1
|
Tang Y, Fahira A, Lin S, Shao Y, Huang Z. Shared and specific competing endogenous RNAs network mining in four digestive system tumors. Comput Struct Biotechnol J 2024; 23:4271-4287. [PMID: 39669749 PMCID: PMC11635987 DOI: 10.1016/j.csbj.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/17/2024] [Accepted: 11/02/2024] [Indexed: 12/14/2024] Open
Abstract
Background Digestive system malignancies, including esophageal carcinoma (ESCA), stomach adenocarcinoma (STAD), liver hepatocellular carcinoma (LIHC), and colon adenocarcinoma (COAD), pose significant global health challenges. Identifying shared and distinct regulatory mechanisms across these cancers can lead to improved therapies. This study aims to construct and compare competing endogenous RNA (ceRNA) networks across ESCA, STAD, LIHC, and COAD to identify RNA biomarkers that could serve as precision therapeutic targets to enhance clinical outcomes and advance personalized cancer care. Methods Clinical and transcriptomic data from The Cancer Genome Atlas (TCGA) were analyzed to predict differentially expressed RNAs using the edgeR package. The ceRNA networks were constructed using the miRcode and ENCORI databases. Functional enrichment analysis and prognostic RNA screening were performed with ConsensusPathDB and univariate Cox regression analysis. Results we identified 6, 88, 55, and 41 RNA biomarkers in ESCA, STAD, LIHC, and COAD, respectively. Network analysis revealed shared and specific elements, with shared nodes enriched in cell cycle and mitotic processes. Several biomarkers, including HMGB3 and RGS16 (ESCA), COL4A1 and COL6A3 (STAD), CDCA5 and CDCA8 (LIHC), and LIMK1 and OSBPL3 (COAD), were consistent with prior studies, while novel biomarkers, such as C3P1 (ESCA), P2RY6 (STAD), and N4BP2L1 and PPP1R3B (LIHC), were discovered. Based on RNA correlation analysis, 1, 23, and 2 potential ceRNA regulatory axes were identified in STAD (PVT1/miR-490-3p/HMGA2), LIHC (DLX6-AS1/miR-139-5p/TOP2A, etc.), and COAD (STRCP1 & LINC00488/miR-142-3p/GAB1), respectively. Conclusions This study advances the understanding of ceRNA networks in digestive cancers, highlighting RNA biomarkers with potential as therapeutic targets for personalized treatment strategies.
Collapse
Affiliation(s)
- Yulai Tang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523710, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
- Dongguan Key Laboratory of Sepsis Translational Medicine, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710
| | - Aamir Fahira
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Siying Lin
- Dongguan Key Laboratory of Sepsis Translational Medicine, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523710
| | - Yiming Shao
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523710, China
| | - Zunnan Huang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523710, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
2
|
Zhang C, Sui Y, Liu S, Yang M. The Roles of Myeloid-Derived Suppressor Cells in Liver Disease. Biomedicines 2024; 12:299. [PMID: 38397901 PMCID: PMC10886773 DOI: 10.3390/biomedicines12020299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Liver disease-related mortality is a major cause of death worldwide. Hepatic innate and adaptive immune cells play diverse roles in liver homeostasis and disease. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells. MDSCs can be broadly divided into monocytic MDSCs and polymorphonuclear or granulocytic MDSCs, and they functionally interact with both liver parenchymal and nonparenchymal cells, such as hepatocytes and regulatory T cells, to impact liver disease progression. The infiltration and activation of MDSCs in liver disease can be regulated by inflammatory chemokines and cytokines, tumor-associated fibroblasts, epigenetic regulation factors, and gut microbiota during liver injury and cancer. Given the pivotal roles of MDSCs in advanced liver diseases, they can be targeted to treat primary and metastatic liver cancer, liver generation, alcoholic and nonalcoholic liver disease, and autoimmune hepatitis. Currently, several treatments such as the antioxidant and anti-inflammatory agent berberine are under preclinical and clinical investigation to evaluate their therapeutic efficacy on liver disease and their effect on MDSC infiltration and function. Phenotypic alteration of MDSCs in different liver diseases that are in a model-dependent manner and lack special markers for distinct MDSCs are challenges for targeting MDSCs to treat liver disease. Multi-omics study is an option to uncover the features of disease-specific MDSCs and potential gene or protein targets for liver disease treatment. In summary, MDSCs play important roles in the pathogenesis and progression of liver disease by regulating both intrahepatic innate and adaptive immune responses.
Collapse
Affiliation(s)
- Chunye Zhang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65212, USA;
| | - Yuxiang Sui
- School of Life Science, Shanxi Normal University, Linfen 041004, China
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
3
|
Javid S, Dilshad E. Artemisia carvifolia Buch silver nanoparticles downregulate the Rap2A gene in liver cancer. Sci Rep 2023; 13:21553. [PMID: 38057542 PMCID: PMC10700519 DOI: 10.1038/s41598-023-48946-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023] Open
Abstract
Liver cancer is the second main reason of death globally. In the current study, Rap2A protein a member of Ras Gtpase was selected as a drug target for liver cancer which has been identified as an oncogene in different types of tumors. The present study aimed to evaluate Artemisia carvifolia Buch extract and its silver nanoparticles against liver cancer targeting the Rap2A gene. The synthesized silver nanoparticles showed an absorbance peak at 450 nm by a UV-Vis spectrophotometer. SEM revealed that polyhedral silver nanoparticles had a size ranging from 80 ± 6 nm. Furthermore, amines, aldehydes, ketones and alcohols of Artemisia carvifolia were found involved in the reduction and stabilization of nanoparticles by FTIR. Moreover, XRD and EDX confirmed the cubic crystalline nature and particle elemental composition, respectively. Furthermore, the cytotoxicity against HePG2 cancer cell lines was also found significant with an IC50 value of 2.57 µM for silver nanoparticles and 11.57 µM for plant extract. The gene expression and protein level of Rap2A were also decreased in plant extract and nanoparticle-treated cells compared to control groups. The apoptotic potential of extract and nanoparticles was also determined by evaluating the apoptotic pathway genes and protein including BAX, caspase 3, 8 and 9. Significantly elevated levels of expression of these genes by real-time qPCR along with increased protein levels by ELISA were found. This is the first-ever report describing the synthesis and efficacy of silver nanoparticles of Artemisia carvifolia Buch against liver cancer.
Collapse
Affiliation(s)
- Sabahat Javid
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology(CUST), Islamabad, 44000, Pakistan
| | - Erum Dilshad
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology(CUST), Islamabad, 44000, Pakistan.
| |
Collapse
|
4
|
Sharma M, Barravecchia I, Magnuson B, Ferris SF, Apfelbaum A, Mbah NE, Cruz J, Krishnamoorthy V, Teis R, Kauss M, Koschmann C, Lyssiotis CA, Ljungman M, Galban S. Histone H3 K27M-mediated regulation of cancer cell stemness and differentiation in diffuse midline glioma. Neoplasia 2023; 44:100931. [PMID: 37647805 PMCID: PMC10474232 DOI: 10.1016/j.neo.2023.100931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Therapeutic resistance remains a major obstacle to preventing progression of H3K27M-altered Diffuse Midline Glioma (DMG). Resistance is driven in part by ALDH-positive cancer stem cells (CSC), with high ALDH1A3 expression observed in H3K27M-mutant DMG biopsies. We hypothesized that ALDH-mediated stemness and resistance may in part be driven by the oncohistone itself. Upon deletion of H3K27M, ALDH1A3 expression decreased dramatically and was accompanied by a gain in astrocytic marker expression and a loss of neurosphere forming potential, indicative of differentiation. Here we show that the oncohistone regulates histone acetylation through ALDH1A3 in a Wnt-dependent manner and that loss of H3K27M expression results in sensitization of DMGs to radiotherapy. The observed elevated Wnt signaling in H3K27M-altered DMG likely stems from a dramatic suppression of mRNA and protein expression of the Wnt inhibitor EYA4 driven by the oncohistone. Thus, our findings identify EYA4 as a bona fide tumor suppressor in DMG that upon suppression, results in aberrant Wnt signaling to orchestrate stemness and differentiation. Future studies will explore whether overexpression of EYA4 in DMG can impede growth and invasion. In summary, we have gained mechanistic insight into H3K27M-mediated regulation of cancer stemness and differentiation, which provides rationale for exploring new therapeutic targets for DMG.
Collapse
Affiliation(s)
- Monika Sharma
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Radiology, The University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Ivana Barravecchia
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Radiology, The University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Brian Magnuson
- Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Biostatistics, School of Public Health, The University of Michigan, Ann Arbor, MI 48109, United States
| | - Sarah F Ferris
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Radiology, The University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - April Apfelbaum
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Radiology, The University of Michigan Medical School, Ann Arbor, MI 48109, United States; Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Nneka E Mbah
- Department of Molecular & Integrative Physiology, The University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Jeanette Cruz
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Radiology, The University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Varunkumar Krishnamoorthy
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Radiology, The University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Robert Teis
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Radiology, The University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - McKenzie Kauss
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Radiology, The University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Carl Koschmann
- Department of Pediatrics, The University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Costas A Lyssiotis
- Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Molecular & Integrative Physiology, The University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Mats Ljungman
- Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Radiation Oncology, The University of Michigan Medical School, Ann Arbor, MI 48109, United States; Center for RNA Biomedicine, The University of Michigan, Ann Arbor, MI 48109, United States
| | - Stefanie Galban
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Radiology, The University of Michigan Medical School, Ann Arbor, MI 48109, United States; Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| |
Collapse
|
5
|
Chong ZX, Ho WY, Yeap SK. Delineating the tumour-regulatory roles of EYA4. Biochem Pharmacol 2023; 210:115466. [PMID: 36849065 DOI: 10.1016/j.bcp.2023.115466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Eyes absent homolog 4 (EYA4) is a protein that regulates many vital cellular processes and organogenesis pathways. It possesses phosphatase, hydrolase, and transcriptional activation functions. Mutations in the Eya4 gene can cause sensorineural hearing loss and heart disease. In most non-nervous system cancers such as those of the gastrointestinal tract (GIT), hematological and respiratory systems, EYA4 acts as a putative tumor suppressor. However, in nervous system tumors such as glioma, astrocytoma, and malignant peripheral nerve sheath tumor (MPNST), it plays a putative tumor-promoting role. EYA4 interacts with various signaling proteins of the PI3K/AKT, JNK/cJUN, Wnt/GSK-3β, and cell cycle pathways to exert its tumor-promoting or tumor-suppressing effect. The tissue expression level and methylation profiles of Eya4 can help predict the prognosis and anti-cancer treatment response among cancer patients. Targeting and altering Eya4 expression and activity could be a potential therapeutic strategy to suppress carcinogenesis. In conclusion, EYA4 may have both putative tumor-promoting and tumor-suppressing roles in different human cancers and has the potential to serve as a prognostic biomarker and therapeutic agent in various cancer types.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia.
| |
Collapse
|
6
|
Martins-da-Silva A, Baroni M, Salomão KB, das Chagas PF, Bonfim-Silva R, Geron L, Cruzeiro GAV, da Silva WA, Corrêa CAP, Carlotti CG, de Paula Queiroz RG, Marie SKN, Brandalise SR, Yunes JA, Scrideli CA, Valera ET, Tone LG. Clinical Prognostic Implications of Wnt Hub Genes Expression in Medulloblastoma. Cell Mol Neurobiol 2023; 43:813-826. [PMID: 35366170 DOI: 10.1007/s10571-022-01217-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 03/22/2022] [Indexed: 11/03/2022]
Abstract
Medulloblastoma is the most common type of pediatric malignant primary brain tumor, and about one-third of patients die due to disease recurrence and most survivors suffer from long-term side effects. MB is clinically, genetically, and epigenetically heterogeneous and subdivided into at least four molecular subgroups: WNT, SHH, Group 3, and Group 4. We evaluated common differentially expressed genes between a Brazilian RNA-seq GSE181293 dataset and microarray GSE85217 dataset cohort of pediatric MB samples using bioinformatics methodology in order to identify hub genes of the molecular subgroups based on PPI network construction, survival and functional analysis. The main finding was the identification of five hub genes from the WNT subgroup that are tumor suppressors, and whose lower expression is related to a worse prognosis for MB patients. Furthermore, the common genes correlated with the five tumor suppressors participate in important pathways and processes for tumor initiation and progression, as well as development and differentiation, and some of them control cell stemness and pluripotency. These genes have not yet been studied within the context of MB, representing new important elements for investigation in the search for therapeutic targets, prognostic markers or for understanding of MB biology.
Collapse
Affiliation(s)
- Andrea Martins-da-Silva
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil.
| | - Mirella Baroni
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Karina Bezerra Salomão
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Pablo Ferreira das Chagas
- Department of Genetics, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Ricardo Bonfim-Silva
- Department of Surgery and Anatomy, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Lenisa Geron
- Department of Genetics, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Gustavo Alencastro Veiga Cruzeiro
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil.,Department of Pediatric Oncology, Harvard Medical School - Dana-Farber Cancer Institute, Boston, MA, USA
| | - Wilson Araújo da Silva
- Department of Genetics, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Carolina Alves Pereira Corrêa
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Carlos Gilberto Carlotti
- Department of Surgery and Anatomy, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Rosane Gomes de Paula Queiroz
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | - Carlos Alberto Scrideli
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil.,Department of Genetics, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz Gonzaga Tone
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil.,Department of Genetics, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
7
|
Zhu S, Li W, Zhang H, Yan Y, Mei Q, Wu K. Retinal determination gene networks: from biological functions to therapeutic strategies. Biomark Res 2023; 11:18. [PMID: 36750914 PMCID: PMC9906957 DOI: 10.1186/s40364-023-00459-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/28/2023] [Indexed: 02/09/2023] Open
Abstract
The retinal determinant gene network (RDGN), originally discovered as a critical determinator in Drosophila eye specification, has become an important regulatory network in tumorigenesis and progression, as well as organogenesis. This network is not only associated with malignant biological behaviors of tumors, such as proliferation, and invasion, but also regulates the development of multiple mammalian organs. Three members of this conservative network have been extensively investigated, including DACH, SIX, and EYA. Dysregulated RDGN signaling is associated with the initiation and progression of tumors. In recent years, it has been found that the members of this network can be used as prognostic markers for cancer patients. Moreover, they are considered to be potential therapeutic targets for cancer. Here, we summarize the research progress of RDGN members from biological functions to signaling transduction, especially emphasizing their effects on tumors. Additionally, we discuss the roles of RDGN members in the development of organs and tissue as well as their correlations with the pathogenesis of chronic kidney disease and coronary heart disease. By summarizing the roles of RDGN members in human diseases, we hope to promote future investigations into RDGN and provide potential therapeutic strategies for patients.
Collapse
Affiliation(s)
- Shuangli Zhu
- grid.412793.a0000 0004 1799 5032Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Wanling Li
- grid.412793.a0000 0004 1799 5032Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,grid.470966.aCancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032 China
| | - Hao Zhang
- grid.412793.a0000 0004 1799 5032Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Yuheng Yan
- grid.412793.a0000 0004 1799 5032Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Qi Mei
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China. .,Cancer Center, Tongji hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
8
|
Jia Y, Li HY, Wang J, Chen X, Lou L, Wei YY, Wang Y, Mo SJ. Tripartite motif containing 69 elicits ERK2-dependent EYA4 turnover to impart pancreatic tumorigenesis. J Cancer 2023; 14:200-218. [PMID: 36741265 PMCID: PMC9891873 DOI: 10.7150/jca.79905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/10/2022] [Indexed: 01/04/2023] Open
Abstract
Eyes absent homologue 4 (EYA4) is silenced in pancreatic ductal adenocarcinoma (PDAC) and functions as a tumor suppressor to restrain PDAC development, albeit the molecular mechanism underlying its downregulation remains enigmatic. Methods: Functional studies were determined by immunohistochemistry of PDAC samples from patients and Pdx1-Cre; LSL-KrasG12D/+; Trp53fl/+ (KPC) mice, three-dimensional spheroid culture, flow cytometry, MTT and subcutaneous xenograft experiments. Mechanistical studies were examined by cellular ubiquitination, cycloheximide (CHX) pulse-chase, co-immunoprecipitation, chromatin immunoprecipitation, GST-pulldown, in vitro protein kinase assay, immunofluorescence and luciferase reporter assays. Results: We screen E3 ligase that is negatively correlated with EYA4 and uncover a mutually exclusive interaction of tripartite motif containing 69 (TRIM69) with EYA4 in human PDAC. TRIM69 elicits EYA4 polyubiquitylation and turnover independent of P53 and impedes the EYA4-driven deactivation of β-catenin/ID2 cascade, fueling PDAC cell proliferation in vitro and tumor development in mice. Expression of TRIM69 is upregulated in PDAC samples from independent cohorts of patients and the Pdx1-Cre; LSL-KrasG12D/+; Trp53fl/+ (KPC) mice, and associated with unfavorable prognosis. Depleting TRIM69 preferentially induces lethality in the EYA4-deficient PDAC cells. We further unearth that ERK2 directly binds to the D-site of mitogen-activated protein kinase (MAPK) docking groove in EYA4 Leu512/514 and phosphorylates EYA4 at Ser37, which is instrumental for EYA4 polyubiquitylation and turnover by TRIM69. Conclusion: Our results define a previously unappreciated role of TRIM69-EYA4 axis in pancreatic tumorigenesis and underscore that targeting TRIM69 might be an effective therapeutic approach for PDAC harboring EYA4 deficiency.
Collapse
Affiliation(s)
- Yu Jia
- Cancer Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P.R. China
| | - Hui-Yan Li
- General Surgical Laboratory, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, P.R. China
| | - Jue Wang
- Department of Pathology, The First Affiliated Hospital, Sun Yet-Sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Xing Chen
- General Surgical Laboratory, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, P.R. China
| | - Lu Lou
- General Surgical Laboratory, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, P.R. China
| | - Yan-Yan Wei
- General Surgical Laboratory, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, P.R. China
| | - Ying Wang
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Shi-Jing Mo
- General Surgical Laboratory, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, P.R. China.,✉ Corresponding author: Shi-Jing Mo, MD, PhD, General Surgical Laboratory, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, P.R. China. E-mail: ; ORCID: https://orcid.org/0000-0002-2537-3255
| |
Collapse
|
9
|
Ling Q, Wu S, Liao X, Liu C, Chen Y. Anesthetic propofol enhances cisplatin-sensitivity of non-small cell lung cancer cells through N6-methyladenosine-dependently regulating the miR-486-5p/RAP1-NF-κB axis. BMC Cancer 2022; 22:765. [PMID: 35836137 PMCID: PMC9281112 DOI: 10.1186/s12885-022-09848-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/30/2022] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Drug resistance is a considerable challenge for chemotherapy in non-small cell lung cancer (NSCLC). Propofol, a commonly used intravenous anesthetics, has been reported to suppress the malignancy of various cancers. However, the effects of propofol on cisplatin (DDP) sensitivity in NSCLC and its molecular mechanisms have not been clearly clarified yet, and the present study aimed to resolve this problem. METHODS NSCLC cells were co-treated with propofol and DDP, Cell Counting kit-8 assay, colony formation assay and flow cytometry were conducted to test the role of propofol in regulating DDP-resistance in NSCLC. Next, through conducting quantitative real-time polymerase chain reaction, dual-luciferase gene reporter system and western blot, the responsible molecular axis in propofol regulating the DDP sensitivity in NSCLC was uncovered, and the function verification experiments were performed by transfection with the inhibitors or small interfering RNAs of those molecules. RESULTS Propofol suppressed cell viability, colony formation ability, tumorigenesis, and promoted cell apoptosis to enhance DDP-sensitivity in NSCLC in vitro and in vivo. Propofol increased miR-486-5p level in NSCLC cells and xenograft tumors tissues in a N6-methyladenosine (m6A)-dependent manner, thus inactivating the Ras-associated protein1 (RAP1)-NF-kappaB (NF-κB) axis. Propofol regulated the miR-486-5p/RAP1-NF-κB axis to improve DDP-sensitivity in NSCLC. CONCLUSIONS Taken together, this study firstly investigates the detailed molecular mechanisms by which propofol enhanced DDP-sensitivity in NSCLC cells, and a novel m6A-dependent miR-486-5p/RAP1-NF-κB axis is identified to be closely associated with the process.
Collapse
Affiliation(s)
- Quan Ling
- The First Department of Anesthesia, Zhongshan City People's Hospital, No.2, Sunwen East Road, Shiqi District, Zhongshan, 528400, China
| | - Shaoyong Wu
- Department of Anesthesiology, cancer prevention and treatment center, Sun Yat Sen University, Guangzhou, 510060, China
| | - Xiaozu Liao
- The First Department of Anesthesia, Zhongshan City People's Hospital, No.2, Sunwen East Road, Shiqi District, Zhongshan, 528400, China
| | - Chiyi Liu
- The First Department of Anesthesia, Zhongshan City People's Hospital, No.2, Sunwen East Road, Shiqi District, Zhongshan, 528400, China
| | - Yong Chen
- The First Department of Anesthesia, Zhongshan City People's Hospital, No.2, Sunwen East Road, Shiqi District, Zhongshan, 528400, China.
| |
Collapse
|
10
|
Almutairi BO, Almutairi MH, Alrefaei AF, Ali D, Alkahtani S, Alarifi S. Cigarette Smoke Regulates the Expression of EYA4 via Alternation of DNA Methylation Status. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5032172. [PMID: 35607307 PMCID: PMC9124125 DOI: 10.1155/2022/5032172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/28/2022] [Indexed: 11/21/2022]
Abstract
Cigarette SMOKE (CS) considerably contributes to causing some diseases such as cancer, and it has a role in the alternation of gene expression through several mechanisms including epigenetics modification, particularly DNA methylation. EYA4 is one of the genes, that whose expression has been dysregulated in lung, colon, bladder, and breast cancer, leading to tumor progression. The alternation of DNA methylation levels has been implicated in regulating the expression of the EYA4 gene. Thus, in this study, we have shown the effect of CS on the DNA methylation level of the EYA4 promoter region as well as the methylation level on EYA4 expression. To determine the level of DNA methylation on the promoter region of the EYA4 gene, we have employed the bisulfite conversion treatment followed by the Sanger Sequence for 100 DNA samples taken from Saudi people (50 smokers and 50 nonsmokers). We found that 26% of DNA extracted from smoker samples is methylated, while there was no methylation identified in nonsmoker samples. Also, using the demethylating agents such as AZA on LoVo and Caco-2 cancer cell lines causes induction of transcription level of EYA4, implying the possible mechanism of DNA methylation in the upregulation of EYA4. These findings suggest the possible mechanism of CS in controlling the expression of EYA4 via changing the status of DNA methylation.
Collapse
Affiliation(s)
- Bader O. Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box: 2455, 11451 Riyadh, Saudi Arabia
| | - Mikhlid H. Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box: 2455, 11451 Riyadh, Saudi Arabia
| | - Abdulwahed F. Alrefaei
- Department of Zoology, College of Science, King Saud University, P.O. Box: 2455, 11451 Riyadh, Saudi Arabia
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, P.O. Box: 2455, 11451 Riyadh, Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P.O. Box: 2455, 11451 Riyadh, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, P.O. Box: 2455, 11451 Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Wu H, Liang J. Contributions of NFKB1 -94insertion/deletion ATTG polymorphism to the susceptibility of gastrointestinal cancers: A meta-analysis. J Cell Mol Med 2021; 25:10674-10683. [PMID: 34672421 PMCID: PMC8581328 DOI: 10.1111/jcmm.17004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 12/16/2022] Open
Abstract
Nuclear factor-kappa B1 (NF-κB1), a pleiotropic transcription factor, functions as a critical contributor to tumorigenesis. Growing numbers of case-control studies were carried out to analyse the potential contribution of NF-κB1 gene variants to gastrointestinal cancer risk, yet remains conflicting conclusions. Therefore, we conducted this most up-to-date meta-analysis to evaluate the relationship between NF-κB1 gene insertion (I)/deletion (D) polymorphism, namely -94ins/delATTG or rs28362491, and the susceptibility to gastrointestinal cancers. We searched PubMed, EMBASE and MEDLINE databases updated in April 2021 for relevant studies. Meta-analysis was carried out by software Stata11.0. The quantification of the relationship was determined by computing the combined odds ratios (ORs) and their corresponding 95% confidence intervals (CIs). Sensitivity analysis, the funnel plot and Begg's rank correlation test were also applied. Our findings indicate that -94ins/delATTG polymorphism could not significantly impact the susceptibility to gastrointestinal cancers. Under any five genetic models, -94ins/delATTG polymorphism was not remarkedly linked to the risk of colorectal, gastric and oesophageal cancer, respectively. The significant role of -94ins/delATTG was only observed in some certain subgroups. Findings here suggest that NF-κB1 gene -94ins/delATTG polymorphism may not predispose to gastrointestinal cancer susceptibility.
Collapse
Affiliation(s)
- Hanqiang Wu
- Department of Gastrointestinal SurgeryThe First People’s Hospital of ZhaoqingZhaoqingChina
| | - Jianrong Liang
- Department of Gastrointestinal SurgeryThe First People’s Hospital of ZhaoqingZhaoqingChina
| |
Collapse
|
12
|
Jia Y, Li HY, Wang Y, Wang J, Zhu JW, Wei YY, Lou L, Chen X, Mo SJ. Crosstalk between hypoxia-sensing ULK1/2 and YAP-driven glycolysis fuels pancreatic ductal adenocarcinoma development. Int J Biol Sci 2021; 17:2772-2794. [PMID: 34345207 PMCID: PMC8326115 DOI: 10.7150/ijbs.60018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/13/2021] [Indexed: 12/29/2022] Open
Abstract
Autophagy and glycolysis are two catabolic processes that manipulate pancreatic ductal adenocarcinoma (PDAC) development in response to hypoxia sensing, yet the underlying mechanism of how they are interlinked remain elusive. Methods: The functional roles of Unc-51 like kinase 1 and 2 (ULK1/2) in pyruvate kinase M2 (PKM2) transcription and glycolysis under hypoxia were assessed by chromatin immunoprecipitation, luciferase reporter, glucose consumption and lactate production assay. Co-immunoprecipitation, cellular ubiquitination, His-pulldown, in vitro protein kinase assay, immunofluorescence, immunohistochemistry, CRISPR technology, in silico studies were adopted to determine the molecular mechanism. Correlation analyses were performed in KPC (Pdx1-Cre; LSL-KrasG12D/+; Trp53fl/+) mice and clinical samples from PDAC patients. Therapeutic potential of ULK1/2 inhibitor and 2-deoxyglucose (2-DG) or 3-bromopyruvate (3-BP) was evaluated in cell-derived xenograft (CDX) and the patient-derived xenograft (PDX) models of nude mice. Results: ULK1/2, but not ULK3, augments hypoxic glycolysis in PDAC cells mediated by PKM2 independent of BCL2/adenovirus E1B 19 kDa interacting protein 3 (BNIP3). Mechanistically, hypoxia stimulates ULK1 to translocate into nucleus, where it interacts with and phosphorylates yes-associated protein (YAP) at Ser227, resulting in YAP stabilization through blockade of ubiquitin-proteasome system (UPS), which in turn facilitates PKM2 transcription, glycolysis, cell proliferation in vitro as well as PDAC growth in mice. ULK1/2 is positively correlated with YAP and PKM2 in tumor tissues from KPC mice and clinical samples from PDAC patients. Pharmacological deactivation of ULK1/2 potentiates the antineoplastic efficacy of 2-DG and 3-BP in CDX and PDX models. Conclusion: Our findings underscore the Ser227 autophosphorylation-dependent nuclear YAP stabilization as a central node that couples ULK1/2-initiated autophagy to hypoxic glycolysis during PDAC development and propose that targeting ULK1/2 combined with 2-DG or 3-BP might be a feasible therapeutic strategy against PDAC.
Collapse
Affiliation(s)
- Yu Jia
- Cancer Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P.R.China
| | - Hui-Yan Li
- General Surgical Laboratory, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, P.R.China
| | - Ying Wang
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R.China
| | - Jue Wang
- Department of Pathology, The First Affiliated Hospital, Sun Yet-Sen University, Guangzhou 510080, Guangdong, P.R.China
| | - Jing-Wen Zhu
- General Surgical Laboratory, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, P.R.China
| | - Yan-Yan Wei
- General Surgical Laboratory, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, P.R.China
| | - Lu Lou
- General Surgical Laboratory, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, P.R.China
| | - Xing Chen
- General Surgical Laboratory, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, P.R.China
| | - Shi-Jing Mo
- General Surgical Laboratory, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, P.R.China
| |
Collapse
|
13
|
Kumari S, Arora M, Singh J, Kadian LK, Yadav R, Chauhan SS, Chopra A. Molecular Associations and Clinical Significance of RAPs in Hepatocellular Carcinoma. Front Mol Biosci 2021; 8:677979. [PMID: 34235179 PMCID: PMC8255377 DOI: 10.3389/fmolb.2021.677979] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive gastrointestinal malignancy with a high rate of mortality. Multiple studies have individually recognized members of RAP gene family as critical regulators of tumor progression in several cancers, including hepatocellular carcinoma. These studies suffer numerous limitations including a small sample size and lack of analysis of various clinicopathological and molecular features. In the current study, we utilized authoritative multi-omics databases to determine the association of RAP gene family expression and detailed molecular and clinicopathological features in hepatocellular carcinoma (HCC). All five RAP genes were observed to harbor dysregulated expression in HCC compared to normal liver tissues. RAP2A exhibited strongest ability to differentiate tumors from the normal tissues. RAP2A expression was associated with progressive tumor grade, TP53 and CTNNB1 mutation status. Additionally, RAP2A expression was associated with the alteration of its copy numbers and DNA methylation. RAP2A also emerged as an independent marker for patient prognosis. Further, pathway analysis revealed that RAP2A expression is correlated with tumor-infiltrating immune cell composition and oncogenic molecular pathways, such as cell cycle and cellular metabolism.
Collapse
Affiliation(s)
- Sarita Kumari
- Laboratory Oncology Unit, Dr. BRA-IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Mohit Arora
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Jay Singh
- Laboratory Oncology Unit, Dr. BRA-IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Lokesh K Kadian
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rajni Yadav
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Shyam S Chauhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Anita Chopra
- Laboratory Oncology Unit, Dr. BRA-IRCH, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
14
|
Li H, Han G, Li X, Li B, Wu B, Jin H, Wu L, Wang W. MAPK-RAP1A Signaling Enriched in Hepatocellular Carcinoma Is Associated With Favorable Tumor-Infiltrating Immune Cells and Clinical Prognosis. Front Oncol 2021; 11:649980. [PMID: 34178637 PMCID: PMC8222816 DOI: 10.3389/fonc.2021.649980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022] Open
Abstract
Background MAPK-RAP1A signaling, which is involved in cancer progression, remains to be defined. Upregulation of MAPK-RAP1A signaling accounts for most cancers that harbor high incident rate, such as non-small cell lung cancer (NSCLC) and pancreatic cancer, especially in hepatocellular carcinoma (HCC). MAPK-RAP1A signaling plays an important function as clinical diagnosis and prognostic value in cancers, and the role of MAPK-RAP1A signaling related with immune infiltration for HCC should be elucidated. Methods Microarray data and patient cohort information from The Cancer Genome Atlas (TCGA; n = 425) and International Cancer Genome Consortium (ICGC; n = 405) were selected for validation. The Cox regression and least absolute shrinkage and selection operator (LASSO) were used to construct a clinical prognostic model in this analysis and validation study. We also tested the area under the curve (AUC) of the risk signature that could reflect the status of predictive power by determining model. MAPK-RAP1A signaling is also associated with tumor-infiltrating immune cells (TICs) as well as clinical parameters in HCC. The GSEA and CIBERSORT were used to calculate the proportion of TICs, which should be beneficial for the clinical characteristics (clinical stage, distant metastasis) and positively correlated with the survival of HCC patients. Results HCC patients with enrichment of MAPK-RAP1A signaling were associated with clinical characteristics and favorable T cell gamma delta (Vδ T cells), and STMN1, RAP1A, FLT3, HSPA8, ANGPT2, and PGF were used as candidate biomarkers for risk scores of HCC. To determine the molecular mechanism of this signature gene association, Gene Set Enrichment Analysis (GSEA) was proposed. Cytokine-cytokine receptor interaction, TGF-β signaling pathway, and Intestinal immune network for IgA production gene sets were closely related in MAPK-RAP1A gene sets. Thus, we established a novel prognostic prediction of HCC to deepen learning of MAPK-RAP1A signaling pathways. Conclusion Our findings demonstrated that HCC patients with enrichment of MAPK-RAP1A signaling were associated with clinical characteristics and favorable T cell gamma delta (Vδ T cells), which may be a novel prognostic prediction of HCC.
Collapse
Affiliation(s)
- Hailin Li
- Department of General Surgery, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Guangyu Han
- Department of General Surgery, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Xing Li
- Department of General Surgery, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Bowen Li
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Wu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Hongyuan Jin
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Lingli Wu
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wei Wang
- Department of General Surgery, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
15
|
A novel DNA methylation-based model that effectively predicts prognosis in hepatocellular carcinoma. Biosci Rep 2021; 41:227938. [PMID: 33634306 PMCID: PMC7955104 DOI: 10.1042/bsr20203945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE To build a novel predictive model for hepatocellular carcinoma (HCC) patients based on DNA methylation data. METHODS Four independent DNA methylation datasets for HCC were used to screen for common differentially methylated genes (CDMGs). Gene Ontology (GO) enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were used to explore the biological roles of CDMGs in HCC. Univariate Cox analysis and least absolute shrinkage and selection operator (LASSO) Cox analysis were performed to identify survival-related CDMGs (SR-CDMGs) and to build a predictive model. The importance of this model was assessed using Cox regression analysis, propensity score-matched (PSM) analysis and stratification analysis. A validation group from the Cancer Genome Atlas (TCGA) was constructed to further validate the model. RESULTS Four SR-CDMGs were identified and used to build the predictive model. The risk score of this model was calculated as follows: risk score = (0.01489826 × methylation level of WDR69) + (0.15868618 × methylation level of HOXB4) + (0.16674959 × methylation level of CDKL2) + (0.16689301 × methylation level of HOXA10). Kaplan-Meier analysis demonstrated that patients in the low-risk group had a significantly longer overall survival (OS; log-rank P-value =0.00071). The Cox model multivariate analysis and PSM analysis identified the risk score as an independent prognostic factor (P<0.05). Stratified analysis results further confirmed this model performed well. By analyzing the validation group, the results of receiver operating characteristic (ROC) curve analysis and survival analysis further validated this model. CONCLUSION Our DNA methylation-based prognosis predictive model is effective and reliable in predicting prognosis for patients with HCC.
Collapse
|
16
|
Zhu J, Hu LB, Zhao YP, Zhang YQ. Prognostic Role of EYA4 in Lower Grade Glioma with IDH1 Mutation and 1p19q Co-Deletion. World Neurosurg 2021; 149:e1174-e1179. [PMID: 33631386 DOI: 10.1016/j.wneu.2020.07.094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Eyes absent 4 (EYA4) participates in an important role in various cancers. Patients with low EYA4 expression have significantly favorable prognosis compared with those with high EYA4 expression. However, the expression and role of EYA4 in lower grade glioma (LGG) has not been fully elucidated. METHODS The R2 and UCSC Xena browser based on data from 284 cases in GSE16011 from Gene Expression Omnibus datasets and 530 cases of patients with LGG in The Cancer Genome Atlas database were extracted for bioinformatic analyses. The EYA4 expression in different subtypes of LGG was detected. Kaplan-Meier survival curves were generated to explore the association between EYA4 expression and overall survival (OS) in both datasets. RESULTS Patients with LGG with lower EYA4 expression had significantly longer 5- and 10-year OS in 2 datasets (P < 0.001). By matching histological subtypes and gene expression profiles of patients with LGG, oligoastrocytoma and oligodendroglioma groups had lower EYA4 expression and longer OS compared with the astrocytoma group (P < 0.05). Patients with IDH1 mutations and 1p19q co-deletion had longer 5- and 10-year OS (P < 0.001), and EYA4 expression was significantly downregulated in these patients (P < 0.001). CONCLUSIONS This study suggests that EYA4 can be used as a prognostic marker and provide a potential therapeutic target in patients with LGG with IDH1 mutation and 1p19q co-deletion.
Collapse
Affiliation(s)
- Jin Zhu
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Li-Bo Hu
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Ya-Peng Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu-Qi Zhang
- Department of Neurosurgery, Yuquan Hospital, Tsinghua University, Beijing, China.
| |
Collapse
|
17
|
Niu ZS, Wang WH, Dong XN, Tian LML. Role of long noncoding RNA-mediated competing endogenous RNA regulatory network in hepatocellular carcinoma. World J Gastroenterol 2020; 26:4240-4260. [PMID: 32848331 PMCID: PMC7422540 DOI: 10.3748/wjg.v26.i29.4240] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/05/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) are noncoding RNAs (ncRNAs) that occupy over 90% of the human genome, and their main function is to directly or indirectly regulate messenger RNA (mRNA) expression and participate in the tumorigenesis and progression of malignances. In particular, some lncRNAs can interact with miRNAs as competing endogenous RNAs (ceRNAs) to modulate mRNA expression. Accordingly, these RNA molecules are interrelated and coordinate to form a dynamic lncRNA-mediated ceRNA regulatory network. Mounting evidence has revealed that lncRNAs that act as ceRNAs are closely related to tumorigenesis. To date, numerous studies have established many different regulatory networks in hepatocellular carcinoma (HCC), and perturbations in these ceRNA interactions may result in the initiation and progression of HCC. Herein, we emphasize recent advances concerning the biological function of lncRNAs as ceRNAs in HCC, with the aim of elucidating the molecular mechanism underlying these HCC-related RNA molecules and providing novel insights into the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Zhao-Shan Niu
- Laboratory of Micromorphology, School of Basic Medicine, Medical Department of Qingdao University, Qingdao 266071, Shandong Province, China
| | - Wen-Hong Wang
- Department of Pathology, School of Basic Medicine, Medical Department of Qingdao University, Qingdao 266071, Shandong Province, China
| | - Xian-Ning Dong
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao 266061, Shandong Province, China
| | - Li-Mei-Li Tian
- BGI Gene Innovation Class, School of Basic Medicine, Medical Department of Qingdao University, Qingdao 266071, Shandong Province, China
| |
Collapse
|
18
|
Zhang R, Wu J, Yang Y, Xia D, Li J, Quan H, Niu Z, Yang Y, Wu J. Donor polymorphisms of Rap1A rs494453 contribute to a higher risk of hepatocellular carcinoma recurrence following liver transplantation. J Cancer 2020; 11:3082-3088. [PMID: 32226523 PMCID: PMC7086244 DOI: 10.7150/jca.39712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) recurrence appears commonly after liver transplantation (LT), and it severely affected the long-term survival of patients. Previous studies have proved that Rap1A is involved in hepatocarcinogenesis and metastasis, and demonstrated the significant association between Rap1A gene rs494453 polymorphism and HCC. However, the relationship between Rap1A rs494453 polymorphism and HCC recurrence after LT remained unclear. Methods: A total of 74 HCC patients who underwent LT from July 2005 to June 2015 was analyzed. The genotypes of both donors and recipients had been confirmed as Rap1A rs494453. The independent risk factors that associated with HCC recurrence were investigated with univariate and multivariate logistic regression analysis. The recurrence-free (RFS) and overall survival (OS) were calculated with Cox regression analysis. The Rap1A rs494453 genotype frequencies were determined using the Χ² test and the minor allele frequencies (MAFs) of Rap1A rs494453 genotypes were calculated by Hardy-Weinberg equilibrium. Results: We found that the donor Rap1A rs494453 polymorphism was profoundly associated with HCC recurrence after LT. Moreover, the Milan criteria, microvascular invasion and donor Rap1A rs494453 genotype were proved to be independent risk factors for HCC recurrence. Patients with donor AG/GG genotypes had a distinct lower RFS and OS than AA genotype. The TNM stage, Milan criteria, microvascular invasion, and donor Rap1A rs494453 genotype were independent factors for the RFS of LT patients. Conclusions: Donor Rap1A rs494453 is a potential predictive marker for HCC recurrence risk after LT.
Collapse
Affiliation(s)
- Rulin Zhang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Junyi Wu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yiming Yang
- School of Life Science, Shanghai University, Shanghai, People's Republic of China
| | - Dongge Xia
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jiayong Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Heng Quan
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ziguang Niu
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ye Yang
- Department of Gastroenterology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, People's Republic of China
| | - Jun Wu
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
19
|
Gao L, Xiong DD, He RQ, Yang X, Lai ZF, Liu LM, Huang ZG, Wu HY, Yang LH, Ma J, Li SH, Lin P, Yang H, Luo DZ, Dang YW, Chen G. MIR22HG As A Tumor Suppressive lncRNA In HCC: A Comprehensive Analysis Integrating RT-qPCR, mRNA-Seq, And Microarrays. Onco Targets Ther 2019; 12:9827-9848. [PMID: 31819482 PMCID: PMC6875507 DOI: 10.2147/ott.s227541] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022] Open
Abstract
Introduction MIR22HG has a reported involvement in the tumorigenesis of a variety of cancers, including hepatocellular carcinoma (HCC). However, the exact molecular mechanism of MIR22HG in HCC has not been clarified. Methods In the present study, we integrated data from in-house RT-qPCR, RNA-sequencing, microarray, and literature studies to conduct a comprehensive evaluation of the clinico-pathological and prognostic significance of MIR22HG in an extremely large group of HCC samples. We also explored the potential mechanism of MIR22HG in HCC by analyzing the alteration profiles of MIR22HG in HCC to predict transcription factors (TFs) that may interact with MIR22HG and to annotate the biological functions of genes co-expressed with MIR22HG. MIR22HG expression was also compared in HCC nude mice xenografts before and after a treatment with nitidine chloride. Results We found that MIR22HG was downregulated in HCC and that this downregulation correlated with the malignant phenotype of HCC. Comprehensive analysis of the prognostic impact of MIR22HG in HCC revealed a beneficial effect of MIR22HG on the survival outcome of HCC patients. Seven cases of MIR22HG deep deletion occurred in 360 of the cancer genome atlas (TCGA) provisional HCC samples. A total of 22 MIR22HG-TF-mRNA triplets in HCC were predicted by the lncRNAmap. Co-expressed genes of MIR22HG, identified by weighted correlation network analysis (WGCNA), mainly participated in the pathways involving osteoclast differentiation, chemokine signaling pathways, and hematopoietic cell lineage. In vivo experiments demonstrated that nitidine chloride could stimulate MIR22HG expression in HCC xenografts. Conclusion In summary, MIR22HG may play a tumor-suppressive role in HCC by coordinating with predicted TFs and co-expressed genes, such as NLRP3, CSF1R, SIGLEC10, and ZEB2, or by being controlled by nitidine chloride.
Collapse
Affiliation(s)
- Li Gao
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, Zhuang Autonomous Region 530021, People's Republic of China
| | - Dan-Dan Xiong
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, Zhuang Autonomous Region 530021, People's Republic of China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, Zhuang Autonomous Region 530021, People's Republic of China
| | - Xia Yang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, Zhuang Autonomous Region 530021, People's Republic of China
| | - Ze-Feng Lai
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, Zhuang Autonomous Region 530021, People's Republic of China
| | - Li-Min Liu
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, Zhuang Autonomous Region 530021, People's Republic of China
| | - Zhi-Guang Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, Zhuang Autonomous Region 530021, People's Republic of China
| | - Hua-Yu Wu
- Department of Cell Biology and Genetics, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi, Zhuang Autonomous Region 530021, People's Republic of China
| | - Li-Hua Yang
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, Zhuang Autonomous Region 530021, People's Republic of China
| | - Jie Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, Zhuang Autonomous Region 530021, People's Republic of China
| | - Sheng-Hua Li
- Department of Urology Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, Zhuang Autonomous Region 530021, People's Republic of China
| | - Peng Lin
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, Zhuang Autonomous Region 530021, People's Republic of China
| | - Hong Yang
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, Zhuang Autonomous Region 530021, People's Republic of China
| | - Dian-Zhong Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, Zhuang Autonomous Region 530021, People's Republic of China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, Zhuang Autonomous Region 530021, People's Republic of China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, Zhuang Autonomous Region 530021, People's Republic of China
| |
Collapse
|
20
|
Zhu XX, Li JH, Cai JP, Hou X, Huang CS, Huang XT, Wang JQ, Li SJ, Xu QC, Yin XY. EYA4 inhibits hepatocellular carcinoma by repressing MYCBP by dephosphorylating β-catenin at Ser552. Cancer Sci 2019; 110:3110-3121. [PMID: 31385398 PMCID: PMC6778622 DOI: 10.1111/cas.14159] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/16/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies and the fourth leading cause of cancer-related death worldwide. Our previous study showed that EYA4 functioned by suppressing growth of HCC tumor cells, but its molecular mechanism is still not elucidated. Based on the results of gene microassay, EYA4 was inversely correlated with MYCBP and was verified in human HCC tissues by immunohistochemistry and western blot. Overexpressed and KO EYA4 in human HCC cell lines confirmed the negative correlation between EYA4 and MYCBP by qRT-PCR and western blot. Transfected siRNA of MYCBP in EYA4 overexpressed cells and overexpressed MYCBP in EYA4 KO cells could efficiently rescue the proliferation and G2/M arrest effects of EYA4 on HCC cells. Mechanistically, armed with serine/threonine-specific protein phosphatase activity, EYA4 reduced nuclear translocation of β-catenin by dephosphorylating β-catenin at Ser552, thereby suppressing the transcription of MYCBP which was induced by β-catenin/LEF1 binding to the promoter of MYCBP. Clinically, HCC patients with highly expressed EYA4 and poorly expressed MYCBP had significantly longer disease-free survival and overall survival than HCC patients with poorly expressed EYA4 and highly expressed MYCBP. In conclusion, EYA4 suppressed HCC tumor cell growth by repressing MYCBP by dephosphorylating β-catenin S552. EYA4 combined with MYCBP could be potential prognostic biomarkers in HCC.
Collapse
Affiliation(s)
- Xiao-Xu Zhu
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jian-Hui Li
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jian-Peng Cai
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xun Hou
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chen-Song Huang
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xi-Tai Huang
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jie-Qin Wang
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shi-Jin Li
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiong-Cong Xu
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiao-Yu Yin
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
Ming XL, Feng YL, He DD, Luo CL, Rong JL, Zhang WW, Ye P, Chai HY, Liang CZ, Tu JC. Role of BCYRN1 in hepatocellular carcinoma pathogenesis by lncRNA-miRNA-mRNA network analysis and its diagnostic and prognostic value. Epigenomics 2019; 11:1209-1231. [PMID: 31339046 DOI: 10.2217/epi-2018-0218] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: This study aimed to excavate the roles of BCYRN1 in hepatocellular carcinoma (HCC). Methods: A comprehensive strategy of microarray data mining, computational biology and experimental verification were adopted to assess the clinical significance of BCYRN1 and identify related pathways. Results: BCYRN1 was upregulated in HCC and its expression was positively associated with both tumor, node, metastasis and worse survival rate in patients with HCC. Through combing plasma BCYRN1 with alpha fetoprotein, the diagnosis of HCC was remarkably improved. BCYRN1 may regulate some cancer-related pathways to promote HCC initiation via an lncRNA-miRNA-mRNA network. Conclusion: Our results propose BCYRN1 as a potential diagnostic and prognostic biomarker and offer a novel perspective to explore the etiopathogenesis of HCC.
Collapse
Affiliation(s)
- Xin-Liang Ming
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Yan-Lin Feng
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Ding-Dong He
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Chang-Liang Luo
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Jia-Ling Rong
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Wu-Wen Zhang
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Peng Ye
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Hong-Yan Chai
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Chun-Zi Liang
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Jian-Cheng Tu
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| |
Collapse
|
22
|
Tang D, Zhao L, Peng C, Ran K, Mu R, Ao Y. LncRNA CRNDE promotes hepatocellular carcinoma progression by upregulating SIX1 through modulating miR‐337‐3p. J Cell Biochem 2019; 120:16128-16142. [PMID: 31099050 DOI: 10.1002/jcb.28894] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/10/2019] [Accepted: 03/22/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Dan Tang
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Zunyi Medical College Zunyi Guizhou China
| | - Lijin Zhao
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Zunyi Medical College Zunyi Guizhou China
| | - Cijun Peng
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Zunyi Medical College Zunyi Guizhou China
| | - Kaiqiong Ran
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Zunyi Medical College Zunyi Guizhou China
| | - Rui Mu
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Zunyi Medical College Zunyi Guizhou China
| | - Yu Ao
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Zunyi Medical College Zunyi Guizhou China
| |
Collapse
|
23
|
Dong W, Bi J, Liu H, Yan D, He Q, Zhou Q, Wang Q, Xie R, Su Y, Yang M, Lin T, Huang J. Circular RNA ACVR2A suppresses bladder cancer cells proliferation and metastasis through miR-626/EYA4 axis. Mol Cancer 2019; 18:95. [PMID: 31101108 PMCID: PMC6524247 DOI: 10.1186/s12943-019-1025-z] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/02/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have been considered to mediate occurrence and development of human cancers, generally acting as microRNA (miRNA) sponges to regulate downstream genes expression. However, the aberrant expression profile and dysfunction of circRNAs in human bladder cancer remain to be investigated. The present study aims to elucidate the potential role and molecular mechanism of circACVR2A in regulating the proliferation and metastasis of bladder cancer. METHODS circACVR2A (hsa_circ_0001073) was identified by RNA-sequencing and validated by quantitative real-time polymerase chain reaction and agarose gel electrophoresis. The role of circACVR2A in bladder cancer was assessed both in vitro and in vivo. Biotin-coupled probe pull down assay, biotin-coupled microRNA capture, dual-luciferase reporter assay, and fluorescence in situ hybridization were conducted to evaluate the interaction between circACVR2A and microRNAs. RESULTS The expression of circACVR2A was lower in bladder cancer tissues and cell lines. The down-regulation of circACVR2A was positively correlated with aggressive clinicopathological characteristics, and circACVR2A served as an independent risk factor for overall survival in bladder cancer patients after cystectomy. Our in vivo and in vitro data indicated that circACVR2A suppressed the proliferation, migration and invasion of bladder cancer cells. Mechanistically, we found that circACVR2A could directly interact with miR-626 and act as a miRNA sponge to regulate EYA4 expression. CONCLUSIONS circACVR2A functions as a tumor suppressor to inhibit bladder cancer cell proliferation and metastasis through miR-626/EYA4 axis, suggesting that circACVR2A is a potential prognostic biomarker and therapeutic target for bladder cancer.
Collapse
Affiliation(s)
- Wei Dong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107th Yanjiangxi Road, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107th Yanjiangxi Road, Guangzhou, China
| | - Junming Bi
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107th Yanjiangxi Road, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107th Yanjiangxi Road, Guangzhou, China
| | - Hongwei Liu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107th Yanjiangxi Road, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107th Yanjiangxi Road, Guangzhou, China
| | - Dong Yan
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107th Yanjiangxi Road, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107th Yanjiangxi Road, Guangzhou, China
| | - Qingqing He
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107th Yanjiangxi Road, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107th Yanjiangxi Road, Guangzhou, China
| | - Qianghua Zhou
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107th Yanjiangxi Road, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107th Yanjiangxi Road, Guangzhou, China
| | - Qiong Wang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107th Yanjiangxi Road, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107th Yanjiangxi Road, Guangzhou, China
| | - Ruihui Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107th Yanjiangxi Road, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107th Yanjiangxi Road, Guangzhou, China
| | - Yinjie Su
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107th Yanjiangxi Road, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107th Yanjiangxi Road, Guangzhou, China
| | - Meihua Yang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107th Yanjiangxi Road, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107th Yanjiangxi Road, Guangzhou, China
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107th Yanjiangxi Road, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107th Yanjiangxi Road, Guangzhou, China.
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107th Yanjiangxi Road, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107th Yanjiangxi Road, Guangzhou, China.
| |
Collapse
|
24
|
Phosphorylation of 14-3-3ζ links YAP transcriptional activation to hypoxic glycolysis for tumorigenesis. Oncogenesis 2019; 8:31. [PMID: 31076568 PMCID: PMC6510816 DOI: 10.1038/s41389-019-0143-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/24/2019] [Accepted: 04/17/2019] [Indexed: 12/20/2022] Open
Abstract
Hypoxic microenvironment deregulates metabolic homeostasis in cancer cells albeit the underlying mechanisms involved in this process remain hitherto enigmatic. 14-3-3ζ/Yes-associated protein (YAP) axis plays a principal role in malignant transformation and tumor development. Here, we report that hypoxia disassembles 14-3-3ζ from YAP and thereby promotes YAP nuclear localization mediated by ERK2, which directly binds to the D-site of mitogen-activated protein kinase (MAPK) docking domain in 14-3-3ζ Leu98/100 and phosphorylates 14-3-3ζ at Ser37. When localizing in nucleus, YAP recruits at pyruvate kinase M2 (PKM2) gene promoter with hypoxia-inducible factor 1α (HIF-1α), for which PKM2 transcription is required. 14-3-3ζ Ser37 phosphorylation is instrumental for the hypoxia-induced glucose uptake, lactate production, and clonogenicity of pancreatic ductal adenocarcinoma (PDAC) cells, as well as tumorigenesis in mice. The 14-3-3ζ Ser37 phosphorylation positively correlates with p-ERK1/2 activity and HIF-1α expression in clinical samples from patients with PDAC and predicts unfavorable prognosis. Our findings underscore an appreciable linkage between YAP transcriptional activation and hypoxic glycolysis governed by ERK2-dependent 14-3-3ζ Ser37 phosphorylation for malignant progression of PDAC.
Collapse
|
25
|
Gu F, Yuan S, Liu L, Zhu P, Yang Y, Pan Z, Zhou W. EYA4 serves as a prognostic biomarker in hepatocellular carcinoma and suppresses tumour angiogenesis and metastasis. J Cell Mol Med 2019; 23:4208-4216. [PMID: 30957411 PMCID: PMC6533515 DOI: 10.1111/jcmm.14309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/27/2019] [Accepted: 03/11/2019] [Indexed: 12/14/2022] Open
Abstract
Eye absent homolog 4 (EYA4) has been demonstrated to be down‐regulated in hepatocellular carcinoma (HCC), but its biological function and the mechanism in HCC angiogenesis and metastasis remain largely unknown. Herein, we showed that EYA4 expression was frequently low in HCC tissue samples compared with matched adjacent non‐tumourous tissues. In the analysis of 302 HCC specimens, we revealed that decreased expression of EYA4 correlated with tumour differentiation status. Univariate and multivariate analyses identified EYA4 as an independent risk factor for recurrence‐free survival (RFS) and overall survival (OS) among the 302 patients. Functional assays showed that forced expression of EYA4 suppressed HCC cell migration, invasion and capillary tube formation of endothelial cells in vitro, as well as in vivo tumour angiogenesis and metastasis in a mouse model. Furthermore, mechanism study exhibited that EYA4 could inhibit HCC angiogenesis and metastasis by inhibiting c‐JUN/VEGFA pathway. Together, we provide proof that EYA4 is a novel tumour suppressor in HCC and a new prognostic biomarker and therapeutic target in HCC.
Collapse
Affiliation(s)
- Fangming Gu
- The Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Shengxian Yuan
- The Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Lei Liu
- The Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Peng Zhu
- The Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Yuan Yang
- The Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Zeya Pan
- The Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Weiping Zhou
- The Third Department of Hepatic Surgery, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| |
Collapse
|
26
|
Kingsbury TJ, Kim M, Civin CI. Regulation of cancer stem cell properties by SIX1, a member of the PAX-SIX-EYA-DACH network. Adv Cancer Res 2019; 141:1-42. [PMID: 30691681 DOI: 10.1016/bs.acr.2018.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The PAX-SIX-EYA-DACH network (PSEDN) is a central developmental transcriptional regulatory network from Drosophila to humans. The PSEDN is comprised of four conserved protein families; including paired box (PAX), sine oculis (SIX), eyes absent (EYA), and dachshund (DACH). Aberrant expression of PSEDN members, particularly SIX1, has been observed in multiple human cancers, where SIX1 expression correlates with increased aggressiveness and poor prognosis. In conjunction with its transcriptional activator EYA, the SIX1 transcription factor increases cancer stem cell (CSC) numbers and induces epithelial-mesenchymal transition (EMT). SIX1 promotes multiple hallmarks and enabling characteristics of cancer via regulation of cell proliferation, senescence, apoptosis, genome stability, and energy metabolism. SIX1 also influences the tumor microenvironment, enhancing recruitment of tumor-associated macrophages and stimulating angiogenesis, to promote tumor development and progression. EYA proteins are multifunctional, possessing a transcriptional activation domain and tyrosine phosphatase activity, that each contributes to cancer stem cell properties. DACH proteins function as tumor suppressors in solid cancers, opposing the actions of SIX-EYA and reducing CSC prevalence. Multiple mechanisms can lead to increased SIX1 expression, including loss of SIX1-targeting tumor suppressor microRNAs (miRs), whose expression correlates inversely with SIX1 expression in cancer patient samples. In this review, we discuss the major mechanisms by which SIX1 confers CSC and EMT features and other important cancer cell characteristics. The roles of EYA and DACH in CSCs and cancer progression are briefly highlighted. Finally, we summarize the clinical significance of SIX1 in cancer to emphasize the potential therapeutic benefits of effective strategies to disrupt PSEDN protein interactions and functions.
Collapse
|