1
|
Sun H, Park S, Mok J, Seo J, Lee ND, Yoo B. Efficacy and Safety of Wilac L Probiotic Complex Isolated from Kimchi on the Regulation of Alcohol and Acetaldehyde Metabolism in Humans. Foods 2024; 13:3285. [PMID: 39456347 PMCID: PMC11507351 DOI: 10.3390/foods13203285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Alcohol-related hangovers impact both physical and mental wellness, largely due to acetaldehyde levels produced through alcohol metabolism. The present study investigated the efficacy and safety of the Wilac L probiotic complex (Levilactobacillus brevis WiKim0168 and Leuconostoc mesenteroides WiKim0172 isolated from kimchi) in improving hangovers post-alcohol consumption. This study was conducted as a randomized, double-blind, crossover placebo-controlled clinical trial from August 2023 to February 2024. Subjects (n = 26) were randomized into six test groups consuming three products, the Wilac L probiotic complex, Wilac L35 (Wilac L probiotic complex with Pyrus pyrifolia Nakai), or placebo, in different orders with crossover after a wash-out interval of 7-10 days. Blood alcohol and acetaldehyde concentrations were measured 0, 0.25, 0.5, 1, 2, 4, 6, and 15 h after alcohol consumption. The blood acetaldehyde levels measured with Wilac L probiotic complex supplementation were significantly lower than the control at 0.25 (p = 0.0381), 0.5 (p = 0.0498), and 1 h (p = 0.0260) post-consumption. The blood acetaldehyde levels after Wilac L35 consumption compared to the control are significant at 0.25 (p = 0.0115), 0.5 (p = 0.0054), 1 (p = 0.0285), 2 (p = 0.0113), and 6 h (p = 0.0287) post-consumption. No significant adverse events were reported. The Wilac L probiotic complex is associated with decreased blood acetaldehyde levels and improved subjective hangover symptoms.
Collapse
Affiliation(s)
- Hwayeon Sun
- Microbiome R&D Center, Pharmsville, Co., Ltd., Seoul 07793, Republic of Korea; (H.S.); (S.P.); (J.M.); (J.S.)
| | - Sangmin Park
- Microbiome R&D Center, Pharmsville, Co., Ltd., Seoul 07793, Republic of Korea; (H.S.); (S.P.); (J.M.); (J.S.)
| | - Jiye Mok
- Microbiome R&D Center, Pharmsville, Co., Ltd., Seoul 07793, Republic of Korea; (H.S.); (S.P.); (J.M.); (J.S.)
| | - Jeonghyun Seo
- Microbiome R&D Center, Pharmsville, Co., Ltd., Seoul 07793, Republic of Korea; (H.S.); (S.P.); (J.M.); (J.S.)
| | - Nicole Dain Lee
- School of Medicine, Georgetown University, Washington, DC 20007, USA;
| | - Byungwook Yoo
- Department of Family Medicine, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea
| |
Collapse
|
2
|
Chen B, Silvaraju S, Almunawar SNA, Heng YC, Lee JKY, Kittelmann S. Limosilactobacillus allomucosae sp. nov., a novel species isolated from wild boar faecal samples as a potential probiotic for domestic pigs. Syst Appl Microbiol 2024; 47:126556. [PMID: 39467427 DOI: 10.1016/j.syapm.2024.126556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/14/2024] [Accepted: 09/21/2024] [Indexed: 10/30/2024]
Abstract
Six strains, WILCCON 0050, WILCCON 0051, WILCCON 0052, WILCCON 0053, WILCCON 0054, WILCCON 0055T, were isolated from four different faecal samples of wild boars on Pulau Ubin, Singapore, Singapore. Based on core genome phylogenetic analysis, the six strains formed a distinct clade within the genus Limosilactobacillus (Lm.), with the most closely related type strain being Lm. mucosae DSM 13345T. The minimum ANI, dDDH, and AAI values within these six strains were 97.8%, 78.8%, and 98.6%, respectively. In contrast, the ANI, dDDH, and AAI values with Lm. mucosae DSM 13345T were lower, ranging between 94.8-95.1%, 57.1-59.0%, and 95.9-97.0%, respectively. While ANI and AAI were close to the thresholds of 95% and 97% for bacterial species delineation, respectively, dDDH was significantly lower than the threshold value of 70%. Based on our phylogenomic, phenotypic and chemotaxonomic analyses, we propose a novel species with the name Limosilactobacillus allomucosae sp. nov., with WILCCON 0055T (DSM 117632T = LMG 33563T) as the designated type strain. In vitro investigations revealed the strains' ability to break down raffinose-family oligosaccharides, and to utilize prebiotics such as xylo-oligosaccharides and galacturonic acid, thereby enhancing fibre digestion and nutrient absorption. Moreover, strong auto-aggregation properties, as well as resistance to low pH and porcine bile were observed, suggesting their potential survival and persistence during passage through the gut. The high bile tolerance of these strains appears to be attributed to their ability to deconjugate a wide range of conjugated bile compounds. In silico analysis indicated a strong potential for mucin-binding activity, which aids their colonization in the gut. These characteristics indicate the potential suitability of strains of Lm. allomucosae as probiotics for domestic pigs.
Collapse
Affiliation(s)
- Binbin Chen
- Wilmar International Limited, Wilmar Innovation Centre, Singapore, Singapore
| | | | | | - Yu Chyuan Heng
- Wilmar International Limited, Wilmar Innovation Centre, Singapore, Singapore
| | - Jolie Kar Yi Lee
- Wilmar International Limited, Wilmar Innovation Centre, Singapore, Singapore
| | - Sandra Kittelmann
- Wilmar International Limited, Wilmar Innovation Centre, Singapore, Singapore.
| |
Collapse
|
3
|
Kim S, Cho J, Keum GB, Kwak J, Doo H, Choi Y, Kang J, Kim H, Chae Y, Kim ES, Song M, Kim HB. Investigation of the impact of multi-strain probiotics containing Saccharomyces cerevisiae on porcine production. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:876-890. [PMID: 39398307 PMCID: PMC11466735 DOI: 10.5187/jast.2024.e79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 10/15/2024]
Abstract
A balanced intestinal microbiome controls intestinal bacterial diseases, helps regulate immunity, and digests and utilizes nutrients, ultimately having a positive effect on the productivity of industrial animals. Yeasts help in the digestion process by breaking down indigestible fibers and producing organic acids, vitamins, and minerals. In particular, polysaccharides such as beta-glucan and mannan-oligosaccharides, which are present in the cell wall of yeast, inhibit the adhesion of pathogens to the surface of the gastrointestinal tract and increase resistance to disease to help maintain and improve intestinal health. Among the yeast additives used in animal feed, Saccharomyces cerevisiae is one of the most commonly used probiotics. However, it does not naturally reside in the intestine, so if it is supplied in combination with other species of probiotics that can compensate for it, many benefits and synergies can be expected for pigs in terms of maintaining intestinal health such as supplementing the immune system and improving digestion. A number of previous studies have demonstrated that dietary complex probiotic supplementation has growth-promoting effects in pigs, suggesting that multiple strains of probiotics may be more effective than single strain probiotics due to their additive and synergistic effects. In practice, however, the effects of complex probiotics are not always consistent, and can be influenced by a variety of factors. Therefore, this review comprehensively examines and discusses the literature related to the effects of complex probiotics using Saccharomyces cerevisiae in pig production.
Collapse
Affiliation(s)
- Sheena Kim
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Jinho Cho
- Division of Food and Animal Science,
Chungbuk National University, Cheongju 28644, Korea
| | - Gi Beom Keum
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Jinok Kwak
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Hyunok Doo
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Yejin Choi
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Juyoun Kang
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Haram Kim
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Yeongjae Chae
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Eun Sol Kim
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Minho Song
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 31434, Korea
| | - Hyeun Bum Kim
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| |
Collapse
|
4
|
Saha S, Namai F, Nishiyama K, Villena J, Kitazawa H. Role of immunomodulatory probiotics in alleviating bacterial diarrhea in piglets: a systematic review. J Anim Sci Biotechnol 2024; 15:112. [PMID: 39129013 PMCID: PMC11318305 DOI: 10.1186/s40104-024-01070-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/26/2024] [Indexed: 08/13/2024] Open
Abstract
Diarrhea is a common enteric disease in piglets that leads to high mortality and economic losses in swine production worldwide. Antibiotics are commonly used to prevent or treat diarrhea in piglets. However, irrational antibiotic use contributes to the development of resistance in bacteria and antibiotic residues in animal products, threatening public health, while causing gut microbiota dysbiosis and antibiotic-resistant bacterial infection in piglets. Therefore, the quest for alternative products (such as probiotics, prebiotics, organic acids, enzymes, essential oils, medium-chain fatty acids, zinc, and plant extracts) has recently been clearly emphasized through the increase in regulations regarding antibiotic use in livestock production. These antibiotic alternatives could lower the risk of antibiotic-resistant bacteria and meet consumer demand for antibiotic-free food. Several antibiotic alternatives have been proposed, including immunomodulatory probiotics, as candidates to reduce the need for antimicrobial therapy. Many studies have revealed that probiotics can avert and cure bacterial diarrhea by regulating the gut function and immune system of piglets. In this review, we focus on the major pathogenic bacteria causing piglet diarrhea, the research status of using probiotics to prevent and treat diarrhea, their possible mechanisms, and the safety issues related to the use of probiotics. Supplementation with probiotics is a possible alternative to antibiotics for the prevention or treatment of bacterial diarrhea in piglets. Furthermore, probiotics exert beneficial effects on feed efficiency and growth performance of piglets. Therefore, appropriate selection and strategies for the use of probiotics may have a positive effect on growth performance and also reduce diarrhea in piglets. This review provides useful information on probiotics for researchers, pig nutritionists, and the additive industry to support their use against bacterial diarrhea in piglets.
Collapse
Affiliation(s)
- Sudeb Saha
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
- Department of Dairy Science, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Fu Namai
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Tohoku University, Sendai, 980-8572, Japan
| | - Keita Nishiyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Tohoku University, Sendai, 980-8572, Japan
| | - Julio Villena
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan.
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), 4000, Tucuman, CP, Argentina.
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan.
- Department of Dairy Science, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| |
Collapse
|
5
|
Yuan C, Ji X, Zhang Y, Liu X, Ding L, Li J, Ren S, Liu F, Chen Z, Zhang L, Zhu W, Yu J, Wu J. Important role of Bacillus subtilis as a probiotic and vaccine carrier in animal health maintenance. World J Microbiol Biotechnol 2024; 40:268. [PMID: 39007987 DOI: 10.1007/s11274-024-04065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
Bacillus subtilis is a widespread Gram-positive facultative aerobic bacterium that is recognized as generally safe. It has shown significant application value and great development potential in the animal farming industry. As a probiotic, it is frequently used as a feed growth supplement to effectively replace antibiotics due to its favourable effects on regulating the intestinal flora, improving intestinal immunity, inhibiting harmful microorganisms, and secreting bioactive substances. Consequently, the gut health and disease resistance of farmed animals can be improved. Both vegetative and spore forms of B. subtilis have also been utilized as vaccine carriers for delivering the antigens of infectious pathogens for over a decade. Notably, its spore form is regarded as one of the most prospective for displaying heterologous antigens with high activity and stability. Previously published reviews have predominantly focused on the development and applications of B. subtilis spore surface display techniques. However, this review aims to summarize recent studies highlighting the important role of B. subtilis as a probiotic and vaccine carrier in maintaining animal health. Specifically, we focus on the beneficial effects and underlying mechanisms of B. subtilis in enhancing disease resistance among farmed animals as well as its potential application as mucosal vaccine carriers. It is anticipated that B. subtilis will assume an even more prominent role in promoting animal health with in-depth research on its characteristics and genetic manipulation tools.
Collapse
Affiliation(s)
- Chunmei Yuan
- College of Bioengineering, State Key Laboratory of Bio-based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiang Ji
- College of Bioengineering, State Key Laboratory of Bio-based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yuyu Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- School of Life Sciences, Shandong Normal University, Jinan, China
| | - Xinli Liu
- College of Bioengineering, State Key Laboratory of Bio-based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Luogang Ding
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jianda Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Sufang Ren
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Fei Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhi Chen
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lin Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wenxing Zhu
- College of Bioengineering, State Key Laboratory of Bio-based Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Jiang Yu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.
- School of Life Sciences, Shandong Normal University, Jinan, China.
| | - Jiaqiang Wu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.
- School of Life Sciences, Shandong Normal University, Jinan, China.
| |
Collapse
|
6
|
Modrackova N, Horvathova K, Mekadim C, Splichal I, Splichalova A, Amin A, Mrazek J, Vlkova E, Neuzil-Bunesova V. Defined Pig Microbiota Mixture as Promising Strategy against Salmonellosis in Gnotobiotic Piglets. Animals (Basel) 2024; 14:1779. [PMID: 38929398 PMCID: PMC11200913 DOI: 10.3390/ani14121779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Probiotics are a potential strategy for salmonellosis control. A defined pig microbiota (DPM) mixture of nine bacterial strains previously exhibited probiotic and anti-Salmonella properties in vitro. Therefore, we evaluated its gut colonization ability and protection effect against S. typhimurium LT2-induced infection in the gnotobiotic piglet model. The DPM mixture successfully colonized the piglet gut and was stable and safe until the end of the experiment. The colon was inhabited by about 9 log CFU g-1 with a significant representation of bifidobacteria and lactobacilli compared to ileal levels around 7-8 log CFU g-1. Spore-forming clostridia and bacilli seemed to inhabit the environment only temporarily. The bacterial consortium contributed to the colonization of the gut at an entire length. The amplicon profile analysis supported the cultivation trend with a considerable representation of lactobacilli with bacilli in the ileum and bifidobacteria with clostridia in the colon. Although there was no significant Salmonella-positive elimination, it seems that the administered bacteria conferred the protection of infected piglets because of the slowed delayed infection manifestation without translocations of Salmonella cells to the blood circulation. Due to its colonization stability and potential protective anti-Salmonella traits, the DPM mixture has promising potential in pig production applications. However, advanced immunological tests are needed.
Collapse
Affiliation(s)
- Nikol Modrackova
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (K.H.); (A.A.); (E.V.); (V.N.-B.)
| | - Kristyna Horvathova
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (K.H.); (A.A.); (E.V.); (V.N.-B.)
| | - Chahrazed Mekadim
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (C.M.); (J.M.)
| | - Igor Splichal
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Doly 183, 549 22 Novy Hradek, Czech Republic; (I.S.); (A.S.)
| | - Alla Splichalova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, Doly 183, 549 22 Novy Hradek, Czech Republic; (I.S.); (A.S.)
| | - Ahmad Amin
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (K.H.); (A.A.); (E.V.); (V.N.-B.)
| | - Jakub Mrazek
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (C.M.); (J.M.)
| | - Eva Vlkova
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (K.H.); (A.A.); (E.V.); (V.N.-B.)
| | - Vera Neuzil-Bunesova
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (K.H.); (A.A.); (E.V.); (V.N.-B.)
| |
Collapse
|
7
|
Zhang M, Yang Z, Wu G, Xu F, Zhang J, Luo X, Ma Y, Pang H, Duan Y, Chen J, Cai Y, Wang L, Tan Z. Effects of Probiotic-Fermented Feed on the Growth Profile, Immune Functions, and Intestinal Microbiota of Bamei Piglets. Animals (Basel) 2024; 14:647. [PMID: 38396614 PMCID: PMC10886304 DOI: 10.3390/ani14040647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Purebred Bamei piglets present problems, including slow growth, respiratory disease, and post-weaning stress. This study investigated the effects of Lactobacillus plantarum QP28-1- and Bacillus subtilis QB8-fermented feed supplementation on the growth performance, immunity, and intestinal microflora of Bamei piglets from Qinghai, China. A total of 48 purebred Bamei piglets (25 days; 6.8 ± 0.97 kg) were divided into the following four groups for a 28-day diet experiment: basal feed (CK); diet containing 10% Lactobacillus plantarum-fermented feed (L); diet containing 10% Bacillus subtilis-fermented feed (B); and diet containing a mixture of 5% Lactobacillus plantarum + 5% Bacillus subtilis-fermented feed (H). The daily weight gain and daily food intake of group H increased (p < 0.05), and the feed/weight gain ratios of the groups fed with fermented feed decreased more than that of the CK group. The levels of three immune factors, namely immunoglobulin (Ig)M, IgG, and interferon-γ, were higher (p < 0.05), whereas those of tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 were lower (p < 0.05) in the fermented feed groups than in the CK group. Total protein was higher (p < 0.05), while urea nitrogen, total cholesterol and triglycerides were lower (p < 0.05) in the mixed-fermented feed group than in the CK group. Analysis of the gut microbiota showed that the addition of fermented feed increased the α-diversity of the gut microbiota, increasing the abundances of probiotics including Lactobacillus, Muribaculaceae, Ruminococcaceae, Prevotellaceae, and Rikenellaceae. Additionally, correlation analysis demonstrated that several of these probiotic bacteria were closely related to serum immunity. In conclusion, fermented feed supplementation rebuilt the intestinal microbiota of Bamei piglets, thereby reducing the feed/weight ratio, improving feed intake, and enhancing immunity.
Collapse
Affiliation(s)
- Miao Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.Z.); (Z.Y.); (H.P.); (Y.D.); (J.C.); (Y.C.)
| | - Zhenyu Yang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.Z.); (Z.Y.); (H.P.); (Y.D.); (J.C.); (Y.C.)
| | - Guofang Wu
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China; (G.W.); (J.Z.); (X.L.); (Y.M.)
| | - Fafang Xu
- Bamei Pig Original Breeding Base of Huzhu County, Haidong 810600, China;
| | - Jianbo Zhang
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China; (G.W.); (J.Z.); (X.L.); (Y.M.)
| | - Xuan Luo
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China; (G.W.); (J.Z.); (X.L.); (Y.M.)
| | - Yuhong Ma
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China; (G.W.); (J.Z.); (X.L.); (Y.M.)
| | - Huili Pang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.Z.); (Z.Y.); (H.P.); (Y.D.); (J.C.); (Y.C.)
| | - Yaoke Duan
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.Z.); (Z.Y.); (H.P.); (Y.D.); (J.C.); (Y.C.)
| | - Jun Chen
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.Z.); (Z.Y.); (H.P.); (Y.D.); (J.C.); (Y.C.)
| | - Yimin Cai
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.Z.); (Z.Y.); (H.P.); (Y.D.); (J.C.); (Y.C.)
- Japan International Research Center for Agricultural Sciences, Crop, Livestock and Environment Division, Tsukuba 305-8686, Japan
| | - Lei Wang
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining 810016, China; (G.W.); (J.Z.); (X.L.); (Y.M.)
| | - Zhongfang Tan
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (M.Z.); (Z.Y.); (H.P.); (Y.D.); (J.C.); (Y.C.)
| |
Collapse
|
8
|
Huang F, Zhao Y, Hou Y, Yang Y, Yue B, Zhang X. Unraveling the antimicrobial potential of Lactiplantibacillus plantarum strains TE0907 and TE1809 sourced from Bufo gargarizans: advancing the frontier of probiotic-based therapeutics. Front Microbiol 2024; 15:1347830. [PMID: 38419633 PMCID: PMC10899456 DOI: 10.3389/fmicb.2024.1347830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction In an era increasingly defined by the challenge of antibiotic resistance, this study offers groundbreaking insights into the antibacterial properties of two distinct Lactiplantibacillus plantarum strains, TE0907 and TE1809, hailing from the unique ecosystem of Bufo gargarizans. It uniquely focuses on elucidating the intricate components and mechanisms that empower these strains with their notable antibacterial capabilities. Methods The research employs a multi-omics approach, including agar diffusion tests to assess antibacterial efficacy and adhesion assays with HT-29 cells to understand the preliminary mechanisms. Additionally, gas chromatography-mass spectrometry (GC-MS) is employed to analyze the production of organic acids, notably acetic acid, and whole-genome sequencing is utilized to identify genes linked to the biosynthesis of antibiotics and bacteriocin-coding domains. Results The comparative analysis highlighted the exceptional antibacterial efficacy of strains TE0907 and TE1809, with mean inhibitory zones measured at 14.97 and 15.98 mm, respectively. A pivotal discovery was the significant synthesis of acetic acid in both strains, demonstrated by a robust correlation coefficient (cor ≥ 0.943), linking its abundance to their antimicrobial efficiency. Genomic exploration uncovered a diverse range of elements involved in the biosynthesis of antibiotics similar to tetracycline and vancomycin and potential regions encoding bacteriocins, including Enterolysin and Plantaricin. Conclusion This research illuminates the remarkable antibacterial efficacy and mechanisms intrinsic to L. plantarum strains TE0907 and TE1809, sourced from B. gargarizans. The findings underscore the strains' extensive biochemical and enzymatic armamentarium, offering valuable insights into their role in antagonizing enteric pathogens. These results lay down a comprehensive analytical foundation for the potential clinical deployment of these strains in safeguarding animal gut health, thereby enriching our understanding of the role of probiotic bacteria in the realm of antimicrobial interventions.
Collapse
Affiliation(s)
- Feiyun Huang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Yanni Zhao
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Yusen Hou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Yang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Bisong Yue
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiuyue Zhang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Rattigan R, Wajda L, Vlasblom AA, Wolfe A, Zomer AL, Duim B, Wagenaar JA, Lawlor PG. Safety Evaluation of an Intranasally Applied Cocktail of Lactococcus lactis Strains in Pigs. Animals (Basel) 2023; 13:3442. [PMID: 38003060 PMCID: PMC10668741 DOI: 10.3390/ani13223442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Three Lactococcus lactis strains from the nasal microbiota of healthy pigs were identified as candidates for reducing MRSA in pigs. The safety of nasal administration of a cocktail of these strains was examined in new-born piglets. Six days pre-farrowing, twelve sows were assigned to the placebo or cocktail group (n = 6/group). After farrowing, piglets were administered with either 0.5 mL of the placebo or the cocktail to each nostril. Health status and body weight were monitored at regular time points. Two piglets from three sows/treatment group were euthanised at 24 h, 96 h and 14 d after birth, and conchae, lung and tonsil samples were collected for histopathological and gene expression analysis. Health scores were improved in the cocktail group between d1-5. Body weight and daily gains did not differ between groups. Both groups displayed histological indications of euthanasia and inflammation in the lungs, signifying the findings were not treatment related. The expression of pBD2, TLR9 and IL-1β in the nasal conchae differed between groups, indicating the cocktail has the potential to modulate immune responses. In summary, the L. lactis cocktail was well tolerated by piglets and there was no negative impact on health scores, growth or lung histopathology indicating that it is safe for administration to new-born piglets.
Collapse
Affiliation(s)
- Ruth Rattigan
- Teagasc Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, P61 C996 County Cork, Ireland
| | - Lukasz Wajda
- Teagasc Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, P61 C996 County Cork, Ireland
| | - Abel A. Vlasblom
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Alan Wolfe
- School of Veterinary Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Aldert L. Zomer
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Birgitta Duim
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Jaap A. Wagenaar
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Peadar G. Lawlor
- Teagasc Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, P61 C996 County Cork, Ireland
| |
Collapse
|
10
|
Innamma N, Ngamwongsatit N, Kaeoket K. The effects of using multi-species probiotics in late-pregnant and lactating sows on milk quality and quantity, fecal microflora, and performance of their offspring. Vet World 2023; 16:2055-2062. [PMID: 38023266 PMCID: PMC10668563 DOI: 10.14202/vetworld.2023.2055-2062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/13/2023] [Indexed: 12/01/2023] Open
Abstract
Background and Aim The dietary probiotics in sows during gestation to lactation period have gained considerable attention with respect to their beneficial effects on sows and their piglets' performance and health. This study aimed to evaluate the effects of using probiotics in late-pregnant and lactating sows on milk quality, quantity, fecal microflora of sows, and growth performance of their offspring until weaning. Materials and Methods Thirty-four sows were equally divided into two groups (control and treatment). Only those in the treatment group were fed 5 g of probiotics at 12 weeks of pregnancy, once daily for 7 weeks, until their piglets were weaned. Colostrum samples were collected at 3, 6, 12, and 24 h after farrowing and measured for immunoglobulin concentration. Percentages of fat, protein, and lactose in colostrum, colostrum production, total intake of immunoglobulin A (IgA), immunoglobulin G (IgG), fat, protein, and lactose, the change of fecal microflora of sows, and average daily gain of piglets were measured. Results The results showed that there were no significant differences in the concentrations of IgA, IgG, and IgM in colostrum and the percentages of fat, protein, lactose, solid-not-fat, and total solid in colostrum between the groups; however, the colostrum production at 24 h in the treatment group (6,075.29 mL) was higher than in the control group (4,809.54 mL). Higher total intakes of IgA and IgG as well as total intake of fat, protein, and lactose, particularly at 3 h after farrowing, were found in the treatment group. Probiotic supplementation remarkably altered the microbiota community at the phylum level. We found that Firmicutes and Bacteroidetes are the dominant phyla, present in the gut of more than 90% of pregnant and lactating sows. Changes in microbial proportions were observed due to the changes of pig production stage. The weaning weight of the treatment group was higher than in the control group (6.34 ± 1.71 vs. 4.84 ± 1.29 kg, respectively). Conclusion Feeding of multi-species probiotic BACTOSAC-P™ during late pregnancy and lactation in sows positively influenced colostrum production. In this experiment, the use of BACTOSAC-P™ improved the yield of colostrum production. The high immunoglobulin concentration and high yield of the colostrum of sows with a diet supplemented with BACTOSAC-P™ significantly reduced piglet mortality during the suckling period. Furthermore, the probiotic diet induced changes in the fecal microbial population in sows by increasing the number of microorganisms from the Firmicutes phylum, which had positive effects on sow health and their piglets, leading to better piglet growth performance.
Collapse
Affiliation(s)
- Narathon Innamma
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Natharin Ngamwongsatit
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
- Laboratory of Bacteria, Veterinary Diagnostic Center, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Kampon Kaeoket
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| |
Collapse
|
11
|
Mishra G, Singh P, Molla M, Yimer YS, Dinda SC, Chandra P, Singh BK, Dagnew SB, Assefa AN, Ewunetie A. Harnessing the potential of probiotics in the treatment of alcoholic liver disorders. Front Pharmacol 2023; 14:1212742. [PMID: 37361234 PMCID: PMC10287977 DOI: 10.3389/fphar.2023.1212742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
In the current scenario, prolonged consumption of alcohol across the globe is upsurging an appreciable number of patients with the risk of alcohol-associated liver diseases. According to the recent report, the gut-liver axis is crucial in the progression of alcohol-induced liver diseases, including steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Despite several factors associated with alcoholic liver diseases, the complexity of the gut microflora and its great interaction with the liver have become a fascinating area for researchers due to the high exposure of the liver to free radicals, bacterial endotoxins, lipopolysaccharides, inflammatory markers, etc. Undoubtedly, alcohol-induced gut microbiota imbalance stimulates dysbiosis, disrupts the intestinal barrier function, and trigger immune as well as inflammatory responses which further aggravate hepatic injury. Since currently available drugs to mitigate liver disorders have significant side effects, hence, probiotics have been widely researched to alleviate alcohol-associated liver diseases and to improve liver health. A broad range of probiotic bacteria like Lactobacillus, Bifidobacteria, Escherichia coli, Sacchromyces, and Lactococcus are used to reduce or halt the progression of alcohol-associated liver diseases. Several underlying mechanisms, including alteration of the gut microbiome, modulation of intestinal barrier function and immune response, reduction in the level of endotoxins, and bacterial translocation, have been implicated through which probiotics can effectively suppress the occurrence of alcohol-induced liver disorders. This review addresses the therapeutic applications of probiotics in the treatment of alcohol-associated liver diseases. Novel insights into the mechanisms by which probiotics prevent alcohol-associated liver diseases have also been elaborated.
Collapse
Affiliation(s)
- Garima Mishra
- Pharmaceutical Chemistry Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Pradeep Singh
- Pharmaceutical Chemistry Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Mulugeta Molla
- Pharmacology and Toxicology Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Yohannes Shumet Yimer
- Social Pharmacy Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | | | - Phool Chandra
- Department of Pharmacology, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, India
| | | | - Samuel Berihun Dagnew
- Clinical Pharmacy Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Abraham Nigussie Assefa
- Social Pharmacy Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Amien Ewunetie
- Pharmacology and Toxicology Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
12
|
Parada J, Magnoli A, Isgro MC, Poloni V, Fochesato A, Martínez MP, Carranza A, Cavaglieri L. In-feed nutritional additive probiotic Saccharomyces boulardii RC009 can substitute for prophylactic antibiotics and improve the production and health of weaning pigs. Vet World 2023; 16:1035-1042. [PMID: 37576772 PMCID: PMC10420716 DOI: 10.14202/vetworld.2023.1035-1042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/05/2023] [Indexed: 08/15/2023] Open
Abstract
Background and Aims Non-therapeutic antibiotic use is associated with the current decrease in antibiotic therapeutic efficiency and the emergence of a wide range of resistant strains, which constitutes a public health risk. This study aimed to evaluate the use of Saccharomyces cerevisiae var. boulardii RC009 as a nutritional feed additive to substitute the prophylactic use of antibiotics and improve the productive performance and health of post-weaning piglets. Materials and Methods Four regular nutritional phases were prepared. Post-weaning pigs (21-70 days old) received one of two dietary treatments: T1-basal diet (BD-control group) with in-feed antibiotics as a prophylactic medication (one pulse of Tiamulin in P3 and one pulse of Amoxicillin in P4); and T2-BD without in-feed antibiotics but with Saccharomyces boulardii RC009 (1 × 1012 colony forming unit/T feed). The feed conversion ratio (FCR), total weight gain (TWG-kg), and daily weight gain (DWG-kg) were determined. A post-weaning growth index (GI) was calculated and animals (160 days old) from each treatment were analyzed at the abattoir after sacrifice for carcass weight and respiratory tract lesions. Results Pigs consuming probiotics had higher TWG and DWG than the control group. The group of animals with low body weight obtained the same results. Saccharomyces boulardii administration decreased diarrhea, and FCR reduction was related to a GI improvement. A significant increase in carcass weight and muscle thickness reduction was observed in animals received the probiotic post-weaning. Conclusion Saccharomyces boulardii RC009, a probiotic additive, was found to improve the production parameters of pigs post-weaning and enhance their health status, indicating that it may be a promising alternative to prophylactic antibiotics.
Collapse
Affiliation(s)
- Julián Parada
- Department of Animal Pathology, Faculty of Agronomy and Veterinary, National University of Rio Cuarto, Río Cuarto, Córdoba, Argentina
- National Scientific and Technical Research Council (CONICET), Córdoba, Argentina
| | - Alejandra Magnoli
- National Scientific and Technical Research Council (CONICET), Córdoba, Argentina
- Department of Animal Production, Faculty of Agronomy and Veterinary, National University of Rio Cuarto, Río Cuarto, Córdoba, Argentina
| | - Maite Corti Isgro
- Department of Animal Pathology, Faculty of Agronomy and Veterinary, National University of Rio Cuarto, Río Cuarto, Córdoba, Argentina
- National Scientific and Technical Research Council (CONICET), Córdoba, Argentina
| | - Valeria Poloni
- National Scientific and Technical Research Council (CONICET), Córdoba, Argentina
- Department of Microbiology and Immunology, Faculty of Exact, Physical, Chemical and Natural Sciences, National University of Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Analía Fochesato
- National Scientific and Technical Research Council (CONICET), Córdoba, Argentina
- Department of Microbiology and Immunology, Faculty of Exact, Physical, Chemical and Natural Sciences, National University of Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - María Pía Martínez
- National Scientific and Technical Research Council (CONICET), Córdoba, Argentina
- Department of Microbiology and Immunology, Faculty of Exact, Physical, Chemical and Natural Sciences, National University of Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Alicia Carranza
- Department of Animal Pathology, Faculty of Agronomy and Veterinary, National University of Rio Cuarto, Río Cuarto, Córdoba, Argentina
| | - Lilia Cavaglieri
- National Scientific and Technical Research Council (CONICET), Córdoba, Argentina
- Department of Microbiology and Immunology, Faculty of Exact, Physical, Chemical and Natural Sciences, National University of Río Cuarto, Río Cuarto, Córdoba, Argentina
| |
Collapse
|