1
|
Zheng M, Kong X, Jiang X, Yang Y, Fu S, Wen C, Zhang W, Di W. Qualitative analysis of Fasciola gigantica excretory and secretory products coimmunoprecipitated with buffalo secondary infection sera shows dissimilar components from primary infection sera. Acta Trop 2024; 260:107391. [PMID: 39278520 DOI: 10.1016/j.actatropica.2024.107391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/30/2024] [Accepted: 09/07/2024] [Indexed: 09/18/2024]
Abstract
Buffaloes cannot mount a robust adaptive immune response to secondary infection by Fasciola gigantica. Even if excretory and secretory products (ESPs) exhibit potent immunoregulatory effects during primary infection, research on ESPs in secondary infection is lacking, even though the ESP components that are excreted/secreted during secondary infection are unknown. Therefore, qualitative analysis of ESP during secondary infection was performed and compared with that of primary infection to deepen the recognition of secondary infection and facilitate immunoregulatory molecules screening. Buffaloes were divided into three groups: A (n = 3, noninfected), B (n = 3, primary infection) and C (n = 3, secondary infection). Buffaloes in the primary (0 weeks post infection; wpi) and secondary (-4 and 0 wpi) infection groups were infected with 250 metacercariae by oral administration. Then, sera were collected from groups at different wpi, and interacting proteins were precipitated by coimmunoprecipitation (Co-IP), qualitatively analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and annotated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to infer their potential functions. In group C, 324 proteins were identified, of which 76 proteins were consistently identified across 7 time points (1, 3, 6, 8, 10, 13, and 16 wpi). Compared with 87 proteins consistently identified in group B, 22 proteins were identified in group C. Meanwhile, 34 proteins were only identified in group C compared to 200 proteins identified in group B. Protein pathway analysis indicated that these proteins were mainly involved in the cellular processes and metabolism of F. gigantica. Among them, 14-3-3θ was consistently identified in group C and may be involved in various cellular processes and innate immune signalling pathways. Members of the HSP family were identified in both groups B and C and may function in both primary and secondary infection processes. The proteins discovered in the present study will help to deepen the understanding of the molecular interactions between F. gigantica and buffalo during secondary infection and facilitate the identification of new potential immunoregulatory molecules.
Collapse
Affiliation(s)
- Mengwei Zheng
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, PR China
| | - Xinping Kong
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, PR China
| | - Xuelian Jiang
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, PR China
| | - Yankun Yang
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, PR China
| | - Shishi Fu
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, PR China
| | - Chongli Wen
- Guangxi Buffalo Research Institute, Chinese Academy Agricultural Sciences, Nanning, 530001, PR China.
| | - Weiyu Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, PR China.
| | - Wenda Di
- College of Animal Science and Technology, Guangxi University, Nanning, 530005, PR China.
| |
Collapse
|
2
|
Ulrich H, Glaser T, Thomas AP. Purinergic signaling in liver disease: calcium signaling and induction of inflammation. Purinergic Signal 2024:10.1007/s11302-024-10044-9. [PMID: 39320433 DOI: 10.1007/s11302-024-10044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/15/2024] [Indexed: 09/26/2024] Open
Abstract
Purinergic signaling regulates many metabolic functions and is implicated in liver physiology and pathophysiology. Liver functionality is modulated by ionotropic P2X and metabotropic P2Y receptors, specifically P2Y1, P2Y2, and P2Y6 subtypes, which physiologically exert their influence through calcium signaling, a key second messenger controlling glucose and fat metabolism in hepatocytes. Purinergic receptors, acting through calcium signaling, play an important role in a range of liver diseases. Ionotropic P2X receptors, such as the P2X7 subtype, and certain metabotropic P2Y receptors can induce aberrant intracellular calcium transients that impact normal hepatocyte function and initiate the activation of other liver cell types, including Kupffer and stellate cells. These P2Y- and P2X-dependent intracellular calcium increases are particularly relevant in hepatic disease states, where stellate and Kupffer cells respond with innate immune reactions to challenges, such as excess fat accumulation, chronic alcohol abuse, or infections, and can eventually lead to liver fibrosis. This review explores the consequences of excessive extracellular ATP accumulation, triggering calcium influx through P2X4 and P2X7 receptors, inflammasome activation, and programmed cell death. In addition, P2Y2 receptors contribute to hepatic steatosis and insulin resistance, while inhibiting the expression of P2Y6 receptors can alleviate alcoholic liver steatosis. Adenosine receptors may also contribute to fibrosis through extracellular matrix production by fibroblasts. Thus, pharmacological modulation of P1 and P2 receptors and downstream calcium signaling may open novel therapeutic avenues.
Collapse
Affiliation(s)
- Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA.
| | - Talita Glaser
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA.
| | - Andrew P Thomas
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
3
|
Nasr SM, Hassan M, Abou-Shousha T, Elhusseny Y, Elzallat M. Effect of Placental Derived Nucleoproteins on liver regeneration in DEN-induced liver fibrosis model. Biomed Pharmacother 2024; 178:117190. [PMID: 39067160 DOI: 10.1016/j.biopha.2024.117190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Placental Derived Nucleoproteins (PDNs) is commonly associated with the process of angiogenesis, and doesn't affect the healthy vasculature. PDNs are clinically estimated for the treatment of cancer cases and severe hepatic injuries. Thus, the pathophysiological effects of PDNs targeting liver fibrosis is a concern. OBJECTIVES To assess the molecular, histopathological, and chemical impact of PDNs on liver regeneration in Diethylnitrosamine (DEN)-induced mice liver fibrosis. METHODS Normal untreated reference group of ten mice and two groups of induced liver cirrhosis using the recommended weekly dose of Diethylnitrosamine in total of eleven doses, initially 20 mg/kg body weight, and then 30 mg/kg in the third week, followed by 50 mg/kg for the last eight weeks, one of them combined treatment aligned with injection with total dose of extracted PDNs 25 mg/kg, in comparison to PDNs only treated group. An autopsy was performed after 22 weeks of the initial dose of DEN in each group. Molecular characterization of Alpha smooth muscle actin, TGFβ and NF-κB biomarkers for liver then liver function panel were analyzed and finally hepatopathological changes were observed using H&E stain and Sirius red stain. RESULTS Liver enzymes, total bilirubin and total proteins in tissue in PDNs-DEN treated models were controlled in the direction of normal group and 50 % reduction of fibrosis in comparing to DEN-treated models. The cellular arrangement of fibrosis in the DEN entire groups were differentiated with high significant impact on the survival of mice. Increased levels of the biochemical markers in liver homogenate, loss of tissue architecture, and proliferation were observed in induced groups and down regulation of alpha smooth muscle actin, TGFβ and NF-κB. CONCLUSION This finding demonstrates an improvement of Liver tissue induced fibrosis using DEN combined with PDNs. This strategy is to generate an animal model with a lower occurrence of fibrosis in a short time treatment regarding liver regeneration.
Collapse
Affiliation(s)
- Sami Mohamed Nasr
- Department of Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Giza 12411, Egypt; School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt.
| | - Marwa Hassan
- Department of Immunology, Theodor Bilharz Research Institute, Giza 12411, Egypt.
| | - Tarek Abou-Shousha
- Department of Pathology, Theodor Bilharz Research Institute, Giza 12411, Egypt.
| | | | - Mohamed Elzallat
- Department of Immunology, Theodor Bilharz Research Institute, Giza 12411, Egypt.
| |
Collapse
|
4
|
Hildebrandt F, Iturritza MU, Zwicker C, Vanneste B, Van Hul N, Semle E, Quin J, Pascini T, Saarenpää S, He M, Andersson ER, Scott CL, Vega-Rodriguez J, Lundeberg J, Ankarklev J. Host-pathogen interactions in the Plasmodium-infected mouse liver at spatial and single-cell resolution. Nat Commun 2024; 15:7105. [PMID: 39160174 PMCID: PMC11333755 DOI: 10.1038/s41467-024-51418-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/06/2024] [Indexed: 08/21/2024] Open
Abstract
Upon infecting its vertebrate host, the malaria parasite initially invades the liver where it undergoes massive replication, whilst remaining clinically silent. The coordination of host responses across the complex liver tissue during malaria infection remains unexplored. Here, we perform spatial transcriptomics in combination with single-nuclei RNA sequencing over multiple time points to delineate host-pathogen interactions across Plasmodium berghei-infected liver tissues. Our data reveals significant changes in spatial gene expression in the malaria-infected tissues. These include changes related to lipid metabolism in the proximity to sites of Plasmodium infection, distinct inflammation programs between lobular zones, and regions with enrichment of different inflammatory cells, which we term 'inflammatory hotspots'. We also observe significant upregulation of genes involved in inflammation in the control liver tissues of mice injected with mosquito salivary gland components. However, this response is considerably delayed compared to that observed in P. berghei-infected mice. Our study establishes a benchmark for investigating transcriptome changes during host-parasite interactions in tissues, it provides informative insights regarding in vivo study design linked to infection and offers a useful tool for the discovery and validation of de novo intervention strategies aimed at malaria liver stage infection.
Collapse
Affiliation(s)
- Franziska Hildebrandt
- Molecular Biosciences, the Wenner Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, SE-106 91, Stockholm, Sweden.
| | - Miren Urrutia Iturritza
- Molecular Biosciences, the Wenner Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, SE-106 91, Stockholm, Sweden
| | - Christian Zwicker
- Department of Biomedical Molecular Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium
| | - Bavo Vanneste
- Department of Biomedical Molecular Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium
| | - Noémi Van Hul
- Department of Cell and Molecular Biology, Karolinska Institutet Stockholm, SE-171 77, Solna, Sweden
| | - Elisa Semle
- Molecular Biosciences, the Wenner Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, SE-106 91, Stockholm, Sweden
| | - Jaclyn Quin
- Molecular Biosciences, the Wenner Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, SE-106 91, Stockholm, Sweden
| | - Tales Pascini
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA
| | - Sami Saarenpää
- SciLifeLab, Department of Gene Technology, KTH Royal Institute of Technology, Tomtebodavägen 23a, SE-171 65, Solna, Sweden
| | - Mengxiao He
- SciLifeLab, Department of Gene Technology, KTH Royal Institute of Technology, Tomtebodavägen 23a, SE-171 65, Solna, Sweden
| | - Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet Stockholm, SE-171 77, Solna, Sweden
| | - Charlotte L Scott
- Department of Biomedical Molecular Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium
| | - Joel Vega-Rodriguez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA
| | - Joakim Lundeberg
- SciLifeLab, Department of Gene Technology, KTH Royal Institute of Technology, Tomtebodavägen 23a, SE-171 65, Solna, Sweden
| | - Johan Ankarklev
- Molecular Biosciences, the Wenner Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
5
|
Czuba LC, Isoherranen N. LX-2 Stellate Cells Are a Model System for Investigating the Regulation of Hepatic Vitamin A Metabolism and Respond to Tumor Necrosis Factor α and Interleukin 1 β. Drug Metab Dispos 2024; 52:442-454. [PMID: 38485281 PMCID: PMC11023816 DOI: 10.1124/dmd.124.001679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/05/2024] [Indexed: 04/18/2024] Open
Abstract
Hepatic stellate cells (HSCs) are the major site of vitamin A (retinol) esterification and subsequent storage as retinyl esters within lipid droplets. However, retinyl esters become depleted in many pathophysiological states, including acute and chronic liver injuries. Recently, using a liver slice culture system as a model of acute liver injury and fibrogenesis, a time-dependent increase and decrease in the apparent formation of the bioactive retinoid all-trans-retinoic acid (atRA) and retinyl palmitate was measured, respectively. This coincided with temporal changes in the gene expression of retinoid-metabolizing enzymes and binding proteins, that preceded HSC activation. However, the underlying mechanisms that promote early changes in retinoid metabolism remain unresolved. We hypothesized that LX-2 cells could be applied to investigate differences in quiescent and activated HSC retinoid metabolism. We demonstrate that the hypermetabolic state of activated stellate cells relative to quiescent stellate cells may be attributed to induction of STRA6, RBP4, and CYP26A1, thereby reducing intracellular concentrations of atRA. We further hypothesized that paracrine and autocrine cytokine signaling regulates HSC vitamin A metabolism in both quiescent and activated cells. In quiescent cells, tumor necrosis factor α dose-dependently downregulated LRAT and CRBP1 mRNA, with EC50 values of 30-50 pg/mL. Likewise, interleukin-1β decreased LRAT and CRBP1 gene expression but with less potency. In activated stellate cells, multiple enzymes were downregulated, suggesting that the full effects of altered hepatic vitamin A metabolism in chronic conditions require both paracrine and autocrine signaling events. Further, this study suggests the potential for cell type-specific autocrine effects in hepatic retinoid signaling. SIGNIFICANCE STATEMENT: HSCs are the major site of vitamin A storage and important determinants of retinol metabolism during liver fibrogenesis. Here, two LX-2 culture methods were applied as models of hepatic retinoid metabolism to demonstrate the effects of activation status and dose-dependent cytokine exposure on the expression of genes involved in retinoid metabolism. This study suggests that compared to quiescent cells, activated HSCs are hypermetabolic and have reduced apparent formation of retinoic acid, which may alter downstream retinoic acid signaling.
Collapse
Affiliation(s)
- Lindsay C Czuba
- Department of Pharmaceutics, University of Washington School of Pharmacy, Seattle, Washington (L.C.C., N.I.) and Department of Pharmaceutical Sciences, University of Kentucky, College of Pharmacy, Lexington, Kentucky (L.C.C.)
| | - Nina Isoherranen
- Department of Pharmaceutics, University of Washington School of Pharmacy, Seattle, Washington (L.C.C., N.I.) and Department of Pharmaceutical Sciences, University of Kentucky, College of Pharmacy, Lexington, Kentucky (L.C.C.)
| |
Collapse
|
6
|
Reis LFCD, Cerdeira CD, Silva LCC, Ramos ABSB, Silva JEC, Castro AP, Ventura RR, Souza RLM, Marques MJ, Novaes RD. Dietary glycemic and energy load differentially modulates Schistosoma mansoni-induced granulomatous inflammation and response to antiparasitic chemotherapy. Acta Trop 2024; 252:107141. [PMID: 38342286 DOI: 10.1016/j.actatropica.2024.107141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/09/2023] [Accepted: 02/02/2024] [Indexed: 02/13/2024]
Abstract
The impact of diet composition and energy content on schistosomiasis evolution and treatment efficacy is still controversial. This study compared the impact of sucrose-rich diet and intermittent fasting on Schistosoma mansoni infection and praziquantel (PZQ)-based chemotherapy response in mice. BALB/c mice were infected with S. mansoni and followed for 15 weeks. The animals were randomized into nine groups receiving high glycemic load (high-sucrose diet - HSD), low caloric load (standard chow alternate-day fasting - ADF), and standard chow ad libitum (AL). Eight weeks after S. mansoni infection, these groups remained untreated or were treated with PZQ (300 mg/kg/day) for 3 days. Our results indicated that parasite load (S. mansoni eggs and parasite DNA levels), granulomatous inflammation (granulomas number and size), and liver microstructural damage (reduction in hepatocytes number, increase in nucleus-cytoplasm ratio, connective stroma expansion and fibrosis) were increased in ADF-treated animals. These animals also showed decreased eggs retention, granulomatous inflammation and collagen accumulation in the small intestine. Conversely, HSD diet and PZQ treatment attenuated all these parameters and stimulated hepatic regenerative response. PZQ also stimulated fibrosis resolution in HSD-treated mice, effect that was limited ADF-exposed mice. Our findings indicate that dietary glycemic and energy load can modulate schistosomiasis progression and the severity of hepatic and intestinal granulomatous inflammation in untreated and PZQ-treated mice. Thus, lower intestinal eggs retention may potentially be linked to worsening liver disease in ADF, while attenuation of hepatic and intestinal granulomatous inflammation is consistent with reduced parasite load in HSD- and PZQ-treated animals.
Collapse
Affiliation(s)
- Luis F C Dos Reis
- Instituto d e Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Minas Gerais 37130-001, Brazil
| | - Cláudio D Cerdeira
- Departamento de Bioquímica, Universidade Federal de Alfenas, Alfenas, Minas Gerais, 37130-001, Brazil
| | - Laís C C Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas Minas Gerais, 37130-001, Brazil
| | - Amanda B S B Ramos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas Minas Gerais, 37130-001, Brazil
| | - José Edson C Silva
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Alfenas, Alfenas, Minas Gerais 37130-001, Brazil
| | - Aline P Castro
- Instituto d e Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Minas Gerais 37130-001, Brazil
| | - Renato R Ventura
- Instituto d e Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Minas Gerais 37130-001, Brazil
| | - Raquel L M Souza
- Instituto d e Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Minas Gerais 37130-001, Brazil; Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Alfenas, Alfenas, Minas Gerais 37130-001, Brazil
| | - Marcos J Marques
- Instituto d e Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Minas Gerais 37130-001, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas Minas Gerais, 37130-001, Brazil; Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Alfenas, Alfenas, Minas Gerais 37130-001, Brazil
| | - Rômulo D Novaes
- Instituto d e Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Minas Gerais 37130-001, Brazil; Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Alfenas, Alfenas, Minas Gerais 37130-001, Brazil.
| |
Collapse
|
7
|
Du Y, Bai Y, Lang S, Xing D, Ma L, Li K, Peng J, Li X, Liu G. Gelatin Sponges with a Uniform Interoperable Pore Structure and Biodegradability for Liver Injury Hemostasis and Tissue Regeneration. Biomacromolecules 2023; 24:5313-5327. [PMID: 37725632 DOI: 10.1021/acs.biomac.3c00803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Developing a hemostatic sponge that can effectively control bleeding from visceral injuries while guiding in situ tissue regeneration in incompressible wounds remains a challenge. Most of the existing hemostatic sponges degrade slowly, are relatively single-functioning, and cannot cope with complex environments. Herein, a biodegradable rapidly hemostatic sponge (GPZ) was created by dual-dynamic-bond cross-linking among Zn2+, protocatechualdehyde (PA)-containing catechol and aldehyde groups, and gelatin. GPZ had a uniformly distributed interconnected pore structure with excellent fluid absorption. It could effectively absorb the oozing blood and increase the blood concentration while stimulating platelet activation and accelerating blood coagulation. Compared to commercial hemostats, GPZ treatment significantly accelerated hemostasis in the rat liver defect model (∼0.33 min, ≥50% reduction in the hemostatic time) and in the rabbit liver defect model (∼1.02 min, ≥60% reduction in the hemostatic time). Additionally, GPZ had excellent antibacterial and antioxidant properties that effectively protected the wound from infection and excessive inflammation. In the liver regeneration model, GPZ significantly increased the rate of hepatic tissue repair and promoted rapid functional recovery without complications and adverse reactions. Overall, we designed a simple and effective biodegradable rapid hemostatic sponge with good clinical translational potential for treating lethal incompressible bleeding and promoting wound healing.
Collapse
Affiliation(s)
- Yangrui Du
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yangjing Bai
- West China School of Nursing, Sichuan University/Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shiying Lang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Dandan Xing
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Li Ma
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Kaijun Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jinyu Peng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xinyun Li
- Dazhou Hospital of Integrated Traditional Chinese and Western Medicine, Dazhou, Sichuan 635000, China
| | - Gongyan Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
8
|
Allameh A, Niayesh-Mehr R, Aliarab A, Sebastiani G, Pantopoulos K. Oxidative Stress in Liver Pathophysiology and Disease. Antioxidants (Basel) 2023; 12:1653. [PMID: 37759956 PMCID: PMC10525124 DOI: 10.3390/antiox12091653] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/15/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
The liver is an organ that is particularly exposed to reactive oxygen species (ROS), which not only arise during metabolic functions but also during the biotransformation of xenobiotics. The disruption of redox balance causes oxidative stress, which affects liver function, modulates inflammatory pathways and contributes to disease. Thus, oxidative stress is implicated in acute liver injury and in the pathogenesis of prevalent infectious or metabolic chronic liver diseases such as viral hepatitis B or C, alcoholic fatty liver disease, non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). Moreover, oxidative stress plays a crucial role in liver disease progression to liver fibrosis, cirrhosis and hepatocellular carcinoma (HCC). Herein, we provide an overview on the effects of oxidative stress on liver pathophysiology and the mechanisms by which oxidative stress promotes liver disease.
Collapse
Affiliation(s)
- Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran; (A.A.); (R.N.-M.); (A.A.)
| | - Reyhaneh Niayesh-Mehr
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran; (A.A.); (R.N.-M.); (A.A.)
| | - Azadeh Aliarab
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran; (A.A.); (R.N.-M.); (A.A.)
| | - Giada Sebastiani
- Chronic Viral Illness Services, McGill University Health Center, Montreal, QC H4A 3J1, Canada;
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Kostas Pantopoulos
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada
| |
Collapse
|
9
|
Park HJ, Choi J, Kim H, Yang DY, An TH, Lee EW, Han BS, Lee SC, Kim WK, Bae KH, Oh KJ. Cellular heterogeneity and plasticity during NAFLD progression. Front Mol Biosci 2023; 10:1221669. [PMID: 37635938 PMCID: PMC10450943 DOI: 10.3389/fmolb.2023.1221669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a progressive liver disease that can progress to nonalcoholic steatohepatitis (NASH), NASH-related cirrhosis, and hepatocellular carcinoma (HCC). NAFLD ranges from simple steatosis (or nonalcoholic fatty liver [NAFL]) to NASH as a progressive form of NAFL, which is characterized by steatosis, lobular inflammation, and hepatocellular ballooning with or without fibrosis. Because of the complex pathophysiological mechanism and the heterogeneity of NAFLD, including its wide spectrum of clinical and histological characteristics, no specific therapeutic drugs have been approved for NAFLD. The heterogeneity of NAFLD is closely associated with cellular plasticity, which describes the ability of cells to acquire new identities or change their phenotypes in response to environmental stimuli. The liver consists of parenchymal cells including hepatocytes and cholangiocytes and nonparenchymal cells including Kupffer cells, hepatic stellate cells, and endothelial cells, all of which have specialized functions. This heterogeneous cell population has cellular plasticity to adapt to environmental changes. During NAFLD progression, these cells can exert diverse and complex responses at multiple levels following exposure to a variety of stimuli, including fatty acids, inflammation, and oxidative stress. Therefore, this review provides insights into NAFLD heterogeneity by addressing the cellular plasticity and metabolic adaptation of hepatocytes, cholangiocytes, hepatic stellate cells, and Kupffer cells during NAFLD progression.
Collapse
Affiliation(s)
- Hyun-Ju Park
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Juyong Choi
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Hyunmi Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Da-Yeon Yang
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Tae Hyeon An
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Baek-Soo Han
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
10
|
Sani F, Soufi Zomorrod M, Azarpira N, Soleimani M. The Effect of Mesenchymal Stem Cell-Derived Exosomes and miR17-5p Inhibitor on Multicellular Liver Fibrosis Microtissues. Stem Cells Int 2023; 2023:8836452. [PMID: 37576406 PMCID: PMC10421706 DOI: 10.1155/2023/8836452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 08/15/2023] Open
Abstract
Background Although several studies have been conducted on modeling human liver disease, it is still challenging to mimic nonalcoholic fatty liver disease in vitro. Here, we aimed to develop a fibrotic liver microtissue composed of hepatocytes, hepatic stellate, and endothelial cells. In addition, the therapeutic effects of umbilical cord mesenchymal stem cell-derived exosomes (UC-MSC-EXO) and anti-miR17-5p as new antifibrotic drugs were investigated. Methods To create an effective preclinical fibrosis model, multicellular liver microtissues (MLMs) consisting of HepG2, LX2, and HUVECs were cultured and supplemented with a mixture of palmitic acid and oleic acid for 96 hr. Then, MLMs were exposed to UC-MSC-EXO and anti-miR17-5p in different groups. The results of cell viability, reactive oxygen species (ROS) production, liver enzyme levels, inflammation, and histopathology were analyzed to assess the treatment efficacy. Furthermore, the expression of collagen I (COL I) and α-smooth muscle actin (α-SMA) as critical matrix components, transforming growth factor beta (TGF-β), and miR-17-5p were measured. Results Free fatty acid supplementation causes fibrosis in MLMs. Our results demonstrated that UC-MSC-EXO and anti-miR17-5p attenuated TGF-β1, interleukin-1β, and interleukin-6 in all experimental groups. According to the suppression of the TGF-β1 pathway, LX2 activation was inhibited, reducing extracellular matrix proteins, including COL I and α-SMA. Also, miR-17-5p expression was elevated in fibrosis conditions. Furthermore, we showed that our treatments decreased alanine aminotransferase and aspartate aminotransferase, and increased albumin levels in the culture supernatant. We also found that both MSC-EXO and MSC-EXO + anti-miR17-5p treatments could reduce ROS production. Conclusion Our findings indicated that anti-miR17-5p and MSC-EXO might be promising therapeutic options for treating liver fibrosis. Furthermore, EXO + anti-miR had the best effects on boosting the fibrotic markers. Therefore, we propose this novel MLM model to understand fibrosis mechanisms better and develop new drugs.
Collapse
Affiliation(s)
- Farnaz Sani
- Hematology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mina Soufi Zomorrod
- Hematology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Khalili Street P.O. Box 7193711351, Shiraz, Iran
| | - Masoud Soleimani
- Hematology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Rodimova S, Mozherov A, Elagin V, Karabut M, Shchechkin I, Kozlov D, Krylov D, Gavrina A, Bobrov N, Zagainov V, Zagaynova E, Kuznetsova D. Effect of Hepatic Pathology on Liver Regeneration: The Main Metabolic Mechanisms Causing Impaired Hepatic Regeneration. Int J Mol Sci 2023; 24:ijms24119112. [PMID: 37298064 DOI: 10.3390/ijms24119112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Liver regeneration has been studied for many decades, and the mechanisms underlying regeneration of normal liver following resection are well described. However, no less relevant is the study of mechanisms that disrupt the process of liver regeneration. First of all, a violation of liver regeneration can occur in the presence of concomitant hepatic pathology, which is a key factor reducing the liver's regenerative potential. Understanding these mechanisms could enable the rational targeting of specific therapies to either reduce the factors inhibiting regeneration or to directly stimulate liver regeneration. This review describes the known mechanisms of normal liver regeneration and factors that reduce its regenerative potential, primarily at the level of hepatocyte metabolism, in the presence of concomitant hepatic pathology. We also briefly discuss promising strategies for stimulating liver regeneration and those concerning methods for assessing the regenerative potential of the liver, especially intraoperatively.
Collapse
Affiliation(s)
- Svetlana Rodimova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
| | - Artem Mozherov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research, Institute of Clinical Medicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Vadim Elagin
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
| | - Maria Karabut
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
| | - Ilya Shchechkin
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research, Institute of Clinical Medicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Dmitry Kozlov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research, Institute of Clinical Medicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Dmitry Krylov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research, Institute of Clinical Medicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Alena Gavrina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research, Institute of Clinical Medicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Nikolai Bobrov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- The Volga District Medical Centre of Federal Medical and Biological Agency, 14 Ilinskaya St., 603000 Nizhny Novgorod, Russia
| | - Vladimir Zagainov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Nizhny Novgorod Regional Clinical Oncologic Dispensary, Delovaya St., 11/1, 603126 Nizhny Novgorod, Russia
| | - Elena Zagaynova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
| | - Daria Kuznetsova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research, Institute of Clinical Medicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| |
Collapse
|
12
|
Fan Y, Na SY, Jung YS, Radhakrishnan K, Choi HS. Estrogen-related receptor γ (ERRγ) is a key regulator of lysyl oxidase gene expression in mouse hepatocytes. Steroids 2023; 194:109226. [PMID: 36948345 DOI: 10.1016/j.steroids.2023.109226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 03/24/2023]
Abstract
Lysyl oxidase (LOX), the copper-dependent extracellular enzyme, plays a critical role in the regulation of protein cross-linking in the extracellular matrix (ECM). It is also involved in liver regeneration and liver fibrosis. However, the mechanism of LOX regulation in mouse hepatocytes is still unclear. Here, we identify a molecular mechanism showing that orphan nuclear receptor estrogen-related receptor γ (ERRγ) regulates LOX gene expression in the presence of the pro-inflammatory cytokine, interleukin 6 (IL6). IL6 significantly stimulated the expression of ERRγ and LOX in mouse hepatocytes. Overexpression of ERRγ increased LOX mRNA and protein levels. Moreover, knockdown of ERRγ attenuated IL6-mediated LOX gene expression at mRNA and protein levels. Overexpression of ERRγ or IL6 treatment upregulated LOX gene promoter activity, while knockdown of ERRγ decreased the IL6-induced LOX promoter activity. Furthermore, GSK5182, a specific ERRγ inverse agonist, inhibited the induction effect of IL6 on LOX promoter activity and gene expression in mouse hepatocytes. Overall, our study elucidates the mechanism involved in the LOX gene regulation by nuclear receptor ERRγ in response to IL6 in mouse hepatocytes, suggesting that, in conditions such as chronic inflammation, IL6 may contribute to liver fibrosis via inducing LOX gene expression. Thus, LOX gene regulation by the inverse agonist of ERRγ can be applied to improve liver fibrosis.
Collapse
Affiliation(s)
- Yiwen Fan
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Soon-Young Na
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yoon Seok Jung
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kamalakannan Radhakrishnan
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hueng-Sik Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
13
|
Dunster JL, Gibbins JM, Nelson MR. Exploring the constituent mechanisms of hepatitis: a dynamical systems approach. MATHEMATICAL MEDICINE AND BIOLOGY : A JOURNAL OF THE IMA 2023; 40:24-48. [PMID: 36197900 PMCID: PMC10009886 DOI: 10.1093/imammb/dqac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/07/2022]
Abstract
Hepatitis is the term used to describe inflammation in the liver. It is associated with a high rate of mortality, but the underlying disease mechanisms are not completely understood and treatment options are limited. We present a mathematical model of hepatitis that captures the complex interactions between hepatocytes (liver cells), hepatic stellate cells (cells in the liver that produce hepatitis-associated fibrosis) and the immune components that mediate inflammation. The model is in the form of a system of ordinary differential equations. We use numerical techniques and bifurcation analysis to characterize and elucidate the physiological mechanisms that dominate liver injury and its outcome to a healthy or unhealthy, chronic state. This study reveals the complex interactions between the multiple cell types and mediators involved in this complex disease and highlights potential problems in targeting inflammation in the liver therapeutically.
Collapse
Affiliation(s)
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, RG6 6AS, UK
| | - Martin R Nelson
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| |
Collapse
|
14
|
Optical Biomedical Imaging Reveals Criteria for Violated Liver Regenerative Potential. Cells 2023; 12:cells12030479. [PMID: 36766821 PMCID: PMC9914457 DOI: 10.3390/cells12030479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
To reduce the risk of post-hepatectomy liver failure in patients with hepatic pathologies, it is necessary to develop an approach to express the intraoperative assessment of the liver's regenerative potential. Traditional clinical methods do not enable the prediction of the function of the liver remnant. Modern label-free bioimaging, using multiphoton microscopy in combination with second harmonic generation (SHG) and fluorescence lifetime imaging microscopy (FLIM), can both expand the possibilities for diagnosing liver pathologies and for assessing the regenerative potential of the liver. Using multiphoton and SHG microscopy, we assessed the structural state of liver tissue at different stages of induced steatosis and fibrosis before and after 70% partial hepatectomy in rats. Using FLIM, we also performed a detailed analysis of the metabolic state of the hepatocytes. We were able to determine criteria that can reveal a lack of regenerative potential in violated liver, such as the presence of zones with reduced NAD(P)H autofluorescence signals. Furthermore, for a liver with pathology, there was an absence of the jump in the fluorescence lifetime contributions of the bound form of NADH and NADPH the 3rd day after hepatectomy that is characteristic of normal liver regeneration. Such results are associated with decreased intensity of oxidative phosphorylation and of biosynthetic processes in pathological liver, which is the reason for the impaired liver recovery. This modern approach offers an effective tool that can be successfully translated into the clinic for express, intraoperative assessment of the regenerative potential of the pathological liver of a patient.
Collapse
|
15
|
Sailer A, McDermott E, Huynh KN, Kearns C. Schistosomiasis. Radiographics 2023; 43:e220193. [PMID: 36602925 DOI: 10.1148/rg.220193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Anne Sailer
- From the Section of Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar St, PO Box 208042, Room TE-2, New Haven, CT 06520 (A.S.); Department of Radiology, Mater Misericordiae University Hospital, Dublin, Ireland (E.M.); Department of Radiological Sciences, University of California-Irvine, Orange, Calif (K.N.H.); and Department of Radiology, Wellington Regional Hospital, Te Whatu Ora (Health New Zealand), Wellington, New Zealand, and Artibiotics, Wellington, New Zealand (C.K.)
| | - Edward McDermott
- From the Section of Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar St, PO Box 208042, Room TE-2, New Haven, CT 06520 (A.S.); Department of Radiology, Mater Misericordiae University Hospital, Dublin, Ireland (E.M.); Department of Radiological Sciences, University of California-Irvine, Orange, Calif (K.N.H.); and Department of Radiology, Wellington Regional Hospital, Te Whatu Ora (Health New Zealand), Wellington, New Zealand, and Artibiotics, Wellington, New Zealand (C.K.)
| | - Kenneth N Huynh
- From the Section of Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar St, PO Box 208042, Room TE-2, New Haven, CT 06520 (A.S.); Department of Radiology, Mater Misericordiae University Hospital, Dublin, Ireland (E.M.); Department of Radiological Sciences, University of California-Irvine, Orange, Calif (K.N.H.); and Department of Radiology, Wellington Regional Hospital, Te Whatu Ora (Health New Zealand), Wellington, New Zealand, and Artibiotics, Wellington, New Zealand (C.K.)
| | - Ciléin Kearns
- From the Section of Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar St, PO Box 208042, Room TE-2, New Haven, CT 06520 (A.S.); Department of Radiology, Mater Misericordiae University Hospital, Dublin, Ireland (E.M.); Department of Radiological Sciences, University of California-Irvine, Orange, Calif (K.N.H.); and Department of Radiology, Wellington Regional Hospital, Te Whatu Ora (Health New Zealand), Wellington, New Zealand, and Artibiotics, Wellington, New Zealand (C.K.)
| |
Collapse
|
16
|
Hoteit L, Loughran P, Haldeman S, Reiser D, Alsaadi N, Andraska E, Bonaroti J, Srinivasan A, Williamson KM, Alvikas J, Steinman R, Keegan J, Lederer JA, Scott M, Neal MD, Seshadri A. MACROPHAGE SWITCHING: POLARIZATION AND MOBILIZATION AFTER TRAUMA. Shock 2023; 59:232-238. [PMID: 36669229 PMCID: PMC9957821 DOI: 10.1097/shk.0000000000002033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
ABSTRACT Introduction: Trauma alters the immune response in numerous ways, affecting both the innate and adaptive responses. Macrophages play an important role in inflammation and wound healing following injury. We hypothesize that macrophages mobilize from the circulation to the site of injury and secondary sites after trauma, with a transition from proinflammatory (M1) shortly after trauma to anti-inflammatory (M2) at later time points. Methods: C57Bl6 mice (n = 6/group) underwent a polytrauma model using cardiac puncture/hemorrhage, pseudofemoral fracture, and liver crush injury. The animals were killed at several time points: uninjured, 24 h, and 7 days. Peripheral blood mononuclear cells, spleen, liver nonparenchymal cells, and lung were harvested, processed, and stained for flow cytometry. Macrophages were identified as CD68 + ; M1 macrophages were identified as iNOS + ; M2 macrophages as arginase 1 + . Results: We saw a slight presence of M1 macrophages at baseline in peripheral blood mononuclear cells (6.6%), with no significant change at 24 h and 7 days after polytrauma. In contrast, the spleen has a larger population of M1 macrophages at baseline (27.7%), with levels decreasing at 24 h and 7 days after trauma (20.6% and 12.6%, respectively). A similar trend is seen in the lung where at baseline 14.9% of CD68 + macrophages are M1, with subsequent continual decrease reaching 8.7% at 24 h and 4.4% at 7 days after polytrauma. M1 macrophages in the liver represent 14.3% of CD68 + population in the liver nonparenchymal cells at baseline. This percentage increases to 20.8% after trauma and decreases at 7 days after polytrauma (13.4%). There are few M2 macrophages in circulating peripheral blood mononuclear cells and in spleen at baseline and after trauma. The percentage of M2 macrophages in the lungs remains constant after trauma (7.2% at 24 h and 9.2% at 7 days). In contrast, a large proportion of M2 macrophages are seen in the liver at baseline (36.0%). This percentage trends upward and reaches 45.6% acutely after trauma and drops to 21.4% at 7 days. The phenotypic changes in macrophages seen in the lungs did not correlate with a functional change in the ability of the macrophages to perform oxidative burst, with an increase from 2.0% at baseline to 22.1% at 7 days after polytrauma ( P = 0.0258). Conclusion: Macrophage phenotypic changes after polytrauma are noted, especially with a decrease in the lung M1 phenotype and a short-term increase in the M2 phenotype in the liver. However, macrophage function as measured by oxidative burst increased over the time course of trauma, which may signify a change in subset polarization after injury not captured by the typical macrophage phenotypes.
Collapse
Affiliation(s)
- Lara Hoteit
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Pittsburgh Trauma & Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patricia Loughran
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Shannon Haldeman
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Pittsburgh Trauma & Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Danielle Reiser
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Nijmeh Alsaadi
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Pittsburgh Trauma & Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elizabeth Andraska
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Pittsburgh Trauma & Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jillian Bonaroti
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Pittsburgh Trauma & Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amudan Srinivasan
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Pittsburgh Trauma & Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kelly M. Williamson
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Pittsburgh Trauma & Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jurgis Alvikas
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Pittsburgh Trauma & Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Richard Steinman
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Pittsburgh Trauma & Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joshua Keegan
- Department of Surgery, Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - James A Lederer
- Department of Surgery, Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Melanie Scott
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Pittsburgh Trauma & Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew D. Neal
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Pittsburgh Trauma & Transfusion Medicine Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anupamaa Seshadri
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Zhu Y, Zhang L, Duan W, Martin-Saldaña S, Li C, Yu H, Feng L, Zhang X, Du B, Li G, Zheng X, Bu Y. Succinic Ester-Based Shape Memory Gelatin Sponge for Noncompressible Hemorrhage without Hindering Tissue Regeneration. Adv Healthc Mater 2023; 12:e2202122. [PMID: 36399015 DOI: 10.1002/adhm.202202122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/18/2022] [Indexed: 11/19/2022]
Abstract
Shape memory sponges are very promising in stopping the bleeding from noncompressible and narrow entrance wounds. However, few shape memory sponges have fast degradable properties in order to not hinder tissue healing. In this work, based on cryopolymerization, a succinic ester-based sponge (Ssponge) is fabricated using gelatin and bi-polyethylene glycol-succinimidyl succinate (Bi-PEG-SS). Compared with the commercially available gelatin sponge (Csponge), Ssponge possesses better water/blood absorption ability and higher mechanical pressure over the surrounding tissues. Moreover, in the models of massive liver hemorrhage after transection and noncompressive liver wounds by penetration, Ssponge exhibits a better hemostasis performance than Csponge. Furthermore, in a liver regeneration model, Ssponge-treated livers shows higher regeneration speed compared with Csponge, including a lower injury score, more cavity-like tissues, less fibrosis and enhanced tissue regeneration. Overall, it is shown that Ssponge, with a fast degradation behavior, is not only highly efficient in stopping bleeding but also not detrimental for tissue healing, possessing promising clinical translational potential.
Collapse
Affiliation(s)
- Ye Zhu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China.,Department of Orthopedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, P. R. China
| | - Lining Zhang
- Department of Rehabilitation Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, P. R. China
| | - Wanglin Duan
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Sergio Martin-Saldaña
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián, 20018, Spain
| | - Chaowei Li
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Hongwen Yu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Luyao Feng
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Xianpeng Zhang
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Baoji Du
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Guanying Li
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Xifu Zheng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, P. R. China
| | - Yazhong Bu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| |
Collapse
|
18
|
Di-Iacovo N, Pieroni S, Piobbico D, Castelli M, Scopetti D, Ferracchiato S, Della-Fazia MA, Servillo G. Liver Regeneration and Immunity: A Tale to Tell. Int J Mol Sci 2023; 24:1176. [PMID: 36674692 PMCID: PMC9864482 DOI: 10.3390/ijms24021176] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
The physiological importance of the liver is demonstrated by its unique and essential ability to regenerate following extensive injuries affecting its function. By regenerating, the liver reacts to hepatic damage and thus enables homeostasis to be restored. The aim of this review is to add new findings that integrate the regenerative pathway to the current knowledge. An optimal regeneration is achieved through the integration of two main pathways: IL-6/JAK/STAT3, which promotes hepatocyte proliferation, and PI3K/PDK1/Akt, which in turn enhances cell growth. Proliferation and cell growth are events that must be balanced during the three phases of the regenerative process: initiation, proliferation and termination. Achieving the correct liver/body weight ratio is ensured by several pathways as extracellular matrix signalling, apoptosis through caspase-3 activation, and molecules including transforming growth factor-beta, and cyclic adenosine monophosphate. The actors involved in the regenerative process are numerous and many of them are also pivotal players in both the immune and non-immune inflammatory process, that is observed in the early stages of hepatic regeneration. Balance of Th17/Treg is important in liver inflammatory process outcomes. Knowledge of liver regeneration will allow a more detailed characterisation of the molecular mechanisms that are crucial in the interplay between proliferation and inflammation.
Collapse
Affiliation(s)
- Nicola Di-Iacovo
- Department of Medicine and Surgery, University of Perugia, Piazzale L. Severi 1, 06129 Perugia, Italy
| | - Stefania Pieroni
- Department of Medicine and Surgery, University of Perugia, Piazzale L. Severi 1, 06129 Perugia, Italy
| | - Danilo Piobbico
- Department of Medicine and Surgery, University of Perugia, Piazzale L. Severi 1, 06129 Perugia, Italy
| | - Marilena Castelli
- Department of Medicine and Surgery, University of Perugia, Piazzale L. Severi 1, 06129 Perugia, Italy
| | - Damiano Scopetti
- Department of Medicine and Surgery, University of Perugia, Piazzale L. Severi 1, 06129 Perugia, Italy
| | - Simona Ferracchiato
- Department of Medicine and Surgery, University of Perugia, Piazzale L. Severi 1, 06129 Perugia, Italy
| | - Maria Agnese Della-Fazia
- Department of Medicine and Surgery, University of Perugia, Piazzale L. Severi 1, 06129 Perugia, Italy
| | - Giuseppe Servillo
- Department of Medicine and Surgery, University of Perugia, Piazzale L. Severi 1, 06129 Perugia, Italy
- Centro Universitario di Ricerca sulla Genomica Funzionale (C.U.R.Ge.F.), University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
19
|
Gieseler RK, Schreiter T, Canbay A. The Aging Human Liver: The Weal and Woe of Evolutionary Legacy. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2023; 61:83-94. [PMID: 36623546 DOI: 10.1055/a-1955-5297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Aging is characterized by the progressive decline of biological integrity and its compensatory mechanisms as well as immunological dysregulation. This goes along with an increasing risk of frailty and disease. Against this background, we here specifically focus on the aging of the human liver. For the first time, we shed light on the intertwining evolutionary underpinnings of the liver's declining regenerative capacity, the phenomenon of inflammaging, and the biotransformation capacity in the process of aging. In addition, we discuss how aging influences the risk for developing nonalcoholic fatty liver disease, hepatocellular carcinoma, and/or autoimmune hepatitis, and we describe chronic diseases as accelerators of biological aging.
Collapse
Affiliation(s)
- Robert K Gieseler
- Medizinische Klinik, Universitätsklinikum Knappschaftskrankenhaus Bochum GmbH, Bochum, Germany
| | - Thomas Schreiter
- Medizinische Klinik, Universitätsklinikum Knappschaftskrankenhaus Bochum GmbH, Bochum, Germany
| | - Ali Canbay
- Medizinische Klinik, Universitätsklinikum Knappschaftskrankenhaus Bochum GmbH, Bochum, Germany
| |
Collapse
|
20
|
Khanam A, Kottilil S. New Therapeutics for HCC: Does Tumor Immune Microenvironment Matter? Int J Mol Sci 2022; 24:ijms24010437. [PMID: 36613878 PMCID: PMC9820509 DOI: 10.3390/ijms24010437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The incidence of liver cancer is continuously rising where hepatocellular carcinoma (HCC) remains the most common form of liver cancer accounting for approximately 80-90% of the cases. HCC is strongly prejudiced by the tumor microenvironment and being an inflammation-associated condition, the contribution of various immune mechanisms is critical in its development, progression, and metastasis. The tumor immune microenvironment is initially inflammatory which is subsequently replenished by the immunosuppressive cells contributing to tumor immune escape. Regardless of substantial advancement in systemic therapy, HCC has poor prognosis and outcomes attributed to the drug resistance, recurrence, and its metastatic behavior. Therefore, currently, new immunotherapeutic strategies are extensively targeted in preclinical and clinical settings in order to elicit robust HCC-specific immune responses and appear to be quite effective, extending current treatment alternatives. Understanding the complex interplay between the tumor and the immune cells and its microenvironment will provide new insights into designing novel immunotherapeutics to overcome existing treatment hurdles. In this review, we have provided a recent update on immunological mechanisms associated with HCC and discussed potential advancement in immunotherapies for HCC treatment.
Collapse
|
21
|
Zheng M, Jiang X, Kong X, Guo Y, Zhang W, Di W. Proteomic analysis of Fasciola gigantica excretory and secretory products ( FgESPs) co-immunoprecipitated using a time course of infected buffalo sera. Front Microbiol 2022; 13:1089394. [PMID: 36620027 PMCID: PMC9816151 DOI: 10.3389/fmicb.2022.1089394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Widespread Fasciola gigantica infection in buffaloes has caused great economic losses in buffalo farming. Studies on F. gigantica excretory and secretory products (FgESP) have highlighted their importance in F. gigantica parasitism and their potential in vaccine development. Identifying FgESP components involved in F. gigantica-buffalo interactions during different periods is important for developing effective strategies against fasciolosis. Methods Buffaloes were assigned to non-infection (n = 3, as control group) and infection (n = 3) groups. The infection group was orally administrated 250 metacercariae. Sera were collected at 3, 10, and 16 weeks post-infection (wpi) for the non-infection group and at 0 (pre-infection), 1, 3, 6, 8, 10, 13, and 16 wpi for the infection group. FgESP components interacting with sera from the non-infection and infection groups assay were pulled down by co-IP and identified using LC-MS/MS. Interacting FgESP components in infection group were subjected to Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway and gene ontology (GO) functional annotation to infer their potential functions. Results and discussion Proteins of FgESP components identified in the non-infection group at 3, 10, and 16 wpi accounted for 80.5%, 84.3%, and 82.1% of all proteins identified in these three time points, respectively, indicating surroundings did not affect buffalo immune response during maintenance. Four hundred and ninety proteins were identified in the infection group, of which 87 were consistently identified at 7 time points. Following GO analysis showed that most of these 87 proteins were in biological processes, while KEGG analysis showed they mainly functioned in metabolism and cellular processing, some of which were thought to functions throughout the infection process. The numbers of specific interactors identified for each week were 1 (n = 12), 3 (n = 5), 6 (n = 8), 8 (n = 15), 10 (n = 23), 13 (n = 22), and 16 (n = 14) wpi, some of which were thought to functions in specific infection process. This study screened the antigenic targets in FgESP during a dense time course over a long period. These findings may enhance the understanding of molecular F. gigantica-buffalo interactions and help identify new potential vaccine and drug target candidates.
Collapse
Affiliation(s)
- Mengwei Zheng
- College of Animal Science and Technology, Guangxi University, Nanning, China,Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China,Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China,Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Xuelian Jiang
- College of Animal Science and Technology, Guangxi University, Nanning, China,Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China,Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China,Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Xinping Kong
- College of Animal Science and Technology, Guangxi University, Nanning, China,Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China,Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China,Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Yanfeng Guo
- College of Animal Science and Technology, Guangxi University, Nanning, China,Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China,Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China,Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Weiyu Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, China,Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China,Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China,Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China,*Correspondence: Weiyu Zhang, ✉
| | - Wenda Di
- College of Animal Science and Technology, Guangxi University, Nanning, China,Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China,Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China,Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China,Wenda Di, ✉
| |
Collapse
|
22
|
Lian YE, Bai YN, Lai JL, Huang AM. Aberrant regulation of autophagy disturbs fibrotic liver regeneration after partial hepatectomy. Front Cell Dev Biol 2022; 10:1030338. [PMID: 36393837 PMCID: PMC9644332 DOI: 10.3389/fcell.2022.1030338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/13/2022] [Indexed: 01/04/2025] Open
Abstract
Reports indicate that autophagy is essential for maintaining hepatocyte proliferative capacity during liver regeneration. However, the role of autophagy in fibrotic liver regeneration is incompletely elucidated. We investigated the deregulation of autophagic activities in liver regeneration after partial hepatectomy using a CCl4-induced fibrosis mouse model. The baseline autophagic activity was significantly increased in the fibrotic liver. After 50% partial hepatectomy (PHx), liver regeneration was remarkably decreased, accompanied by increased hepatocyte size and binuclearity ratio. Moreover, the expression of autophagy-related proteins was functionally deregulated and resulted in a reduction in the number of autophagosome and autophagosome-lysosome fusions. We further showed upregulation of autophagy activities through verapamil administration, improved hepatocyte proliferation capacity, and restricted cellular hypertrophy and binuclearity ratio. In conclusion, we demonstrated that the impairment of liver regeneration is associated with aberrant autophagy in fibrotic liver and that enhancing autophagy with verapamil may partially restore the impaired liver regeneration following PHx.
Collapse
Affiliation(s)
- Yuan-E. Lian
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Pathology, The Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Yan-Nan Bai
- Shengli Clinical Medical College of Fujian Medical University, Department of Hepatobiliary and Pancreatic Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Jian-Lin Lai
- Shengli Clinical Medical College of Fujian Medical University, Department of Hepatobiliary and Pancreatic Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Ai-Min Huang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
23
|
Malmir A, Farivar S, Rezaei R, Tokhanbigli S, Hatami B, Mazhari S, Baghaei K. The effect of mesenchymal stem cells and imatinib on macrophage polarization in rat model of liver fibrosis. Cell Biol Int 2022; 47:135-143. [PMID: 36183364 DOI: 10.1002/cbin.11916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/12/2022]
Abstract
Liver fibrosis is a disorder in which inflammatory reactions play an important role, and central to the progression and pathogenesis of this disease are the immune-specific cells known as macrophages. Macrophage types are distinguished from each other by the expression of a series of surface markers. STAT6 and Arg1 play an important role in the polarization of macrophages, so these two factors are downstream of interleukin 4 (IL-4) and IL-13 cytokines and cause to differentiate M2. Therefore, this study aimed to compare the independent effects of imatinib and mesenchymal cell treatment on the polarization of macrophages in rat models of liver fibrosis. The liver fibrosis was induced by the injection of CCL4 for 6 weeks in Sprague-Dawley rats. Then, rats were divided into four different groups, and the effects of imatinib and mesenchymal cells on the expression of Arg1, Ly6c, and STAT6 were evaluated. Histopathology experiments considered the amelioration effect of treatments. Our results showed that Arg1 expression was significantly increased in the groups treated with mesenchymal cells and imatinib compared to the control group. On the other hand, expression of STAT6 was significantly increased in the imatinib-treated mice compared to mesenchymal and control groups. Moreover, the expression of LY6C significantly decreased in imatinib and mesenchymal treated groups compared to the control group. Therefore, our data showed that mesenchymal stem cells and imatinib significantly modulate the fibrotic process in rat models of fibrosis, probably by polarizing macrophages towards an anti-inflammatory profile and increasing the frequency of these cells in liver tissue.
Collapse
Affiliation(s)
- Ali Malmir
- Department of Molecular and Cell Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Shirin Farivar
- Department of Molecular and Cell Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ramazan Rezaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Tokhanbigli
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sogol Mazhari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Di Carmine S, Scott MM, McLean MH, McSorley HJ. The role of interleukin-33 in organ fibrosis. DISCOVERY IMMUNOLOGY 2022; 1:kyac006. [PMID: 38566909 PMCID: PMC10917208 DOI: 10.1093/discim/kyac006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/06/2022] [Accepted: 09/22/2022] [Indexed: 04/04/2024]
Abstract
Interleukin (IL)-33 is highly expressed in the nucleus of cells present at barrier sites and signals via the ST2 receptor. IL-33 signalling via ST2 is essential for return to tissue homeostasis after acute inflammation, promoting fibrinogenesis and wound healing at injury sites. However, this wound-healing response becomes aberrant during chronic or sustained inflammation, leading to transforming growth factor beta (TGF-β) release, excessive extracellular matrix deposition, and fibrosis. This review addresses the role of the IL-33 pathway in fibrotic diseases of the lung, liver, gastrointestinal tract, skin, kidney and heart. In the lung and liver, IL-33 release leads to the activation of pro-fibrotic TGF-β, and in these sites, IL-33 has clear pro-fibrotic roles. In the gastrointestinal tract, skin, and kidney, the role of IL-33 is more complex, being both pro-fibrotic and tissue protective. Finally, in the heart, IL-33 serves cardioprotective functions by favouring tissue healing and preventing cardiomyocyte death. Altogether, this review indicates the presence of an unclear and delicate balance between resolving and pro-fibrotic capabilities of IL-33, which has a central role in the modulation of type 2 inflammation and fibrosis in response to tissue injury.
Collapse
Affiliation(s)
- Samuele Di Carmine
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dundee, UK
| | - Molly M Scott
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, UK
| | - Mairi H McLean
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, UK
| | - Henry J McSorley
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dundee, UK
| |
Collapse
|
25
|
Heo J, Joung C, Pahk K, Pahk KJ. Investigation of the long-term healing response of the liver to boiling histotripsy treatment in vivo. Sci Rep 2022; 12:14462. [PMID: 36002564 PMCID: PMC9402918 DOI: 10.1038/s41598-022-18544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/16/2022] [Indexed: 11/09/2022] Open
Abstract
Boiling histotripsy (BH) is a promising High-Intensity Focused Ultrasound technique that can be employed to mechanically fractionate solid tumours. Whilst studies have shown the feasibility of BH to destroy liver cancer, no study has reported on the healing process of BH-treated liver tissue. We therefore extensively investigated the evolution of the healing response of liver to BH in order to provide an insight into the healing mechanisms. In the present study, 14 Sprague Dawley rats underwent the BH treatment and were sacrificed on days 0, 3, 7, 14, and 28 for morphological, histological, serological and qPCR analyses. The area of the treated region was 1.44 cm2 (1.2 cm × 1.2 cm). A well-defined BH lesion filled with coagulated blood formed on day 0. A week after the treatment, fibroblast activation was induced at the treatment site, leading to the formation of extracellular matrix structure (ECM). The ECM was then disrupted for 7 to 28 days. Regenerated normal hepatocytes and newly formed blood vessels were found within the BH region with the absence of hepatic fibrosis. No significant morphological, histological and genetic changes around the BH lesion occurred. These results suggest that BH could be a safe and promising therapeutic tool for treating solid tumours without inducing any significant adverse effect such as the formation of liver fibrosis.
Collapse
Affiliation(s)
- Jeongmin Heo
- Center for Bionics, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Chanmin Joung
- Institute for Inflammation Control, Korea University, Seoul, Republic of Korea
| | - Kisoo Pahk
- Department of Nuclear Medicine, Korea University College of Medicine, Anam-dong 5-ga, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Ki Joo Pahk
- Department of Biomedical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.
| |
Collapse
|
26
|
Zhang S, Lu S, Li Z. Extrahepatic factors in hepatic immune regulation. Front Immunol 2022; 13:941721. [PMID: 36052075 PMCID: PMC9427192 DOI: 10.3389/fimmu.2022.941721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
The liver is a site of complex immune activity. The hepatic immune system tolerates harmless immunogenic loads in homeostasis status, shelters liver function, while maintaining vigilance against possible infectious agents or tissue damage and providing immune surveillance at the same time. Activation of the hepatic immunity is initiated by a diverse repertoire of hepatic resident immune cells as well as non-hematopoietic cells, which can sense "danger signals" and trigger robust immune response. Factors that mediate the regulation of hepatic immunity are elicited not only in liver, but also in other organs, given the dual blood supply of the liver via both portal vein blood and arterial blood. Emerging evidence indicates that inter-organ crosstalk between the liver and other organs such as spleen, gut, lung, adipose tissue, and brain is involved in the pathogenesis of liver diseases. In this review, we present the features of hepatic immune regulation, with particular attention to the correlation with factors from extrahepatic organ. We describe the mechanisms by which other organs establish an immune association with the liver and then modulate the hepatic immune response. We discuss their roles and distinct mechanisms in liver homeostasis and pathological conditions from the cellular and molecular perspective, highlighting their potential for liver disease intervention. Moreover, we review the available animal models and methods for revealing the regulatory mechanisms of these extrahepatic factors. With the increasing understanding of the mechanisms by which extrahepatic factors regulate liver immunity, we believe that this will provide promising targets for liver disease therapy.
Collapse
Affiliation(s)
- Shaoying Zhang
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Shaanxi International Cooperation Base for Inflammation and Immunity, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Shemin Lu
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Shaanxi International Cooperation Base for Inflammation and Immunity, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, China
| | - Zongfang Li
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Shaanxi International Cooperation Base for Inflammation and Immunity, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
27
|
Ahmed AR, Ahmed M, Vun-Sang S, Iqbal M. Is Glyceryl Trinitrate, a Nitric Oxide Donor Responsible for Ameliorating the Chemical-Induced Tissue Injury In Vivo? Molecules 2022; 27:molecules27144362. [PMID: 35889233 PMCID: PMC9318303 DOI: 10.3390/molecules27144362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022] Open
Abstract
Oxidative stress induced by well-known toxins including ferric nitrilotriacetate (Fe-NTA), carbon tetrachloride (CCl4) and thioacetamide (TAA) has been attributed to causing tissue injury in the liver and kidney. In this study, the effect of glyceryl trinitrate (GTN), a donor of nitric oxide and NG-nitroarginine methyl ester (l-NAME), a nitric oxide inhibitor on TAA-induced hepatic oxidative stress, GSH and GSH-dependent enzymes, serum transaminases and tumor promotion markers such as ornithine decarboxylase (ODC) activity and [3H]-thymidine incorporation in rats were examined. The animals were divided into seven groups consisting of six healthy rats per group. The six rats were injected intraperitoneally with TAA to evaluate its toxic effect, improvement in its toxic effect if any, or worsening in its toxic effect if any, when given in combination with GTN or l-NAME. The single necrogenic dose of TAA administration caused a significant change in the levels of both hepatic and serum enzymes such as glutathione S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx), γ-glutamyl transpeptidase (GGT), glucose 6-phosphate dehydrogenase (G6PD), alanine aminotransferase (AST) and aspartate aminotransferase (ALT). In addition, treatment with TAA also augmented malondialdehyde (MDA), ornithine decarboxylase (ODC) activity and [3H]-thymidine incorporation in rats liver. Concomitantly, TAA treatment depleted the levels of GSH. However, most of these changes were alleviated by the treatment of animals with GTN dose-dependently. The protective effect of GTN against TAA was also confirmed histopathologically. The present data confirmed our earlier findings with other oxidants including Fe-NTA and CCl4. The GTN showed no change whatsoever when administered alone, however when it was given along with TAA then it showed protection thereby contributing towards defending the role against oxidants-induced organ toxicity. Overall, GTN may contribute to protection against TAA-induced oxidative stress, toxicity, and proliferative response in the liver, according to our findings.
Collapse
Affiliation(s)
- Ayesha Rahman Ahmed
- Department of Medical Elementology and Toxicology, Faculty of Science, Hamdard University, New Delhi 110062, India;
| | - Mahiba Ahmed
- Voiland School of Chemical Engineering and Bioengineering, Pullman, WA 99164, USA;
| | - Senty Vun-Sang
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia;
| | - Mohammad Iqbal
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia;
- Correspondence: or
| |
Collapse
|
28
|
Verma A, Manchel A, Melunis J, Hengstler JG, Vadigepalli R. From Seeing to Simulating: A Survey of Imaging Techniques and Spatially-Resolved Data for Developing Multiscale Computational Models of Liver Regeneration. FRONTIERS IN SYSTEMS BIOLOGY 2022; 2:917191. [PMID: 37575468 PMCID: PMC10421626 DOI: 10.3389/fsysb.2022.917191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Liver regeneration, which leads to the re-establishment of organ mass, follows a specifically organized set of biological processes acting on various time and length scales. Computational models of liver regeneration largely focused on incorporating molecular and signaling detail have been developed by multiple research groups in the recent years. These modeling efforts have supported a synthesis of disparate experimental results at the molecular scale. Incorporation of tissue and organ scale data using noninvasive imaging methods can extend these computational models towards a comprehensive accounting of multiscale dynamics of liver regeneration. For instance, microscopy-based imaging methods provide detailed histological information at the tissue and cellular scales. Noninvasive imaging methods such as ultrasound, computed tomography and magnetic resonance imaging provide morphological and physiological features including volumetric measures over time. In this review, we discuss multiple imaging modalities capable of informing computational models of liver regeneration at the organ-, tissue- and cellular level. Additionally, we discuss available software and algorithms, which aid in the analysis and integration of imaging data into computational models. Such models can be generated or tuned for an individual patient with liver disease. Progress towards integrated multiscale models of liver regeneration can aid in prognostic tool development for treating liver disease.
Collapse
Affiliation(s)
- Aalap Verma
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Alexandra Manchel
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Justin Melunis
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jan G. Hengstler
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
29
|
Cozma GV, Apostu A, Macasoi I, Dehelean CA, Cretu OM, Dinu S, Gaiță D, Manea A. In Vitro and In Ovo Evaluation of the Potential Hepatoprotective Effect of Metformin. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58060705. [PMID: 35743967 PMCID: PMC9228172 DOI: 10.3390/medicina58060705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022]
Abstract
Background and Objectives: Metformin is currently the leading drug of choice for treating type 2 diabetes mellitus, being one of the most widely used drugs worldwide. The beneficial effects of Metformin, however, extend far beyond the reduction of blood glucose. Therefore, this study aimed to evaluate Metformin's effects both in vitro and in ovo. Materials and Methods: Metformin has been tested in five different concentrations in human hepatocytes -HepaRG, in terms of cell viability, morphology, structure and number of nuclei and mitochondria, as well as the effect on cell migration. Through the application of HET-CAM, the biocompatibility and potential anti-irritant, as well as protective effects on the vascular plexus were also assessed. Results: According to the results obtained, Metformin increases cell viability without causing morphological changes to cells, mitochondria, or nuclei. Metformin displayed an anti-irritant activity rather than causing irritation at the level of the vascular plexus. Conclusions: In conclusion, Metformin enhances cell viability and proliferation and, has a protective effect on the vascular plexus. Nonetheless, more studies are required to clarify the mechanism of hepatoprotective effect of metformin.
Collapse
Affiliation(s)
- Gabriel Veniamin Cozma
- Department of Surgical Semiology, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania;
| | - Alexandru Apostu
- Department of Cardiology, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 49 No., C. D. Loga Bv., 300041 Timişoara, Romania; (A.A.); (D.G.)
- Advanced Research Center of the Institute for Cardiovascular Diseases, “Victor Babeş” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
| | - Ioana Macasoi
- Departament of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
- Correspondence: (I.M.); (C.A.D.)
| | - Cristina Adriana Dehelean
- Departament of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
- Correspondence: (I.M.); (C.A.D.)
| | - Octavian Marius Cretu
- Department of Surgery, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania;
| | - Stefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 9 No., Revolutiei Bv., 300041 Timişoara, Romania;
- Pediatric Dentistry Research Center, Faculty of Dental Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 9 No., Revolutiei Bv., 300041 Timişoara, Romania
| | - Dan Gaiță
- Department of Cardiology, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 49 No., C. D. Loga Bv., 300041 Timişoara, Romania; (A.A.); (D.G.)
- Advanced Research Center of the Institute for Cardiovascular Diseases, “Victor Babeş” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
| | - Aniko Manea
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania;
| |
Collapse
|
30
|
Gut Microbiome in Non-Alcoholic Fatty Liver Disease: From Mechanisms to Therapeutic Role. Biomedicines 2022; 10:biomedicines10030550. [PMID: 35327352 PMCID: PMC8945462 DOI: 10.3390/biomedicines10030550] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered to be a significant health threat globally, and has attracted growing concern in the research field of liver diseases. NAFLD comprises multifarious fatty degenerative disorders in the liver, including simple steatosis, steatohepatitis and fibrosis. The fundamental pathophysiology of NAFLD is complex and multifactor-driven. In addition to viruses, metabolic syndrome and alcohol, evidence has recently indicated that the microbiome is related to the development and progression of NAFLD. In this review, we summarize the possible microbiota-based therapeutic approaches and highlight the importance of establishing the diagnosis of NAFLD through the different spectra of the disease via the gut–liver axis.
Collapse
|
31
|
Sato Y, Yoneda A, Shimizu F, Nishimura M, Shimoyama R, Tashiro Y, Kurata W, Niitsu Y. Resolution of fibrosis by siRNA HSP47 in vitamin A-coupled liposomes induces regeneration of chronically injured livers. J Gastroenterol Hepatol 2021; 36:3418-3428. [PMID: 34151462 DOI: 10.1111/jgh.15587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIM In chronic hepatic diseases where treatment strategies are not available, deposited fibrotic tissues deteriorate the intrinsic regeneration capacity of the liver by creating special restrictions. Thus, if the anti-fibrosis modality is efficiently applied, the regeneration capacity of the liver should be reactivated even in such refractory hepatic diseases. METHODS Rat liver fibrosis was induced by dimethyl-nitrosamine (DMN). Another liver fibrosis model was established in CCl4 treated Sox9CreERT2ROSA26: YFP mice. To resolve hepatic fibrosis, vitamin A-coupled liposomes containing siRNA HSP47 (VA-liposome siHSP47) were employed. EpCAM + hepatic progenitor cells from GFP rats were transplanted to DMN rat liver to examine their trans-differentiation into hepatic cells after resolution of liver fibrosis. RESULTS Even under continuous exposure to such strong hepatotoxin as DMN, rats undergoing VA-liposome siHSP47 treatment showed an increment of DNA synthesis of hepatocytes with the concomitant restoration of impaired liver weight and normalization of albumin levels. These results were consistent with the observation that GFP + EpCAM hepatic progenitor cells transplanted to DMN rat liver, trans-differentiated into GFP + mature hepatic cells after VA-liposome siHSP47 treatment. Another rodent model also proved regeneration potential of the fibrotic liver in CCl4 administered Sox9CreERT2ROSA26: YFP mice, VA-liposome siHSP47 treatment-induced restoration of liver weight and trans-differentiation of YEP + Sox9 + cells into YFP + hepatic cells, although because of relatively mild hepatotoxicity of CCl4, undamaged hepatocytes also proliferated. CONCLUSIONS These results demonstrated that regeneration of chronically damaged liver indeed occurs after anti-fibrosis treatment even under continuous exposure to hepatotoxin, which promises a significant benefit of the anti-fibrosis therapy for refractory liver diseases.
Collapse
Affiliation(s)
- Yasushi Sato
- Department of Community Medicine for Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Akihiro Yoneda
- Department of Molecular Target Exploration, School of Medicine, Sapporo Medical University, Sapporo, Japan.,Department of Molecular Therapeutics, Center for Food and Medical Innovation, Institute for the Business-Regional Collaboration, Hokkaido University, Sapporo, Japan
| | - Fumiko Shimizu
- Department of Molecular Target Exploration, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Miyuki Nishimura
- Department of Molecular Target Exploration, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Rai Shimoyama
- Division of Gastroenterology, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Yasuyuki Tashiro
- Oncology Section, Center of Advanced Medicine, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Wataru Kurata
- Oncology Section, Center of Advanced Medicine, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Yoshiro Niitsu
- Department of Molecular Target Exploration, School of Medicine, Sapporo Medical University, Sapporo, Japan.,Oncology Section, Center of Advanced Medicine, Shonan Kamakura General Hospital, Kamakura, Japan
| |
Collapse
|
32
|
Watanabe S, Suzuki T, Tsuchiya T, Kondo Y. Long-term results of splenomegaly after surgery for biliary atresia in the native liver. Asian J Surg 2021; 45:849-853. [PMID: 34848145 DOI: 10.1016/j.asjsur.2021.07.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/05/2021] [Accepted: 07/27/2021] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Biliary atresia (BA) is a rare disorder characterized by obstructive jaundice in infants, shortly after birth. Postoperatively, some patients exhibit portal hypertension and progressive liver fibrosis. Splenomegaly is a symptom of portal hypertension. We aimed to investigate splenomegaly as a marker for complications of portal hypertension and the relationship between splenomegaly and liver fibrosis in the long-term native liver (NL). METHODS Between 1977 and 2018, 71 patients underwent hepaticojejunostomy. We included 54 patients (34 NL group, 20 liver transplant (LT) group) who fulfilled the eligibility criteria. Spleen volume (SV), total bile acids, hyaluronic acid, type IV collagen, and aspartate aminotransferase-to-platelet ratio index (APRi) were measured. Data were analyzed using Student's t-test, regression analysis, and receiver operating characteristic (ROC) curve analysis (P < 0.05). RESULTS Total bile acids, hyaluronic acid, type IV collagen, and APRi increased in NL patients with a large SV at >25 years. SV and type IV collagen were correlated with NL for >25 years (r = 0.79 [P = 0.006], y = 1.1 - [0.03 × type IV collagen] [P = 0.008]). In the ROC curve analysis, the cutoff value for type IV collagen was 165 ng/mL (P = 0.07). CONCLUSIONS We suggest that SV as a prognostic index for End-Stage Liver Disease may be useful in biliary atresia. Long-term follow-up is necessary because the clinical course may be favorable in childhood but worsen during adulthood.
Collapse
Affiliation(s)
- Shunsuke Watanabe
- Department of Pediatric Surgery, Fujita Health University Hospital, Aichi, Japan; Department of Pediatric Surgery, Fujita Health University Hospital, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi Prefecture, 470-1192, Japan.
| | - Tatsuya Suzuki
- Department of Pediatric Surgery, Fujita Health University Hospital, Aichi, Japan; Department of Pediatric Surgery, Fujita Health University Hospital, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi Prefecture, 470-1192, Japan.
| | - Tomonori Tsuchiya
- Department of Pediatric Surgery, Fujita Health University Hospital, Aichi, Japan; Department of Pediatric Surgery, Fujita Health University Hospital, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi Prefecture, 470-1192, Japan.
| | - Yasuhiro Kondo
- Department of Pediatric Surgery, Fujita Health University Hospital, Aichi, Japan; Department of Pediatric Surgery, Fujita Health University Hospital, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi Prefecture, 470-1192, Japan.
| |
Collapse
|
33
|
Gamboa CM, Wang Y, Xu H, Kalemba K, Wondisford FE, Sabaawy HE. Optimized 3D Culture of Hepatic Cells for Liver Organoid Metabolic Assays. Cells 2021; 10:cells10123280. [PMID: 34943788 PMCID: PMC8699701 DOI: 10.3390/cells10123280] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/25/2022] Open
Abstract
The liver is among the principal organs for glucose homeostasis and metabolism. Studies of liver metabolism are limited by the inability to expand primary hepatocytes in vitro while maintaining their metabolic functions. Human hepatic three-dimensional (3D) organoids have been established using defined factors, yet hepatic organoids from adult donors showed impaired expansion. We examined conditions to facilitate the expansion of adult donor-derived hepatic organoids (HepAOs) and HepG2 cells in organoid cultures (HepGOs) using combinations of growth factors and small molecules. The expansion dynamics, gluconeogenic and HNF4α expression, and albumin secretion are assessed. The conditions tested allow the generation of HepAOs and HepGOs in 3D cultures. Nevertheless, gluconeogenic gene expression varies greatly between conditions. The organoid expansion rates are limited when including the TGFβ inhibitor A8301, while are relatively higher with Forskolin (FSK) and Oncostatin M (OSM). Notably, expanded HepGOs grown in the optimized condition maintain detectable gluconeogenic expression in a spatiotemporal distribution at 8 weeks. We present optimized conditions by limiting A8301 and incorporating FSK and OSM to allow the expansion of HepAOs from adult donors and HepGOs with gluconeogenic competence. These models increase the repertoire of human hepatic cellular tools available for use in liver metabolic assays.
Collapse
Affiliation(s)
- Christian Moya Gamboa
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA;
| | - Yujue Wang
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (Y.W.); (H.X.); (K.K.)
| | - Huiting Xu
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (Y.W.); (H.X.); (K.K.)
| | - Katarzyna Kalemba
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (Y.W.); (H.X.); (K.K.)
| | - Fredric E. Wondisford
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA;
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (Y.W.); (H.X.); (K.K.)
- Correspondence: (F.E.W.); (H.E.S.); Tel.: +1-732-235-9838 (F.E.W.); +1-732-235-8081 (H.E.S.)
| | - Hatem E. Sabaawy
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA;
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA; (Y.W.); (H.X.); (K.K.)
- Department of Pathology and Laboratory Medicine, RBHS-Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
- Correspondence: (F.E.W.); (H.E.S.); Tel.: +1-732-235-9838 (F.E.W.); +1-732-235-8081 (H.E.S.)
| |
Collapse
|
34
|
Zhang Y, Guo A, Lyu C, Bi R, Wu Z, Li W, Zhao P, Niu Y, Na J, Xi JJ, Du Y. Synthetic liver fibrotic niche extracts achieve in vitro hepatoblasts phenotype enhancement and expansion. iScience 2021; 24:103303. [PMID: 34765922 PMCID: PMC8571728 DOI: 10.1016/j.isci.2021.103303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/26/2021] [Accepted: 10/14/2021] [Indexed: 11/29/2022] Open
Abstract
It is still a challenge for synthesizing ‘cellular niche-mimics’ in vitro with satisfactory reproducibility and fidelity to recreate the natural niche components (e.g., extracellular matrices and soluble factors) for stem cell cultivation. Inspired by the massive amplification of hepatic progenitor cells during liver fibrosis in vivo, here we optimized the in vitro liver fibrotic niches and subsequently harvested their bioactive ingredients as niche extracts (NEs). The fibrosis-relevant NE marginally outperformed Matrigel for phenotype maintenance of human embryonic stem cell (hESC)-derived hepatoblasts (HBs) and recapitulation of the pathological angiogenesis of hESC-derived endothelial cells both in 2D culture and 3D liver organoids. Finally, defined NE components (i.e., collagen III, IV, IL-17, IL-18 and M-CSF) were resolved by the quantitative proteomics which exhibited advantage over Matrigel for multi-passaged HB expansion. The pathology-relevant and tissue-specific NEs provide innovative and generalizable strategies for the discovery of optimal cellular niche and bioactive niche compositions. Fibrotic niches were constructed by 3 hepatic cell lines plus 4 profibrotic factors NE was produced by enzymatic digestion using pepsin and DNase Collagen III, IV, IL-17, IL-18, and M-CSF resolved from NE promoted HBs expansion
Collapse
Affiliation(s)
- Yuying Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Anqi Guo
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Cheng Lyu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Ran Bi
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Zhaozhao Wu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Wenjing Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Peng Zhao
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Yudi Niu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Jie Na
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jianzhong Jeff Xi
- State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
35
|
Amoras EDSG, de Brito WB, Queiroz MAF, Conde SRSDS, Cayres Vallinoto IMV, Ishak R, Vallinoto ACR. The Genetic Profile and Serum Level of IL-8 Are Associated with Chronic Hepatitis B and C Virus Infection. Biomolecules 2021; 11:1664. [PMID: 34827662 PMCID: PMC8615951 DOI: 10.3390/biom11111664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022] Open
Abstract
The present study evaluated the IL8-251 A/T polymorphism in samples from 74 patients with chronic hepatitis B (HBV), 100 patients with chronic hepatitis C (HCV), and 300 healthy donors (CG). The correlations of this polymorphism with plasma IL-8 and disease stage were calculated. Polymorphisms were identified by real-time PCR. IL-8 was measured by enzyme-linked immunosorbent assay. The IL8-251 A/T genotype was not associated with susceptibility to infection by HBV or HCV. The wild-type allele (A) was associated with higher levels of inflammation (p = 0.0464) and fibrosis scores (p = 0.0016) in the HBV group, representing an increased risk for increased inflammatory activity (OR = 1.84; p = 0.0464) and for high fibrosis scores (OR = 2.63; p = 0.0016). Viral load was higher in HBV patients with polymorphic genotypes (TA and TT) at the IL8-251 A/T polymorphism than in those with the wild-type genotype (p = 0.0272 and p = 0.0464, respectively). Plasma IL-8 was higher among patients infected with HBV or HCV than in the control group (p = 0.0445 and p = 0.0001, respectively). The polymorphic genotype was associated with lower IL-8 than the wild-type genotype in the HBV group (p = 0.0239) and the HCV group (p = 0.0372). The wild-type genotype for IL8-251 A/T and high IL-8 were associated with a worse prognosis for infections; therefore, they may contribute to viral persistence and the development of more severe forms of chronic viral liver diseases.
Collapse
Affiliation(s)
- Ednelza da Silva Graça Amoras
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará—UFPA), Belém 66075-110, Brazil; (E.d.S.G.A.); (W.B.d.B.); (M.A.F.Q.); (I.M.V.C.V.); (R.I.)
| | - William Botelho de Brito
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará—UFPA), Belém 66075-110, Brazil; (E.d.S.G.A.); (W.B.d.B.); (M.A.F.Q.); (I.M.V.C.V.); (R.I.)
| | - Maria Alice Freitas Queiroz
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará—UFPA), Belém 66075-110, Brazil; (E.d.S.G.A.); (W.B.d.B.); (M.A.F.Q.); (I.M.V.C.V.); (R.I.)
| | - Simone Regina Souza da Silva Conde
- João de Barros Barreto Hospital, Federal University of Pará (Universidade Federal do Pará—UFPA), Belém 66073-000, Brazil;
- Institute of Health Sciences, School of Medicine, Federal University of Pará (Universidade Federal do Pará—UFPA), Belém 66075-110, Brazil
| | - Izaura Maria Vieira Cayres Vallinoto
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará—UFPA), Belém 66075-110, Brazil; (E.d.S.G.A.); (W.B.d.B.); (M.A.F.Q.); (I.M.V.C.V.); (R.I.)
| | - Ricardo Ishak
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará—UFPA), Belém 66075-110, Brazil; (E.d.S.G.A.); (W.B.d.B.); (M.A.F.Q.); (I.M.V.C.V.); (R.I.)
| | - Antonio Carlos Rosário Vallinoto
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará—UFPA), Belém 66075-110, Brazil; (E.d.S.G.A.); (W.B.d.B.); (M.A.F.Q.); (I.M.V.C.V.); (R.I.)
| |
Collapse
|
36
|
Lalor R, Cwiklinski K, Calvani NED, Dorey A, Hamon S, Corrales JL, Dalton JP, De Marco Verissimo C. Pathogenicity and virulence of the liver flukes Fasciola hepatica and Fasciola Gigantica that cause the zoonosis Fasciolosis. Virulence 2021; 12:2839-2867. [PMID: 34696693 PMCID: PMC8632118 DOI: 10.1080/21505594.2021.1996520] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fasciolosis caused by the liver flukes Fasciola hepatica and Fasciola gigantica is one of the most important neglected parasitic diseases of humans and animals. The ability of the parasites to infect and multiply in their intermediate snail hosts, and their adaptation to a wide variety of mammalian definitive hosts contribute to their high transmissibility and distribution. Within the mammalian host, the trauma caused by the immature flukes burrowing through the liver parenchyma is associated with most of the pathogenesis. Similarly, the feeding activity and the physical presence of large flukes in the bile ducts can lead to anemia, inflammation, obstruction and cholangitis. The high frequency of non-synonymous polymorphisms found in Fasciola spp. genes allows for adaptation and invasion of a broad range of hosts. This is also facilitated by parasite’s excretory-secretory (ES) molecules that mediate physiological changes that allows their establishment within the host. ES contains cathepsin peptidases that aid parasite invasion by degrading collagen and fibronectin. In the bile ducts, cathepsin-L is critical to hemoglobin digestion during feeding activities. Other molecules (peroxiredoxin, cathepsin-L and Kunitz-type inhibitor) stimulate a strong immune response polarized toward a Treg/Th2 phenotype that favors fluke’s survival. Helminth defense molecule, fatty acid binding proteins, Fasciola-specific glycans and miRNAs modulate host pro-inflammatory responses, while antioxidant scavenger enzymes work in an orchestrated way to deter host oxidant-mediated damage. Combining these strategies Fasciola spp. survive for decades within their mammalian host, where they reproduce and spread to become one of the most widespread zoonotic worm parasites in the world.
Collapse
Affiliation(s)
- Richard Lalor
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Krystyna Cwiklinski
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Nichola Eliza Davies Calvani
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Amber Dorey
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Siobhán Hamon
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Jesús López Corrales
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - John Pius Dalton
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Carolina De Marco Verissimo
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
37
|
Kim SK, Kim YH, Park S, Cho SW. Organoid engineering with microfluidics and biomaterials for liver, lung disease, and cancer modeling. Acta Biomater 2021; 132:37-51. [PMID: 33711526 DOI: 10.1016/j.actbio.2021.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/14/2021] [Accepted: 03/01/2021] [Indexed: 02/08/2023]
Abstract
As life expectancy improves and the number of people suffering from various diseases increases, the need for developing effective personalized disease models is rapidly rising. The development of organoid technology has led to better recapitulation of the in vivo environment of organs, and can overcome the constraints of existing disease models. However, for more precise disease modeling, engineering approaches such as microfluidics and biomaterials, that aid in mimicking human physiology, need to be integrated with the organoid models. In this review, we introduce key elements for disease modeling and recent engineering advances using both liver and lung organoids. Due to the importance of personalized medicine, we also emphasize patient-derived cancer organoid models and their engineering approaches. These organoid-based disease models combined with microfluidics, biomaterials, and co-culture systems will provide a powerful research platform for understanding disease mechanisms and developing precision medicine; enabling preclinical drug screening and drug development. STATEMENT OF SIGNIFICANCE: The development of organoid technology has led to better recapitulation of the in vivo environment of organs, and can overcome the constraints of existing disease models. However, for more precise disease modeling, engineering approaches such as microfluidics and biomaterials, that aid in mimicking human physiology, need to be integrated with the organoid models. In this review, we introduce liver, lung, and cancer organoids integrated with various engineering approaches as a novel platform for personalized disease modeling. These engineered organoid-based disease models will provide a powerful research platform for understanding disease mechanisms and developing precision medicine.
Collapse
|
38
|
Wegrzyniak O, Rosestedt M, Eriksson O. Recent Progress in the Molecular Imaging of Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2021; 22:7348. [PMID: 34298967 PMCID: PMC8306605 DOI: 10.3390/ijms22147348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Pathological fibrosis of the liver is a landmark feature in chronic liver diseases, including nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Diagnosis and assessment of progress or treatment efficacy today requires biopsy of the liver, which is a challenge in, e.g., longitudinal interventional studies. Molecular imaging techniques such as positron emission tomography (PET) have the potential to enable minimally invasive assessment of liver fibrosis. This review will summarize and discuss the current status of the development of innovative imaging markers for processes relevant for fibrogenesis in liver, e.g., certain immune cells, activated fibroblasts, and collagen depositions.
Collapse
Affiliation(s)
- Olivia Wegrzyniak
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, SE-751 83 Uppsala, Sweden; (O.W.); (M.R.)
| | - Maria Rosestedt
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, SE-751 83 Uppsala, Sweden; (O.W.); (M.R.)
| | - Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, SE-751 83 Uppsala, Sweden; (O.W.); (M.R.)
- Antaros Medical AB, SE-431 83 Mölndal, Sweden
| |
Collapse
|
39
|
Arif E, Wang C, Swiderska-Syn MK, Solanki AK, Rahman B, Manka PP, Coombes JD, Canbay A, Papa S, Nihalani D, Aspichueta P, Lipschutz JH, Syn WK. Targeting myosin 1c inhibits murine hepatic fibrogenesis. Am J Physiol Gastrointest Liver Physiol 2021; 320:G1044-G1053. [PMID: 33908271 PMCID: PMC8285590 DOI: 10.1152/ajpgi.00105.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Myosin 1c (Myo1c) is an unconventional myosin that modulates signaling pathways involved in tissue injury and repair. In this study, we observed that Myo1c expression is significantly upregulated in human chronic liver disease such as nonalcoholic steatohepatitis (NASH) and in animal models of liver fibrosis. High throughput data from the GEO-database identified similar Myo1c upregulation in mice and human liver fibrosis. Notably, transforming growth factor-β1 (TGF-β1) stimulation to hepatic stellate cells (HSCs), the liver pericyte and key cell type responsible for the deposition of extracellular matrix, upregulates Myo1c expression, whereas genetic depletion or pharmacological inhibition of Myo1c blunted TGF-β-induced fibrogenic responses, resulting in repression of α-smooth muscle actin (α-SMA) and collagen type I α 1 chain (Col1α1) mRNA. Myo1c deletion also decreased fibrogenic processes such as cell proliferation, wound healing response, and contractility when compared with vehicle-treated HSCs. Importantly, phosphorylation of mothers against decapentaplegic homolog 2 (SMAD2) and mothers against decapentaplegic homolog 3 (SMAD3) were significantly blunted upon Myo1c inhibition in GRX cells as well as Myo1c knockout (Myo1c-KO) mouse embryonic fibroblasts (MEFs) upon TGF-β stimulation. Using the genetic Myo1c-KO mice, we confirmed that Myo1c is critical for fibrogenesis, as Myo1c-KO mice were resistant to carbon tetrachloride (CCl4)-induced liver fibrosis. Histological and immunostaining analysis of liver sections showed that deposition of collagen fibers and α-SMA expression were significantly reduced in Myo1c-KO mice upon liver injury. Collectively, these results demonstrate that Myo1c mediates hepatic fibrogenesis by modulating TGF-β signaling and suggest that inhibiting this process may have clinical application in treating liver fibrosis.NEW & NOTEWORTHY The incidences of liver fibrosis are growing at a rapid pace and have become one of the leading causes of end-stage liver disease. Although TGF-β1 is known to play a prominent role in transforming cells to produce excessive extracellular matrix that lead to hepatic fibrosis, the therapies targeting TGF-β1 have achieved very limited clinical impact. This study highlights motor protein myosin-1c-mediated mechanisms that serve as novel regulators of TGF-β1 signaling and fibrosis.
Collapse
Affiliation(s)
- Ehtesham Arif
- 1Department of Medicine, Nephrology Division, Medical University of South Carolinagrid.259828.c, Charleston, South Carolina,2Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, South Carolina
| | - Cindy Wang
- 2Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, South Carolina
| | - Marzena K. Swiderska-Syn
- 3Department of Pediatrics, Darby Children’s Research Institute,
Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Ashish K. Solanki
- 1Department of Medicine, Nephrology Division, Medical University of South Carolinagrid.259828.c, Charleston, South Carolina
| | - Bushra Rahman
- 1Department of Medicine, Nephrology Division, Medical University of South Carolinagrid.259828.c, Charleston, South Carolina
| | - Paul P. Manka
- 2Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, South Carolina,4Department of Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Jason D. Coombes
- 5Institute of Hepatology, Foundation for Liver Research, London, United Kingdom,6School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Ali Canbay
- 4Department of Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany
| | - Salvatore Papa
- 7Leeds Institute of Medical Research at St. James’s, Faculty of
Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Deepak Nihalani
- 1Department of Medicine, Nephrology Division, Medical University of South Carolinagrid.259828.c, Charleston, South Carolina,8Division of Kidney, Urologic and Hematologic Diseases, National Institutes of Health, Bethesda, Maryland
| | - Patricia Aspichueta
- 9Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Spain
| | - Joshua H. Lipschutz
- 1Department of Medicine, Nephrology Division, Medical University of South Carolinagrid.259828.c, Charleston, South Carolina,10Section of Nephrology, Ralph H Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | - Wing-Kin Syn
- 2Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, South Carolina,9Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Spain,11Section of Gastroenterology, Ralph H Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| |
Collapse
|
40
|
Czuba LC, Wu X, Huang W, Hollingshead N, Roberto JB, Kenerson HL, Yeung RS, Crispe IN, Isoherranen N. Altered vitamin A metabolism in human liver slices corresponds to fibrogenesis. Clin Transl Sci 2021; 14:976-989. [PMID: 33382909 PMCID: PMC8212748 DOI: 10.1111/cts.12962] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
All-trans-retinoic acid (atRA), the active metabolite of vitamin A, has antifibrogenic properties in vitro and in animal models. Liver vitamin A homeostasis is maintained by cell-specific enzymatic activities including storage in hepatic stellate cells (HSCs), secretion into circulation from hepatocytes, and formation and clearance of atRA. During chronic liver injury, HSC activation is associated with a decrease in liver retinyl esters and retinol concentrations. atRA is synthesized through two enzymatic steps from retinol, but it is unknown if the loss of retinoid stores is associated with changes in atRA formation and which cell types contribute to the metabolic changes. The aim of this study was to determine if the vitamin A metabolic flux is perturbed in acute liver injury, and if changes in atRA concentrations are associated with HSC activation and collagen expression. At basal levels, HSC and Kupffer cells expressed key genes involved in vitamin A metabolism, whereas after acute liver injury, complex changes to the metabolic flux were observed in liver slices. These changes include a reproducible spike in atRA tissue concentrations, decreased retinyl ester and atRA formation rate, and time-dependent changes to the expression of metabolizing enzymes. Kinetic simulations suggested that oxidoreductases are important in determining retinoid metabolic flux after liver injury. These early changes precede HSC activation and upregulation of profibrogenic gene expression, which were inversely correlated with atRA tissue concentrations, suggesting that HSC and Kupffer cells are key cells involved in changes to vitamin A metabolic flux and signaling after liver injury. Study Highlights WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? Vitamin A is metabolized in the liver for storage as retinyl esters in hepatic stellate cell (HSCs) or to all-trans-retinoic acid (atRA), an active metabolite with antifibrogenic properties. Following chronic liver injury, vitamin A metabolic flux is perturbed, and HSC activation leads to diminished retinoid stores. WHAT QUESTION DID THIS STUDY ADDRESS? Do changes in the expression of vitamin A metabolizing enzymes explain changes in atRA concentrations and the regulation of fibrosis following acute liver injury? WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE? In healthy liver, both HSC and Kupffer cells may mediate vitamin A homeostasis. Following acute liver injury, complex changes in metabolizing enzyme expression/activity alter the metabolic flux of retinoids, resulting in a transient peak in atRA concentrations. The atRA concentrations are inversely correlated with profibrogenic gene expression, HSC activation, and collagen deposition. HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR TRANSLATIONAL SCIENCE? Improved understanding of altered vitamin A metabolic flux in acute liver injury may provide insight into cell-specific contributions to vitamin A loss and lead to novel interventions in liver fibrosis.
Collapse
Affiliation(s)
- Lindsay C. Czuba
- Department of PharmaceuticsUniversity of WashingtonSeattleWashingtonUSA
| | - Xia Wu
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
| | - Weize Huang
- Department of PharmaceuticsUniversity of WashingtonSeattleWashingtonUSA
| | - Nicole Hollingshead
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
| | - Jessica B. Roberto
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
| | | | - Raymond S. Yeung
- Department of SurgeryUniversity of WashingtonSeattleWashingtonUSA
| | - Ian N. Crispe
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
| | - Nina Isoherranen
- Department of PharmaceuticsUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
41
|
Peng W, Cheng S, Bao Z, Wang Y, Zhou W, Wang J, Yang Q, Chen C, Wang W. Advances in the research of nanodrug delivery system for targeted treatment of liver fibrosis. Biomed Pharmacother 2021; 137:111342. [DOI: 10.1016/j.biopha.2021.111342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 02/08/2023] Open
|
42
|
Transaminase Elevations during Treatment of Chronic Hepatitis B Infection: Safety Considerations and Role in Achieving Functional Cure. Viruses 2021; 13:v13050745. [PMID: 33922828 PMCID: PMC8146791 DOI: 10.3390/v13050745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/17/2022] Open
Abstract
While current therapies for chronic HBV infection work well to control viremia and stop the progression of liver disease, the preferred outcome of therapy is the restoration of immune control of HBV infection, allowing therapy to be removed while maintaining effective suppression of infection and reversal of liver damage. This “functional cure” of chronic HBV infection is characterized by the absence of detectable viremia (HBV DNA) and antigenemia (HBsAg) and normal liver function and is the goal of new therapies in development. Functional cure requires removal of the ability of infected cells in the liver to produce the hepatitis B surface antigen. The increased observation of transaminase elevations with new therapies makes understanding the safety and therapeutic impact of these flares an increasingly important issue. This review examines the factors driving the appearance of transaminase elevations during therapy of chronic HBV infection and the interplay of these factors in assessing the safety and beneficial nature of these flares.
Collapse
|
43
|
Kitto LJ, Henderson NC. Hepatic Stellate Cell Regulation of Liver Regeneration and Repair. Hepatol Commun 2021; 5:358-370. [PMID: 33681672 PMCID: PMC7917274 DOI: 10.1002/hep4.1628] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/22/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
The hepatic mesenchyme has been studied extensively in the context of liver fibrosis; however, much less is known regarding the role of mesenchymal cells during liver regeneration. As our knowledge of the cellular and molecular mechanisms driving hepatic regeneration deepens, the key role of the mesenchymal compartment during the regenerative response has been increasingly appreciated. Single-cell genomics approaches have recently uncovered both spatial and functional zonation of the hepatic mesenchyme in homeostasis and following liver injury. Here we discuss how the use of preclinical models, from in vivo mouse models to organoid-based systems, are helping to shape our understanding of the role of the mesenchyme during liver regeneration, and how these approaches should facilitate the precise identification of highly targeted, pro-regenerative therapies for patients with liver disease.
Collapse
Affiliation(s)
- Laura J. Kitto
- Centre for Inflammation ResearchThe Queen’s Medical Research InstituteEdinburgh BioQuarterUniversity of EdinburghEdinburghUnited Kingdom
| | - Neil C. Henderson
- Centre for Inflammation ResearchThe Queen’s Medical Research InstituteEdinburgh BioQuarterUniversity of EdinburghEdinburghUnited Kingdom
- MRC Human Genetics UnitInstitute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
44
|
Abou Monsef Y, Kutsal O. Immunohistochemical evaluation of hepatic progenitor cells in different types of feline liver diseases. J Vet Med Sci 2021; 83:613-621. [PMID: 33583913 PMCID: PMC8111336 DOI: 10.1292/jvms.20-0435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hepatic progenitor cells are periportally resident cells capable of differentiating into
mature hepatocytes or cholangiocytes to ensure hepatic regeneration. This reaction is
termed a ductular reaction. In the present study, regenerative response of the feline
liver to different hepatic diseases was investigated immunohistochemically. Regeneration
of the liver through hepatocellular replication and proliferation of progenitor cell
compartment were comparatively evaluated. Histological and immunohistochemical stainings
were conducted on feline liver samples (n=40) representing various hepatobiliary diseases.
Cytokeratin (CK) 7, CK19, Proliferating cell nuclear antigen (PCNA), Ki67, and Human
hepatocyte marker 1 (Hep Par-1) were used. The presence of progenitor cells within feline
livers was proved, both as passive cells in normal liver and as active cells (ductular
reaction) in hepatic lesions. CK7 was found to be a suitable antibody for
immunohistochemically detecting feline progenitor cells. In acute events, regeneration was
predominantly shaped by the division of hepatocytes. In chronic events and severe acute
events, hepatocytes lost their ability to divide and regeneration mainly occurred through
progenitor cells. Location of the ductular reaction varied between different hepatic
diseases. Parenchymal ductular reaction was detected in fulminant hepatitis, chronic
hepatitis, hepatocellular lipidosis and metastatic lymphoma, whereas septal ductular
reaction was detected in chronic hepatitis and metastatic lymphoma. Ductular reaction
exhibited positive staining for Hep Par-1 in chronic and severe acute events. This study
indicates the major role played by hepatic progenitor cells in regeneration of the feline
liver. Moreover, it shows how the activation pattern of ductular reaction varies according
to the hepatobiliary disease type.
Collapse
Affiliation(s)
- Yanad Abou Monsef
- Department of Pathology, Faculty of Veterinary Medicine, Ankara University, Ankara 06110, Turkey
| | - Osman Kutsal
- Department of Pathology, Faculty of Veterinary Medicine, Ankara University, Ankara 06110, Turkey
| |
Collapse
|
45
|
A bilirubin-conjugated chitosan nanotheranostics system as a platform for reactive oxygen species stimuli-responsive hepatic fibrosis therapy. Acta Biomater 2020; 116:356-367. [PMID: 32927089 DOI: 10.1016/j.actbio.2020.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022]
Abstract
The development of nanoparticles that can be used as stimuli-responsive drug carriers for the treatment of different diseases has been an emerging area of research. In this study, we designed a chitosan-bilirubin micelle (ChiBil) carrying losartan, which is responsive to intrinsic reactive oxygen species (ROS), for the treatment of hepatic fibrosis. Because bilirubin is hydrophobic in nature, its carboxyl group was conjugated to an amine group from chitosan using EDC-NHS chemistry to form an amphiphilic conjugate, ChiBil. Losartan is an angiotensin receptor blocker that reduces hepatic fibrosis, and it was used as the therapeutic payload in this study to form ChiBil-losartan micelles. The release characteristics of ChiBil-losartan were tested by ROS generation to confirm losartan release. Human hepatic stellate cell line LX2 was found to be the best in vitro model for the study. The reduction of hepatic stellate cell activation after treatment with ChiBil-losartan was analyzed based on the expression of alpha-smooth muscle actin (α-SMA) in both in vitro and in vivo studies. Advanced liver fibrosis was induced in C3H/HeN mice using a thioacetamide (TAA) via intraperitoneal injection and 10% ethanol (EtOH) in their drinking water. In addition, the hydroxyproline levels, histopathological evaluation, and mRNA quantification in the liver showed a decreased collagen content in the treated groups compared to that in the untreated control group. Macrophage infiltration studies and qPCR studies of inflammatory markers also proved the reduction of hepatic fibrosis in the treatment group. The intravenous administration of ChiBil-losartan resulted in decreased fibrosis in a TAA/EtOH-induced liver fibrosis mouse model. The in vitro and in vivo results suggest that the ROS stimuli-responsive ChiBil nanoparticles carrying losartan may be a potent therapeutic option for the treatment of hepatic fibrosis. The combined effect of losartan and bilirubin exhibited a decreased hepatic fibrosis both in vitro and in vivo.
Collapse
|
46
|
Michalik M, Gładyś A, Czekaj P. Differentiation of Cells Isolated from Afterbirth Tissues into Hepatocyte-Like Cells and Their Potential Clinical Application in Liver Regeneration. Stem Cell Rev Rep 2020; 17:581-603. [PMID: 32974851 PMCID: PMC8036182 DOI: 10.1007/s12015-020-10045-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2020] [Indexed: 12/11/2022]
Abstract
Toxic, viral and surgical injuries can pose medical indications for liver transplantation. The number of patients waiting for a liver transplant still increases, but the number of organ donors is insufficient. Hepatocyte transplantation was suggested as a promising alternative to liver transplantation, however, this method has some significant limitations. Currently, afterbirth tissues seem to be an interesting source of cells for the regenerative medicine, because of their unique biological and immunological properties. It has been proven in experimental animal models, that the native stem cells, and to a greater extent, hepatocyte-like cells derived from them and transplanted, can accelerate regenerative processes and restore organ functioning. The effective protocol for obtaining functional mature hepatocytes in vitro is still not defined, but some studies resulted in obtaining functionally active hepatocyte-like cells. In this review, we focused on human stem cells isolated from placenta and umbilical cord, as potent precursors of hepatocyte-like cells for regenerative medicine. We summarized the results of preclinical and clinical studies dealing with the introduction of epithelial and mesenchymal stem cells of the afterbirth origin to the liver failure therapy. It was concluded that the use of native afterbirth epithelial and mesenchymal cells in the treatment of liver failure could support liver function and regeneration. This effect would be enhanced by the use of hepatocyte-like cells obtained from placental and/or umbilical stem cells. Graphical abstract ![]()
Collapse
Affiliation(s)
- Marcin Michalik
- Department of Cytophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Aleksandra Gładyś
- Department of Cytophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Piotr Czekaj
- Department of Cytophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland.
| |
Collapse
|
47
|
Expression of Matrix Metalloproteinases and Their Tissue Inhibitors in Peripheral Blood Leukocytes and Plasma of Children with Nonalcoholic Fatty Liver Disease. Mediators Inflamm 2020; 2020:8327945. [PMID: 32963496 PMCID: PMC7501567 DOI: 10.1155/2020/8327945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 02/08/2023] Open
Abstract
Gene expression profiles of matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) were evaluated in peripheral blood leukocytes of children with nonalcoholic fatty liver disease (NAFLD). Gene expression patterns were correlated with their plasma protein counterparts, systemic parameters of liver injury, and selected markers of inflammation. The MMP-2, MMP-9, MMP-12, MMP-14, TIMP-1, TIMP-2, TGF-β, and IL-6 transcripts levels were tested by the real-time PCR. Plasma concentrations of MMP-9, TIMP-1, MMP-9/TIMP-1 ratio, MMP-2/TIMP-2 ratio, sCD14, leptin, resistin, IL-1 beta, and IL-6 and serum markers of liver injury were estimated by ELISA. The MMP-9, TIMP-2 expression levels, plasma amounts of MMP-9, TIMP-1, and the MMP-9/TIMP-1 ratio were increased in children with NAFLD. Concentrations of AST, ALT, GGT, and leptin were elevated in serum patients with NAFLD, while concentration of other inflammatory or liver injury markers was unchanged. The MMP-2 and MMP-9 levels correlated with serum liver injury parameters (ALT and GGT concentrations, respectively); there were no other correlations between MMP/TIMP gene expression profiles, their plasma counterparts, and serum inflammatory markers. Association of MMP-2 and MMP-9 expression with serum liver injury parameters (ALT, GGT) may suggest leukocyte engagement in the early stages of NAFLD development which possibly precedes subsequent systemic inflammatory responses.
Collapse
|
48
|
Orr C, Myers R, Li B, Jiang Z, Flaherty J, Gaggar A, Meissner EG. Longitudinal analysis of serum microRNAs as predictors of cirrhosis regression during treatment of hepatitis B virus infection. Liver Int 2020; 40:1693-1700. [PMID: 32301252 PMCID: PMC7681260 DOI: 10.1111/liv.14474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 01/27/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Most patients with cirrhosis induced by chronic HBV infection experience fibrosis regression after long-term antiviral treatment, while some remain cirrhotic. Fibrosis regression is associated with lower odds of developing hepatic decompensation and hepatocellular carcinoma, but mechanisms impacting differential fibrosis regression between individuals are unclear. We asked whether soluble molecules, including serum microRNAs, could serve as biomarkers of fibrosis regression. METHODS We analysed cryopreserved sera from clinical trials in which cirrhotic HBV-infected patients (baseline Ishak fibrosis score of 5-6) received 240 weeks of nucleotide analogue treatment. Liver biopsies at week 240 in these trials showed 71/96 patients (74%) had fibrosis regression (Ishak ≤ 4) while 25/96 (26%) remained cirrhotic (Ishak 5-6). We quantified inflammatory markers (CXCL10, soluble CD163) and miRNAs (n = 179) from serum at baseline, week 48 and week 240 of treatment in a sub-cohort of patients with (n = 14) or without (n = 14) fibrosis regression. RESULTS CXCL10, sCD163 and miRNAs previously associated with HBV replication and inflammation decreased during treatment but did not differ based on fibrosis regression. Two miRNAs (miR-421 and miR-454-3p) had lower baseline expression in patients with subsequent fibrosis regression. In all, 27 miRNAs differed at week 240 and had higher expression in patients with fibrosis regression (eg miR-199a-3p, miR-423-3p, miR-142-3p, miR-let-7d-5p). Several miRNAs (miR-141-3p, let-7d-5p) that correlated with regression have previously been implicated in the pathophysiology of non-alcoholic steatohepatitis. CONCLUSIONS In cirrhotic patients with chronic HBV infection treated with antiviral therapy, serum miRNAs have differential expression based on fibrosis regression, suggesting potential utility as biomarkers.
Collapse
Affiliation(s)
- Cody Orr
- Division of Infectious Diseases, Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| | | | - Biao Li
- Gilead Sciences, Foster City, CA
| | | | | | | | - Eric G. Meissner
- Division of Infectious Diseases, Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
49
|
Cholesterol Induces Nrf-2- and HIF-1 α-Dependent Hepatocyte Proliferation and Liver Regeneration to Ameliorate Bile Acid Toxicity in Mouse Models of NASH and Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5393761. [PMID: 32566088 PMCID: PMC7271232 DOI: 10.1155/2020/5393761] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/12/2020] [Accepted: 04/30/2020] [Indexed: 12/14/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) is currently one of the most common liver diseases worldwide. The toxic effects of lipids and bile acids contribute to NASH. The regenerative pathway in response to damage to the liver includes activation of the inflammatory process and priming of hepatocytes to proliferate to restore tissue homeostasis. However, the effects of cholesterol on bile acid toxicity, inflammation, and fibrosis remain unknown. We have used two mouse models of bile acid toxicity to induce liver inflammation and fibrosis. A three-week study was conducted using wild-type mice receiving an atherogenic diet (1% (w/w) cholesterol and 0.5% (w/w) cholic acid) and its separate constituents. Mdr2-/- mice were fed a high-cholesterol-enriched diet or standard AIN-93 diet for 6 weeks. We measured serum transaminase levels to assess liver tissue necrosis and fibrosis; iNOS, SAA1, SAA2, and F4/80 levels to determine liver inflammation; PCNA and HGF levels to evaluate proliferative response; and Nrf-2, HIF-1α, and downstream gene expression to establish protective responses. In both studies, high bile acid levels increased serum transaminases and liver fibrosis, whereas cholesterol supplementation attenuated these effects. Cholesterol supplementation activated survival and the robustness of HIF-1α and Nrf-2 gene expression in hepatocytes, induced liver inflammation and hepatocyte proliferation, and inhibited stellate cell hyperplasia and fibrosis. In conclusion, our data show for the first time that cholesterol intake protects against bile acid liver toxicity. The balance between hepatic cholesterol and bile acid levels may be of prognostic value in liver disease progression and trajectory.
Collapse
|
50
|
Xu F, Hua C, Tautenhahn HM, Dirsch O, Dahmen U. The Role of Autophagy for the Regeneration of the Aging Liver. Int J Mol Sci 2020; 21:ijms21103606. [PMID: 32443776 PMCID: PMC7279469 DOI: 10.3390/ijms21103606] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
Abstract
Age is one of the key risk factors to develop malignant diseases leading to a high incidence of hepatic tumors in the elderly population. The only curative treatment for hepatic tumors is surgical removal, which initiates liver regeneration. However, liver regeneration is impaired with aging, leading to an increased surgical risk for the elderly patient. Due to the increased risk, those patients are potentially excluded from curative surgery. Aging impairs autophagy via lipofuscin accumulation and inhibition of autophagosome formation. Autophagy is a recycling mechanism for eukaryotic cells to maintain homeostasis. Its principal function is to degrade endogenous bio-macromolecules for recycling cellular substances. A number of recent studies have shown that the reduced regenerative capacity of the aged remnant liver can be restored by promoting autophagy. Autophagy can be activated via multiple mTOR-dependent and mTOR-independent pathways. However, inducing autophagy through the mTOR-dependent pathway alone severely impairs liver regeneration. In contrast, recent observations suggest that inducing autophagy via mTOR-independent pathways might be promising in promoting liver regeneration. Conclusion: Activation of autophagy via an mTOR-independent autophagy inducer is a potential therapy for promoting liver regeneration, especially in the elderly patients at risk.
Collapse
Affiliation(s)
- Fengming Xu
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747 Jena, Germany; (F.X.); (C.H.); (H.-M.T.)
| | - Chuanfeng Hua
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747 Jena, Germany; (F.X.); (C.H.); (H.-M.T.)
| | - Hans-Michael Tautenhahn
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747 Jena, Germany; (F.X.); (C.H.); (H.-M.T.)
| | - Olaf Dirsch
- Institute of Pathology, Klinikum Chemnitz gGmbH, 09111 Chemnitz, Germany;
| | - Uta Dahmen
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747 Jena, Germany; (F.X.); (C.H.); (H.-M.T.)
- Correspondence: ; Tel.: +49-03641-9325350
| |
Collapse
|