1
|
Mortazavi SAR, Tahmasebi S, Lech JC, Welsh JS, Taleie A, Rezaianzadeh A, Zamani A, Mega K, Nematollahi S, Zamani A, Mortazavi SMJ, Sihver L. Digital Screen Time and the Risk of Female Breast Cancer: A Retrospective Matched Case-Control Study. J Biomed Phys Eng 2024; 14:169-182. [PMID: 38628888 PMCID: PMC11016821 DOI: 10.31661/jbpe.v0i0.2310-1678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 04/19/2024]
Abstract
Background As the use of electronic devices such as mobile phones, tablets, and computers continues to rise globally, concerns have been raised about their potential impact on human health. Exposure to high energy visible (HEV) blue light, emitted from digital screens, particularly the so-called artificial light at night (ALAN), has been associated with adverse health effects, ranging from disruption of circadian rhythms to cancer. Breast cancer incidence rates are also increasing worldwide. Objective This study aimed at finding a correlation between breast cancer and exposure to blue light from mobile phone. Material and Methods In this retrospective matched case-control study, we aimed to investigate whether exposure to blue light from mobile phone screens is associated with an increased risk of female breast cancer. We interviewed 301 breast cancer patients (cases) and 294 controls using a standard questionnaire and performed multivariate analysis, chi-square, and Fisher's exact tests for data analysis. Results Although heavy users in the case group of our study had a statistically significant higher mean 10-year cumulative exposure to digital screens compared to the control group (7089±14985 vs 4052±12515 hours, respectively, P=0.038), our study did not find a strong relationship between exposure to HEV and development of breast cancer. Conclusion Our findings suggest that heavy exposure to HEV blue light emitted from mobile phone screens at night might constitute a risk factor for promoting the development of breast cancer, but further large-scale cohort studies are warranted.
Collapse
Affiliation(s)
| | - Sedigheh Tahmasebi
- Breast Cancer Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - James C Lech
- Department of Radiology and Nuclear Medicine, Academic Medical Center, University of Amsterdam (UMC), Amsterdam, The Netherlands
- International EMF Project & Optical Radiation, World Health Organization, Pretoria, South Africa
| | - James S Welsh
- Department of Radiation Oncology, Stritch School of Medicine Loyola University Chicago, Maywood, IL, USA
- Department of Radiation Oncology, Edward Hines Jr Veterans Affairs Hospital, Maywood, Illinois, USA
| | - Abdorasoul Taleie
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ali Zamani
- Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kanu Mega
- School of Life Sciences, Manipal Academy of Higher Education, Dubai International Academic City, Dubai, UA
| | - Samaneh Nematollahi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Atefeh Zamani
- School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales, Australia
| | - Seyed Mohammad Javad Mortazavi
- Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lembit Sihver
- Department of Radiation Physics, Atominstitut, Technische Universität Wien, Vienna, Austria
- Department of Radiation Dosimetry, Nuclear Physics Institute of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
Liu J, Liu M, Xiong F, Xu K, Pu Y, Huang J, Zhang J, Yin L, Pu Y, Sun R. Effects of glyphosate exposure on the miRNA expression profile and construction of the miRNA-mRNA regulatory network in mouse bone marrow cells. Funct Integr Genomics 2022; 23:22. [PMID: 36572786 DOI: 10.1007/s10142-022-00939-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022]
Affiliation(s)
- Jinyan Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Jiangsu, 210009, Nanjing, China
| | - Manman Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Jiangsu, 210009, Nanjing, China
| | - Fei Xiong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Jiangsu, 210009, Nanjing, China
| | - Kai Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Jiangsu, 210009, Nanjing, China
| | - Yunqiu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Jiangsu, 210009, Nanjing, China
| | - Jiawei Huang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Jiangsu, 210009, Nanjing, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Jiangsu, 210009, Nanjing, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Jiangsu, 210009, Nanjing, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Jiangsu, 210009, Nanjing, China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Jiangsu, 210009, Nanjing, China.
| |
Collapse
|
3
|
Liu JA, Walton JC, DeVries AC, Nelson RJ. Disruptions of Circadian Rhythms and Thrombolytic Therapy During Ischemic Stroke Intervention. Front Neurosci 2021; 15:675732. [PMID: 34177452 PMCID: PMC8222607 DOI: 10.3389/fnins.2021.675732] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/11/2021] [Indexed: 11/24/2022] Open
Abstract
Several endogenous and exogenous factors interact to influence stroke occurrence, in turn contributing to discernable daily distribution patterns in the frequency and severity of cerebrovascular events. Specifically, strokes that occur during the morning tend to be more severe and are associated with elevated diastolic blood pressure, increased hospital stay, and worse outcomes, including mortality, compared to strokes that occur later in the day. Furthermore, disrupted circadian rhythms are linked to higher risk for stroke and play a role in stroke outcome. In this review, we discuss the interrelation among core clock genes and several factors contributing to ischemic outcomes, sources of disrupted circadian rhythms, the implications of disrupted circadian rhythms in foundational stroke scientific literature, followed by a review of clinical implications. In addition to highlighting the distinct daily pattern of onset, several aspects of physiology including immune response, endothelial/vascular and blood brain barrier function, and fibrinolysis are under circadian clock regulation; disrupted core clock gene expression patterns can adversely affect these physiological processes, leading to a prothrombotic state. Lastly, we discuss how the timing of ischemic onset increases morning resistance to thrombolytic therapy and the risk of hemorrhagic transformation.
Collapse
Affiliation(s)
- Jennifer A Liu
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - James C Walton
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - A Courtney DeVries
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States.,Department of Medicine, Division of Oncology/Hematology, West Virginia University, Morgantown, WV, United States.,West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, United States
| | - Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
4
|
Adeola HA, Papagerakis S, Papagerakis P. Systems Biology Approaches and Precision Oral Health: A Circadian Clock Perspective. Front Physiol 2019; 10:399. [PMID: 31040792 PMCID: PMC6476986 DOI: 10.3389/fphys.2019.00399] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/22/2019] [Indexed: 12/20/2022] Open
Abstract
A vast majority of the pathophysiological and metabolic processes in humans are temporally controlled by a master circadian clock located centrally in the hypothalamic suprachiasmatic nucleus of the brain, as well as by specialized peripheral oscillators located in other body tissues. This circadian clock system generates a rhythmical diurnal transcriptional-translational cycle in clock genes and protein expression and activities regulating numerous downstream target genes. Clock genes as key regulators of physiological function and dysfunction of the circadian clock have been linked to various diseases and multiple morbidities. Emerging omics technologies permits largescale multi-dimensional investigations of the molecular landscape of a given disease and the comprehensive characterization of its underlying cellular components (e.g., proteins, genes, lipids, metabolites), their mechanism of actions, functional networks and regulatory systems. Ultimately, they can be used to better understand disease and interpatient heterogeneity, individual profile, identify personalized targetable key molecules and pathways, discover novel biomarkers and genetic alterations, which collectively can allow for a better patient stratification into clinically relevant subgroups to improve disease prediction and prevention, early diagnostic, clinical outcomes, therapeutic benefits, patient's quality of life and survival. The use of “omics” technologies has allowed for recent breakthroughs in several scientific domains, including in the field of circadian clock biology. Although studies have explored the role of clock genes using circadiOmics (which integrates circadian omics, such as genomics, transcriptomics, proteomics and metabolomics) in human disease, no such studies have investigated the implications of circadian disruption in oral, head and neck pathologies using multi-omics approaches and linking the omics data to patient-specific circadian profiles. There is a burgeoning body of evidence that circadian clock controls the development and homeostasis of oral and maxillofacial structures, such as salivary glands, teeth and oral epithelium. Hence, in the current era of precision medicine and dentistry and patient-centered health care, it is becoming evident that a multi-omics approach is needed to improve our understanding of the role of circadian clock-controlled key players in the regulation of head and neck pathologies. This review discusses current knowledge on the role of the circadian clock and the contribution of omics-based approaches toward a novel precision health era for diagnosing and treating head and neck pathologies, with an emphasis on oral, head and neck cancer and Sjögren's syndrome.
Collapse
Affiliation(s)
- Henry A Adeola
- Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.,Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, University of the Western Cape and Tygerberg Hospital, Cape Town, South Africa
| | - Silvana Papagerakis
- Laboratory of Oral, Head & Neck Cancer-Personalized Diagnostics and Therapeutics, Division of Head and Neck Surgery, Department of Surgery, University of Saskatchewan, Saskatoon, SK, Canada
| | | |
Collapse
|
5
|
Thomford NE, Dzobo K, Yao NA, Chimusa E, Evans J, Okai E, Kruszka P, Muenke M, Awandare G, Wonkam A, Dandara C. Genomics and Epigenomics of Congenital Heart Defects: Expert Review and Lessons Learned in Africa. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 22:301-321. [PMID: 29762087 PMCID: PMC6016577 DOI: 10.1089/omi.2018.0033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Congenital heart defects (CHD) are structural malformations found at birth with a prevalence of 1%. The clinical trajectory of CHD is highly variable and thus in need of robust diagnostics and therapeutics. Major surgical interventions are often required for most CHDs. In Africa, despite advances in life sciences infrastructure and improving education of medical scholars, the limited clinical data suggest that CHD detection and correction are still not at par with the rest of the world. But the toll and genetics of CHDs in Africa has seldom been systematically investigated. We present an expert review on CHD with lessons learned on Africa. We found variable CHD phenotype prevalence in Africa across countries and populations. There are important gaps and paucity in genomic studies of CHD in African populations. Among the available genomic studies, the key findings in Africa were variants in GATA4 (P193H), MTHFR 677TT, and MTHFR 1298CC that were associated with atrial septal defect, ventricular septal defect (VSD), Tetralogy of Fallot (TOF), and patent ductus arteriosus phenotypes and 22q.11 deletion, which is associated with TOF. There were no data on epigenomic association of CHD in Africa, however, other studies have shown an altered expression of miR-421 and miR-1233-3p to be associated with TOF and hypermethylation of CpG islands in the promoter of SCO2 gene also been associated with TOF and VSD in children with non-syndromic CHD. These findings signal the urgent need to develop and implement genetic and genomic research on CHD to identify the hereditary and genome-environment interactions contributing to CHD. These projected studies would also offer comparisons on CHD pathophysiology between African and other populations worldwide. Genomic research on CHD in Africa should be developed in parallel with next generation technology policy research and responsible innovation frameworks that examine the social and political factors that shape the emergence and societal embedding of new technologies.
Collapse
Affiliation(s)
- Nicholas Ekow Thomford
- 1 Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town , Cape Town, South Africa
- 2 School of Medical Sciences, University of Cape Coast , Cape Coast, Ghana
| | - Kevin Dzobo
- 3 ICGEB, Cape Town Component, University of Cape Town , Cape Town, South Africa
- 4 Division of Medical Biochemistry, IIDMM, Department of IBM, Faculty of Health Sciences, University of Cape Town , Cape Town, South Africa
| | - Nana Akyaa Yao
- 5 National Cardiothoracic Centre, Korle Bu Teaching Hospital , Accra, Ghana
- 6 University of Ghana Medical School, University of Ghana , Accra, Ghana
| | - Emile Chimusa
- 1 Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town , Cape Town, South Africa
| | - Jonathan Evans
- 1 Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town , Cape Town, South Africa
| | - Emmanuel Okai
- 2 School of Medical Sciences, University of Cape Coast , Cape Coast, Ghana
- 7 Cape Coast Teaching Hospital , Cape Coast, Ghana
| | - Paul Kruszka
- 8 National Human Genome Research Institute, Medical Genetics Branch, National Institutes of Health , Bethesda, Maryland, USA
| | - Maximilian Muenke
- 8 National Human Genome Research Institute, Medical Genetics Branch, National Institutes of Health , Bethesda, Maryland, USA
| | - Gordon Awandare
- 9 Department of Biochemistry, WACCBIP, University of Ghana , Legon, Accra, Ghana
| | - Ambroise Wonkam
- 1 Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town , Cape Town, South Africa
| | - Collet Dandara
- 1 Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town , Cape Town, South Africa
| |
Collapse
|
6
|
Asghari MH, Ghobadi E, Moloudizargari M, Fallah M, Abdollahi M. Does the use of melatonin overcome drug resistance in cancer chemotherapy? Life Sci 2018; 196:143-155. [DOI: 10.1016/j.lfs.2018.01.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/12/2018] [Accepted: 01/22/2018] [Indexed: 12/23/2022]
|
7
|
Walasa WM, Carey RN, Si S, Fritschi L, Heyworth JS, Fernandez RC, Boyle T. Association between shiftwork and the risk of colorectal cancer in females: a population-based case-control study. Occup Environ Med 2018; 75:344-350. [PMID: 29438001 DOI: 10.1136/oemed-2017-104657] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/18/2017] [Accepted: 01/17/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Research indicates that shiftwork may be associated with increased risks of adverse health outcomes, including some cancers. However, the evidence of an association between shiftwork and colorectal cancer risk is limited and inconclusive. Further, while several possible pathways through which shiftwork might result in cancer have been proposed, few studies have taken these factors into account. We investigated the association between two types of shiftwork (graveyard shiftwork and early-morning shiftwork) and six mechanistic shiftwork variables (including light at night and phase shift) and the risk of colorectal cancer among females in an Australian population-based case-control study. Graveyard shiftwork was the primary exposure of interest. METHODS Participants (350 cases and 410 controls) completed a lifetime occupational history, and exposure to each of the eight shiftwork variables was assigned to participants through a job exposure matrix. We used logistic regression to calculate odds ratios (OR) and corresponding 95% confidence intervals (CI) for the association between different shiftwork variables and the risk of colorectal cancer, adjusting for potential demographic, lifestyle and medical confounders. RESULTS Working in an occupation involving long-term exposure (>7.5 years) to graveyard shiftwork was not associated with colorectal cancer risk (adjusted OR 0.95, 95% CI 0.57 to 1.58). Similarly, no increased risks of colorectal cancer were seen for any of the other seven shiftwork variables examined. CONCLUSIONS No evidence of an increased risk of colorectal cancer among females who had worked in occupations involving shiftwork was observed in this study.
Collapse
Affiliation(s)
- Wa Mwenga Walasa
- School of Public Health, Curtin University, Bentley, Western Australia, Australia
| | - Renee N Carey
- School of Public Health, Curtin University, Bentley, Western Australia, Australia
| | - Si Si
- School of Public Health, Curtin University, Bentley, Western Australia, Australia
| | - Lin Fritschi
- School of Public Health, Curtin University, Bentley, Western Australia, Australia
| | - Jane S Heyworth
- School of Population and Global Health, The University of Western Australia, Crawley, Western Australia, Australia
| | - Renae C Fernandez
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,School of Public Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Terry Boyle
- School of Public Health, Curtin University, Bentley, Western Australia, Australia.,Centre for Population Health Research, School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
8
|
Salavaty A, Mohammadi N, Shahmoradi M, Naderi Soorki M. Bioinformatic Analysis of Circadian Expression of Oncogenes and Tumor Suppressor Genes. Bioinform Biol Insights 2017; 11:1177932217746991. [PMID: 29276378 PMCID: PMC5734456 DOI: 10.1177/1177932217746991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/11/2017] [Indexed: 01/09/2023] Open
Abstract
Background Circadian rhythms are physiological and behavioral cycles with a period of approximately 24 hours that control various functions including gene expression. Circadian disruption is associated with a variety of diseases, especially cancer. Although some of the oncogenes and tumor suppressor genes (TSGs) are known as clock-controlled genes (CCGs), the analysis and annotation of circadian expression of most human oncogenes and TSGs are still lacking. This study aims to investigate the circadian expression of a list of human oncogenes and TSGs. Methods A bioinformatic analysis was conducted on a gene library comprising 120 genes to investigate the circadian expression of human oncogenes and TSGs. To achieve this purpose, the genotranscriptomic data were retrieved from COSMIC and analyzed by R statistical software. Furthermore, the acquired data were analyzed at the transcriptomic and proteomic levels using several publicly available databases. Also, the significance of all analyses was confirmed statistically. Results Altogether, our results indicated that 7 human oncogenes/TSGs may be expressed and function in a circadian manner. These oncogenes/TSGs showed a circadian expression pattern at CircaDB database and associated with at least one of the circadian genes/CCGs based on both genotranscriptomic and correlation analyses. Conclusions Although 4 of 7 finally outputted genes have been previously reported to be clock controlled, heretofore there is no report about the circadian expression of 3 other genes. Considering the importance of oncogenes/TSGs in the initiation and progression of cancer, further studies are suggested for the identification of exact circadian expression patterns of these 3 human oncogenes/TSGs.
Collapse
Affiliation(s)
- Adrian Salavaty
- Division of Biotechnology, Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Niloufar Mohammadi
- Department of Biology, Friedrich Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Mozhdeh Shahmoradi
- Division of Biotechnology, Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Maryam Naderi Soorki
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
9
|
Habashy DM, Eissa DS, Aboelez MM. Cryptochrome-1 Gene Expression is a Reliable Prognostic Indicator in Egyptian Patients with Chronic Lymphocytic Leukemia: A Prospective Cohort Study. Turk J Haematol 2017; 35:168-174. [PMID: 28884705 PMCID: PMC6110451 DOI: 10.4274/tjh.2017.0169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objective Traditional prognostic factors have proved insufficient to account for heterogeneity in the clinical behavior of chronic lymphocytic leukemia (CLL). Cryptochrome-1 (CRY-1) is a circadian clock gene essential in maintaining the circadian rhythm and regulating cell proliferation. We evaluated CRY-1 gene expression in CLL and addressed its putative role as a prognostic indicator for the clinical course of CLL. Materials and Methods A total of 100 CLL patients at diagnosis were studied for CRY-1 gene expression by real-time reverse-transcription polymerase chain reaction and were followed for assessment of time to first treatment (TFT). Results CRY-1 was expressed in 94% of the CLL patients at diagnosis. The median CRY-1 relative gene expression level (0.006) stratified patients into high and low expression groups. Forty of 100 (40%) CLL patients showed high CRY-1, 54/100 (54%) showed low CRY-1, and 6/100 (6%) had undetectable CRY-1 gene expression. High CRY-1 gene expression was concordant with CD38+, Zap-70+, and double CD38+Zap-70+ expression; unfavorable/intermediate cytogenetics; unmutated immunoglobulin heavy-chain variable-region gene; and diffuse marrow infiltration. The high CRY-1 gene expression patient group exhibited shorter TFT than the patients with low CRY-1 gene expression. A Cox proportional hazard regression model identified CRY-1 gene expression to be independently predictive for TFT. Conclusion CRY-1 is differentially expressed among CLL patients, stratifying them into low-risk and high-risk groups. CRY-1 gene expression could constitute a reliable prognostic indicator for CLL progression, complementing the role of standard well-established prognostic factors. CRY-1 gene expression could be employed as a prognostic indicator for disease progression during the initial prognostic work-up and follow-up for CLL patients.
Collapse
Affiliation(s)
- Deena Mohamed Habashy
- Ain Shams University Faculty of Medicine, Department of Clinical Pathology, Unit of Hematology, Cairo, Egypt
| | - Deena Samir Eissa
- Ain Shams University Faculty of Medicine, Department of Clinical Pathology, Unit of Hematology, Cairo, Egypt
| | - Mona Mahmoud Aboelez
- Ain Shams University Faculty of Medicine, Department of Clinical Pathology, Unit of Hematology, Cairo, Egypt
| |
Collapse
|
10
|
Ghazali NB, Steele M, Koh D, Idris A. The diurnal pattern of salivary IL-1β in healthy young adults. Int J Adolesc Med Health 2017; 31:/j/ijamh.ahead-of-print/ijamh-2017-0058/ijamh-2017-0058.xml. [PMID: 28782347 DOI: 10.1515/ijamh-2017-0058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/14/2017] [Indexed: 06/07/2023]
Abstract
Disruption in circadian rhythm affects the production of inflammatory cytokines. Understanding how it behaves in diseased conditions is essential. Despite the role of the interleukin-1β (IL-1β), a potent inflammatory cytokine, in human diseases, little is known about the steady-state circadian rhythm of IL-1β in healthy individuals. This short study investigates the diurnal pattern of salivary IL-1β throughout the day in healthy young adults. Twelve participants provided saliva samples at various times throughout the day. Salivary IL-1β were assessed using enzyme-linked immunosorbent assay (ELISA) and Western blot analysis. Salivary IL-1β levels were highest at 0430 h and lowest at 0000 h and shared a similar diurnal pattern to that of salivary IL-6. Western blot analysis showed that these levels correspond to the mature form of IL-1β. Our findings are important as it established the diurnal pattern of salivary IL-1β is fluctuating normally throughout the day. The findings also open an incredible opportunity for developing research conducted in the field with saliva as the diagnostic tool.
Collapse
Affiliation(s)
- Nur Basirah Ghazali
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Brunei-Muara,Muara, Brunei Darussalam
| | - Michael Steele
- School of Allied Health, Faculty of Health Sciences, Australian Catholic University, Brisbane, Queensland,Australia
| | - David Koh
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Brunei-Muara,Muara, Brunei Darussalam
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Adi Idris
- Menzies Health Institute Queensland, School of Medical Science, Griffith University, Gold Coast, Australia, Phone: +61755527709
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Brunei-Muara,Muara, Brunei Darussalam
| |
Collapse
|