goodlett DR, Zahedi RP, Thevis M, Borchers CH. Establishing Personalized Blood Protein Reference Ranges Using Noninvasive Microsampling and Targeted Proteomics: Implications for Antidoping Strategies. J Proteome Res 2024; 23:1779-1787. [PMID: 38655860 PMCID: PMC11077581 DOI: 10.1021/acs.jproteome.4c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
To prevent doping practices in sports, the World Anti-Doping Agency implemented the Athlete Biological Passport (ABP) program, monitoring biological variables over time to indirectly reveal the effects of doping rather than detect the doping substance or the method itself. In the context of this program, a highly multiplexed mass spectrometry-based proteomics assay for 319 peptides corresponding to 250 proteins was developed, including proteins associated with blood-doping practices. "Baseline" expression profiles of these potential biomarkers in capillary blood (dried blood spots (DBS)) were established using multiple reaction monitoring (MRM). Combining DBS microsampling with highly multiplexed MRM assays is the best-suited technology to enhance the effectiveness of the ABP program, as it represents a cost-effective and robust alternative analytical method with high specificity and selectivity of targets in the attomole range. DBS data were collected from 10 healthy athlete volunteers over a period of 140 days (28 time points per participant). These comprehensive findings provide a personalized targeted blood proteome "fingerprint" showcasing that the targeted proteome is unique to an individual and likely comparable to a DNA fingerprint. The results can serve as a baseline for future studies investigating doping-related perturbations.
Collapse
Affiliation(s)
- Vincent
R. Richard
- Segal
Cancer Proteomics Centre, Lady Davis Institute
for Medical Research, Jewish General Hospital, Montréal, Quebec H3T 1E2, Canada
| | - Georgia Mitsa
- Segal
Cancer Proteomics Centre, Lady Davis Institute
for Medical Research, Jewish General Hospital, Montréal, Quebec H3T 1E2, Canada
- Division
of Experimental Medicine, McGill University, Montréal, Quebec H4A 3J1, Canada
| | - Azad Eshghi
- University
of Victoria-Genome BC Proteomics Centre, Victoria, British Columbia V8Z 7X8, Canada
| | - Daria Chaplygina
- Segal
Cancer Proteomics Centre, Lady Davis Institute
for Medical Research, Jewish General Hospital, Montréal, Quebec H3T 1E2, Canada
| | - Yassene Mohammed
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, Leiden 2333 ZC, The Netherlands
| | - David R. Goodlett
- University
of Victoria-Genome BC Proteomics Centre, Victoria, British Columbia V8Z 7X8, Canada
| | - Rene P. Zahedi
- Manitoba
Centre for Proteomics and Systems Biology, Winnipeg, Manitoba R3E 3P4, Canada
- Department
of Internal Medicine, University of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
- Department
of Biochemistry and Medical Genetics, University
of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
- CancerCare
Manitoba Research Institute, Winnipeg, Manitoba R3E 0V9, Canada
| | - Mario Thevis
- Institute
of Biochemistry, Center for Preventive Doping Research, German Sport University Cologne, Cologne 50933, Germany
- European
Monitoring Center for Emerging Doping Agents (EuMoCEDA), Cologne/Bonn 50933, Germany
| | - Christoph H. Borchers
- Segal
Cancer Proteomics Centre, Lady Davis Institute
for Medical Research, Jewish General Hospital, Montréal, Quebec H3T 1E2, Canada
- Division
of Experimental Medicine, McGill University, Montréal, Quebec H4A 3J1, Canada
- Gerald
Bronfman Department of Oncology, McGill
University, Montréal, Quebec H4A 3T2, Canada
- Department
of Pathology, McGill University, Montréal, Quebec H4A 3J1, Canada
| |
Collapse
|
2
|
Dumbill R, Rabcuka J, Fallon J, Knight S, Hunter J, Voyce D, Barrett J, Ellen M, Weissenbacher A, Kurniawan T, Blonski S, Korczyk PM, Ploeg R, Coussios C, Friend P, Swietach P. Impaired O2 unloading from stored blood results in diffusion-limited O2 release at tissues: evidence from human kidneys. Blood 2024; 143:721-733. [PMID: 38048591 PMCID: PMC10900257 DOI: 10.1182/blood.2023022385] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 12/06/2023] Open
Abstract
ABSTRACT The volume of oxygen drawn from systemic capillaries down a partial pressure gradient is determined by the oxygen content of red blood cells (RBCs) and their oxygen-unloading kinetics, although the latter is assumed to be rapid and, therefore, not a meaningful factor. Under this paradigm, oxygen transfer to tissues is perfusion-limited. Consequently, clinical treatments to optimize oxygen delivery aim at improving blood flow and arterial oxygen content, rather than RBC oxygen handling. Although the oxygen-carrying capacity of blood is increased with transfusion, studies have shown that stored blood undergoes kinetic attrition of oxygen release, which may compromise overall oxygen delivery to tissues by causing transport to become diffusion-limited. We sought evidence for diffusion-limited oxygen release in viable human kidneys, normothermically perfused with stored blood. In a cohort of kidneys that went on to be transplanted, renal respiration correlated inversely with the time-constant of oxygen unloading from RBCs used for perfusion. Furthermore, the renal respiratory rate did not correlate with arterial O2 delivery unless this factored the rate of oxygen-release from RBCs, as expected from diffusion-limited transport. To test for a rescue effect, perfusion of kidneys deemed unsuitable for transplantation was alternated between stored and rejuvenated RBCs of the same donation. This experiment controlled oxygen-unloading, without intervening ischemia, holding all non-RBC parameters constant. Rejuvenated oxygen-unloading kinetics improved the kidney's oxygen diffusion capacity and increased cortical oxygen partial pressure by 60%. Thus, oxygen delivery to tissues can become diffusion-limited during perfusion with stored blood, which has implications in scenarios, such as ex vivo organ perfusion, major hemorrhage, and pediatric transfusion. This trial was registered at www.clinicaltrials.gov as #ISRCTN13292277.
Collapse
Affiliation(s)
- Richard Dumbill
- Nuffield Department of Surgery, University of Oxford, Oxford, United Kingdom
- Oxford Transplant Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Julija Rabcuka
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - John Fallon
- Nuffield Department of Surgery, University of Oxford, Oxford, United Kingdom
- Oxford Transplant Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Simon Knight
- Nuffield Department of Surgery, University of Oxford, Oxford, United Kingdom
- Oxford Transplant Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - James Hunter
- Nuffield Department of Surgery, University of Oxford, Oxford, United Kingdom
- University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
| | | | | | | | - Annemarie Weissenbacher
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Tetuko Kurniawan
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
- President University, Kota Jababeka, Bekasi, Indonesia
| | - Slawomir Blonski
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Michal Korczyk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Rutger Ploeg
- Nuffield Department of Surgery, University of Oxford, Oxford, United Kingdom
- Oxford Transplant Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Constantin Coussios
- OrganOx Limited, Oxford, United Kingdom
- Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Peter Friend
- Nuffield Department of Surgery, University of Oxford, Oxford, United Kingdom
- Oxford Transplant Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- OrganOx Limited, Oxford, United Kingdom
| | - Pawel Swietach
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Krumm B, Saugy JJ, Botrè F, Donati F, Faiss R. Indirect biomarkers of blood doping: A systematic review. Drug Test Anal 2024; 16:49-64. [PMID: 37160638 DOI: 10.1002/dta.3514] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/13/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023]
Abstract
The detection of blood doping represents a current major issue in sports and an ongoing challenge for antidoping research. Initially focusing on direct detection methods to identify a banned substance or its metabolites, the antidoping effort has been progressively complemented by indirect approaches. The longitudinal and individual monitoring of specific biomarkers aims to identify nonphysiological variations that may be related to doping practices. From this perspective, the identification of markers sensitive to erythropoiesis alteration is key in the screening of blood doping. The current Athlete Biological Passport implemented since 2009 is composed of 14 variables (including two primary markers, i.e., hemoglobin concentration and OFF score) for the hematological module to be used for indirect detection of blood doping. Nevertheless, research has continually proposed and investigated new markers sensitive to an alteration of the erythropoietic cascade and specific to blood doping. If multiple early markers have been identified (at the transcriptomic level) or developed directly in a diagnostics' kit (at a proteomic level), other target variables at the end of the erythropoietic process (linked with the red blood cell functions) may strengthen the hematological module in the future. Therefore, this review aims to provide a global systematic overview of the biomarkers considered to date in the indirect investigation of blood doping.
Collapse
Affiliation(s)
- Bastien Krumm
- REDs, Research & Expertise in AntiDoping Sciences, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Jonas J Saugy
- REDs, Research & Expertise in AntiDoping Sciences, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Francesco Botrè
- REDs, Research & Expertise in AntiDoping Sciences, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Francesco Donati
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Raphael Faiss
- REDs, Research & Expertise in AntiDoping Sciences, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Breenfeldt Andersen A, Nordsborg NB, Bonne TC, Bejder J. Contemporary blood doping-Performance, mechanism, and detection. Scand J Med Sci Sports 2024; 34:e14243. [PMID: 36229224 DOI: 10.1111/sms.14243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 10/17/2022]
Abstract
Blood doping is prohibited for athletes but has been a well-described practice within endurance sports throughout the years. With improved direct and indirect detection methods, the practice has allegedly moved towards micro-dosing, that is, reducing the blood doping regime amplitude. This narrative review evaluates whether blood doping, specifically recombinant human erythropoietin (rhEpo) treatment and blood transfusions are performance-enhancing, the responsible mechanism as well as detection possibilities with a special emphasis on micro-dosing. In general, studies evaluating micro-doses of blood doping are limited. However, in randomized, double-blinded, placebo-controlled trials, three studies find that infusing as little as 130 ml red blood cells or injecting 9 IU × kg bw-1 rhEpo three times per week for 4 weeks improve endurance performance ~4%-6%. The responsible mechanism for a performance-enhancing effect following rhEpo or blood transfusions appear to be increased O2 -carrying capacity, which is accompanied by an increased muscular O2 extraction and likely increased blood flow to the working muscles, enabling the ability to sustain a higher exercise intensity for a given period. Blood doping in micro-doses challenges indirect detection by the Athlete Biological Passport, albeit it can identify ~20%-60% of the individuals depending on the sample timing. However, novel biomarkers are emerging, and some may provide additive value for detection of micro blood doping such as the immature reticulocytes or the iron regulatory hormones hepcidin and erythroferrone. Future studies should attempt to validate these biomarkers for implementation in real-world anti-doping efforts and continue the biomarker discovery.
Collapse
Affiliation(s)
- Andreas Breenfeldt Andersen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- Department of Public Health, Section for Sport Science, Aarhus University, Aarhus, Denmark
| | | | - Thomas Christian Bonne
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Bejder
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Hassanpour M, Salybekov AA. Whispers in the Blood: Leveraging MicroRNAs for Unveiling Autologous Blood Doping in Athletes. Int J Mol Sci 2023; 25:249. [PMID: 38203416 PMCID: PMC10779309 DOI: 10.3390/ijms25010249] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
The prevalence of autologous blood transfusions (ABTs) presents a formidable challenge in maintaining fair competition in sports, as it significantly enhances hemoglobin mass and oxygen capacity. In recognizing ABT as a prohibited form of doping, the World Anti-Doping Agency (WADA) mandates stringent detection methodologies. While current methods effectively identify homologous erythrocyte transfusions, a critical gap persists in detecting autologous transfusions. The gold standard practice of longitudinally monitoring hematological markers exhibits promise but is encumbered by limitations. Despite its potential, instances of blood doping often go undetected due to the absence of definitive verification processes. Moreover, some cases remain unpenalized due to conservative athlete-sanctioning approaches. This gap underscores the imperative need for a more reliable and comprehensive detection method capable of unequivocally differentiating autologous transfusions, addressing the challenges faced in accurately identifying such prohibited practices. The development of an advanced detection methodology is crucial to uphold the integrity of anti-doping measures, effectively identifying and penalizing instances of autologous blood transfusion. This, in turn, safeguards the fairness and equality essential to competitive sports. Our review tackles this critical gap by harnessing the potential of microRNAs in ABT doping detection. We aim to summarize alterations in the total microRNA profiles of erythrocyte concentrates during storage and explore the viability of observing these changes post-transfusion. This innovative approach opens avenues for anti-doping technologies and commercialization, positioning it as a cornerstone in the ongoing fight against doping in sports and beyond. The significance of developing a robust detection method cannot be overstated, as it ensures the credibility of anti-doping efforts and promotes a level playing field for all athletes.
Collapse
|
6
|
Biasini GM, Botrè F, de la Torre X, Donati F. Age-Markers on the Red Blood Cell Surface and Erythrocyte Microparticles may Constitute a Multi-parametric Strategy for Detection of Autologous Blood Transfusion. SPORTS MEDICINE - OPEN 2023; 9:113. [PMID: 38038869 PMCID: PMC10692063 DOI: 10.1186/s40798-023-00662-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/19/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Autologous blood transfusion is one of the illicit strategies, banned by the World Anti-Doping Agency, to increase the levels of hemoglobin, with a consequent improvement in the delivery of oxygen to tissues. At present, this practice is detectable exclusively by the individual, longitudinal monitoring of hematological biomarkers, as in the hematological module of the Athlete Biological Passport; but this indirect approach may suffer from different confounding factors. We are presenting a multi-parametric, analytical strategy to detect autologous blood transfusions by targeting the modification of the red blood cells during storage. We focused on the assessment of "storage lesions", targeting (i) membrane proteins: Glycophorin-A and Band 3 complex, (ii) biomarkers of oxidative stress: Peroxiredoxin-2, (iii) biomarkers of senescence: CD47 and Phosphatidylserine, (iv) erythrocytes microparticles. RESULTS All of the above markers were monitored, by immunological and flow cytofluorimetric methods, on samples of stored whole blood collected at different time intervals, and on fresh blood samples, collected for official doping control tests, mixed "ex vivo" to simulate an autotransfusion. Although anonymized before the delivery to the laboratory, it was possible to mix samples belonging to the same subject based on the "athlete biological passport" code. Our results showed that the irreversible alteration of RBCs morphology, the loss of membrane integrity, the occurrence of hemolysis phenomena, and, more in general, the "aging" of the erythrocytes during storage are closely related to: (i) the reduced concentration, on the erythrocyte membrane, of Band 3 protein (decrease of 19% and of 39% after 20 and 40 days of storage respectively) and of glycophorin A (- 47% and - 63% respectively); (ii) the externalization of phosphatidyl serine (with a five-fold increase after 20 days and a further 2× increase after 40 days); (iii) the reduced concentration of CD47; and (iv) increased levels of erythrocyte microparticles. CONCLUSIONS The most promising method to detect the presence of transfused blood in whole blood samples can be based on a multi-parametric strategy, considering jointly both protein expression on RBCs membranes and micro-vesiculation phenomena.
Collapse
Affiliation(s)
- Giorgia M Biasini
- Sapienza University of Rome, Rome, Italy
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Francesco Botrè
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy.
- REDs - Research and Expertise in anti-Doping Sciences, ISSUL - Institute of Sport Sciences University of Lausanne, Lausanne, Switzerland.
| | - Xavier de la Torre
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy
| | - Francesco Donati
- Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Rome, Italy.
| |
Collapse
|
7
|
Dragcevic D, Jaksic O. Blood doping — physiological background, substances and techniques used, current and future detection methods. Sci Sports 2023. [DOI: 10.1016/j.scispo.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
8
|
García-Arnés JA, García-Casares N. Doping and sports endocrinology: growth hormone, IGF-1, insulin, and erythropoietin. Rev Clin Esp 2023; 223:181-187. [PMID: 36736729 DOI: 10.1016/j.rceng.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Among the substances prohibited by the World Anti-Doping Agency, "peptide hormones, growth factors, related substances, and mimetics" are classified as prohibited both in- and out-of-competition in section S2. This work reviews growth hormone and its releasing peptides, insulin-like growth factor 1 as the main growth factor, insulin, and erythropoietin and other agents that affect erythropoiesis. This review analyzes the prevalence of use among professional athletes and gym clients, the forms of use, dosing, ergogenic effects and effects on physical performance, as well as side effects and anti-doping detection methods.
Collapse
Affiliation(s)
- J A García-Arnés
- Departamento de Farmacología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain.
| | - N García-Casares
- Departamento de Medicina, Facultad de Medicina, Universidad de Málaga, Málaga, Spain; Centro de Investigaciones Médico-Sanitarias (CIMES), Universidad de Málaga, Málaga, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| |
Collapse
|
9
|
Tonino RPB, Zwaginga LM, Schipperus MR, Zwaginga JJ. Hemoglobin modulation affects physiology and patient reported outcomes in anemic and non-anemic subjects: An umbrella review. Front Physiol 2023; 14:1086839. [PMID: 36875043 PMCID: PMC9975154 DOI: 10.3389/fphys.2023.1086839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Background: An abnormal hemoglobin concentration has a substantial effect on a person's quality of life and physiology. Lack of tools that effectively evaluate hemoglobin-related outcomes leads to uncertainty regarding optimal hemoglobin levels, transfusion thresholds and treatment targets. We therefore aim to summarize reviews that assess the effects of hemoglobin modulation on the human physiology at various baseline hemoglobin levels, and identify gaps in existing evidence. Methods: We conducted an umbrella review of systematic reviews. PubMed, MEDLINE (OVID), Embase, Web of Science, Cochrane Library and Emcare were searched from inception to the 15th of April 2022 for studies that reported on physiological and patient reported outcomes following a hemoglobin change. Results: Thirty-three reviews were included of which 7 were scored as of high quality and 24 of critically low quality using the AMSTAR-2 tool. The reported data generally show that an increase in hemoglobin leads to improvement of patient reported and physical outcomes in anaemic and non-anaemic subjects. At lower hemoglobin levels, the effect of a hemoglobin modulation on quality of life measures appears more pronounced. Conclusion: This overview has revealed many knowledge gaps due to a lack of high-quality evidence. For chronic kidney disease patients, a clinically relevant benefit of increasing the hemoglobin levels up until 12 g/dL was found. However, a personalized approach remains necessary due to the many patient-specific factors that affect outcomes. We strongly encourage future trials to incorporate physiological outcomes as objective parameters together with subjective, but still very important, patient reported outcome measures.
Collapse
Affiliation(s)
- R. P. B. Tonino
- Research, TRIP, Leiden, Netherlands
- Hematology, Haga Teaching Hospital, The Hague, Netherlands
- Hematology, LUMC, Leiden, Netherlands
| | | | - M. R. Schipperus
- Research, TRIP, Leiden, Netherlands
- Hematology, Haga Teaching Hospital, The Hague, Netherlands
- Department of Clinical Affairs, Sanquin Bloodbank, Amsterdam, Netherlands
| | - J. J. Zwaginga
- Research, TRIP, Leiden, Netherlands
- Hematology, LUMC, Leiden, Netherlands
| |
Collapse
|
10
|
García-Arnés J, García-Casares N. Endocrinología del dopaje y los deportes: hormona de crecimiento, IGF-1, insulina y eritropoyetina. Rev Clin Esp 2023. [DOI: 10.1016/j.rce.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
Voss SC, Yassin M, Grivel JC, Al Hmissi S, Allahverdi N, Nashwan A, Merenkov Z, Abdulla M, Al Malki A, Raynaud C, Elsaftawy W, Al Kaabi A, Donati F, Botre F, Mohamed Ali V, Georgakopoulos C, Al Maadheed M. Red blood cell derived extracellular vesicles during the process of autologous blood doping. Drug Test Anal 2022; 14:1984-1994. [PMID: 34453778 DOI: 10.1002/dta.3157] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022]
Abstract
The purpose of this pilot study was to investigate the effects of the transfusion of one erythrocyte concentrate on the number of circulating red blood cell extracellular vesicles (RBC-EVs) and their clearance time. Six, healthy volunteers donated their blood and were transfused with their RBC concentrate after 35-36 days of storage. One K2 EDTA and one serum sample were collected before donation, at four timepoints after donation and at another six timepoints after transfusion. RBC-EVs were analyzed on a Cytek Aurora flow cytometer. A highly significant increase (p < 0.001) of RBC-EVs from an average of 60.1 ± 19.8 (103 /μL) at baseline to 179.3 ± 84.7 (103 /μL) in the first 1-3 h after transfusion could be observed. Individual differences in the response to transfusion became apparent with one volunteer showing no increase and another an increased concentration at one timepoint after donation due to an influenza infection. We concluded that in an individualized passport approach, increased RBC-EVs might be considered as additional evidence when interpreting suspicious Athletes Biological Passport (ABPs) but for this additional research related to sample collection and transport processes as well as method development and harmonization would be necessary.
Collapse
Affiliation(s)
- S C Voss
- Anti-Doping Lab Qatar, Doha, Qatar
| | - M Yassin
- Hamad Medical Corporation, Doha, Qatar
| | - J C Grivel
- Sidra Medicine, Deep Phenotyping Core - Research Department, Doha, Qatar
| | | | | | - A Nashwan
- Hamad Medical Corporation, Doha, Qatar
| | | | - M Abdulla
- Hamad Medical Corporation, Doha, Qatar
| | | | - C Raynaud
- Sidra Medicine, Deep Phenotyping Core - Research Department, Doha, Qatar
| | | | | | - F Donati
- Anti-Doping Lab FMSI, Rome, Italy
| | - F Botre
- Anti-Doping Lab FMSI, Rome, Italy
| | - V Mohamed Ali
- Anti-Doping Lab Qatar, Doha, Qatar.,Centre for Metabolism and Inflammation, Division of Medicine, University College London, London, UK
| | | | - M Al Maadheed
- Anti-Doping Lab Qatar, Doha, Qatar.,Centre for Metabolism and Inflammation, Division of Medicine, University College London, London, UK
| |
Collapse
|
12
|
BREENFELDT ANDERSEN ANDREAS, BEJDER JACOB, BONNE THOMASC, SØRENSEN HENRIK, SØRENSEN HELLE, JUNG GRACE, GANZ TOMAS, NEMETH ELIZABETA, SECHER NIELSH, JOHANSSON PÄRI, NORDSBORG NIKOLAIBAASTRUP. Hepcidin and Erythroferrone Complement the Athlete Biological Passport in the Detection of Autologous Blood Transfusion. Med Sci Sports Exerc 2022; 54:1604-1616. [DOI: 10.1249/mss.0000000000002950] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Bækken LV, Holden G, Gjelstad A, Lauritzen F. Ten years of collecting hematological athlete biological passport samples—perspectives from a National Anti-doping Organization. Front Sports Act Living 2022; 4:954479. [PMID: 35928963 PMCID: PMC9343672 DOI: 10.3389/fspor.2022.954479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/27/2022] [Indexed: 11/26/2022] Open
Abstract
The hematological module of the Athlete Biological Passport (ABP) aims to reveal blood doping indirectly by looking at selected biomarkers of doping over time. For Anti-Doping Organizations (ADOs), the ABP is a vital tool in the fight against doping in sports through improved target testing and analysis, investigations, deterrence, and as indirect evidence for use of prohibited methods or substances. The physiological characteristics of sport disciplines is an important risk factor in the overall risk assessment and when implementing the hematological module. Sharing of experiences with implementing the hematological ABP between ADOs is key to further strengthen and extend its use. In this study, we present 10 years of experience with the hematological ABP program from the perspectives of a National ADO with special attention to sport disciplines' physiological characteristics as a potential risk factor for blood doping. Not surprisingly, most samples were collected in sport disciplines where the aerobic capacity is vital for performance. The study highlights strengths in Anti-Doping Norway's testing program but also areas that could be improved. For example, it was shown that samples were collected both in and out of season in a subset of the data material that included three popular sports in Norway (Cross-Country Skiing, Nordic Combined, and Biathlon), however, from the total data material it was clear that athletes were more likely to be tested out of competition and on certain days of the week and times of the day. The use of doping control officers with a flexible time schedule and testing outside an athlete's 60 min time-slot could help with a more even distribution during the week and day, and thus reduce the predictability of testing. In addition to promoting a discussion on testing strategies, the study can be used as a starting point for other ADOs on how to examine their own testing program.
Collapse
Affiliation(s)
- Lasse V. Bækken
- Nordic Athlete Passport Management Unit, Norwegian Doping Control Laboratory, Department of Pharmacology, Oslo University Hospital, Oslo, Norway
- *Correspondence: Lasse V. Bækken
| | - Geir Holden
- Department of Testing, Investigations and Legal, Anti-doping Norway, Oslo, Norway
| | - Astrid Gjelstad
- Science and Medicine, Anti-doping Norway, Oslo, Norway
- Section of Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, Oslo, Norway
| | | |
Collapse
|
14
|
Sugasawa T, Kanki Y, Komine R, Watanabe K, Takekoshi K. Identification of RNA Markers in Red Blood Cells for Doping Control in Autologous Blood Transfusion. Genes (Basel) 2022; 13:genes13071255. [PMID: 35886040 PMCID: PMC9317427 DOI: 10.3390/genes13071255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 12/04/2022] Open
Abstract
The World Anti-Doping Agency (WADA) has prohibited the use of autologous blood transfusion (ABT) as a doping method by athletes. It is difficult to detect this doping method in laboratory tests, and a robust testing method has not yet been established. We conducted an animal experiment and used total RNA sequencing (RNA-Seq) to identify novel RNA markers to detect ABT doping within red blood cells (RBCs) as a pilot study before human trials. This study used whole blood samples from Wistar rats. The whole blood samples were mixed with a citrate–phosphate–dextrose solution with adenine (CPDA) and then stored in a refrigerator at 4 °C for 0 (control), 10, or 20 days. After each storage period, total RNA-Seq and bioinformatics were performed following RNA extraction and the purification of the RBCs. In the results, clear patterns of expression fluctuations were observed depending on the storage period, and it was found that there were large numbers of genes whose expression decreased in the 10- and 20-day periods compared to the control. Moreover, additional bioinformatic analysis identified three significant genes whose expression levels were drastically decreased according to the storage period. These results provide novel insights that may allow future studies to develop a testing method for ABT doping.
Collapse
Affiliation(s)
- Takehito Sugasawa
- Laboratory of Clinical Examination and Sports Medicine, Department of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan; (T.S.); (Y.K.)
- Department of Sports Medicine Analysis, Open Facility Network Office, Organization for Open Facility Initiatives, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan;
| | - Yasuharu Kanki
- Laboratory of Clinical Examination and Sports Medicine, Department of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan; (T.S.); (Y.K.)
- Department of Sports Medicine Analysis, Open Facility Network Office, Organization for Open Facility Initiatives, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan;
| | - Ritsuko Komine
- Department of Sports Medicine Analysis, Open Facility Network Office, Organization for Open Facility Initiatives, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan;
- Doctoral Program in Sports Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Koichi Watanabe
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8574, Japan;
| | - Kazuhiro Takekoshi
- Laboratory of Clinical Examination and Sports Medicine, Department of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan; (T.S.); (Y.K.)
- Correspondence: ; Tel.: +81-29-853-3209
| |
Collapse
|
15
|
Hayward GJ, Sims DT, Millet GP, Coquet R, Gaborini L, Schumacher YO, Rhumorbarbe D, Robinson N. The athletic characteristics of Olympic sports to assist anti-doping strategies. Drug Test Anal 2022; 14:1599-1613. [PMID: 35732071 DOI: 10.1002/dta.3329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/06/2022] [Accepted: 05/03/2022] [Indexed: 11/05/2022]
Abstract
The determinants of success in Olympic Games competition are specific to the athletic demands of the sporting event. A global evaluation to quantify the athletic demands across the spectrum of the Olympic Games sport events has not previously been conducted. Thus far, the interpretation and the comparison of sport physiological characteristics within anti-doping organisations (ADOs) risk assessments remains subjective without a standardised framework. Despite its subjective assessment, this information is a key component of any anti-doping programme. Sport characteristics inevitably influence the type of substances and/or methods used for doping purpose and should be captured through a comprehensive analysis. Seven applied sport scientists independently conducted an assessment to quantify the athletic demands across six preselected athletic variables. A Principal Component Analysis was performed on the results of the panel's quantitative assessment for 160 Olympic Sport events. Sport events were clustered using the Hierarchical Density Based Spatial Clustering of Applications with Noise (HDBSCAN) algorithm. The HDBSCAN identified 19 independent cluster groups, 36 sport events remained statistically unassigned to a cluster group representing unique and eventspecific athletic demands. This investigation provides guidance to the anti-doping community to assist in the development of the sport specific physiology component of the risk assessment for Olympic Games disciplines. The dominant athletic characteristics to excel in each of these individual events will highlight areas of how athletes may strive to gain a competitive advantage through doping strategies, and inform the development of an effective and proportionate allocation of testing resources.
Collapse
Affiliation(s)
| | - David T Sims
- Musculoskeletal Science and Sports Medicine, Manchester Metropolitan University, Manchester, United Kingdom
| | - Greǵoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Ronan Coquet
- International Testing Agency, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
16
|
Untargeted Metabolomics Identifies a Novel Panel of Markers for Autologous Blood Transfusion. Metabolites 2022; 12:metabo12050425. [PMID: 35629929 PMCID: PMC9145416 DOI: 10.3390/metabo12050425] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/17/2022] Open
Abstract
Untargeted metabolomics was used to analyze serum and urine samples for biomarkers of autologous blood transfusion (ABT). Red blood cell concentrates from donated blood were stored for 35−36 days prior to reinfusion into the donors. Participants were sampled at different time points post-donation and up to 7 days post-transfusion. Metabolomic profiling was performed using ACQUITY ultra performance liquid chromatography (UPLC), Q-Exactive high resolution/accurate mass spectrometer interfaced with a heated electrospray ionization (HESI-II) source and Orbitrap mass analyzer operated at 35,000 mass resolution. The markers of ABT were determined by principal component analysis and metabolites that had p < 0.05 and met ≥ 2-fold change from baseline were selected. A total of 11 serum and eight urinary metabolites, including two urinary plasticizer metabolites, were altered during the study. By the seventh day post-transfusion, the plasticizers had returned to baseline, while changes in nine other metabolites (seven serum and two urinary) remained. Five of these metabolites (serum inosine, guanosine and sphinganine and urinary isocitrate and erythronate) were upregulated, while serum glycourdeoxycholate, S-allylcysteine, 17-alphahydroxypregnenalone 3 and Glutamine conjugate of C6H10O2 (2)* were downregulated. This is the first study to identify a panel of metabolites, from serum and urine, as markers of ABT. Once independently validated, it could be universally adopted to detect ABT.
Collapse
|
17
|
Grau M, Zollmann E, Bros J, Seeger B, Dietz T, Noriega Ureña JA, Grolle A, Zacher J, Notbohm HL, Suck G, Bloch W, Schumann M. Autologous Blood Doping Induced Changes in Red Blood Cell Rheologic Parameters, RBC Age Distribution, and Performance. BIOLOGY 2022; 11:biology11050647. [PMID: 35625375 PMCID: PMC9137932 DOI: 10.3390/biology11050647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 12/03/2022]
Abstract
Simple Summary Autologous blood doping (ABD) refers to the artificial increase in circulating red blood cell (RBC) mass by sampling, storage, and transfusion of one’s own blood. It is assumed that some athletes apply this prohibited technique to improve oxygen transport capacity and thus exercise performance. The primary aim of this study was to test whether RBC rheological and associated parameters significantly change due to ABD with the consideration of whether this type of measurement might be suitable for detecting ABD. Further, it was assessed whether those changes are translated into indices of endurance performance. Eight males underwent an ABD protocol combined with several blood parameter measurements and two exercise tests (pre and post transfusion). Results of this investigation suggest a change in the distribution of age-related RBC sub-populations and altered deformability of total RBC as well as of the respective sub-populations. Further, the identified changes in RBC also appear to improve sports performance. In conclusion, these data demonstrate significant changes in hematological and hemorheological parameters, which could be of interest in the context of new methods for ABD detection. However, additional research is needed with larger and more diverse study groups to widen the knowledge gained by this study. Abstract Autologous blood doping (ABD) refers to the transfusion of one’s own blood after it has been stored. Although its application is prohibited in sports, it is assumed that ABD is applied by a variety of athletes because of its benefits on exercise performance and the fact that it is not detectable so far. Therefore, this study aims at identifying changes in hematological and hemorheological parameters during the whole course of ABD procedure and to relate those changes to exercise performance. Eight healthy men conducted a 31-week ABD protocol including two blood donations and the transfusion of their own stored RBC volume corresponding to 7.7% of total blood volume. Longitudinal blood and rheological parameter measurements and analyses of RBC membrane proteins and electrolyte levels were performed. Thereby, responses of RBC sub-populations—young to old RBC—were detected. Finally, exercise tests were carried out before and after transfusion. Results indicate a higher percentage of young RBC, altered RBC deformability and electrolyte concentration due to ABD. In contrast, RBC membrane proteins remained unaffected. Running economy improved after blood transfusion. Thus, close analysis of RBC variables related to ABD detection seems feasible but should be verified in further more-detailed studies.
Collapse
Affiliation(s)
- Marijke Grau
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany; (E.Z.); (J.B.); (B.S.); (T.D.); (H.L.N.); (W.B.); (M.S.)
- Correspondence:
| | - Emily Zollmann
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany; (E.Z.); (J.B.); (B.S.); (T.D.); (H.L.N.); (W.B.); (M.S.)
| | - Janina Bros
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany; (E.Z.); (J.B.); (B.S.); (T.D.); (H.L.N.); (W.B.); (M.S.)
| | - Benedikt Seeger
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany; (E.Z.); (J.B.); (B.S.); (T.D.); (H.L.N.); (W.B.); (M.S.)
| | - Thomas Dietz
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany; (E.Z.); (J.B.); (B.S.); (T.D.); (H.L.N.); (W.B.); (M.S.)
| | - Javier Antonio Noriega Ureña
- German Red Cross Blood Donation Service West, Center for Transfusion Medicine Hagen, Feithstraße 184, 58097 Hagen, Germany; (J.A.N.U.); (A.G.); (G.S.)
| | - Andreas Grolle
- German Red Cross Blood Donation Service West, Center for Transfusion Medicine Hagen, Feithstraße 184, 58097 Hagen, Germany; (J.A.N.U.); (A.G.); (G.S.)
| | - Jonas Zacher
- Department of Preventive and Rehabilitative Sports and Performance Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany;
| | - Hannah L. Notbohm
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany; (E.Z.); (J.B.); (B.S.); (T.D.); (H.L.N.); (W.B.); (M.S.)
| | - Garnet Suck
- German Red Cross Blood Donation Service West, Center for Transfusion Medicine Hagen, Feithstraße 184, 58097 Hagen, Germany; (J.A.N.U.); (A.G.); (G.S.)
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany; (E.Z.); (J.B.); (B.S.); (T.D.); (H.L.N.); (W.B.); (M.S.)
| | - Moritz Schumann
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany; (E.Z.); (J.B.); (B.S.); (T.D.); (H.L.N.); (W.B.); (M.S.)
| |
Collapse
|
18
|
Krumm B, Faiss R. Factors Confounding the Athlete Biological Passport: A Systematic Narrative Review. SPORTS MEDICINE - OPEN 2021; 7:65. [PMID: 34524567 PMCID: PMC8443715 DOI: 10.1186/s40798-021-00356-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 08/28/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Through longitudinal, individual and adaptive monitoring of blood biomarkers, the haematological module of the athlete biological passport (ABP) has become a valuable tool in anti-doping efforts. The composition of blood as a vector of oxygen in the human body varies in athletes with the influence of multiple intrinsic (genetic) or extrinsic (training or environmental conditions) factors. In this context, it is fundamental to establish a comprehensive understanding of the various causes that may affect blood variables and thereby alter a fair interpretation of ABP profiles. METHODS This literature review described the potential factors confounding the ABP to outline influencing factors altering haematological profiles acutely or chronically. RESULTS Our investigation confirmed that natural variations in ABP variables appear relatively small, likely-at least in part-because of strong human homeostasis. Furthermore, the significant effects on haematological variations of environmental conditions (e.g. exposure to heat or hypoxia) remain debatable. The current ABP paradigm seems rather robust in view of the existing literature that aims to delineate adaptive individual limits. Nevertheless, its objective sensitivity may be further improved. CONCLUSIONS This narrative review contributes to disentangling the numerous confounding factors of the ABP to gather the available scientific evidence and help interpret individual athlete profiles.
Collapse
Affiliation(s)
- Bastien Krumm
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Raphael Faiss
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
- Center of Research and Expertise in Anti-Doping Sciences - REDs, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
19
|
An Abductive Inference Approach to Assess the Performance-Enhancing Effects of Drugs Included on the World Anti-Doping Agency Prohibited List. Sports Med 2021; 51:1353-1376. [PMID: 33811295 DOI: 10.1007/s40279-021-01450-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 12/18/2022]
Abstract
Some have questioned the evidence for performance-enhancing effects of several substances included on the World Anti-Doping Agency's Prohibited List due to the divergent or inconclusive findings in randomized controlled trials (RCTs). However, inductive statistical inference based on RCTs-only may result in biased conclusions because of the scarcity of studies, inter-study heterogeneity, too few outcome events, or insufficient power. An abductive inference approach, where the body of evidence is evaluated beyond considerations of statistical significance, may serve as a tool to assess the plausibility of performance-enhancing effects of substances by also considering observations and facts not solely obtained from RCTs. Herein, we explored the applicability of an abductive inference approach as a tool to assess the performance-enhancing effects of substances included on the Prohibited List. We applied an abductive inference approach to make inferences on debated issues pertaining to the ergogenic effects of recombinant human erythropoietin (rHuEPO), beta2-agonists and anabolic androgenic steroids (AAS), and extended the approach to more controversial drug classes where RCTs are limited. We report that an abductive inference approach is a useful tool to assess the ergogenic effect of substances included on the Prohibited List-particularly for substances where inductive inference is inconclusive. Specifically, a systematic abductive inference approach can aid researchers in assessing the effects of doping substances, either by leading to suggestions of causal relationships or identifying the need for additional research.
Collapse
|
20
|
Mussack V, Wittmann G, Pfaffl MW. On the trail of blood doping-microRNA fingerprints to monitor autologous blood transfusions in vivo. Am J Hematol 2021; 96:338-353. [PMID: 33326140 DOI: 10.1002/ajh.26078] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022]
Abstract
Autologous blood doping refers to the illegal re-transfusion of any quantities of blood or blood components with blood donor and recipient being the same person. The re-transfusion of stored erythrocyte concentrates is particularly attractive to high-performance athletes as this practice improves their oxygen capacity excessively. However, there is still no reliable detection method available. Analyzing circulating microRNA profiles of human subjects that underwent monitored autologous blood transfusions seems to be a highly promising approach to develop novel biomarkers for autologous blood doping. In this exploratory study, we randomly divided 30 healthy males into two different treatment groups and one control group and sampled whole blood at several time points at baseline, after whole blood donation and after transfusion of erythrocyte concentrates. Hematological variables were recorded and analyzed following the adaptive model of the Athlete Biological Passport. microRNA profiles were examined by small RNA sequencing and comprehensive multivariate data analyses, revealing microRNA fingerprints that reflect the sampling time point and transfusion volume. Neither individual microRNAs nor a signature of transfusion-dependent microRNAs reached superior sensitivity at 100% specificity compared to the Athlete Biological Passport (≤11% 6 h after transfusion versus ≤44% 2 days after transfusion). However, the window of autologous blood doping detection was different. Due to the heterogenous nature of doping, with athletes frequently combining multiple medications in order to both gain a competitive advantage and interfere with known testing methods, the true applicability of the molecular signature remains to be validated in real anti-doping testings.
Collapse
Affiliation(s)
- Veronika Mussack
- Animal Physiology and Immunology School of Life Sciences Weihenstephan, Technical University of Munich Freising Germany
| | - Georg Wittmann
- Department for Transfusion Medicine, Cell therapeutics and Haemostaseology University Hospital LMU Munich Germany
| | - Michael W. Pfaffl
- Animal Physiology and Immunology School of Life Sciences Weihenstephan, Technical University of Munich Freising Germany
| |
Collapse
|
21
|
Baranauskas MN, Constantini K, Paris HL, Wiggins CC, Schlader ZJ, Chapman RF. Heat Versus Altitude Training for Endurance Performance at Sea Level. Exerc Sport Sci Rev 2021; 49:50-58. [PMID: 33044330 DOI: 10.1249/jes.0000000000000238] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Environmental stressors, such as heat or altitude, elicit dissimilar physiological adaptations to endurance training programs. Whether these differences (i.e., increased hemoglobin mass vs plasma volume) differentially influence performance is debated. We review data in support of our novel hypothesis, which proposes altitude as the preferred environmental training stimulus for elite endurance athletes preparing to compete in temperate, sea-level climates (5°C-18°C).
Collapse
Affiliation(s)
- Marissa N Baranauskas
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN
| | - Keren Constantini
- School of Public Health, Sackler Faculty of Medicine and Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv, Israel
| | - Hunter L Paris
- Division of Natural Sciences, Pepperdine University, Malibu, CA
| | - Chad C Wiggins
- Department of Anaesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Zachary J Schlader
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN
| | - Robert F Chapman
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN
| |
Collapse
|
22
|
Seeger B, Grau M. Relation between Exercise Performance and Blood Storage Condition and Storage Time in Autologous Blood Doping. BIOLOGY 2020; 10:14. [PMID: 33383643 PMCID: PMC7824255 DOI: 10.3390/biology10010014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 11/16/2022]
Abstract
Professional athletes are expected to continuously improve their performance, and some might also use illegal methods-e.g., autologous blood doping (ABD)-to achieve improvements. This article applies a systematic literature review to investigate differences in the ABD methods and the related performance and blood parameters owing to different storage conditions-cryopreservation (CP) and cold storage (CS)-and different storage durations. The literature research resulted in 34 original articles. The majority of currently published studies employed CS during ABD. This contrasts to the applied storage technique in professional sports, which was mainly reported to be CP. The second outcome of the literature research revealed large differences in the storage durations applied, which were in the range of one day to 17 weeks between blood sampling and re-infusion, which might affect recovery of the red blood cell mass and thus performance outcome related to ABD. Data revealed that performance parameters were positively affected by ABD when a minimal storage duration of four weeks was adhered. This article identified a need for further research that reflect common ABD practice and its real effects on performance parameters, but also on related blood parameters in order to develop valid and reliable ABD detection methods.
Collapse
Affiliation(s)
| | - Marijke Grau
- Molecular and Cellular Sports Medicine, German Sport University Cologne, 50677 Cologne, Germany;
| |
Collapse
|
23
|
A humoral solution: Autologous blood products and tissue repair. Cell Immunol 2020; 356:104178. [PMID: 32861105 DOI: 10.1016/j.cellimm.2020.104178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/30/2022]
Abstract
Autologous blood-derived products (ABP) are the focus of growing scientific interest and are investigated and used for multiple medical indications. ABPs hold promise thanks to their availability, ease of preparation, and low risk of adverse allogenic reaction, hypersensitivity, and contamination. Compositional analysis of ABPs reveals a diverse mixture of cellular components, cytokines and growth factors that play roles in healing processes such as tissue proliferation and angiogenesis, modulation of the local environment through chemotaxis and regulation of inflammation and the extracellular matrix, as well as several immunomodulatory actions. Thus, the administration of ABP induces supraphysiological levels of components necessary for orchestrating reparative efforts in currently difficult-to-treat medical conditions. In this article, we review the variety of autologous blood-derived products, their composition, current clinical uses, regulatory climate, and mechanisms of action.
Collapse
|
24
|
Thevis M, Kuuranne T, Geyer H. Annual banned‐substance review – Analytical approaches in human sports drug testing. Drug Test Anal 2020; 12:7-26. [DOI: 10.1002/dta.2735] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/09/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research ‐ Institute of Biochemistry German Sport University Cologne Cologne Germany
- European Monitoring Center for Emerging Doping Agents Cologne Germany
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Genève and Lausanne Centre Hospitalier Universitaire Vaudois and University of Lausanne Epalinges Switzerland
| | - Hans Geyer
- Center for Preventive Doping Research ‐ Institute of Biochemistry German Sport University Cologne Cologne Germany
- European Monitoring Center for Emerging Doping Agents Cologne Germany
| |
Collapse
|