1
|
Knutie SA, Webster CN, Vaziri GJ, Albert L, Harvey JA, LaRue M, Verrett TB, Soldo A, Koop JAH, Chaves JA, Wegrzyn JL. Urban living can rescue Darwin's finches from the lethal effects of invasive vampire flies. GLOBAL CHANGE BIOLOGY 2024; 30:e17145. [PMID: 38273516 DOI: 10.1111/gcb.17145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024]
Abstract
Human activity changes multiple factors in the environment, which can have positive or negative synergistic effects on organisms. However, few studies have explored the causal effects of multiple anthropogenic factors, such as urbanization and invasive species, on animals and the mechanisms that mediate these interactions. This study examines the influence of urbanization on the detrimental effect of invasive avian vampire flies (Philornis downsi) on endemic Darwin's finches in the Galápagos Islands. We experimentally manipulated nest fly abundance in urban and non-urban locations and then characterized nestling health, fledging success, diet, and gene expression patterns related to host defense. Fledging success of non-parasitized nestlings from urban (79%) and non-urban (75%) nests did not differ significantly. However, parasitized, non-urban nestlings lost more blood, and fewer nestlings survived (8%) compared to urban nestlings (50%). Stable isotopic values (δ15 N) from urban nestling feces were higher than those from non-urban nestlings, suggesting that urban nestlings are consuming more protein. δ15 N values correlated negatively with parasite abundance, which suggests that diet might influence host defenses (e.g., tolerance and resistance). Parasitized, urban nestlings differentially expressed genes within pathways associated with red blood cell production (tolerance) and pro-inflammatory response (innate immunological resistance), compared to parasitized, non-urban nestlings. In contrast, parasitized non-urban nestlings differentially expressed genes within pathways associated with immunoglobulin production (adaptive immunological resistance). Our results suggest that urban nestlings are investing more in pro-inflammatory responses to resist parasites but also recovering more blood cells to tolerate blood loss. Although non-urban nestlings are mounting an adaptive immune response, it is likely a last effort by the immune system rather than an effective defense against avian vampire flies since few nestlings survived.
Collapse
Affiliation(s)
- Sarah A Knutie
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA
| | - Cynthia N Webster
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Grace J Vaziri
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Lauren Albert
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Johanna A Harvey
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
- Department of Science and Technology, University of Maryland, College Park, Maryland, USA
| | - Michelle LaRue
- School of Earth and Environment, University of Canterbury, Christchurch, New Zealand
| | - Taylor B Verrett
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Alexandria Soldo
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Jennifer A H Koop
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Jaime A Chaves
- Department of Biology, San Francisco State University, San Francisco, California, USA
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
2
|
Huge AC, Adreani NM, Colombelli-Négrel D, Akçay Ç, Common LK, Kleindorfer S. Age effects in Darwin's finches: older males build more concealed nests in areas with more heterospecific singing neighbors. JOURNAL OF ORNITHOLOGY 2023; 165:179-191. [PMID: 38225937 PMCID: PMC10787676 DOI: 10.1007/s10336-023-02093-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/27/2023] [Indexed: 01/17/2024]
Abstract
Nesting success tends to increase with age in birds, in part because older birds select more concealed nest sites based on experience and/or an assessment of prevailing predation risk. In general, greater plant diversity is associated with more biodiversity and more vegetation cover. Here, we ask if older Darwin's finch males nest in areas with greater vegetation cover and if these nest sites also have greater avian species diversity assessed using song. We compared patterns in Darwin's Small Tree Finch (Camarhynchus parvulus) and Darwin's Small Ground Finch (Geospiza fuliginosa) as males build the nest in both systems. We measured vegetation cover, nesting height, and con- vs. heterospecific songs per minute at 55 nests (22 C. parvulus, 33 G. fuliginosa). As expected, in both species, older males built nests in areas with more vegetation cover and these nests had less predation. A novel finding is that nests of older males also had more heterospecific singing neighbors. Future research could test whether older males outcompete younger males for access to preferred nest sites that are more concealed and sustain a greater local biodiversity. The findings also raise questions about the ontogenetic and fitness consequences of different acoustical experiences for developing nestlings inside the nest. Supplementary Information The online version contains supplementary material available at 10.1007/s10336-023-02093-5.
Collapse
Affiliation(s)
- Antonia C. Huge
- Konrad Lorenz Research Center for Behavior and Cognition, University of Vienna, Grünau im Almtal, 1030 Vienna, Austria
- Department of Behavioral and Cognitive Biology, University of Vienna, 1030 Vienna, Austria
| | - Nicolas M. Adreani
- Konrad Lorenz Research Center for Behavior and Cognition, University of Vienna, Grünau im Almtal, 1030 Vienna, Austria
- Department of Behavioral and Cognitive Biology, University of Vienna, 1030 Vienna, Austria
| | | | - Çağlar Akçay
- Department of Psychology, Koç University, Istanbul, Turkey
- School of Life Sciences, Anglia Ruskin University, Cambridge, UK
| | - Lauren K. Common
- Konrad Lorenz Research Center for Behavior and Cognition, University of Vienna, Grünau im Almtal, 1030 Vienna, Austria
- Department of Behavioral and Cognitive Biology, University of Vienna, 1030 Vienna, Austria
- College of Science and Engineering, Flinders University, Adelaide, 5001 Australia
| | - Sonia Kleindorfer
- Konrad Lorenz Research Center for Behavior and Cognition, University of Vienna, Grünau im Almtal, 1030 Vienna, Austria
- Department of Behavioral and Cognitive Biology, University of Vienna, 1030 Vienna, Austria
- College of Science and Engineering, Flinders University, Adelaide, 5001 Australia
| |
Collapse
|
3
|
Sinclair BJ. An annotated checklist of the Diptera of the Galápagos Archipelago (Ecuador). Zootaxa 2023; 5283:1-102. [PMID: 37518751 DOI: 10.11646/zootaxa.5283.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Indexed: 08/01/2023]
Abstract
The Diptera fauna of the Galápagos Archipelago is updated and an annotated checklist is presented. Currently 50 families, 207 genera, and a minimum of 324 species are recorded from the islands. Approximately 107 species are considered to have arrived on the Galápagos Islands through human introductions, an estimated 101 species are considered endemic, 42 species have naturally colonized the islands from mainland Americas, 21 species are either introduced or arrived naturally and 53 species remain unidentified. The following new combination is proposed: Chrysanthrax primitivus (Walker) is moved to Hemipenthes Loew as H. primitivus (Walker) comb. nov. All references to the Galápagos taxonomic literature are included, known island species distributions listed and general remarks on the biology of many species are provided.
Collapse
Affiliation(s)
- Bradley J Sinclair
- Canadian Food Inspection Agency; K.W. Neatby Bldg.; C.E.F.; 960 Carling Ave.; Ottawa; ON; Canada K1A 0C6; Canadian National Collection of Insects; Arachnids and Nematodes; Agriculture and Agri-Food Canada; K.W. Neatby Bldg.; C.E.F.; 960 Carling Ave.; Ottawa; ON; Canada K1A 0C6.
| |
Collapse
|
4
|
Pike CL, Kofler B, Richner H, Tebbich S. Parental food provisioning and nestling growth under Philornis downsi parasitism in the Galapagos Green Warbler-Finch, classified as 'vulnerable' by the IUCN. JOURNAL OF ORNITHOLOGY 2023; 164:669-676. [PMID: 37205902 PMCID: PMC10188583 DOI: 10.1007/s10336-023-02049-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 05/21/2023]
Abstract
In the Galapagos Islands, many endemic landbird populations are declining due to habitat degradation, food availability, introduced species and other factors. Given nestlings typically lack efficient defense mechanisms against parasites, hematophagous ectoparasites such as the larvae of the introduced Avian Vampire Fly, Philornis downsi, can impose high brood mortality and cause threatening population declines in Darwin finches and other landbirds. Here, we assess whether the food compensation hypothesis (i.e., the parents' potential to compensate for deleterious parasite effects via increased food provisioning) applies to the Green Warbler-Finch. We differentiated nests with low or high infestation levels by P. downsi and quantified food provisioning rates of male and female parents, time females spent brooding nestlings, and nestling growth. Male provisioning rates, total provisioning rates and female brooding time did not significantly vary in relation to infestation levels, nor by the number of nestlings. Opposed to the predictions of the food compensation hypothesis, females showed significantly reduced provisioning rates at high infestation levels. Nestling body mass was significantly lower and there was a reduction of skeletal growth, although not significantly, in highly infested nests. The females' response to high infestation may be due to parasites directly attacking and weakening brooding females, or else that females actively reduce current reproductive effort in favor of future reproduction. This life-history trade-off may be typical for Darwin finches and many tropical birds with long lifespans and therefore high residual reproductive value. Conservation strategies may not build on the potential for parental food compensation by this species.
Collapse
Affiliation(s)
- Courtney L. Pike
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Vienna Austria
| | - Barbara Kofler
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Vienna Austria
| | - Heinz Richner
- Department of Biology, University of Bern, Bern, Bern Switzerland
| | - Sabine Tebbich
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Vienna Austria
| |
Collapse
|
5
|
Common LK, Kleindorfer S, Colombelli-Négrel D, Dudaniec RY. Genetics reveals shifts in reproductive behaviour of the invasive bird parasite Philornis downsi collected from Darwin’s finch nests. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02935-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractDue to novel or dynamic fluctuations in environmental conditions and resources, host and parasite relationships can be subject to diverse selection pressures that may lead to significant changes during and after invasion of a parasite. Genomic analyses are useful for elucidating evolutionary processes in invasive parasites following their arrival to a new area and host. Philornis downsi (Diptera: Muscidae), the avian vampire fly, was introduced to the Galápagos Islands circa 1964 and has since spread across the archipelago, feeding on the blood of developing nestlings of endemic land birds. Since its discovery, there have been significant changes to the dynamics of P. downsi and its novel hosts, such as shifting mortality rates and changing oviposition behaviour, however no temporal genetic studies have been conducted. We collected P. downsi from nests and traps from a single island population over a 14-year period, and genotyped flies at 469 single nucleotide polymorphisms (SNPs) using restriction-site associated DNA sequencing (RADSeq). Despite significant genetic differentiation (FST) between years, there was no evidence for genetic clustering within or across four sampling years between 2006 and 2020, suggesting a lack of population isolation. Sibship reconstructions from P. downsi collected from 10 Darwin’s finch nests sampled in 2020 showed evidence for shifts in reproductive behaviour compared to a similar genetic analysis conducted in 2004–2006. Compared with this previous study, females mated with fewer males, individual females oviposited fewer offspring per nest, but more unique females oviposited per nest. These findings are important to consider within reproductive control techniques, and have fitness implications for both parasite evolution and host fitness.
Collapse
|
6
|
Ramirez IE, Causton CE, Gutierrez GA, Mosquera D, Piedrahita P, Heimpel GE. Specificity within bird–parasite–parasitoid food webs: A novel approach for evaluating potential biological control agents of the avian vampire fly. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ismael E. Ramirez
- Department of Entomology University of Minnesota St. Paul Minnesota USA
| | | | - George A. Gutierrez
- Facultad de Ciencias de la Vida Escuela Superior Politécnica del Litoral Guayaquil Ecuador
| | - Denis A. Mosquera
- Charles Darwin Research Station Charles Darwin Foundation Santa Cruz Ecuador
| | - Paolo Piedrahita
- Facultad de Ciencias de la Vida Escuela Superior Politécnica del Litoral Guayaquil Ecuador
| | - George E. Heimpel
- Department of Entomology University of Minnesota St. Paul Minnesota USA
| |
Collapse
|
7
|
Kleindorfer S, Colombelli‐Négrel D, Common LK, O’Connor JA, Peters KJ, Katsis AC, Dudaniec RY, Sulloway FJ, Adreani NM. Functional traits and foraging behaviour: avian vampire fly larvae change the beak and fitness of their Darwin’s finch hosts. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Sonia Kleindorfer
- College of Science and Engineering Flinders University Adelaide Australia
- Konrad Lorenz Research Center for Behavior and Cognition and Department of Behavioral and Cognitive Biology University of Vienna Vienna Austria
| | | | - Lauren K. Common
- College of Science and Engineering Flinders University Adelaide Australia
| | | | - Katharina J. Peters
- College of Science and Engineering Flinders University Adelaide Australia
- Evolutionary Genetics Group, Department of Anthropology University of Zurich Zurich Switzerland
- School of Earth and Environment Christchurch New Zealand
| | - Andrew C. Katsis
- College of Science and Engineering Flinders University Adelaide Australia
| | | | | | - Nicolas M. Adreani
- Konrad Lorenz Research Center for Behavior and Cognition and Department of Behavioral and Cognitive Biology University of Vienna Vienna Austria
| |
Collapse
|
8
|
Bulgarella M, Lincango MP, Lahuatte PF, Oliver JD, Cahuana A, Ramírez IE, Sage R, Colwitz AJ, Freund DA, Miksanek JR, Moon RD, Causton CE, Heimpel GE. Persistence of the invasive bird-parasitic fly Philornis downsi over the host interbreeding period in the Galapagos Islands. Sci Rep 2022; 12:2325. [PMID: 35149738 PMCID: PMC8837626 DOI: 10.1038/s41598-022-06208-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/11/2022] [Indexed: 11/24/2022] Open
Abstract
Many parasites of seasonally available hosts must persist through times of the year when hosts are unavailable. In tropical environments, host availability is often linked to rainfall, and adaptations of parasites to dry periods remain understudied. The bird-parasitic fly Philornis downsi has invaded the Galapagos Islands and is causing high mortality of Darwin's finches and other bird species, and the mechanisms by which it was able to invade the islands are of great interest to conservationists. In the dry lowlands, this fly persists over a seven-month cool season when availability of hosts is very limited. We tested the hypothesis that adult flies could survive from one bird-breeding season until the next by using a pterin-based age-grading method to estimate the age of P. downsi captured during and between bird-breeding seasons. This study showed that significantly older flies were present towards the end of the cool season, with ~ 5% of captured females exhibiting estimated ages greater than seven months. However, younger flies also occurred during the cool season suggesting that some fly reproduction occurs when host availability is low. We discuss the possible ecological mechanisms that could allow for such a mixed strategy.
Collapse
Affiliation(s)
- Mariana Bulgarella
- Department of Entomology, University of Minnesota, St. Paul, MN, USA.
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
| | - M Piedad Lincango
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Santa Cruz Island, Galapagos Islands, Ecuador
- Facultad de Ciencias Agrícolas, Universidad Central del Ecuador, Quito, Ecuador
| | - Paola F Lahuatte
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Santa Cruz Island, Galapagos Islands, Ecuador
| | - Jonathan D Oliver
- Department of Entomology, University of Minnesota, St. Paul, MN, USA
| | - Andrea Cahuana
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Santa Cruz Island, Galapagos Islands, Ecuador
| | - Ismael E Ramírez
- Department of Entomology, University of Minnesota, St. Paul, MN, USA
| | - Roxanne Sage
- Department of Entomology, University of Minnesota, St. Paul, MN, USA
| | - Alyssa J Colwitz
- Biology Department, University of Wisconsin Eau Claire, Eau Claire, WI, USA
| | - Deborah A Freund
- Biology Department, University of Wisconsin Eau Claire, Eau Claire, WI, USA
| | - James R Miksanek
- Department of Entomology, University of Minnesota, St. Paul, MN, USA
| | - Roger D Moon
- Department of Entomology, University of Minnesota, St. Paul, MN, USA
| | - Charlotte E Causton
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Santa Cruz Island, Galapagos Islands, Ecuador
| | - George E Heimpel
- Department of Entomology, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
9
|
Martina C, Krenn L, Krupicka L, Yamada H, Hood-Nowotny R, Lahuatte PF, Yar J, Schwemhofer T, Fischer B, Causton CE, Tebbich S. Evaluating Volatile Plant Compounds of Psidium galapageium (Myrtales: Myrtaceae) as Repellents Against Invasive Parasitic Diptera in the Galapagos Islands. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:89-98. [PMID: 34761264 DOI: 10.1093/jme/tjab183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Plant-based repellents represent a safe, economic, and viable alternative to managing invasive insects that threaten native fauna. Observations of self-medication in animals can provide important cues to the medicinal properties of plants. A recent study in the Galapagos Islands found that Darwin's finches apply the leaves of Psidium galapageium (Hooker 1847) to their feathers, extracts of which were repellent to mosquitoes and the parasitic fly Philornis downsi (Dodge & Aitkens 1968; Diptera: Muscidae). Introduced mosquitoes are suspected vectors of avian pathogens in the Galapagos Islands, whereas the larvae of P. downsi are blood-feeders, causing significant declines of the endemic avifauna. In this study, we investigated the volatile compounds found in P. galapageium, testing each against a model organism, the mosquito Anopheles arabiensis (Patton 1905; Diptera: Culicidae), with the aim of singling out the most effective compound for repelling dipterans. Examinations of an ethanolic extract of P. galapageium, its essential oil and each of their respective fractions, revealed a mixture of monoterpenes and sesquiterpenes, the latter consisting mainly of guaiol, trans-nerolidol, and β-eudesmol. Of these, trans-nerolidol was identified as the most effective repellent to mosquitoes. This was subsequently tested at four different concentrations against P. downsi, but we did not find a repellence response. A tendency to avoid the compound was observed, albeit significance was not achieved in any case. The lack of repellence suggests that flies may respond to a combination of the volatile compounds found in P. galapageium, rather than to a single compound.
Collapse
Affiliation(s)
- C Martina
- Department of Behavioral and Cognitive Biology, University of Vienna, 1090 Vienna, Austria
- Insect Pest Control Section, International Atomic Energy Agency, 1400, Vienna, Austria
| | - L Krenn
- Department of Pharmacognosy, University of Vienna, A-1090, Vienna, Austria
| | - L Krupicka
- Department of Pharmacognosy, University of Vienna, A-1090, Vienna, Austria
| | - H Yamada
- Insect Pest Control Section, International Atomic Energy Agency, 1400, Vienna, Austria
| | - R Hood-Nowotny
- Institute of Soil Research, University of Natural Resources and Life Sciences (BOKU), 1180 Vienna, Austria
| | - P F Lahuatte
- Charles Darwin Foundation, Charles Darwin Research Station, Santa Cruz Island, Galapagos Islands, Ecuador
| | - J Yar
- Charles Darwin Foundation, Charles Darwin Research Station, Santa Cruz Island, Galapagos Islands, Ecuador
| | - T Schwemhofer
- Department of Behavioral and Cognitive Biology, University of Vienna, 1090 Vienna, Austria
| | - B Fischer
- Department of Evolutionary Biology, Unit for Theoretical Biology, University of Vienna, A-1090, Vienna, Austria
| | - C E Causton
- Charles Darwin Foundation, Charles Darwin Research Station, Santa Cruz Island, Galapagos Islands, Ecuador
| | - S Tebbich
- Department of Behavioral and Cognitive Biology, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
10
|
Kleindorfer S, Common LK, O'Connor JA, Garcia-Loor J, Katsis AC, Dudaniec RY, Colombelli-Négrel D, Adreani NM. Female in-nest attendance predicts the number of ectoparasites in Darwin's finch species. Proc Biol Sci 2021; 288:20211668. [PMID: 34905711 PMCID: PMC8670954 DOI: 10.1098/rspb.2021.1668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/19/2021] [Indexed: 11/12/2022] Open
Abstract
Selection should act on parental care and favour parental investment decisions that optimize the number of offspring produced. Such predictions have been robustly tested in predation risk contexts, but less is known about alternative functions of parental care under conditions of parasitism. The avian vampire fly (Philornis downsi) is a myasis-causing ectoparasite accidentally introduced to the Galápagos Islands, and one of the major mortality causes in Darwin's finch nests. With an 11-year dataset spanning 21 years, we examine the relationship between parental care behaviours and number of fly larvae and pupae in Darwin's finch nests. We do so across three host species (Camarhynchus parvulus, C. pauper, Geospiza fuliginosa) and one hybrid Camarhynchus group. Nests with longer female brooding duration (minutes per hour spent sitting on hatchlings to provide warmth) had fewer parasites, and this effect depended on male food delivery to chicks. Neither male age nor number of nest provisioning visits were directly associated with number of parasites. While the causal mechanisms remain unknown, we provide the first empirical study showing that female brooding duration is negatively related to the number of ectoparasites in nests. We predict selection for coordinated host male and female behaviour to reduce gaps in nest attendance, especially under conditions of novel and introduced ectoparasites.
Collapse
Affiliation(s)
- Sonia Kleindorfer
- College of Science and Engineering, Flinders University, Adelaide 5001, Australia
- Konrad Lorenz Research Center for Behavior and Cognition and Department of Behavioral and Cognitive Biology, University of Vienna, Vienna 1090, Austria
| | - Lauren K. Common
- College of Science and Engineering, Flinders University, Adelaide 5001, Australia
| | | | - Jefferson Garcia-Loor
- Konrad Lorenz Research Center for Behavior and Cognition and Department of Behavioral and Cognitive Biology, University of Vienna, Vienna 1090, Austria
- Charles Darwin Research Station, Galápagos, Ecuador
| | - Andrew C. Katsis
- College of Science and Engineering, Flinders University, Adelaide 5001, Australia
| | - Rachael Y. Dudaniec
- Department of Biological Sciences, Macquarie University, Sydney 2109, Australia
| | | | - Nico M. Adreani
- Konrad Lorenz Research Center for Behavior and Cognition and Department of Behavioral and Cognitive Biology, University of Vienna, Vienna 1090, Austria
| |
Collapse
|
11
|
Nesting Success and Nesting Height in the Critically Endangered Medium Tree Finch (Camarhynchus pauper). BIRDS 2021. [DOI: 10.3390/birds2040032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
When different introduced species across trophic levels (parasite, predator) invade island systems, they may pose significant threats to nesting birds. In this study, we measure nesting height and infer causes of offspring mortality in the critically endangered Medium Tree Finch (Camarhynchus pauper), an island endemic restricted to Floreana Island on the Galápagos Archipelago. Considering all nests at which a male built a nest, sang and attempted to attract a female (n = 222 nests), only 10.4% of nests produced fledglings (5% of nests had total fledging success, 5.4% of nests had partial fledging success). Of the 123 nests chosen by a female, 18.7% produced fledglings and of 337 eggs laid, 13.4% produced fledglings. Pairing success was higher for older males, but male age did not predict nesting success. All nests with chicks were infested with avian vampire fly larvae (Philornis downsi). We attributed the cause of death to avian vampire fly if chicks were found dead in the nest with fly larvae or pupae (45%) present. We inferred avian (either Asio flammeus galapagoensis or Crotophaga ani) predation (24%) if the nest was empty but dishevelled; and black rat (Rattus rattus) predation (20%) if the nest was empty but undamaged. According to these criteria, the highest nests were depredated by avian predators, the lowest nests by rats, and intermediate nests failed because of avian vampire fly larvae. In conclusion, there is no safe nesting height on Floreana Island under current conditions of threats from two trophic levels (introduced parasitic dipteran, introduced mammalian/avian predators; with Galápagos Short-Eared Owls being the only native predator in the system).
Collapse
|
12
|
Temporal and spatial variation in sex-specific abundance of the avian vampire fly (Philornis downsi). Parasitol Res 2021; 121:63-74. [PMID: 34799771 PMCID: PMC8748338 DOI: 10.1007/s00436-021-07350-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/12/2021] [Indexed: 10/26/2022]
Abstract
Understanding the range and behaviour of an invasive species is critical to identify key habitat areas to focus control efforts. Patterns of range use in parasites can differ temporally, across life stages and between sexes. The invasive avian vampire fly, Philornis downsi, spends the larval stage of its life within bird nests, feeding on developing nestlings and causing high levels of mortality and deformation. However, little is known of the ecology and behaviour of the non-parasitic adult fly life stage. Here, we document sex-specific temporal and spatial patterns of abundance of adult avian vampire flies during a single Darwin's finch breeding season. We analyse fly trapping data collected across 7 weeks in the highlands (N = 405 flies) and lowlands (N = 12 flies) of Floreana Island (Galápagos). Lowland catches occurred later in the season, which supports the hypothesis that flies may migrate from the food-rich highlands to the food-poor lowlands once host breeding has commenced. Fly abundance was not correlated with host nesting density (oviposition site) but was correlated with distance to the agricultural zone (feeding site). We consistently caught more males closer to the agricultural zone and more females further away from the agricultural zone. These sex differences suggest that males may be defending or lekking at feeding sites in the agricultural zone for mating. This temporal and sex-specific habitat use of the avian vampire fly is relevant for developing targeted control methods and provides insight into the behavioural ecology of this introduced parasite on the Galápagos Archipelago.
Collapse
|
13
|
Pike CL, Ramirez IE, Anchundia DJ, Fessl B, Heimpel GE, Causton CE. Behavior of the Avian Parasite Philornis downsi (Diptera: Muscidae) in and Near Host Nests in the Galapagos Islands. JOURNAL OF INSECT BEHAVIOR 2021; 34:296-311. [PMID: 35153376 PMCID: PMC8813692 DOI: 10.1007/s10905-021-09789-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 06/14/2023]
Abstract
UNLABELLED The Avian Vampire Fly, Philornis downsi, has invaded the Galapagos Islands, where it causes high mortality of endemic and native landbird species, including most species of Darwin's finches. Control methods are under development, but key information is missing about the reproductive biology of P. downsi and the behavior of flies in and near nests of their hosts. We used external and internal nest cameras to record the behavior of P. downsi adults within and outside nests of the Galapagos Flycatcher, Myiarchus magnirostris, throughout all stages of the nesting cycle. These recordings showed that P. downsi visited flycatcher nests throughout the day with higher fly activity during the nestling phase during vespertine hours. The observations also revealed that multiple P. downsi individuals can visit nests concurrently, and that there are some interactions among these flies within the nest. Fly visitation to nests occurred significantly more often while parent birds were away from the nest than in the nest, and this timing appears to be a strategy to avoid predation by parent birds. We report fly mating behavior outside the nest but not in the nest cavity. We discuss the relevance of these findings for the adaptive forces shaping P. downsi life history strategies as well as rearing and control measures. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10905-021-09789-7.
Collapse
Affiliation(s)
- Courtney L. Pike
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Santa Cruz Ecuador
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Vienna Austria
| | | | - David J. Anchundia
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Santa Cruz Ecuador
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Vienna Austria
| | - Birgit Fessl
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Santa Cruz Ecuador
| | | | - Charlotte E. Causton
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Santa Cruz Ecuador
| |
Collapse
|
14
|
Common LK, Sumasgutner P, Dudaniec RY, Colombelli-Négrel D, Kleindorfer S. Avian vampire fly (Philornis downsi) mortality differs across Darwin's finch host species. Sci Rep 2021; 11:15832. [PMID: 34349147 PMCID: PMC8338931 DOI: 10.1038/s41598-021-94996-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 07/19/2021] [Indexed: 12/03/2022] Open
Abstract
In invasive parasites, generalism is considered advantageous during the initial phase of introduction. Thereafter, fitness costs to parasites, such as host-specific mortality, can drive parasites towards specialism to avoid costly hosts. It is important to determine changes in host specificity of invasive populations to understand host-parasite dynamics and their effects on vulnerable host populations. We examined changes in mortality in the introduced avian vampire fly (Philornis downsi) (Diptera: Muscidae), a generalist myasis-causing ectoparasite, between 2004 and 2020 on Floreana Island (Galápagos). Mortality was measured as the proportion of immature larvae found upon host nest termination. Over the time period, the avian vampire fly was most abundant and had low mortality in nests of the critically endangered medium tree finch (Camarhynchus pauper) and had the highest mortality in nests of hybrid tree finches (Camarhynchus spp.). Low larval mortality was also found in small tree (Camarhynchus parvulus) and small ground finch (Geospiza fuliginosa) nests. Selection could favour avian vampire flies that select medium tree finch nests and/or avoid hybrid nests. Overall, the finding of differences in avian vampire fly survival across host species is parsimonious with the idea that the introduced fly may be evolving towards host specialisation.
Collapse
Affiliation(s)
- Lauren K Common
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5001, Australia
| | - Petra Sumasgutner
- Department of Behavioral and Cognitive Biology, Konrad Lorenz Research Center, Core Facility for Behavior and Cognition, University of Vienna, Vienna, Austria
| | - Rachael Y Dudaniec
- Department of Biological Sciences, Macquarie University, Sydney, NSW , 2109, Australia
| | | | - Sonia Kleindorfer
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5001, Australia. .,Department of Behavioral and Cognitive Biology, Konrad Lorenz Research Center, Core Facility for Behavior and Cognition, University of Vienna, Vienna, Austria.
| |
Collapse
|
15
|
Katsis AC, Colombelli-Négrel D, Common LK, O’connor JA, Dudaniec RY, García-Loor J, Kleindorfer S. Nestling behaviour predicts naris deformation in Darwin’s finches parasitized by the avian vampire fly. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Although in-nest parasitism can reduce the fitness of avian hosts, the severity of these effects may vary with host physiology and behaviour. If certain nestling behaviours are beneficial for resisting parasitism, then selection may favour some behavioural phenotypes over others. Here, we tested whether differences in nestling behaviour mediate the negative effects of parasitism, using small ground finches (Geospiza fuliginosa), on Floreana Island, that had been parasitized by the invasive avian vampire fly (Philornis downsi). We first established, using 4 years of breeding data (2005, 2006, 2010 and 2020), that nestlings exposed to more parasites had larger nares and, among older nestlings only, lower body mass. We then examined, using data from the 2020 season, whether each nestling’s behaviour (specifically, its response to human handling) predicted the severity of its naris deformation. When faced with high-intensity parasitism, more responsive nestlings (i.e. those that struggled more during handling) had larger nares compared to more docile nestlings. This suggests that more responsive nestlings suffer greater fitness costs due to parasitism, although we also discuss alternative explanations. Future work should consider the stability and heritability of these nestling behavioural differences and whether parasite-induced selection shapes behavioural variation at the population level.
Collapse
Affiliation(s)
- Andrew C Katsis
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Diane Colombelli-Négrel
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Lauren K Common
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Jody A O’connor
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
- Department for Environment and Water, Government of South Australia, Adelaide, South Australia, Australia
| | - Rachael Y Dudaniec
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | | | - Sonia Kleindorfer
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
- Konrad Lorenz Research Centre for Behaviour and Cognition and Department of Behavioural and Cognitive Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Colombelli‐Négrel D, Kleindorfer S. Behavioural response to songs between genetically diverged allopatric populations of Darwin's small tree finch in the Galápagos. J Evol Biol 2021; 34:816-829. [PMID: 33714212 PMCID: PMC8251970 DOI: 10.1111/jeb.13783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 02/01/2021] [Accepted: 03/03/2021] [Indexed: 11/26/2022]
Abstract
Empirical data that identify contemporary mechanisms of divergence shed light on how species could multiply. In this study, we measured population genetic structure, song syllable diversity and response to simulated intruder song in Darwin's small tree finch (Camarhynchus parvulus) on Santa Cruz and Floreana Islands, Galápagos archipelago. Our aim was to test whether the magnitude of contemporary behavioural response in resident birds was consistent with patterns of genetic or cultural differences between populations. We analysed genetic structure and the occurrence of song syllable types, and experimentally measured the response of resident birds to intruder bird song from different geographical origin (i.e., island) or syllable type. We discovered a weak signal of population genetic structure between Santa Cruz and Floreana Islands. Although some song syllables occurred on both islands, others were unique to each island; Santa Cruz Island males used more unique syllables than Floreana Island males. Both Santa Cruz and Floreana resident males discriminated their response towards a simulated intruder song based on the geographical origin of the intruder song, but not on the syllable type sung by the intruder. We conclude that the populations are diverging in genetic and cultural traits and identified a signal of contemporary behavioural response that could maintain divergence upon secondary contact.
Collapse
Affiliation(s)
| | - Sonia Kleindorfer
- College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
- Konrad Lorenz Research Centre for Behaviour and CognitionDepartment of Behavioural and Cognitive BiologyUniversity of ViennaViennaAustria
| |
Collapse
|
17
|
Harvey JA, Chernicky K, Simons SR, Verrett TB, Chaves JA, Knutie SA. Urban living influences the nesting success of Darwin's finches in the Galápagos Islands. Ecol Evol 2021; 11:5038-5048. [PMID: 34025990 PMCID: PMC8131787 DOI: 10.1002/ece3.7360] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 11/23/2022] Open
Abstract
Urbanization is expanding worldwide with major consequences for organisms. Anthropogenic factors can reduce the fitness of animals but may have benefits, such as consistent human food availability. Understanding anthropogenic trade-offs is critical in environments with variable levels of natural food availability, such as the Galápagos Islands, an area of rapid urbanization. For example, during dry years, the reproductive success of bird species, such as Darwin's finches, is low because reduced precipitation impacts food availability. Urban areas provide supplemental human food to finches, which could improve their reproductive success during years with low natural food availability. However, urban finches might face trade-offs, such as the incorporation of anthropogenic debris (e.g., string, plastic) into their nests, which may increase mortality. In our study, we determined the effect of urbanization on the nesting success of small ground finches (Geospiza fuliginosa; a species of Darwin's finch) during a dry year on San Cristóbal Island. We quantified nest building, egg laying and hatching, and fledging in an urban and nonurban area and characterized the anthropogenic debris in nests. We also documented mortalities including nest trash-related deaths and whether anthropogenic materials directly led to entanglement- or ingestion-related nest mortalities. Overall, urban finches built more nests, laid more eggs, and produced more fledglings than nonurban finches. However, every nest in the urban area contained anthropogenic material, which resulted in 18% nestling mortality while nonurban nests had no anthropogenic debris. Our study showed that urban living has trade-offs: urban birds have overall higher nesting success during a dry year than nonurban birds, but urban birds can suffer mortality from anthropogenic-related nest-materials. These results suggest that despite potential costs, finches benefit overall from urban living and urbanization may buffer the effects of limited resource availability in the Galápagos Islands.
Collapse
Affiliation(s)
- Johanna A. Harvey
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsCTUSA
- Present address:
Division of Invertebrate ZoologyAmerican Museum of Natural HistoryNew YorkNYUSA
| | - Kiley Chernicky
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsCTUSA
| | - Shelby R. Simons
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsCTUSA
| | - Taylor B. Verrett
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsCTUSA
| | - Jaime A. Chaves
- Department of BiologySan Francisco State UniversitySan FranciscoCAUSA
- Colegio de Ciencias Biológicas y AmbientalesUniversidad San Francisco de QuitoLaboratorio de Biología EvolutivaDiego de Robles y PampiteQuitoEcuador
| | - Sarah A. Knutie
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsCTUSA
- Institute for Systems GenomicsUniversity of ConnecticutStorrsCTUSA
| |
Collapse
|
18
|
Segura LN, Palacio FX. Quantifying the relative importance of direct and indirect effects influencing bird nestling growth. Integr Zool 2021; 17:408-419. [PMID: 33876575 DOI: 10.1111/1749-4877.12544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nestling growth parameters are integral components of avian life-history strategies as they are crucial determinants of individual survival. Although many factors impact on nestling growth, the relative contribution of each one is still debated in the literature. Most studies rely on the assumption that each factor directly affects nestling growth, but indirect effects mediated by other factors are usually the rule in nature. In this study, we present a comprehensive view of both direct and indirect factors affecting nestling growth using the Red-crested Cardinal (Paroaria coronata) as model system. We evaluated the relative importance of different habitat (forest structure), biotic interactions (botfly larvae ectoparasitism, number of siblings, hatching order), and temporal factors (time of breeding) on nestling growth parameters in 278 nestlings of 128 nests by using piecewise structural equation models. We found that botfly ectoparasitism had the strongest direct effect on nestling growth and, in turn, forest structure increased the probability of botfly occurrence. Besides, the interaction between the number of siblings and hatching order influenced nestling growth, indicating that the first and second nestlings had disproportionately higher growth rates in large than in small clutches. Time of breeding also showed a strong positive indirect effect on botfly occurrence, as well as a weak direct positive effect on nestling growth. Our results demonstrate that, under natural conditions, nestling growth is driven by different factors acting not only directly, but also indirectly on this essential life history trait, and that these factors weave a complex web of interrelated variables.
Collapse
Affiliation(s)
- Luciano N Segura
- División Zoología Vertebrados, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Facundo X Palacio
- División Zoología Vertebrados, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Buenos Aires, Argentina
| |
Collapse
|
19
|
Tebbich S, Schwemhofer T, Fischer B, Pike C. Darwin’s finches habitually anoint their feathers with leaves of the endemic tree
Psidium galapageium
during the non‐breeding season. Ethology 2021. [DOI: 10.1111/eth.13153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sabine Tebbich
- Department of Behavioural and Cognitive Biology University of Vienna Vienna Austria
| | - Timo Schwemhofer
- Department of Behavioural and Cognitive Biology University of Vienna Vienna Austria
| | - Barbara Fischer
- Department of Evolutionary Biology Unit for Theoretical Biology University of Vienna Vienna Austria
| | - Courtney Pike
- Department of Behavioural and Cognitive Biology University of Vienna Vienna Austria
| |
Collapse
|
20
|
Jose PA, Ben-Yosef M, Lahuatte P, Causton CE, Heimpel GE, Jurkevitch E, Yuval B. Shifting microbiomes complement life stage transitions and diet of the bird parasite Philornis downsi from the Galapagos Islands. Environ Microbiol 2021; 23:5014-5029. [PMID: 33587780 DOI: 10.1111/1462-2920.15435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/12/2021] [Indexed: 01/04/2023]
Abstract
Domestication disconnects an animal from its natural environment and diet, imposing changes in the attendant microbial community. We examine these changes in Philornis downsi (Muscidae), an invasive parasitic fly of land birds in the Galapagos Islands. Using a 16S rDNA profiling approach we studied the microbiome of larvae and adults of wild and laboratory-reared populations. These populations diverged in their microbiomes, significantly more so in larval than in adult flies. In field-collected second-instar larvae, Klebsiella (70.3%) was the most abundant taxon, while in the laboratory Ignatzschineria and Providencia made up 89.2% of the community. In adults, Gilliamella and Dysgonomonas were key members of the core microbiome of field-derived females and males but had no or very low representation in the laboratory. Adult flies harbour sex-specific microbial consortia in their gut, as male core microbiomes were significantly dominated by Klebsiella. Thus, P. downsi microbiomes are dynamic and shift correspondingly with life cycle and diet. Sex-specific foraging behaviour of adult flies and nest conditions, which are absent in the laboratory, may contribute to shaping distinct larval, and adult male and female microbiomes. We discuss these findings in the context of microbe-host co-evolution and the implications for control measures.
Collapse
Affiliation(s)
- Polpass Arul Jose
- Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7612001, Israel
| | - Michael Ben-Yosef
- Department of Entomology, Agricultural Research Organization, Gilat Center, M. P. Negev, 85280, Israel
| | - Paola Lahuatte
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Galapagos, 200350, Ecuador
| | - Charlotte E Causton
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Galapagos, 200350, Ecuador
| | - George E Heimpel
- Department of Entomology, University of Minnesota, 1980 Folwell Avenue, MN, 55108, USA
| | - Edouard Jurkevitch
- Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7612001, Israel
| | - Boaz Yuval
- Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7612001, Israel
| |
Collapse
|
21
|
Heyer E, Cimadom A, Wappl C, Tebbich S. Parental care in the Small Tree Finch Camarhynchus parvulus in relation to parasitism and environmental factors. THE IBIS 2021; 163:137-149. [PMID: 33362293 PMCID: PMC7754105 DOI: 10.1111/ibi.12845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/28/2020] [Indexed: 05/30/2023]
Abstract
The parental food compensation hypothesis suggests that parents may compensate for the negative effects of parasites on chicks by increased food provisioning. However, this ability differs widely among host species and may also depend on ecological factors such as adverse weather conditions and habitat quality. Although weed management can improve habitat quality, management measures can bring about a temporary decrease in food availability and thus may reduce parents' ability to provide their nestlings with enough energy. In our study we investigated the interaction of parasitism and weed management, and the influence of climate on feeding rates in a Darwin's tree finch species, which is negatively impacted by two invasive species. The larvae of the invasive parasitic fly Philornis downsi ingest the blood and body tissues of tree finch nestlings, and the invasive Blackberry Rubus niveus affects one of the main habitats of Darwin's tree finches. We compared parental food provisioning of the Small Tree Finch Camarhynchus parvulus in parasitized and parasite-free nests in three different areas, which differed in invasive weed management (no management, short-term and long-term management). In a parasite reduction experiment, we investigated whether the Small Tree Finch increases food provisioning rates to nestlings when parasitized and whether this ability depends on weed management conditions and precipitation. Our results provide no evidence that Small Tree Finches can compensate with additional food provisioning when parasitized with P. downsi. However, we found an increase in male effort in the short-term management area, which might indicate that males compensate for lower food quality with increased provisioning effort. Furthermore, parental food provisioning was lower during rainfall, which provides an explanation for the negative influence of rain on breeding success found in earlier studies. Like other Darwin's finches, the Small Tree Finch seems to lack the ability to compensate for the negative effects of P. downsi parasitism, which is one explanation for why this invasive parasite has such a devastating effect on this host species.
Collapse
Affiliation(s)
- Eileen Heyer
- Department of Behavioural BiologyUniversity of ViennaAlthanstraße 141090ViennaAustria
| | - Arno Cimadom
- Department of Behavioural BiologyUniversity of ViennaAlthanstraße 141090ViennaAustria
| | - Christian Wappl
- Department of Behavioural BiologyUniversity of ViennaAlthanstraße 141090ViennaAustria
| | - Sabine Tebbich
- Department of Behavioural BiologyUniversity of ViennaAlthanstraße 141090ViennaAustria
| |
Collapse
|
22
|
Ohmer MEB, Costantini D, Czirják GÁ, Downs CJ, Ferguson LV, Flies A, Franklin CE, Kayigwe AN, Knutie S, Richards-Zawacki CL, Cramp RL. Applied ecoimmunology: using immunological tools to improve conservation efforts in a changing world. CONSERVATION PHYSIOLOGY 2021; 9:coab074. [PMID: 34512994 PMCID: PMC8422949 DOI: 10.1093/conphys/coab074] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 05/11/2023]
Abstract
Ecoimmunology is a rapidly developing field that explores how the environment shapes immune function, which in turn influences host-parasite relationships and disease outcomes. Host immune defence is a key fitness determinant because it underlies the capacity of animals to resist or tolerate potential infections. Importantly, immune function can be suppressed, depressed, reconfigured or stimulated by exposure to rapidly changing environmental drivers like temperature, pollutants and food availability. Thus, hosts may experience trade-offs resulting from altered investment in immune function under environmental stressors. As such, approaches in ecoimmunology can provide powerful tools to assist in the conservation of wildlife. Here, we provide case studies that explore the diverse ways that ecoimmunology can inform and advance conservation efforts, from understanding how Galapagos finches will fare with introduced parasites, to using methods from human oncology to design vaccines against a transmissible cancer in Tasmanian devils. In addition, we discuss the future of ecoimmunology and present 10 questions that can help guide this emerging field to better inform conservation decisions and biodiversity protection. From better linking changes in immune function to disease outcomes under different environmental conditions, to understanding how individual variation contributes to disease dynamics in wild populations, there is immense potential for ecoimmunology to inform the conservation of imperilled hosts in the face of new and re-emerging pathogens, in addition to improving the detection and management of emerging potential zoonoses.
Collapse
Affiliation(s)
- Michel E B Ohmer
- Living Earth Collaborative, Washington University in St. Louis, MO 63130, USA
| | - David Costantini
- Unité Physiologie Moléculaire et Adaptation (PhyMA), Muséum National d’Histoire Naturelle, CNRS, 57 Rue Cuvier, CP32, 75005, Paris, France
| | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany
| | - Cynthia J Downs
- Department of Environmental Biology, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Laura V Ferguson
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Andy Flies
- Menzies Institute for Medical Research, University of Tasmania, Tasmania 7001, Australia
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, Queensland 4072, Australia
| | - Ahab N Kayigwe
- Menzies Institute for Medical Research, University of Tasmania, Tasmania 7001, Australia
| | - Sarah Knutie
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06268, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06268, USA
| | | | - Rebecca L Cramp
- School of Biological Sciences, The University of Queensland, Queensland 4072, Australia
- Corresponding author: School of Biological Sciences, The University of Queensland, Queensland 4072, Australia.
| |
Collapse
|
23
|
Mather E, Fogell DJ, McCready M, McInnes K, Ewen JG. Testing management alternatives for controlling nest parasites in an endangered bird. Anim Conserv 2020. [DOI: 10.1111/acv.12658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- E. Mather
- Institute of Zoology Zoological Society of London London UK
- Royal Veterinary College London UK
| | - D. J. Fogell
- Institute of Zoology Zoological Society of London London UK
- Durrell Institute of Conservation and Ecology School of Anthropology and Conservation University of Kent Canterbury UK
| | - M. McCready
- Hihi Conservation Charitable Trust Wellington New Zealand
| | - K. McInnes
- Department of Conservation Conservation House – Whare Kaupapa Atawhai Wellington New Zealand
| | - J. G. Ewen
- Institute of Zoology Zoological Society of London London UK
| |
Collapse
|
24
|
Timing of infestation influences virulence and parasite success in a dynamic multi-host-parasite interaction between the invasive parasite, Philornis downsi, and Darwin's finches. Oecologia 2020; 195:249-259. [PMID: 33258992 PMCID: PMC7882474 DOI: 10.1007/s00442-020-04807-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 11/16/2020] [Indexed: 12/30/2022]
Abstract
Recently commenced host–parasite interactions provide an excellent opportunity to study co-evolutionary processes. Multi-host systems are especially informative because variation in virulence between hosts and temporal changes provides insight into evolutionary dynamics. However, empirical data under natural conditions are scarce. In the present study, we investigated the interaction between Darwin’s finches and the invasive fly Philornis downsi whose larvae feed on the blood of nestlings. Recently, however, the fly has changed its behavior and now also attacks incubating females. Two sympatric hosts are affected differently by the parasite and parasite load has changed over time. Our study observed a reversal of trends described two decades ago: while, currently, small tree finches (Camarhynchus parvulus) experience significantly higher parasite load than warbler finches (Certhidea olivacea), this was the opposite two decades ago. Currently, fledging success is higher in warbler finches compared to small tree finches. Our data indicate that not only intensity but also timing of infestation influences hosts’ reproductive success and parasite fitness. During incubation, prevalence was higher in warbler finches, but once chicks had hatched, prevalence was 100% in both species and parasite load was higher in small tree finches. Furthermore, our results suggest faster development and higher reproductive success of P. downsi in small tree finch nests. A change in host preference driven by larvae competition could have led to the reversal in parasite load.
Collapse
|
25
|
Population structure of a nest parasite of Darwin’s finches within its native and invasive ranges. CONSERV GENET 2020. [DOI: 10.1007/s10592-020-01315-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Wappl C, Cimadom A, Filek N, Heyer E, Tebbich S. Under adverse conditions, older small tree finch males ( Camarhynchus parvulus) produce more offspring than younger males. Ethology 2020; 126:966-975. [PMID: 33162627 PMCID: PMC7604768 DOI: 10.1111/eth.13069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 11/30/2022]
Abstract
Females of many bird species prefer mating with older males, presumably because they provide superior parental care and possibly superior genes. A previous study found that female small tree finches (Camarhynchus parvulus) preferred pairing with old males and had a higher breeding success when paired with old males because their nests were more concealed, higher up in the canopy and therefore less likely to be depredated. However, causes for brood loss have changed over the last decade: predation of small tree finch nests has decreased, whereas brood losses due to parasitism by the invasive parasitic fly Philornis downsi have increased. In the present study, we investigated (a) how the change in predation and parasitism by P. downsi influenced the breeding success of small tree finches, (b) whether there were still differences in breeding success between young and old males, (c) whether P. downsi infestation had a differential effect on nests of young and old males and (d) whether young and old males differed in foraging success. During 2012-2016, we found an overall low influence of predation and a high influence of P. downsi, but neither differed between nests of young and old males. Nests of old males had more fledglings than those of young males. However, the difference in breeding success disappeared when P. downsi numbers were experimentally reduced by injecting an insecticide into nests. This indicates that older males were able to compensate for the detrimental effects of parasitism.
Collapse
Affiliation(s)
- Christian Wappl
- Department of Behavioural BiologyUniversity of ViennaViennaAustria
| | - Arno Cimadom
- Department of Behavioural BiologyUniversity of ViennaViennaAustria
| | - Nikolaus Filek
- Department of Behavioural BiologyUniversity of ViennaViennaAustria
| | - Eileen Heyer
- Department of Behavioural BiologyUniversity of ViennaViennaAustria
| | - Sabine Tebbich
- Department of Behavioural BiologyUniversity of ViennaViennaAustria
| |
Collapse
|
27
|
Bulgarella M, Knutie SA, Voss MA, Cunninghame F, Florence-Bennett BJ, Robson G, Keyzers RA, Taylor LM, Lester PJ, Heimpel GE, Causton CE. Sub-lethal effects of permethrin exposure on a passerine: implications for managing ectoparasites in wild bird nests. CONSERVATION PHYSIOLOGY 2020; 8:coaa076. [PMID: 32908668 PMCID: PMC7416766 DOI: 10.1093/conphys/coaa076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/10/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
Permethrin is increasingly used for parasite control in bird nests, including nests of threatened passerines. We present the first formal evaluation of the effects of continued permethrin exposure on the reproductive success and liver function of a passerine, the zebra finch (Taeniopygia guttata), for two generations. We experimentally treated all nest material with a 1% permethrin solution or a water control and provided the material to breeding finches for nest building. The success of two consecutive clutches produced by the parental generation and one clutch produced by first-generation birds were tracked. Finches in the first generation were able to reproduce and fledge offspring after permethrin exposure, ruling out infertility. Permethrin treatment had no statistically significant effect on the number of eggs laid, number of days from clutch initiation to hatching, egg hatch rate, fledgling mass or nestling sex ratio in either generation. However, treating nest material with permethrin significantly increased the number of hatchlings in the first generation and decreased fledgling success in the second generation. Body mass for hatchlings exposed to permethrin was lower than for control hatchlings in both generations, but only statistically significant for the second generation. For both generations, an interaction between permethrin treatment and age significantly affected nestling growth. Permethrin treatment had no effect on liver function for any generation. Permethrin was detected inside 6 of 21 exposed, non-embryonated eggs (28.5% incidence; range: 693-4781 ng of permethrin per gram of dry egg mass). Overall, results from exposing adults, eggs and nestlings across generations to permethrin-treated nest material suggest negative effects on finch breeding success, but not on liver function. For threatened bird conservation, the judicious application of this insecticide to control parasites in nests can result in lower nestling mortality compared to when no treatment is applied. Thus, permethrin treatment benefits may outweigh its sub-lethal effects.
Collapse
Affiliation(s)
- Mariana Bulgarella
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Sarah A Knutie
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 N. Eagleville Road, Unit 3043, Storrs, CT, 06269, USA
| | | | - Francesca Cunninghame
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Santa Cruz Island, Galápagos Islands, Ecuador
| | | | - Gemma Robson
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Robert A Keyzers
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Lauren M Taylor
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Philip J Lester
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - George E Heimpel
- Department of Entomology, University of Minnesota, 1980 Folwell Avenue, St. Paul, MN, 55108, USA
| | - Charlotte E Causton
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Santa Cruz Island, Galápagos Islands, Ecuador
| |
Collapse
|
28
|
Quiroga MA, Hayes TI, Hayes CD, Garrod H, Soares L, Knutie SA, Latta SC, Anderson DL. More than just nestlings: incidence of subcutaneous Philornis (Diptera: Muscidae) nest flies in adult birds. Parasitol Res 2020; 119:2337-2342. [PMID: 32500371 DOI: 10.1007/s00436-020-06696-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 04/21/2020] [Indexed: 11/30/2022]
Abstract
Philornis flies Meinert (Diptera: Muscidae) have been documented parasitizing over 250 bird species, some of which are endemic species threatened with extinction. Philornis parasitism is hypothesized to affect nestlings disproportionately more than adult birds because limited mobility and exposed skin of nestlings increase their vulnerability to parasitism. We used a comprehensive literature review and our recent fieldwork in the Dominican Republic, Puerto Rico, and Grenada to challenge the idea that parasitism by subcutaneous Philornis species is a phenomenon primarily found in nestlings, a fact that has not been quantified to date. Of the 265 reviewed publications, 125 (49%) reported incidences of parasitism by subcutaneous Philornis, but only 12 included the sampling of adult breeding birds. Nine of these publications (75%) reported Philornis parasitism in adults of ten bird species. During fieldwork in the Dominican Republic, Puerto Rico, and Grenada, we documented 14 instances of parasitism of adult birds of seven avian species. From literature review and fieldwork, adults of at least fifteen bird species across 12 families and four orders of birds were parasitized by at least five Philornis species. In both the published literature and fieldwork, incidences of parasitism of adult birds occurred predominantly in females and was frequently associated with incubation. Although our findings indicate that Philornis parasitism of adult birds is more common than widely presumed, parasite prevalence is still greater in nestlings. In the future, we recommend surveys of adult birds to better understand host-Philornis relationships across life stages. This information may be essential for the development of effective control measures of Philornis to ensure the long-term protection of bird species of conservation concern.
Collapse
Affiliation(s)
- Martín A Quiroga
- The Peregrine Fund, 5668 W Flying Hawk Lane, Boise, ID, 83709, USA. .,Laboratorio de Ecología de Enfermedades (ICiVet Litoral - UNL - CONICET), R.P. Kreder 2805, S3080HOF, Santa Fe, Argentina. .,Department of Biology, Universidad Autónoma de Entre Ríos, Ruta Provincial N 11 Km. 10.5, Oro Verde, E3100XAD, Entre Ríos, Argentina. .,Instituto Tecnológico de Santo Domingo, Avenida de Los Próceres #49, Santo Domingo, 10602, República Dominicana.
| | - Thomas I Hayes
- The Peregrine Fund, 5668 W Flying Hawk Lane, Boise, ID, 83709, USA
| | - Christine D Hayes
- The Peregrine Fund, 5668 W Flying Hawk Lane, Boise, ID, 83709, USA.,Department of Biological Sciences, Boise State University, 1910 W University Drive, Boise, ID, 83725, USA
| | - Holly Garrod
- Department of Biology, Villanova University, 800 Lancaster Ave, Villanova, PA, 19085, USA
| | - Leticia Soares
- Department of Biology, University of Western Ontario, 1151 Richmond Street, Ontario, N6A5B7, Canada
| | - Sarah A Knutie
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 N. Eagleville Rd., Unit 3043, Storrs, CT, 06269-3043, USA
| | - Steven C Latta
- National Aviary, 700 Arch Street, Pittsburgh, PA, 15212, USA
| | - David L Anderson
- The Peregrine Fund, 5668 W Flying Hawk Lane, Boise, ID, 83709, USA
| |
Collapse
|
29
|
Hedrick PW. Galapagos Islands Endemic Vertebrates: A Population Genetics Perspective. J Hered 2020; 110:137-157. [PMID: 30541084 DOI: 10.1093/jhered/esy066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2018] [Indexed: 11/12/2022] Open
Abstract
The organisms of the Galapagos Islands played a central role in the development of the theory of evolution by Charles Darwin. Examination of the population genetics factors of many of these organisms with modern molecular methods has expanded our understanding of their evolution. Here, I provide a perspective on how selection, gene flow, genetic drift, mutation, and inbreeding have contributed to the evolution of 6 iconic Galapagos species: flightless cormorant, pink iguana, marine iguana, Galapagos hawk, giant tortoises, and Darwin's finches. Because of the inherent biological differences among these species that have colonized the Galapagos, different population genetic factors appear to be more or less important in these different species. For example, the Galapagos provided novel environments in which strong selection took place and the Darwin's finches diversified to produce new species and the cormorant adapted to the nutrient-rich western shores of the Galapagos by losing its ability to fly and genomic data have now identified candidate genes. In both the pink iguana, which exists in one small population, and the Galapagos hawk, which has small population sizes, genetic drift has been potentially quite important. There appears to be very limited interisland gene flow in the flightless cormorant and the Galapagos hawk. On the other hand, both the marine iguana and some of the Darwin's finches appear to have significant interisland gene flow. Hybridization between species and subspecies has also introduced new adaptive variation, and in some cases, hybridization might have resulted in despeciation. Overall, new population genetics and genomics research has provided additional insight into the evolution of vertebrate species in the Galapagos.
Collapse
|
30
|
Kleindorfer S, Dudaniec RY. Hybridization fluctuates with rainfall in Darwin’s tree finches. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Hybridization in natural populations may be an adaptive response to shifting climatic regimes, but understanding this can be limited by the timing of sampling effort and confident identification of hybrids. On the Galapagos Islands, Darwin’s finches regularly hybridize; the islands also show extreme annual variation in rainfall, but the effect of annual rainfall on the frequency of finch hybridization is little known. Across a 20-year period on Floreana Island, we compare patterns of hybridization in sympatric Darwin’s tree finches (N = 425; Camaryhnchus spp.) and test for an effect of annual rainfall on (1) the frequency of hybrids (C. pauper × C. parvulus) and (2) the percentage of male hybrid birds produced per year (hybrid recruitment). Annual rainfall correlated with recruitment positively for hybrids, negatively for C. parvulus and not at all for C. pauper. Furthermore, the percentage of hybrids (range: 12–56%) and C. parvulus did not change with sampling year, but the critically endangered C. pauper declined. Our findings indicate that hybrid recruitment is recurring and variable according to annual rainfall in Camarhynchus Darwin’s finches.
Collapse
Affiliation(s)
- Sonia Kleindorfer
- Flinders University, College of Science and Engineering, Bedford Park, Adelaide, Australia
- Konrad Lorenz Research Center for Behaviour and Cognition and Department of Behavioural and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Rachael Y Dudaniec
- Macquarie University, Department of Biological Sciences, North Ryde, Sydney, Australia
| |
Collapse
|
31
|
Common LK, O'Connor JA, Dudaniec RY, Peters KJ, Kleindorfer S. Evidence for rapid downward fecundity selection in an ectoparasite (Philornis downsi) with earlier host mortality in Darwin's finches. J Evol Biol 2020; 33:524-533. [PMID: 31961983 PMCID: PMC7217188 DOI: 10.1111/jeb.13588] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 01/09/2020] [Accepted: 01/15/2020] [Indexed: 01/05/2023]
Abstract
Fecundity selection is a critical component of fitness and a major driver of adaptive evolution. Trade‐offs between parasite mortality and host resources are likely to impose a selection pressure on parasite fecundity, but this is little studied in natural systems. The ‘fecundity advantage hypothesis’ predicts female‐biased sexual size dimorphism whereby larger females produce more offspring. Parasitic insects are useful for exploring the interplay between host resource availability and parasite fecundity, because female body size is a reliable proxy for fecundity in insects. Here we explore temporal changes in body size in the myiasis‐causing parasite Philornis downsi (Diptera: Muscidae) on the Galápagos Islands under conditions of earlier in‐nest host mortality. We aim to investigate the effects of decreasing host resources on parasite body size and fecundity. Across a 12‐year period, we observed a mean of c. 17% P. downsi mortality in host nests with 55 ± 6.2% host mortality and a trend of c. 66% higher host mortality throughout the study period. Using specimens from 116 Darwin's finch nests (Passeriformes: Thraupidae) and 114 traps, we found that over time, P. downsi pupae mass decreased by c. 32%, and male (c. 6%) and female adult size (c. 11%) decreased. Notably, females had c. 26% smaller abdomens in later years, and female abdomen size was correlated with number of eggs. Our findings imply natural selection for faster P. downsi pupation and consequently smaller body size and lower parasite fecundity in this newly evolving host–parasite system.
Collapse
Affiliation(s)
- Lauren K Common
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Jody A O'Connor
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia.,Department for Environment and Water, Government of South Australia, Adelaide, SA, Australia
| | - Rachael Y Dudaniec
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Katharina J Peters
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Sonia Kleindorfer
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia.,Konrad Lorenz Research Center for Behaviour and Cognition and Department of Behavioural and Cognitive Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
32
|
McNew SM, Goodman GB, Yépez R J, Clayton DH. Parasitism by an invasive nest fly reduces future reproduction in Galápagos mockingbirds. Oecologia 2020; 192:363-374. [PMID: 31897722 DOI: 10.1007/s00442-019-04582-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 12/13/2019] [Indexed: 11/30/2022]
Abstract
Organisms allocate limited resources to competing activities such as reproduction, growth, and defense against parasites and predators. The introduction of a novel parasite may create new life history trade-offs. As hosts increase their investment in self-maintenance or defense, the cost of parasitism may carry over to other aspects of host biology. Here, in an experimental field study, we document delayed effects of an introduced nest parasite, Philornis downsi, on reproduction of Galápagos mockingbirds (Mimus parvulus). Parasitism of first nests reduced both the number and size of chicks that parents hatched when they re-nested several weeks later. The delayed effect of P. downsi on future reproduction may have been mediated by behavioral shifts by the parents to avoid or resist parasitism. Our results demonstrate that effects of parasitism can persist even after immediate exposure ends. We draw attention to the potential implications that introduced parasites have for host reproductive strategies.
Collapse
Affiliation(s)
- Sabrina M McNew
- Department of Biology, University of Utah, Salt Lake City, UT, 84112-0840, USA.
- Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Ithaca, NY, 14850, USA.
| | - Graham B Goodman
- Department of Biology, University of Utah, Salt Lake City, UT, 84112-0840, USA
- Department of Biology, Hobart and William Smith Colleges, Geneva, NY, 14456, USA
| | - Janai Yépez R
- Charles Darwin Research Station, Santa Cruz Island, Galápagos, Ecuador
| | - Dale H Clayton
- Department of Biology, University of Utah, Salt Lake City, UT, 84112-0840, USA
| |
Collapse
|
33
|
Loo WT, Dudaniec RY, Kleindorfer S, Cavanaugh CM. An inter-island comparison of Darwin's finches reveals the impact of habitat, host phylogeny, and island on the gut microbiome. PLoS One 2019; 14:e0226432. [PMID: 31834908 PMCID: PMC6910665 DOI: 10.1371/journal.pone.0226432] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
Abstract
Darwin's finch species in the Galapagos Archipelago are an iconic adaptive radiation that offer a natural experiment to test for the various factors that influence gut microbiome composition. The island of Floreana has the longest history of human settlement within the archipelago and offers an opportunity to compare island and habitat effects on Darwin's finch microbiomes. In this study, we compare gut microbiomes in Darwin's finch species on Floreana Island to test for effects of host phylogeny, habitat (lowlands, highlands), and island (Floreana, Santa Cruz). We used 16S rRNA Illumina sequencing of fecal samples to assess the gut microbiome composition of Darwin's finches, complemented by analyses of stable isotope values and foraging data to provide ecological context to the patterns observed. Overall bacterial composition of the gut microbiome demonstrated co-phylogeny with Floreana hosts, recapitulated the effect of habitat and diet, and showed differences across islands. The finch phylogeny uniquely explained more variation in the microbiome than did foraging data. Finally, there were interaction effects for island × habitat, whereby the same Darwin's finch species sampled on two islands differed in microbiome for highland samples (highland finches also had different diets across islands) but not lowland samples (lowland finches across islands had comparable diet). Together, these results corroborate the influence of phylogeny, age, diet, and sampling location on microbiome composition and emphasize the necessity for comprehensive sampling given the multiple factors that influence the gut microbiome in Darwin's finches, and by extension, in animals broadly.
Collapse
Affiliation(s)
- Wesley T. Loo
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Rachael Y. Dudaniec
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Sonia Kleindorfer
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
- Konrad Lorenz Research Center for Behaviour and Cognition and Department of Behavioural Biology, University of Vienna, Vienna, Austria
- * E-mail: (SK); (CC)
| | - Colleen M. Cavanaugh
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail: (SK); (CC)
| |
Collapse
|
34
|
Host phylogeny, diet, and habitat differentiate the gut microbiomes of Darwin's finches on Santa Cruz Island. Sci Rep 2019; 9:18781. [PMID: 31827126 PMCID: PMC6906294 DOI: 10.1038/s41598-019-54869-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/18/2019] [Indexed: 12/18/2022] Open
Abstract
Darwin's finches are an iconic example of an adaptive radiation with well-characterized evolutionary history, dietary preferences, and biogeography, offering an unparalleled opportunity to disentangle effects of evolutionary history on host microbiome from other factors like diet and habitat. Here, we characterize the gut microbiome in Darwin's finches, comparing nine species that occupy diverse ecological niches on Santa Cruz island. The finch phylogeny showed moderate congruence with the microbiome, which was comprised mostly of the bacterial phyla Firmicutes, Actinobacteria, and Proteobacteria. Diet, as measured with stable isotope values and foraging observations, also correlated with microbiome differentiation. Additionally, each gut microbial community could easily be classified by the habitat of origin independent of host species. Altogether, these findings are consistent with a model of microbiome assembly in which environmental filtering via diet and habitat are primary determinants of the bacterial taxa present with lesser influence from the evolutionary history between finch species.
Collapse
|
35
|
Behavioral Responses of the Invasive Fly Philornis downsi to Stimuli from Bacteria and Yeast in the Laboratory and the Field in the Galapagos Islands. INSECTS 2019; 10:insects10120431. [PMID: 31795249 PMCID: PMC6956314 DOI: 10.3390/insects10120431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/24/2019] [Accepted: 11/26/2019] [Indexed: 12/28/2022]
Abstract
Philornis downsi Dodge and Aitken (Diptera: Muscidae) is an avian parasitic fly that has invaded the Galapagos archipelago and exerts an onerous burden on populations of endemic land birds. As part of an ongoing effort to develop tools for the integrated management of this fly, our objective was to determine its long- and short-range responses to bacterial and fungal cues associated with adult P. downsi. We hypothesized that the bacterial and fungal communities would elicit attraction at distance through volatiles, and appetitive responses upon contact. Accordingly, we amplified bacteria from guts of adult field-caught flies and from bird feces, and yeasts from fermenting papaya juice (a known attractant of P. downsi), on selective growth media, and assayed the response of flies to these microbes or their exudates. In the field, we baited traps with bacteria or yeast and monitored adult fly attraction. In the laboratory, we used the proboscis extension response (PER) to determine the sensitivity of males and females to tarsal contact with bacteria or yeast. Long range trapping efforts yielded two female flies over 112 trap-nights (attracted by bacteria from bird feces and from the gut of adult flies). In the laboratory, tarsal contact with stimuli from gut bacteria elicited significantly more responses than did yeast stimuli. We discuss the significance of these findings in context with other studies in the field and identify targets for future work.
Collapse
|
36
|
Ursino CA, De Mársico MC, Reboreda JC. Brood parasitic nestlings benefit from unusual host defenses against botfly larvae (Philornis spp.). Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2751-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Causton CE, Moon RD, Cimadom A, Boulton RA, Cedeño D, Lincango MP, Tebbich S, Ulloa A. Population dynamics of an invasive bird parasite, Philornis downsi (Diptera: Muscidae), in the Galapagos Islands. PLoS One 2019; 14:e0224125. [PMID: 31626686 PMCID: PMC6874344 DOI: 10.1371/journal.pone.0224125] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 10/06/2019] [Indexed: 01/05/2023] Open
Abstract
The invasive parasitic fly, Philornis downsi (Muscidae), is one of the greatest threats to the avifauna of the Galapagos Islands. The larvae of this fly feed on the blood and tissues of developing nestlings of at least 18 endemic and native birds. The aim of the current study was to investigate biotic and abiotic factors that may influence the population dynamics of this invasive parasite. To study the influence of vegetation zone and related climatic factors on fly numbers, a bi-weekly monitoring program using papaya-baited traps was carried out at a dry, lowland site and at a humid, highland site on Santa Cruz Island between 2012-2014. Female flies, a large proportion of which were inseminated and gravid, were collected throughout the year at both sites, indicating females were active during and between the bird breeding seasons. This is the first evidence that female flies are able to persist even when hosts are scarce. On the other hand, catch rates of male flies declined between bird breeding seasons. Overall, catch rates of P. downsi were higher in the drier, lowland habitat, which may be a consequence of host or resource availability. Time was a stronger predictor of adult fly numbers than climate, further suggesting that P. downsi does not appear to be limited by its environment, but rather by host availability. Seasonal catch rates suggested that populations in both habitats were continuous and multivoltine. Numbers of adult female flies appeared to be regulated chiefly by simple direct density dependence, and may be governed by availability of bird nests with nestlings. Nevertheless, confounding factors such as the existence of reservoir hosts that perpetuate fly populations and changes in behavior of P. downsi may increase the vulnerability of bird hosts that are already IUCN red-listed or in decline.
Collapse
Affiliation(s)
- Charlotte E. Causton
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora,
Santa Cruz Island, Galapagos Islands, Ecuador
| | - Roger D. Moon
- Department of Entomology, University of Minnesota, St. Paul, MN, United
States of America
| | - Arno Cimadom
- Department of Behavioural Biology, University of Vienna, Vienna,
Austria
| | - Rebecca A. Boulton
- College of Life and Environmental Sciences, University of Exeter,
Cornwall, United Kingdom
| | - Daniel Cedeño
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora,
Santa Cruz Island, Galapagos Islands, Ecuador
| | - María Piedad Lincango
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora,
Santa Cruz Island, Galapagos Islands, Ecuador
- Facultad De Ciencias Agrícolas, Universidad Central Del Ecuador, Quito,
Pichincha, Ecuador
| | - Sabine Tebbich
- Department of Behavioural Biology, University of Vienna, Vienna,
Austria
| | - Angel Ulloa
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora,
Santa Cruz Island, Galapagos Islands, Ecuador
| |
Collapse
|
38
|
Kleindorfer S, Custance G, Peters KJ, Sulloway FJ. Introduced parasite changes host phenotype, mating signal and hybridization risk: Philornis downsi effects on Darwin's finch song. Proc Biol Sci 2019; 286:20190461. [PMID: 31185871 DOI: 10.1098/rspb.2019.0461] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Introduced parasites that alter their host's mating signal can change the evolutionary trajectory of a species through sexual selection. Darwin's Camarhynchus finches are threatened by the introduced fly Philornis downsi that is thought to have accidentally arrived on the Galapagos Islands during the 1960s. The P. downsi larvae feed on the blood and tissue of developing finches, causing on average approximately 55% in-nest mortality and enlarged naris size in survivors. Here we test if enlarged naris size is associated with song characteristics and vocal deviation in the small tree finch ( Camarhynchus parvulus), the critically endangered medium tree finch ( C. pauper) and the recently observed hybrid tree finch group ( Camarhynchus hybrids). Male C. parvulus and C. pauper with enlarged naris size produced song with lower maximum frequency and greater vocal deviation, but there was no significant association in hybrids. Less vocal deviation predicted faster pairing success in both parental species. Finally, C. pauper males with normal naris size produced species-specific song, but male C. pauper with enlarged naris size had song that was indistinguishable from other tree finches. When parasites disrupt host mating signal, they may also facilitate hybridization. Here we show how parasite-induced naris enlargement affects vocal quality, resulting in blurred species mating signals.
Collapse
Affiliation(s)
- Sonia Kleindorfer
- 1 College of Science and Engineering, Flinders University , Adelaide 5001 , Australia.,2 Konrad Lorenz Research Station and Department of Behavioural Biology, University of Vienna , Vienna , Austria
| | - Georgina Custance
- 1 College of Science and Engineering, Flinders University , Adelaide 5001 , Australia
| | - Katharina J Peters
- 1 College of Science and Engineering, Flinders University , Adelaide 5001 , Australia
| | - Frank J Sulloway
- 3 Department of Psychology, University of California , 2121 Berkeley Way, Room 3302, 4125 Tolman Hall, Berkeley, CA 94720 , USA
| |
Collapse
|
39
|
|
40
|
Peters KJ, Evans C, Aguirre JD, Kleindorfer S. Genetic admixture predicts parasite intensity: evidence for increased hybrid performance in Darwin's tree finches. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181616. [PMID: 31183118 PMCID: PMC6502384 DOI: 10.1098/rsos.181616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Hybridization can increase adaptive potential when enhanced genetic diversity or novel genetic combinations confer a fitness advantage, such as in the evolution of anti-parasitic mechanisms. Island systems are especially susceptible to invasive parasites due to the lack of defence mechanisms that usually coevolve in long-standing host-parasite relationships. We test if host genetic admixture affects parasite numbers in a novel host-parasite association on the Galápagos Islands. Specifically, we compare the number of Philornis downsi in nests with offspring sired by Darwin's small tree finch (Camarhynchus parvulus), Darwin's medium tree finch (C. pauper) and hybrids of these two species. The number of P. downsi decreased with an increasing genetic admixture of the attending male, and nests of hybrid males had approximately 50% fewer parasites than C. parvulus nests, and approximately 60% fewer parasites than C. pauper nests. This finding indicates that hybridization in this system could be favoured by selection and reveal a mechanism to combat an invasive parasite.
Collapse
Affiliation(s)
- Katharina J. Peters
- College of Science and Engineering, Flinders University, Adelaide, Australia
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Christine Evans
- College of Science and Engineering, Flinders University, Adelaide, Australia
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - J. David Aguirre
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Sonia Kleindorfer
- College of Science and Engineering, Flinders University, Adelaide, Australia
- Konrad Lorenz Research Station and Department of Behavioural Biology, University of Vienna, Austria
| |
Collapse
|
41
|
McNew SM, Knutie SA, Goodman GB, Theodosopoulos A, Saulsberry A, Yépez R. J, Bush SE, Clayton DH. Annual environmental variation influences host tolerance to parasites. Proc Biol Sci 2019; 286:20190049. [PMID: 30963843 PMCID: PMC6408884 DOI: 10.1098/rspb.2019.0049] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/06/2019] [Indexed: 12/16/2022] Open
Abstract
When confronted with a parasite or pathogen, hosts can defend themselves by resisting or tolerating the attack. While resistance can be diminished when resources are limited, it is unclear how robust tolerance is to changes in environmental conditions. Here, we investigate the sensitivity of tolerance in a single host population living in a highly variable environment. We manipulated the abundance of an invasive parasitic fly, Philornis downsi, in nests of Galápagos mockingbirds ( Mimus parvulus) over four field seasons and measured host fitness in response to parasitism. Mockingbird tolerance to P. downsi varied significantly among years and decreased when rainfall was limited. Video observations indicate that parental provisioning of nestlings appears key to tolerance: in drought years, mockingbirds likely do not have sufficient resources to compensate for the effects of P. downsi. These results indicate that host tolerance is a labile trait and suggest that environmental variation plays a major role in mediating the consequences of host-parasite interactions.
Collapse
Affiliation(s)
- Sabrina M. McNew
- Department of Biology, University of Utah, Salt Lake City, UT 84112-0840, USA
| | - Sarah A. Knutie
- Department of Biology, University of Utah, Salt Lake City, UT 84112-0840, USA
| | - Graham B. Goodman
- Department of Biology, University of Utah, Salt Lake City, UT 84112-0840, USA
| | | | - Ashley Saulsberry
- Department of Biology, University of Utah, Salt Lake City, UT 84112-0840, USA
| | - Janai Yépez R.
- Charles Darwin Research Station, Santa Cruz Island, Galápagos, Ecuador
| | - Sarah E. Bush
- Department of Biology, University of Utah, Salt Lake City, UT 84112-0840, USA
| | - Dale H. Clayton
- Department of Biology, University of Utah, Salt Lake City, UT 84112-0840, USA
| |
Collapse
|
42
|
Occurrence of the Parasitic Fly Philornis torquans on Fledglings of the Rufous-Fronted Thornbird ( Phacellodomus rufifrons) in Southeast Brazil. J Wildl Dis 2018; 55:462-466. [PMID: 30475659 DOI: 10.7589/2018-04-104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Philornis is a neotropical genus of muscid fly that interacts with birds and may affect the development and survival of the birds' offspring. Although Philornis is a relatively common parasite, there is a lack of information about Philornis hosts in several parts of the Americas. In this study, two nests of the Rufousfronted Thornbird ( Phacellodomus rufifrons) were collected in Pedro Leopoldo, southeast Brazil. The first contained four nestlings of advanced age (about 20 d old) and a recently emerged Philornis torquans female adult fly. The second nest contained three nestlings (less than 7 d old) and several Philornis torquans subcutaneous larvae. One of the nestlings was infested by 53 larvae, which had attacked several parts of its body and caused individual wounds containing 1 to more than 15 larvae. The length of the larvae ranged from 3 to 18 mm and only one was a second instar; the remaining 69 were third instars. The pupal period lasted 9-13 d. In total, 71 larvae were collected from the nest, with nestling parasitism varying from 7 to 53 larvae (mean- 23.7±25.5 larvae/nestling).
Collapse
|
43
|
Michel AJ, Ward LM, Goffredi SK, Dawson KS, Baldassarre DT, Brenner A, Gotanda KM, McCormack JE, Mullin SW, O'Neill A, Tender GS, Uy JAC, Yu K, Orphan VJ, Chaves JA. The gut of the finch: uniqueness of the gut microbiome of the Galápagos vampire finch. MICROBIOME 2018; 6:167. [PMID: 30231937 PMCID: PMC6146768 DOI: 10.1186/s40168-018-0555-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/05/2018] [Indexed: 05/13/2023]
Abstract
BACKGROUND Darwin's finches are a clade of 19 species of passerine birds native to the Galápagos Islands, whose biogeography, specialized beak morphologies, and dietary choices-ranging from seeds to blood-make them a classic example of adaptive radiation. While these iconic birds have been intensely studied, the composition of their gut microbiome and the factors influencing it, including host species, diet, and biogeography, has not yet been explored. RESULTS We characterized the microbial community associated with 12 species of Darwin's finches using high-throughput 16S rRNA sequencing of fecal samples from 114 individuals across nine islands, including the unusual blood-feeding vampire finch (Geospiza septentrionalis) from Darwin and Wolf Islands. The phylum-level core gut microbiome for Darwin's finches included the Firmicutes, Gammaproteobacteria, and Actinobacteria, with members of the Bacteroidetes at conspicuously low abundance. The gut microbiome was surprisingly well conserved across the diversity of finch species, with one exception-the vampire finch-which harbored bacteria that were either absent or extremely rare in other finches, including Fusobacterium, Cetobacterium, Ureaplasma, Mucispirillum, Campylobacter, and various members of the Clostridia-bacteria known from the guts of carnivorous birds and reptiles. Complementary stable isotope analysis of feathers revealed exceptionally high δ15N isotope values in the vampire finch, resembling top marine predators. The Galápagos archipelago is also known for extreme wet and dry seasons, and we observed a significant seasonal shift in the gut microbial community of five additional finch species sampled during both seasons. CONCLUSIONS This study demonstrates the overall conservatism of the finch gut microbiome over short (< 1 Ma) divergence timescales, except in the most extreme case of dietary specialization, and elevates the evolutionary importance of seasonal shifts in driving not only species adaptation, but also gut microbiome composition.
Collapse
Affiliation(s)
- Alice J Michel
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Lewis M Ward
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Shana K Goffredi
- Department of Biology, Occidental College, Los Angeles, CA, 90041, USA
| | - Katherine S Dawson
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
- School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Daniel T Baldassarre
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Alec Brenner
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Kiyoko M Gotanda
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, England
| | - John E McCormack
- Department of Biology, Occidental College, Los Angeles, CA, 90041, USA
| | - Sean W Mullin
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Ariel O'Neill
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Gabrielle S Tender
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - J Albert C Uy
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
| | - Kristie Yu
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA.
| | - Jaime A Chaves
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Diego de Robles y Pampite, Quito, Ecuador.
- Galápagos Science Center, Puerto Baquerizo Moreno, Galápagos, Ecuador.
| |
Collapse
|
44
|
Edworthy AB, Langmore NE, Heinsohn R. Native fly parasites are the principal cause of nestling mortality in endangered Tasmanian pardalotes. Anim Conserv 2018. [DOI: 10.1111/acv.12444] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- A. B. Edworthy
- Research School of Biology Australian National University Canberra ACT Australia
| | - N. E. Langmore
- Research School of Biology Australian National University Canberra ACT Australia
| | - R. Heinsohn
- Fenner School of Environment and Society Australian National University Canberra ACT Australia
| |
Collapse
|
45
|
Knutie SA. Relationships among introduced parasites, host defenses, and gut microbiota of Galapagos birds. Ecosphere 2018. [DOI: 10.1002/ecs2.2286] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Sarah A. Knutie
- Department of Ecology and Evolutionary Biology University of Connecticut Storrs Connecticut 06269 USA
| |
Collapse
|
46
|
Clark TD, Kleindorfer S, Dudaniec RY. Baseline and stress-induced blood properties of male and female Darwin's small ground finch (Geospiza fuliginosa) of the Galapagos Islands. Gen Comp Endocrinol 2018; 259:199-206. [PMID: 29197554 DOI: 10.1016/j.ygcen.2017.11.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 11/01/2017] [Accepted: 11/28/2017] [Indexed: 10/18/2022]
Abstract
Birds are renowned for exhibiting marked sex-specific differences in activity levels and reproductive investment during the breeding season, potentially impacting circulating blood parameters associated with stress and energetics. Males of many passerines often do not incubate, but they experience direct exposure to intruder threat and exhibit aggressive behaviour during the nesting phase in order to defend territories against competing males and predators. Nesting females often have long bouts of inactivity during incubation, but they must remain vigilant of the risks posed by predators and conspecific intruders approaching the nest. Here, we use 33 free-living male (n = 16) and female (n = 17) Darwin's small ground finches (Geospiza fuliginosa) on Floreana Island (Galapagos Archipelago) to better understand how sex-specific roles during the reproductive period impact baseline and stress-induced levels of plasma corticosterone (CORT), blood glucose and haematocrit. Specifically, we hypothesise that males are characterised by higher baseline values given their direct and relatively frequent exposure to intruder threat, but that a standardised stress event (capture and holding) overrides any sex-specific differences. In contrast with expectations, baseline levels of all blood parameters were similar between sexes (13.4 ± 1.9 ng ml-1 for CORT, 13.7 ± 0.4 mmol l-1 for glucose, 58.3 ± 0.8% for haematocrit). Interestingly, females with higher body condition had lower baseline haematocrit. All blood parameters changed with time since capture (range 1.2-41.3 min) in both sexes, whereby CORT increased linearly, haematocrit decreased linearly, and glucose increased to a peak at ∼20 min post-capture and declined to baseline levels thereafter. Our results do not support the hypothesis that sex-specific roles during the reproductive period translate to differences in blood parameters associated with stress and energetics, but we found some evidence that blood oxygen transport capacity may decline as finches increase in body condition.
Collapse
Affiliation(s)
- Timothy D Clark
- Deakin University, School of Life and Environmental Sciences, Geelong 3216, Australia
| | - Sonia Kleindorfer
- College of Science and Engineering, Flinders University, Adelaide 5001, Australia.
| | - Rachael Y Dudaniec
- Department of Biological Sciences, Macquarie University, Sydney 2109, Australia
| |
Collapse
|
47
|
McNew SM, Clayton DH. Alien Invasion: Biology of Philornis Flies Highlighting Philornis downsi, an Introduced Parasite of Galápagos Birds. ANNUAL REVIEW OF ENTOMOLOGY 2018; 63:369-387. [PMID: 29058976 DOI: 10.1146/annurev-ento-020117-043103] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The muscid genus Philornis comprises approximately 50 described species of flies, nearly all of which are obligate parasites of nestling birds. Philornis species are native to the Neotropics and widely distributed from Florida to Argentina. Most research on this group has focused on P. downsi, which was introduced to the Galápagos Islands in the late twentieth century. Although Philornis parasitism kills nestlings in several native host species, nowhere do the effects seem more severe than in P. downsi in the Galápagos. Here, we review studies of native and introduced Philornis in an attempt to identify factors that may influence virulence and consider implications for the conservation of hosts in the Galápagos.
Collapse
Affiliation(s)
- Sabrina M McNew
- Department of Biology, University of Utah, Salt Lake City, Utah 84112-0840, USA;
| | - Dale H Clayton
- Department of Biology, University of Utah, Salt Lake City, Utah 84112-0840, USA;
| |
Collapse
|
48
|
Peters KJ, Myers SA, Dudaniec RY, O'Connor JA, Kleindorfer S. Females drive asymmetrical introgression from rare to common species in Darwin's tree finches. J Evol Biol 2017; 30:1940-1952. [PMID: 28833876 DOI: 10.1111/jeb.13167] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/15/2017] [Indexed: 01/06/2023]
Abstract
The consequences of hybridization for biodiversity depend on the specific ecological and evolutionary context in which it occurs. Understanding patterns of gene flow among hybridizing species is crucial for determining the evolutionary trajectories of species assemblages. The recently discovered hybridization between two species of Darwin's tree finches (Camarhynchus parvulus and C. pauper) on Floreana Island, Galápagos, presents an exciting opportunity to investigate the mechanisms causing hybridization and its potential evolutionary consequences under conditions of recent habitat disturbance and the introduction of invasive pathogens. In this study, we combine morphological and genetic analysis with pairing observations to explore the extent, direction and drivers of hybridization and to test whether hybridization patterns are a result of asymmetrical pairing preference driven by females of the rarer species (C. pauper). We found asymmetrical introgression from the critically endangered, larger-bodied C. pauper to the common, smaller-bodied C. parvulus, which was associated with a lack of selection against heterospecific males by C. pauper females. Examination of pairing data showed that C. parvulus females paired assortatively, whereas C. pauper females showed no such pattern. This study shows how sex-specific drivers can determine the direction of gene flow in hybridizing species. Furthermore, our results suggest the existence of a hybrid swarm comprised of C. parvulus and hybrid birds. We discuss the influence of interspecific abundance differences and susceptibility to the invasive parasite Philornis downsi on the observed hybridization and recommend that the conservation of this iconic species group should be managed jointly rather than species-specific.
Collapse
Affiliation(s)
- K J Peters
- School of Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - S A Myers
- Southern Seas Ecology Laboratory, School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - R Y Dudaniec
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - J A O'Connor
- Department of Environment, Water and Natural Resources, Adelaide, SA, Australia
| | - S Kleindorfer
- School of Biological Sciences, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
49
|
Ben-Yosef M, Zaada DSY, Dudaniec RY, Pasternak Z, Jurkevitch E, Smith RJ, Causton CE, Lincango MP, Tobe SS, Mitchell JG, Kleindorfer S, Yuval B. Host-specific associations affect the microbiome ofPhilornis downsi, an introduced parasite to the Galápagos Islands. Mol Ecol 2017; 26:4644-4656. [DOI: 10.1111/mec.14219] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 05/25/2017] [Accepted: 06/13/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Michael Ben-Yosef
- Department of Entomology; Faculty of Agriculture Food and Environment; The Hebrew University of Jerusalem; Rehovot Israel
| | - Doron S. Y. Zaada
- Department of Entomology; Faculty of Agriculture Food and Environment; The Hebrew University of Jerusalem; Rehovot Israel
| | - Rachael Y. Dudaniec
- Department of Biological Sciences; Macquarie University; Sydney NSW Australia
| | - Zohar Pasternak
- Department of Microbiology and Plant Pathology; Faculty of Agriculture Food and Environment; The Hebrew University of Jerusalem; Rehovot Israel
| | - Edouard Jurkevitch
- Department of Microbiology and Plant Pathology; Faculty of Agriculture Food and Environment; The Hebrew University of Jerusalem; Rehovot Israel
| | - Renee J. Smith
- School of Biological Sciences; Flinders University; Adelaide SA Australia
| | - Charlotte E. Causton
- Charles Darwin Foundation; Puerto Ayora Santa Cruz Island Galápagos Islands Ecuador
| | - Maria Piedad Lincango
- Charles Darwin Foundation; Puerto Ayora Santa Cruz Island Galápagos Islands Ecuador
- Facultad De Ciencias Agrícolas; Universidad Central Del Ecuador; Quito Pichincha Ecuador
| | - Shanan S. Tobe
- School of Biological Sciences; Flinders University; Adelaide SA Australia
- Department of Chemistry and Physics; Arcadia University; Glenside PA USA
| | - James G. Mitchell
- School of Biological Sciences; Flinders University; Adelaide SA Australia
| | - Sonia Kleindorfer
- School of Biological Sciences; Flinders University; Adelaide SA Australia
| | - Boaz Yuval
- Department of Entomology; Faculty of Agriculture Food and Environment; The Hebrew University of Jerusalem; Rehovot Israel
| |
Collapse
|
50
|
Dzialo MC, Park R, Steensels J, Lievens B, Verstrepen KJ. Physiology, ecology and industrial applications of aroma formation in yeast. FEMS Microbiol Rev 2017; 41:S95-S128. [PMID: 28830094 PMCID: PMC5916228 DOI: 10.1093/femsre/fux031] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/06/2017] [Indexed: 01/05/2023] Open
Abstract
Yeast cells are often employed in industrial fermentation processes for their ability to efficiently convert relatively high concentrations of sugars into ethanol and carbon dioxide. Additionally, fermenting yeast cells produce a wide range of other compounds, including various higher alcohols, carbonyl compounds, phenolic compounds, fatty acid derivatives and sulfur compounds. Interestingly, many of these secondary metabolites are volatile and have pungent aromas that are often vital for product quality. In this review, we summarize the different biochemical pathways underlying aroma production in yeast as well as the relevance of these compounds for industrial applications and the factors that influence their production during fermentation. Additionally, we discuss the different physiological and ecological roles of aroma-active metabolites, including recent findings that point at their role as signaling molecules and attractants for insect vectors.
Collapse
Affiliation(s)
- Maria C Dzialo
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Rahel Park
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Jan Steensels
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, KU Leuven, Campus De Nayer, Fortsesteenweg 30A B-2860 Sint-Katelijne Waver, Belgium
| | - Kevin J Verstrepen
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| |
Collapse
|