1
|
Chauhan N, Gaur KK, Asuru TR, Guchhait P. Dengue virus: pathogenesis and potential for small molecule inhibitors. Biosci Rep 2024; 44:BSR20240134. [PMID: 39051974 PMCID: PMC11327219 DOI: 10.1042/bsr20240134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024] Open
Abstract
Dengue, caused by dengue virus (DENV), is now endemic in nearly 100 countries and infection incidence is reported in another 30 countries. Yearly an estimated 400 million cases and 2200 deaths are reported. Effective vaccines against DENV are limited and there has been significant focus on the development of effective antiviral against the disease. The World Health Organization has initiated research programs to prioritize the development and optimization of antiviral agents against several viruses including Flaviviridae. A significant effort has been taken by the researchers to develop effective antivirals against DENV. Several potential small-molecule inhibitors like efavirenz, tipranavir and dasabuvir have been tested against envelope and non-structural proteins of DENV, and are in clinical trials around the world. We recently developed one small molecule, namely 7D, targeting the host PF4-CXCR3 axis. 7D inhibited all 4 serotypes of DENV in vitro and specifically DENV2 infection in two different mice models. Although the development of dengue vaccines remains a high priority, antibody cross reactivity among the serotypes and resulting antibody-dependent enhancement (ADE) of infection are major concerns that have limited the development of effective vaccine against DENV. Therefore, there has been a significant emphasis on the development of antiviral drugs against dengue. This review article describes the rescue effects of some of the small molecule inhibitors to viral/host factors associated with DENV pathogenesis.
Collapse
Affiliation(s)
- Navya Chauhan
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Kishan Kumar Gaur
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Tejeswara Rao Asuru
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Prasenjit Guchhait
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| |
Collapse
|
2
|
Gautam S, Thakur A, Rajput A, Kumar M. Anti-Dengue: A Machine Learning-Assisted Prediction of Small Molecule Antivirals against Dengue Virus and Implications in Drug Repurposing. Viruses 2023; 16:45. [PMID: 38257744 PMCID: PMC10818795 DOI: 10.3390/v16010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Dengue outbreaks persist in global tropical regions, lacking approved antivirals, necessitating critical therapeutic development against the virus. In this context, we developed the "Anti-Dengue" algorithm that predicts dengue virus inhibitors using a quantitative structure-activity relationship (QSAR) and MLTs. Using the "DrugRepV" database, we extracted chemicals (small molecules) and repurposed drugs targeting the dengue virus with their corresponding IC50 values. Then, molecular descriptors and fingerprints were computed for these molecules using PaDEL software. Further, these molecules were split into training/testing and independent validation datasets. We developed regression-based predictive models employing 10-fold cross-validation using a variety of machine learning approaches, including SVM, ANN, kNN, and RF. The best predictive model yielded a PCC of 0.71 on the training/testing dataset and 0.81 on the independent validation dataset. The created model's reliability and robustness were assessed using William's plot, scatter plot, decoy set, and chemical clustering analyses. Predictive models were utilized to identify possible drug candidates that could be repurposed. We identified goserelin, gonadorelin, and nafarelin as potential repurposed drugs with high pIC50 values. "Anti-Dengue" may be beneficial in accelerating antiviral drug development against the dengue virus.
Collapse
Affiliation(s)
- Sakshi Gautam
- Virology Unit, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India; (S.G.); (A.T.); (A.R.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anamika Thakur
- Virology Unit, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India; (S.G.); (A.T.); (A.R.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Akanksha Rajput
- Virology Unit, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India; (S.G.); (A.T.); (A.R.)
| | - Manoj Kumar
- Virology Unit, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India; (S.G.); (A.T.); (A.R.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Singh VK, Kumar A. Secondary metabolites from endophytic fungi: Production, methods of analysis, and diverse pharmaceutical potential. Symbiosis 2023; 90:1-15. [PMID: 37360552 PMCID: PMC10249938 DOI: 10.1007/s13199-023-00925-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023]
Abstract
The synthesis of secondary metabolites is a constantly functioning metabolic pathway in all living systems. Secondary metabolites can be broken down into numerous classes, including alkaloids, coumarins, flavonoids, lignans, saponins, terpenes, quinones, xanthones, and others. However, animals lack the routes of synthesis of these compounds, while plants, fungi, and bacteria all synthesize them. The primary function of bioactive metabolites (BM) synthesized from endophytic fungi (EF) is to make the host plants resistant to pathogens. EF is a group of fungal communities that colonize host tissues' intracellular or intercellular spaces. EF serves as a storehouse of the above-mentioned bioactive metabolites, providing beneficial effects to their hosts. BM of EF could be promising candidates for anti-cancer, anti-malarial, anti-tuberculosis, antiviral, anti-inflammatory, etc. because EF is regarded as an unexploited and untapped source of novel BM for effective drug candidates. Due to the emergence of drug resistance, there is an urgent need to search for new bioactive compounds that combat resistance. This article summarizes the production of BM from EF, high throughput methods for analysis, and their pharmaceutical application. The emphasis is on the diversity of metabolic products from EF, yield, method of purification/characterization, and various functions/activities of EF. Discussed information led to the development of new drugs and food additives that were more effective in the treatment of disease. This review shed light on the pharmacological potential of the fungal bioactive metabolites and emphasizes to exploit them in the future for therapeutic purposes.
Collapse
Affiliation(s)
- Vivek Kumar Singh
- Department of Biotechnology, National Institute of Technology, Raipur (CG), Raipur, 492010 Chhattisgarh India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur (CG), Raipur, 492010 Chhattisgarh India
| |
Collapse
|
4
|
Pereira RS, Santos FCP, Campana PRV, Costa VV, de Pádua RM, Souza DG, Teixeira MM, Braga FC. Natural Products and Derivatives as Potential Zika virus Inhibitors: A Comprehensive Review. Viruses 2023; 15:v15051211. [PMID: 37243296 DOI: 10.3390/v15051211] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Zika virus (ZIKV) is an arbovirus whose infection in humans can lead to severe outcomes. This article reviews studies reporting the anti-ZIKV activity of natural products (NPs) and derivatives published from 1997 to 2022, which were carried out with NPs obtained from plants (82.4%) or semisynthetic/synthetic derivatives, fungi (3.1%), bacteria (7.6%), animals (1.2%) and marine organisms (1.9%) along with miscellaneous compounds (3.8%). Classes of NPs reported to present anti-ZIKV activity include polyphenols, triterpenes, alkaloids, and steroids, among others. The highest values of the selectivity index, the ratio between cytotoxicity and antiviral activity (SI = CC50/EC50), were reported for epigallocatechin gallate (SI ≥ 25,000) and anisomycin (SI ≥ 11,900) obtained from Streptomyces bacteria, dolastane (SI = 1246) isolated from the marine seaweed Canistrocarpus cervicorni, and the flavonol myricetin (SI ≥ 862). NPs mostly act at the stages of viral adsorption and internalization in addition to presenting virucidal effect. The data demonstrate the potential of NPs for developing new anti-ZIKV agents and highlight the lack of studies addressing their molecular mechanisms of action and pre-clinical studies of efficacy and safety in animal models. To the best of our knowledge, none of the active compounds has been submitted to clinical studies.
Collapse
Affiliation(s)
- Rosângela Santos Pereira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Françoise Camila Pereira Santos
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | | | - Vivian Vasconcelos Costa
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Rodrigo Maia de Pádua
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Daniele G Souza
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Fernão Castro Braga
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
5
|
Lee MF, Wu YS, Poh CL. Molecular Mechanisms of Antiviral Agents against Dengue Virus. Viruses 2023; 15:v15030705. [PMID: 36992414 PMCID: PMC10056858 DOI: 10.3390/v15030705] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Dengue is a major global health threat causing 390 million dengue infections and 25,000 deaths annually. The lack of efficacy of the licensed Dengvaxia vaccine and the absence of a clinically approved antiviral against dengue virus (DENV) drive the urgent demand for the development of novel anti-DENV therapeutics. Various antiviral agents have been developed and investigated for their anti-DENV activities. This review discusses the mechanisms of action employed by various antiviral agents against DENV. The development of host-directed antivirals targeting host receptors and direct-acting antivirals targeting DENV structural and non-structural proteins are reviewed. In addition, the development of antivirals that target different stages during post-infection such as viral replication, viral maturation, and viral assembly are reviewed. Antiviral agents designed based on these molecular mechanisms of action could lead to the discovery and development of novel anti-DENV therapeutics for the treatment of dengue infections. Evaluations of combinations of antiviral drugs with different mechanisms of action could also lead to the development of synergistic drug combinations for the treatment of dengue at any stage of the infection.
Collapse
|
6
|
A REVIEW ON THE TRENDS OF ENDOPHYTIC FUNGI BIOACTIVITIES. SCIENTIFIC AFRICAN 2023. [DOI: 10.1016/j.sciaf.2023.e01594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
|
7
|
Muema JM, Bargul JL, Obonyo MA, Njeru SN, Matoke-Muhia D, Mutunga JM. Contemporary exploitation of natural products for arthropod-borne pathogen transmission-blocking interventions. Parasit Vectors 2022; 15:298. [PMID: 36002857 PMCID: PMC9404607 DOI: 10.1186/s13071-022-05367-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/16/2022] [Indexed: 11/26/2022] Open
Abstract
An integrated approach to innovatively counter the transmission of various arthropod-borne diseases to humans would benefit from strategies that sustainably limit onward passage of infective life cycle stages of pathogens and parasites to the insect vectors and vice versa. Aiming to accelerate the impetus towards a disease-free world amid the challenges posed by climate change, discovery, mindful exploitation and integration of active natural products in design of pathogen transmission-blocking interventions is of high priority. Herein, we provide a review of natural compounds endowed with blockade potential against transmissible forms of human pathogens reported in the last 2 decades from 2000 to 2021. Finally, we propose various translational strategies that can exploit these pathogen transmission-blocking natural products into design of novel and sustainable disease control interventions. In summary, tapping these compounds will potentially aid in integrated combat mission to reduce disease transmission trends.
Collapse
Affiliation(s)
- Jackson M Muema
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000, Nairobi, 00200, Kenya.
| | - Joel L Bargul
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000, Nairobi, 00200, Kenya.,International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772, Nairobi, 00100, Kenya
| | - Meshack A Obonyo
- Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, Egerton, 20115, Kenya
| | - Sospeter N Njeru
- Centre for Traditional Medicine and Drug Research (CTMDR), Kenya Medical Research Institute (KEMRI), P.O. Box 54840, Nairobi, 00200, Kenya
| | - Damaris Matoke-Muhia
- Centre for Biotechnology Research Development (CBRD), Kenya Medical Research Institute (KEMRI), P.O. Box 54840, Nairobi, 00200, Kenya
| | - James M Mutunga
- Department of Biological Sciences, Mount Kenya University (MKU), P.O. Box 54, Thika, 01000, Kenya.,School of Engineering Design, Technology and Professional Programs, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
8
|
Combination of the Focus-Forming Assay and Digital Automated Imaging Analysis for the Detection of Dengue and Zika Viral Loads in Cultures and Acute Disease. J Trop Med 2022; 2022:2177183. [PMID: 35911823 PMCID: PMC9325612 DOI: 10.1155/2022/2177183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/26/2022] [Indexed: 12/03/2022] Open
Abstract
Optimized methods for the detection of flavivirus infections in hyperendemic areas are still needed, especially for working with patient serum as a starting material. The focus-forming assay (FFA) reveals critical aspects of virus-host interactions, as it is a quantitative assay to determine viral loads. Automated image analysis provides evaluations of relative amounts of intracellular viral protein at the single-cell level. Here, we developed an optimized FFA for the detection of infectious Zika virus (ZIKV) and dengue virus (DENV) viral particles in cell cultures and clinical serum samples, respectively. Vero-76 cells were infected with DENV-2 (16681) or ZIKV (PRVA BC59). Using a panel of anti-DENV and anti-ZIKV NS1-specific monoclonal antibodies (mAbs), the primary mAbs, concentration, and the optimal time of infection were determined. To determine whether intracellular accumulation of NS1 improved the efficiency of the FFA, brefeldin A was added to the cultures. Focus formation was identified by conventional optical microscopy combined with CellProfiler™ automated image analysis software. The FFA was used with spike assays for ZIKV and clinical specimens from natural infection by DENV-1 and DENV-2. mAb 7744-644 for ZIKV and mAb 724-323 for DENV used at a concentration of 1 μg/ml and a time of 24 hours postinfection produced the best detection of foci when combining conventional counting and automated digital analysis. Brefeldin A did not improve the assessment of FFUs or their digitally assessed intensity at single-cell level. The FFA showed 95% ZIKV recovery and achieved the detection of circulating DENV-1 and DENV-2 in the plasma of acutely ill patients. The combination of the two techniques optimized the FFA, allowing the study of DENV and ZIKV in culture supernatants and clinical specimens from natural infection in hyperendemic areas.
Collapse
|
9
|
Lacerda ÍCDS, Polonio JC, Golias HC. Endophytic Fungi as a Source of Antiviral Compounds - A Review. Chem Biodivers 2022; 19:e202100971. [PMID: 35426966 DOI: 10.1002/cbdv.202100971] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/14/2022] [Indexed: 11/05/2022]
Abstract
Endophytic fungi are a rich source of secondary metabolites. The interactions between endophytes and their hosts lead to the production of several bioactive substances grouped into different classes, each having a wide variety of effects against various pathogens. The metabolites obtained from these organisms include steroids, alkaloids, phenols, isocoumarins, xanthones, quinones, and terpenoids, among others. These substances are known to have antibiotic, antiparasitic, antifungal, and antiviral effects. This review summarizes secondary metabolites with antiviral effects produced by endophytic fungi and highlights the importance of research in developing novel antiviral substances. We demonstrate that endophytic fungi are a rich source of secondary metabolites that combat pathologies caused by viruses. Optimizing practical and biotechnological screening tools for the research of these metabolites will provide promising drugs to combat these infections.
Collapse
Affiliation(s)
| | - Júlio Cesar Polonio
- Department of Cell Biology, Genetics and Biotechnology, State University of Maringá (UEM), Brazil
| | - Halison Correia Golias
- Department of Humanities, Microbiology Laboratory, Federal Technological University of Paraná (UTFPR), Brazil
| |
Collapse
|
10
|
Zhang C, Li H, Li Y, Li Z, Mo F, Deng N, Xu J, Wang P. Toxicity of BPNSs against Chlorella vulgaris: Oxidative damage, physical damage and self-protection mechanism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 174:63-72. [PMID: 35149438 DOI: 10.1016/j.plaphy.2022.01.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Black phosphorus nanosheets (BPNSs) has extensive application prospect in the fields of optoelectronics and biomedicine, due to its unique physicochemical properties. Therefore, a systematic toxic study is necessary to assess its environmental safety. Herein, BPNSs was prepared by liquid exfoliation procedure, the primary producer Chlorella vulgaris (C. vulgaris) was used as a test subject. After the exposure for 120 h at 15, 45 and 75 mg/L BPNSs, the cell viabilities were 45.05%, 18.86% and 4.60% for each treatment group, respectively. The extent of lipid peroxidation and peroxidative damage in C. vulgaris was confirmed by measuring reactive oxygen species (ROS) levels, superoxide dismutase (SOD) and catalase (CAT) activities, followed by determination of malondialdehyde (MDA) content. Morphological analysis results (i.e., SEM and TEM) showed that BPNSs adhered to the cell surface and enter the cell to severely damage cell structure. Furthermore, BPNSs were shown to accelerate apoptosis in C. vulgaris by flow cytometry analysis. Finally, GC-MS was used to explore the metabolic regulatory mechanism of C. vulgaris in response to BPNSs stress. The results of this study can provide theoretical support for subsequent studies on the potential enrichment risk of BPNSs in the water environmental food chain.
Collapse
Affiliation(s)
- Chenxi Zhang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Haibo Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| | - Yinghua Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| | - Zhe Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Fan Mo
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Ningcan Deng
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Jianing Xu
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Pengkai Wang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
11
|
Potentials of Endophytic Fungi in the Biosynthesis of Versatile Secondary Metabolites and Enzymes. FORESTS 2021. [DOI: 10.3390/f12121784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
World population growth and modernization have engendered multiple environmental problems: the propagation of humans and crop diseases and the development of multi-drug-resistant fungi, bacteria and viruses. Thus, a considerable shift towards eco-friendly products has been seen in medicine, pharmacy, agriculture and several other vital sectors. Nowadays, studies on endophytic fungi and their biotechnological potentials are in high demand due to their substantial, cost-effective and eco-friendly contributions in the discovery of an array of secondary metabolites. For this review, we provide a brief overview of plant–endophytic fungi interactions and we also state the history of the discovery of the untapped potentialities of fungal secondary metabolites. Then, we highlight the huge importance of the discovered metabolites and their versatile applications in several vital fields including medicine, pharmacy, agriculture, industry and bioremediation. We then focus on the challenges and on the possible methods and techniques that can be used to help in the discovery of novel secondary metabolites. The latter range from endophytic selection and culture media optimization to more in-depth strategies such as omics, ribosome engineering and epigenetic remodeling.
Collapse
|
12
|
Islam MT, Quispe C, Herrera-Bravo J, Sarkar C, Sharma R, Garg N, Fredes LI, Martorell M, Alshehri MM, Sharifi-Rad J, Daştan SD, Calina D, Alsafi R, Alghamdi S, Batiha GES, Cruz-Martins N. Production, Transmission, Pathogenesis, and Control of Dengue Virus: A Literature-Based Undivided Perspective. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4224816. [PMID: 34957305 PMCID: PMC8694986 DOI: 10.1155/2021/4224816] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/11/2021] [Accepted: 11/26/2021] [Indexed: 12/18/2022]
Abstract
Dengue remains one of the most serious and widespread mosquito-borne viral infections in human beings, with serious health problems or even death. About 50 to 100 million people are newly infected annually, with almost 2.5 billion people living at risk and resulting in 20,000 deaths. Dengue virus infection is especially transmitted through bites of Aedes mosquitos, hugely spread in tropical and subtropical environments, mostly found in urban and semiurban areas. Unfortunately, there is no particular therapeutic approach, but prevention, adequate consciousness, detection at earlier stage of viral infection, and appropriate medical care can lower the fatality rates. This review offers a comprehensive view of production, transmission, pathogenesis, and control measures of the dengue virus and its vectors.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj (Dhaka)8100, Bangladesh
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Chandan Sarkar
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj (Dhaka)8100, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Neha Garg
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | | | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción 4070386, Chile
| | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | | | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Radi Alsafi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| |
Collapse
|
13
|
Tripathi D, Sodani M, Gupta PK, Kulkarni S. Host directed therapies: COVID-19 and beyond. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100058. [PMID: 34870156 PMCID: PMC8464038 DOI: 10.1016/j.crphar.2021.100058] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/14/2021] [Accepted: 09/19/2021] [Indexed: 12/15/2022] Open
Abstract
The global spread of SARS-CoV-2 has necessitated the development of novel, safe and effective therapeutic agents against this virus to stop the pandemic, however the development of novel antivirals may take years, hence, the best alternative available, is to repurpose the existing antiviral drugs with known safety profile in humans. After more than one year into this pandemic, global efforts have yielded the fruits and with the launch of many vaccines in the market, the world is inching towards the end of this pandemic, nonetheless, future pandemics of this magnitude or even greater cannot be denied. The preparedness against viruses of unknown origin should be maintained and the broad-spectrum antivirals with activity against range of viruses should be developed to curb future viral pandemics. The majority of antivirals developed till date are pathogen specific agents, which target critical viral pathways and lack broad spectrum activity required to target wide range of viruses. The surge in drug resistance among pathogens has rendered a compelling need to shift our focus towards host directed factors in the treatment of infectious diseases. This gains special relevance in the case of viral infections, where the pathogen encodes a handful of genes and predominantly depends on host factors for their propagation and persistence. Therefore, future antiviral drug development should focus more on targeting molecules of host pathways that are often hijacked by many viruses. Such cellular proteins of host pathways offer attractive targets for the development of broad-spectrum anticipatory antivirals. In the present article, we have reviewed the host directed therapies (HDTs) effective against viral infections with a special focus on COVID-19. This article also discusses the strategies involved in identifying novel host targets and subsequent development of broad spectrum HDTs.
Collapse
Affiliation(s)
- Devavrat Tripathi
- Radiation Medicine Centre, Bhabha Atomic Research Centre, C/O Tata Memorial Hospital Annexe, Parel, Mumbai, 400012, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Megha Sodani
- Radiation Medicine Centre, Bhabha Atomic Research Centre, C/O Tata Memorial Hospital Annexe, Parel, Mumbai, 400012, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Pramod Kumar Gupta
- Radiation Medicine Centre, Bhabha Atomic Research Centre, C/O Tata Memorial Hospital Annexe, Parel, Mumbai, 400012, India
- Corresponding author.
| | - Savita Kulkarni
- Radiation Medicine Centre, Bhabha Atomic Research Centre, C/O Tata Memorial Hospital Annexe, Parel, Mumbai, 400012, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
- Corresponding author. Radiation Medicine Centre, Bhabha Atomic Research Centre, C/O Tata Memorial Hospital Annexe, Parel, Mumbai, 400012, India.
| |
Collapse
|
14
|
Takahashi JA, Barbosa BVR, Lima MTNS, Cardoso PG, Contigli C, Pimenta LPS. Antiviral fungal metabolites and some insights into their contribution to the current COVID-19 pandemic. Bioorg Med Chem 2021; 46:116366. [PMID: 34438338 PMCID: PMC8363177 DOI: 10.1016/j.bmc.2021.116366] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 12/11/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak, which started in late 2019, drove the scientific community to conduct innovative research to contain the spread of the pandemic and to care for those already affected. Since then, the search for new drugs that are effective against the virus has been strengthened. Featuring a relatively low cost of production under well-defined methods of cultivation, fungi have been providing a diversity of antiviral metabolites with unprecedented chemical structures. In this review, we present viral RNA infections highlighting SARS-CoV-2 morphogenesis and the infectious cycle, the targets of known antiviral drugs, and current developments in this area such as drug repurposing. We also explored the metabolic adaptability of fungi during fermentation to produce metabolites active against RNA viruses, along with their chemical structures, and mechanisms of action. Finally, the state of the art of research on SARS-CoV-2 inhibitors of fungal origin is reported, highlighting the metabolites selected by docking studies.
Collapse
Affiliation(s)
- Jacqueline Aparecida Takahashi
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP 31270-901 Belo Horizonte, MG, Brazil.
| | - Bianca Vianna Rodrigues Barbosa
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP 31270-901 Belo Horizonte, MG, Brazil
| | - Matheus Thomaz Nogueira Silva Lima
- Department of Food Science, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP 31270-901 Belo Horizonte, MG, Brazil.
| | - Patrícia Gomes Cardoso
- Department of Biology, Universidade Federal de Lavras, Av. Dr. Sylvio Menicucci, 1001, CEP 37200-900 Lavras, MG, Brazil.
| | - Christiane Contigli
- Cell Biology Service, Research and Development Department, Fundação Ezequiel Dias, R. Conde Pereira Carneiro, 80, CEP 30510-010 Belo Horizonte, MG, Brazil
| | - Lúcia Pinheiro Santos Pimenta
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
15
|
Raihan T, Rabbee MF, Roy P, Choudhury S, Baek KH, Azad AK. Microbial Metabolites: The Emerging Hotspot of Antiviral Compounds as Potential Candidates to Avert Viral Pandemic Alike COVID-19. Front Mol Biosci 2021; 8:732256. [PMID: 34557521 PMCID: PMC8452873 DOI: 10.3389/fmolb.2021.732256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
The present global COVID-19 pandemic caused by the noble pleomorphic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has created a vulnerable situation in the global healthcare and economy. In this pandemic situation, researchers all around the world are trying their level best to find suitable therapeutics from various sources to combat against the SARS-CoV-2. To date, numerous bioactive compounds from different sources have been tested to control many viral diseases. However, microbial metabolites are advantageous for drug development over metabolites from other sources. We herein retrieved and reviewed literatures from PubMed, Scopus and Google relevant to antiviral microbial metabolites by searching with the keywords "antiviral microbial metabolites," "microbial metabolite against virus," "microorganism with antiviral activity," "antiviral medicine from microbial metabolite," "antiviral bacterial metabolites," "antiviral fungal metabolites," "antiviral metabolites from microscopic algae' and so on. For the same purpose, the keywords "microbial metabolites against COVID-19 and SARS-CoV-2" and "plant metabolites against COVID-19 and SARS-CoV-2" were used. Only the full text literatures available in English and pertinent to the topic have been included and those which are not available as full text in English and pertinent to antiviral or anti-SARS-CoV-2 activity were excluded. In this review, we have accumulated microbial metabolites that can be used as antiviral agents against a broad range of viruses including SARS-CoV-2. Based on this concept, we have included 330 antiviral microbial metabolites so far available to date in the data bases and were previously isolated from fungi, bacteria and microalgae. The microbial source, chemical nature, targeted viruses, mechanism of actions and IC50/EC50 values of these metabolites are discussed although mechanisms of actions of many of them are not yet elucidated. Among these antiviral microbial metabolites, some compounds might be very potential against many other viruses including coronaviruses. However, these potential microbial metabolites need further research to be developed as effective antiviral drugs. This paper may provide the scientific community with the possible secret of microbial metabolites that could be an effective source of novel antiviral drugs to fight against many viruses including SARS-CoV-2 as well as the future viral pandemics.
Collapse
Affiliation(s)
- Topu Raihan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | | | - Puja Roy
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Swapnila Choudhury
- Department of Genetic Engineering and Biotechnology, Jagannath University, Dhaka, Bangladesh
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Abul Kalam Azad
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
16
|
Sagaya Jansi R, Khusro A, Agastian P, Alfarhan A, Al-Dhabi NA, Arasu MV, Rajagopal R, Barcelo D, Al-Tamimi A. Emerging paradigms of viral diseases and paramount role of natural resources as antiviral agents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143539. [PMID: 33234268 PMCID: PMC7833357 DOI: 10.1016/j.scitotenv.2020.143539] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/14/2020] [Accepted: 10/17/2020] [Indexed: 05/04/2023]
Abstract
In the current scenario, the increasing prevalence of diverse microbial infections as well as emergence and re-emergence of viral epidemics with high morbidity and mortality rates are major public health threat. Despite the persistent production of antiviral drugs and vaccines in the global market, viruses still remain as one of the leading causes of deadly human diseases. Effective control of viral diseases, particularly Zika virus disease, Nipah virus disease, Severe acute respiratory syndrome, Coronavirus disease, Herpes simplex virus infection, Acquired immunodeficiency syndrome, and Ebola virus disease remain promising goal amidst the mutating viral strains. Current trends in the development of antiviral drugs focus solely on testing novel drugs or repurposing drugs against potential targets of the viruses. Compared to synthetic drugs, medicines from natural resources offer less side-effect to humans and are often cost-effective in the productivity approaches. This review intends not only to emphasize on the major viral disease outbreaks in the past few decades and but also explores the potentialities of natural substances as antiviral traits to combat viral pathogens. Here, we spotlighted a comprehensive overview of antiviral components present in varied natural sources, including plants, fungi, and microorganisms in order to identify potent antiviral agents for developing alternative therapy in future.
Collapse
Affiliation(s)
- R Sagaya Jansi
- Department of Bioinformatics, Stella Maris College, Chennai, India
| | - Ameer Khusro
- Department of Plant Biology and Biotechnology, Loyola College, Chennai, India
| | - Paul Agastian
- Department of Plant Biology and Biotechnology, Loyola College, Chennai, India.
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Damia Barcelo
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia; Water and Soil Research Group, Department of Environmental Chemistry, IDAEA-CSIC, JORDI GIRONA 18-26, 08034 Barcelona, Spain
| | - Amal Al-Tamimi
- Ecology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Adeleke BS, Babalola OO. Pharmacological Potential of Fungal Endophytes Associated with Medicinal Plants: A Review. J Fungi (Basel) 2021; 7:147. [PMID: 33671354 PMCID: PMC7922420 DOI: 10.3390/jof7020147] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
Endophytic microbes are microorganisms that colonize the intracellular spaces within the plant tissues without exerting any adverse or pathological effects. Currently, the world population is facing devastating chronic diseases that affect humans. The resistance of pathogens to commercial antibiotics is increasing, thus limiting the therapeutic potential and effectiveness of antibiotics. Consequently, the need to search for novel, affordable and nontoxic natural bioactive compounds from endophytic fungi in developing new drugs with multifunction mechanisms to meet human needs is essential. Fungal endophytes produce invaluable bioactive metabolic compounds beneficial to humans with antimicrobial, anticancer, antidiabetic, anti-inflammatory, antitumor properties, etc. Some of these bioactive compounds include pestacin, taxol, camptothecin, ergoflavin, podophyllotoxin, benzopyran, isopestacin, phloroglucinol, tetrahydroxy-1-methylxanthone, salidroside, borneol, dibenzofurane, methyl peniphenone, lipopeptide, peniphenone etc. Despite the aforementioned importance of endophytic fungal metabolites, less information is available on their exploration and pharmacological importance. Therefore, in this review, we shall elucidate the fungal bioactive metabolites from medicinal plants and their pharmacological potential.
Collapse
Affiliation(s)
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa;
| |
Collapse
|
18
|
Fungal Biopharmaceuticals: Current Research, Production, and Potential Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Abdel-Azeem MA, El-Maradny YA, Othman AM, Abdel-Azeem AM. Endophytic Fungi as a Source of New Pharmaceutical Biomolecules. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Manganyi MC, Ateba CN. Untapped Potentials of Endophytic Fungi: A Review of Novel Bioactive Compounds with Biological Applications. Microorganisms 2020; 8:microorganisms8121934. [PMID: 33291214 PMCID: PMC7762190 DOI: 10.3390/microorganisms8121934] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 01/08/2023] Open
Abstract
Over the last century, endophytic fungi have gained tremendous attention due to their ability to produce novel bioactive compounds exhibiting varied biological properties and are, therefore, utilized for medicinal, pharmaceutical, and agricultural applications. Endophytic fungi reside within the plant tissues without showing any disease symptoms, thus supporting the physiological and ecological attributes of the host plant. Ground breaking lead compounds, such as paclitaxel and penicillin, produced by endophytic fungi have paved the way for exploring novel bioactive compounds for commercial usage. Despite this, limited research has been conducted in this valuable and unique niche area. These bioactive compounds belong to various structural groups, including alkaloids, peptides, steroids, terpenoids, phenols, quinones, phenols, and flavonoids. The current review focuses on the significance of endophytic fungi in producing novel bioactive compounds possessing a variety of biological properties that include antibacterial, antiviral, antifungal, antiprotozoal, antiparasitic, antioxidant, immunosuppressant, and anticancer functions. Taking into consideration the portal of this publication, special emphasis is placed on the antimicrobial and antiviral activities of metabolites produced by endophytes against human pathogens. It also highlights the importance of utilization of these compounds as potential treatment agents for serious life-threatening infectious diseases. This is supported by the fact that several findings have indicated that these bioactive compounds may significantly contribute towards the fight against resistant human and plant pathogens, thus motivating the need enhance the search for new, more efficacious and cost-effective antimicrobial drugs.
Collapse
Affiliation(s)
- Madira Coutlyne Manganyi
- Department of Microbiology, North West University Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa
- Correspondence: ; Tel.: +27-18-389-2134
| | - Collins Njie Ateba
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North West University, Mmabatho, Mafikeng 2735, South Africa;
| |
Collapse
|
21
|
Swaney B, Luxenburger A, Lucas NT, Hawkins BC, Hinkley SF. The synthesis of 3-azabicyclo[4.3.0]nonane scaffolds from brefeldin A. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Abstract
Antiviral drugs have traditionally been developed by directly targeting essential viral components. However, this strategy often fails due to the rapid generation of drug-resistant viruses. Recent genome-wide approaches, such as those employing small interfering RNA (siRNA) or clustered regularly interspaced short palindromic repeats (CRISPR) or those using small molecule chemical inhibitors targeting the cellular "kinome," have been used successfully to identify cellular factors that can support virus replication. Since some of these cellular factors are critical for virus replication, but are dispensable for the host, they can serve as novel targets for antiviral drug development. In addition, potentiation of immune responses, regulation of cytokine storms, and modulation of epigenetic changes upon virus infections are also feasible approaches to control infections. Because it is less likely that viruses will mutate to replace missing cellular functions, the chance of generating drug-resistant mutants with host-targeted inhibitor approaches is minimized. However, drug resistance against some host-directed agents can, in fact, occur under certain circumstances, such as long-term selection pressure of a host-directed antiviral agent that can allow the virus the opportunity to adapt to use an alternate host factor or to alter its affinity toward the target that confers resistance. This review describes novel approaches for antiviral drug development with a focus on host-directed therapies and the potential mechanisms that may account for the acquisition of antiviral drug resistance against host-directed agents.
Collapse
|
23
|
Gupta S, Chaturvedi P, Kulkarni MG, Van Staden J. A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. Biotechnol Adv 2020; 39:107462. [DOI: 10.1016/j.biotechadv.2019.107462] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 09/22/2019] [Accepted: 10/22/2019] [Indexed: 02/08/2023]
|
24
|
Tryptophan Trimers and Tetramers Inhibit Dengue and Zika Virus Replication by Interfering with Viral Attachment Processes. Antimicrob Agents Chemother 2020; 64:AAC.02130-19. [PMID: 31932383 DOI: 10.1128/aac.02130-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/25/2019] [Indexed: 12/15/2022] Open
Abstract
Here, we report a class of tryptophan trimers and tetramers that inhibit (at low micromolar range) dengue and Zika virus infection in vitro These compounds (AL family) have three or four peripheral tryptophan moieties directly linked to a central scaffold through their amino groups; thus, their carboxylic acid groups are free and exposed to the periphery. Structure-activity relationship (SAR) studies demonstrated that the presence of extra phenyl rings with substituents other than COOH at the N1 or C2 position of the indole side chain is a requisite for the antiviral activity against both viruses. The molecules showed potent antiviral activity, with low cytotoxicity, when evaluated on different cell lines. Moreover, they were active against laboratory and clinical strains of all four serotypes of dengue virus as well as a selected group of Zika virus strains. Additional mechanistic studies performed with the two most potent compounds (AL439 and AL440) demonstrated an interaction with the viral envelope glycoprotein (domain III) of dengue 2 virus, preventing virus attachment to the host cell membrane. Since no antiviral agent is approved at the moment against these two flaviviruses, further pharmacokinetic studies with these molecules are needed for their development as future therapeutic/prophylactic drugs.
Collapse
|
25
|
Therapeutic Advances Against ZIKV: A Quick Response, a Long Way to Go. Pharmaceuticals (Basel) 2019; 12:ph12030127. [PMID: 31480297 PMCID: PMC6789873 DOI: 10.3390/ph12030127] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 01/07/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that spread throughout the American continent in 2015 causing considerable worldwide social and health alarm due to its association with ocular lesions and microcephaly in newborns, and Guillain-Barré syndrome (GBS) cases in adults. Nowadays, no licensed vaccines or antivirals are available against ZIKV, and thus, in this very short time, the scientific community has conducted enormous efforts to develop vaccines and antivirals. So that, different platforms (purified inactivated and live attenuated viruses, DNA and RNA nucleic acid based candidates, virus-like particles, subunit elements, and recombinant viruses) have been evaluated as vaccine candidates. Overall, these vaccines have shown the induction of vigorous humoral and cellular responses, the decrease of viremia and viral RNA levels in natural target organs, the prevention of vertical and sexual transmission, as well as that of ZIKV-associated malformations, and the protection of experimental animal models. Some of these vaccine candidates have already been assayed in clinical trials. Likewise, the search for antivirals have also been the focus of recent investigations, with dozens of compounds tested in cell culture and a few in animal models. Both direct acting antivirals (DAAs), directed to viral structural proteins and enzymes, and host acting antivirals (HAAs), directed to cellular factors affecting all steps of the viral life cycle (binding, entry, fusion, transcription, translation, replication, maturation, and egress), have been evaluated. It is expected that this huge collaborative effort will produce affordable and effective therapeutic and prophylactic tools to combat ZIKV and other related still unknown or nowadays neglected flaviviruses. Here, a comprehensive overview of the advances made in the development of therapeutic measures against ZIKV and the questions that still have to be faced are summarized.
Collapse
|
26
|
Ma AG, Yu LM, Zhao H, Qin CW, Tian XY, Wang Q. PSMD4 regulates the malignancy of esophageal cancer cells by suppressing endoplasmic reticulum stress. Kaohsiung J Med Sci 2019; 35:591-597. [PMID: 31162820 DOI: 10.1002/kjm2.12093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/09/2019] [Indexed: 12/28/2022] Open
Abstract
Proteasome 26S subunit non-ATPase 4 (PSMD4) is an important proteasome ubiquitin receptor and plays a key role in endoplasmic reticulum stress (ERS). However, the study of PSMD4 in esophageal cancer (EC) is relatively rare. Here, we found that the expression of PSMD4 was markedly enhanced in EC tissues and cell lines. The cell counting kit-8 (CCK-8) assay showed that overexpression of PSMD4 significantly enhanced Eca109 cell viability, while inhibition of PSMD4 reduced Eca109 cell viability. Knockdown of PSMD4 induced Eca109 cell apoptosis and cell cycle arrest. More importantly, knockdown of PSMD4 significantly enhanced the expression of glucose regulated protein 78, activating transcription factor 6, and p-protein kinase R-like ER kinase, indicating an enhanced ERS response in esophageal cancer cells. Compared with the control cells, brefeldin A significantly inhibited the expression of PSMD4 and increased the expression of p53-upregulated modulator of apoptosis. However, such effects were largely reversed after overexpressing PSMD4 in Eca109 cells, suggesting that silencing PSMD4 could enhance ERS-induced cell apoptosis. In summary, upregulation of PSMD4 promoted the progression of esophageal cancer mainly by reducing ERS-induced cell apoptosis.
Collapse
Affiliation(s)
- Ai-Guo Ma
- Department of Thoracic Surgery, Tengzhou Central People's Hospital, Tengzhou City, Shandong Province, PR China
| | - Li-Mei Yu
- Department of Critical Care Medicine, Tengzhou Central People's Hospital, Tengzhou City, Shandong Province, PR China
| | - Hong Zhao
- Department of Thoracic Surgery, Tengzhou Central People's Hospital, Tengzhou City, Shandong Province, PR China
| | - Cun-Wei Qin
- Department of Thoracic Surgery, Tengzhou Central People's Hospital, Tengzhou City, Shandong Province, PR China
| | - Xiang-Yu Tian
- Imaging Center, Tengzhou Central People's Hospital, Tengzhou City, Shandong Province, PR China
| | - Qing Wang
- Department of Thoracic Surgery, Tengzhou Central People's Hospital, Tengzhou City, Shandong Province, PR China
| |
Collapse
|
27
|
Dighe SN, Ekwudu O, Dua K, Chellappan DK, Katavic PL, Collet TA. Recent update on anti-dengue drug discovery. Eur J Med Chem 2019; 176:431-455. [PMID: 31128447 DOI: 10.1016/j.ejmech.2019.05.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/12/2019] [Accepted: 05/06/2019] [Indexed: 01/27/2023]
Abstract
Dengue is the most important arthropod-borne viral disease of humans, with more than half of the global population living in at-risk areas. Despite the negative impact on public health, there are no antiviral therapies available, and the only licensed vaccine, Dengvaxia®, has been contraindicated in children below nine years of age. In an effort to combat dengue, several small molecules have entered into human clinical trials. Here, we review anti-DENV molecules and their drug targets that have been published within the past five years (2014-2018). Further, we discuss their probable mechanisms of action and describe a role for classes of clinically approved drugs and also an unclassified class of anti-DENV agents. This review aims to enhance our understanding of novel agents and their cognate targets in furthering innovations in the use of small molecules for dengue drug therapies.
Collapse
Affiliation(s)
- Satish N Dighe
- Innovative Medicines Group, Institute of Health & Biomedical Innovation, School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia.
| | - O'mezie Ekwudu
- Innovative Medicines Group, Institute of Health & Biomedical Innovation, School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Peter L Katavic
- Innovative Medicines Group, Institute of Health & Biomedical Innovation, School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Trudi A Collet
- Innovative Medicines Group, Institute of Health & Biomedical Innovation, School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
28
|
Han Y, Pham HT, Xu H, Quan Y, Mesplède T. Antimalarial drugs and their metabolites are potent Zika virus inhibitors. J Med Virol 2019; 91:1182-1190. [PMID: 30801742 DOI: 10.1002/jmv.25440] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 12/17/2022]
Abstract
Studies aimed at repurposing existing drugs revealed that some antimalarial compounds possess anti-Zika virus (anti-ZIKV) activity. Here, we further tested 14 additional antimalarial drugs and their metabolites or analogs for anti-ZIKV activity using a phenotypic screening approach. We identified four compounds with varying anti-ZIKV activity, including a metabolite of amodiaquine termed desethylamodiaquine (DAQ) and N-desethylchloroquine (DECQ), a metabolite of chloroquine, which both exhibited low micromolar effective concentrations against three different ZIKV strains. Two other compounds termed dihydroartemisinin (DHA) and quinidine (QD) exhibited only partial inhibition of ZIKV replication. Characterization of the inhibitory mechanisms of DAQ and DECQ showed that both drugs target the entry step as well as postentry events of the viral replication cycle. These hits represent attractive starting points for future optimization of new anti-ZIKV drug candidates derived from antimalarial drugs and their analogs.
Collapse
Affiliation(s)
- Yingshan Han
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| | - Hanh T Pham
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Hongtao Xu
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| | - Yudong Quan
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| | - Thibault Mesplède
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Québec, Canada.,Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, Québec, Canada.,Division of Infectious Diseases, Jewish General Hospital, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
29
|
Farias KJS, Machado PRL, de Almeida Júnior RF, Lopes da Fonseca BA. Brefeldin A and Cytochalasin B reduce dengue virus replication in cell cultures but do not protect mice against viral challenge. Access Microbiol 2019; 1:e000041. [PMID: 32974532 PMCID: PMC7470301 DOI: 10.1099/acmi.0.000041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/21/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Dengue is an emerging arboviral disease caused by dengue virus (DENV). DENV belongs to the family Flaviviridae and genus Flavivirus. No specific anti-DENV drugs are currently available. METHODS We investigated the antiviral activity of Brefeldin A (BFA) and Cytochalasin B (CB) against this infection. The drugs BFA and CB were used in the in vitro treatment of dengue-2 virus (DENV-2) infections in Vero cell cultures and in protection from lethality by post-challenge administration in Swiss mice. Viral load was quantified by qRT-PCR and plaque assay in Vero cell cultures, post-infection, treated or not with the drugs. Post-challenge drug levels were evaluated by survival analysis. RESULTS Our results indicate that doses of 5 µg ml-1 of BFA and 10 µg ml-1 of CB are not toxic to the cells and induce a statistically significant inhibition of DENV-2 replication in Vero cells when compared to control. No BFA- or CB-treated mice survived the challenge with DENV-2. CONCLUSION These data suggest that BFA and CB have an antiviral action against DENV-2 replication in Vero cell culture, but do not alter infected mice mortality.
Collapse
Affiliation(s)
- Kleber Juvenal Silva Farias
- Department of Internal Medicine, School of Medicine of Ribeirao Preto – University of Sao Paulo, Avenida Bandeirantes, 3900, Monte Alegre, 14049-900, Ribeirao Preto SP, Brazil
- Program of Graduate Studies on Applied Microbiology and Immunology, School of Medicine of Ribeirao Preto – University of Sao Paulo, Avenida Bandeirantes, 3900, Monte Alegre, 14049-900, Ribeirão Preto SP, Brazil
- *Correspondence: Kleber Juvenal Silva Farias,
| | - Paula Renata Lima Machado
- Department of Clinical Analysis and Toxicology, Federal University of Rio Grande do Norte, Street General Gustavo Cordeiro de Farias, 384, Petropolis, 59012-570 Natal, RN, Brazil
| | - Renato Ferreira de Almeida Júnior
- Department of Clinical Analysis and Toxicology, Federal University of Rio Grande do Norte, Street General Gustavo Cordeiro de Farias, 384, Petropolis, 59012-570 Natal, RN, Brazil
| | - Benedito Antônio Lopes da Fonseca
- Department of Internal Medicine, School of Medicine of Ribeirao Preto – University of Sao Paulo, Avenida Bandeirantes, 3900, Monte Alegre, 14049-900, Ribeirao Preto SP, Brazil
| |
Collapse
|
30
|
Schögler A, Caliaro O, Brügger M, Oliveira Esteves BI, Nita I, Gazdhar A, Geiser T, Alves MP. Modulation of the unfolded protein response pathway as an antiviral approach in airway epithelial cells. Antiviral Res 2018; 162:44-50. [PMID: 30550797 DOI: 10.1016/j.antiviral.2018.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/07/2018] [Accepted: 12/10/2018] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Rhinovirus (RV) infection is a major cause of cystic fibrosis (CF) lung morbidity with limited therapeutic options. Various diseases involving chronic inflammatory response and infection are associated with endoplasmic reticulum (ER) stress and subsequent activation of the unfolded protein response (UPR), an adaptive response to maintain cellular homeostasis. Recent evidence suggests impaired ER stress response in CF airway epithelial cells, this might be a reason for recurrent viral infection in CF. Therefore, assuming that ER stress inducing drugs have antiviral properties, we evaluated the activation of the UPR by selected ER stress inducers as an approach to control virus replication in the CF bronchial epithelium. METHODS We assessed the levels of UPR markers, namely the glucose-regulated protein 78 (Grp78) and the C/EBP homologous protein (CHOP), in primary CF and control bronchial epithelial cells and in a CF and control bronchial epithelial cell line before and after infection with RV. The cells were also pretreated with ER stress-inducing drugs and RV replication and shedding was measured by quantitative RT-PCR and by a TCID50 assay, respectively. Cell death was assessed by a lactate dehydrogenate (LDH) activity test in supernatants. RESULTS We observed a significantly impaired induction of Grp78 and CHOP in CF compare to control cells following RV infection. The ER stress response could be significantly induced in CF cells by pharmacological ER stress inducers Brefeldin A, Tunicamycin, and Thapsigargin. The chemical induction of the UPR pathway prior to RV infection of CF and control cells reduced viral replication and shedding by up to two orders of magnitude and protected cells from RV-induced cell death. CONCLUSION RV infection causes an impaired activation of the UPR in CF cells. Rescue of the ER stress response by chemical ER stress inducers reduced significantly RV replication in CF cells. Thus, pharmacological modulation of the UPR might represent a strategy to control respiratory virus replication in the CF bronchial epithelium.
Collapse
Affiliation(s)
- Aline Schögler
- Division of Respiratory Medicine, Department of Paediatrics, University Hospital Bern, Bern, Switzerland
| | - Oliver Caliaro
- Division of Respiratory Medicine, Department of Paediatrics, University Hospital Bern, Bern, Switzerland
| | - Melanie Brügger
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland; Institute of Virology and Immunology, Bern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Blandina I Oliveira Esteves
- Institute of Virology and Immunology, Bern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Izabela Nita
- Department of Pulmonary Medicine, University Hospital Bern, Bern, Switzerland; Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Amiq Gazdhar
- Department of Pulmonary Medicine, University Hospital Bern, Bern, Switzerland; Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Thomas Geiser
- Department of Pulmonary Medicine, University Hospital Bern, Bern, Switzerland; Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Marco P Alves
- Division of Respiratory Medicine, Department of Paediatrics, University Hospital Bern, Bern, Switzerland; Institute of Virology and Immunology, Bern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| |
Collapse
|
31
|
Linnakoski R, Reshamwala D, Veteli P, Cortina-Escribano M, Vanhanen H, Marjomäki V. Antiviral Agents From Fungi: Diversity, Mechanisms and Potential Applications. Front Microbiol 2018; 9:2325. [PMID: 30333807 PMCID: PMC6176074 DOI: 10.3389/fmicb.2018.02325] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/11/2018] [Indexed: 01/14/2023] Open
Abstract
Viral infections are amongst the most common diseases affecting people worldwide. New viruses emerge all the time and presently we have limited number of vaccines and only few antivirals to combat viral diseases. Fungi represent a vast source of bioactive molecules, which could potentially be used as antivirals in the future. Here, we have summarized the current knowledge of fungi as producers of antiviral compounds and discuss their potential applications. In particular, we have investigated how the antiviral action has been assessed and what is known about the molecular mechanisms and actual targets. Furthermore, we highlight the importance of accurate fungal species identification on antiviral and other natural products studies.
Collapse
Affiliation(s)
| | - Dhanik Reshamwala
- Division of Cell and Molecular Biology, Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Pyry Veteli
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | | | - Henri Vanhanen
- Natural Resources Institute Finland (Luke), Joensuu, Finland
| | - Varpu Marjomäki
- Division of Cell and Molecular Biology, Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
32
|
Saiz JC, Oya NJD, Blázquez AB, Escribano-Romero E, Martín-Acebes MA. Host-Directed Antivirals: A Realistic Alternative to Fight Zika Virus. Viruses 2018; 10:v10090453. [PMID: 30149598 PMCID: PMC6163279 DOI: 10.3390/v10090453] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/17/2018] [Accepted: 08/22/2018] [Indexed: 12/21/2022] Open
Abstract
Zika virus (ZIKV), a mosquito-borne flavivirus, was an almost neglected pathogen until its introduction in the Americas in 2015, where it has been responsible for a threat to global health, causing a great social and sanitary alarm due to its increased virulence, rapid spread, and an association with severe neurological and ophthalmological complications. Currently, no specific antiviral therapy against ZIKV is available, and treatments are palliative and mainly directed toward the relief of symptoms, such as fever and rash, by administering antipyretics, anti-histamines, and fluids for dehydration. Nevertheless, lately, search for antivirals has been a major aim in ZIKV investigations. To do so, screening of libraries from different sources, testing of natural compounds, and repurposing of drugs with known antiviral activity have allowed the identification of several antiviral candidates directed to both viral (structural proteins and enzymes) and cellular elements. Here, we present an updated review of current knowledge about anti-ZIKV strategies, focusing on host-directed antivirals as a realistic alternative to combat ZIKV infection.
Collapse
Affiliation(s)
- Juan-Carlos Saiz
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain.
| | - Nereida Jiménez de Oya
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain.
| | - Ana-Belén Blázquez
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain.
| | - Estela Escribano-Romero
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain.
| | - Miguel A Martín-Acebes
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain.
| |
Collapse
|
33
|
Wu DL, Li HJ, Smith DR, Jaratsittisin J, Xia-Ke-Er XFKT, Ma WZ, Guo YW, Dong J, Shen J, Yang DP, Lan WJ. Polyketides and Alkaloids from the Marine-Derived Fungus Dichotomomyces cejpii F31-1 and the Antiviral Activity of Scequinadoline A against Dengue Virus. Mar Drugs 2018; 16:md16070229. [PMID: 29986460 PMCID: PMC6071211 DOI: 10.3390/md16070229] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 06/27/2018] [Accepted: 07/03/2018] [Indexed: 12/30/2022] Open
Abstract
In our continuous chemical investigation on the marine-derived fungus Dichotomomyces cejpii F31-1, two new polyketides dichocetides B-C (1, 2), two new alkaloids dichotomocejs E-F (3, 4), and three known fumiquinozalines: scequinadoline A (5), quinadoline A (6), and scequinadoline E (7) were discovered from the culture broth and the mycelium in the culture medium, by the addition of l-tryptophan and l-phenylalanine. Their chemical structures were established by one dimensional (1D), two dimensional (2D) nuclear magnetic resonance (NMR) and high resolution mass spectrometry (HR-MS) data. Among them, scequinadoline A (5) exhibited significant inhibitory activity against dengue virus serotype 2 production by standard plaque assay, equivalent to the positive control andrographlide. Scequinadoline A (5) possesses the potential for further development as a dengue virus inhibitor.
Collapse
Affiliation(s)
- Dong-Lan Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Hou-Jin Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Duncan R Smith
- Institute of Molecular Bioscience, Mahidol University, Bangkok 10700, Thailand.
| | | | | | - Wen-Zhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa 519020, Macau, China.
| | - Yong-Wei Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Jun Dong
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Juan Shen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - De-Po Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Wen-Jian Lan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
34
|
Masmejan S, Baud D, Musso D, Panchaud A. Zika virus, vaccines, and antiviral strategies. Expert Rev Anti Infect Ther 2018; 16:471-483. [PMID: 29897831 DOI: 10.1080/14787210.2018.1483239] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
INTRODUCTION Zika virus (ZIKV) recently emerged as a global public health emergency of international concern. ZIKV is responsible for severe neurological complications in adults and infection during pregnancy and can lead to congenital Zika syndrome. There is no licensed vaccine or drug to prevent or treat ZIKV infection. Areas covered: The aim of this article is to provide an overview and update of the progress of research on anti-ZIKV vaccine and medications until the end of 2017, with a special emphasis on drugs that can be used during pregnancy. Expert commentary: Development of new vaccines and drugs is challenging and several points particular to ZIKV infections augment this difficulty: (1) Cross-reactions between ZIKV and other flaviviruses, the impact of ZIKV vaccination on subsequent flavivirus infections, and vice-versa, is unknown, (2) Drugs against ZIKV should be safe in pregnant women, and (3) Evaluation of the efficacy of vaccine and drugs against ZIKV in clinical trials phase II-IV will be complicated due to the decline of ZIKV circulation.
Collapse
Affiliation(s)
- Sophie Masmejan
- a Obstetrics unit, mother-child department , Lausanne University Hospital , Lausanne , Switzerland
| | - David Baud
- a Obstetrics unit, mother-child department , Lausanne University Hospital , Lausanne , Switzerland
| | - Didier Musso
- b Director of the Unit of Emerging Infectious Diseases , Institut Louis Malardé , Tahiti , French Polynesia.,c Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection , Marseille , France
| | - Alice Panchaud
- d School of Pharmaceutical Sciences , University of Geneva and Lausanne , Geneva , Switzerland.,e Swiss Teratogen Information Service (STIS) and Division of Clinical Pharmacology, Laboratory Department , University Hospital , Lausanne , Switzerland.,f Pharmacy Service, Laboratory Department , University Hospital Lausanne , Lausanne , Switzerland
| |
Collapse
|
35
|
Linnakoski R, Reshamwala D, Veteli P, Cortina-Escribano M, Vanhanen H, Marjomäki V. Antiviral Agents From Fungi: Diversity, Mechanisms and Potential Applications. Front Microbiol 2018. [PMID: 30333807 DOI: 10.3389/fmicb.2018.02325/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023] Open
Abstract
Viral infections are amongst the most common diseases affecting people worldwide. New viruses emerge all the time and presently we have limited number of vaccines and only few antivirals to combat viral diseases. Fungi represent a vast source of bioactive molecules, which could potentially be used as antivirals in the future. Here, we have summarized the current knowledge of fungi as producers of antiviral compounds and discuss their potential applications. In particular, we have investigated how the antiviral action has been assessed and what is known about the molecular mechanisms and actual targets. Furthermore, we highlight the importance of accurate fungal species identification on antiviral and other natural products studies.
Collapse
Affiliation(s)
| | - Dhanik Reshamwala
- Division of Cell and Molecular Biology, Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Pyry Veteli
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | | | - Henri Vanhanen
- Natural Resources Institute Finland (Luke), Joensuu, Finland
| | - Varpu Marjomäki
- Division of Cell and Molecular Biology, Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|