1
|
Adel A, Abdul-Hamid M, Abdel-Kawi SH, A. Abdelaziz M, Sakr HI, Ahmed OM. Bone marrow-derived mesenchymal stem cells reduce CCl 4-induced kidney injury and fibrosis in male Wistar rats. Ren Fail 2024; 46:2319330. [PMID: 39049729 PMCID: PMC11275530 DOI: 10.1080/0886022x.2024.2319330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/25/2024] [Accepted: 02/11/2024] [Indexed: 07/27/2024] Open
Abstract
AIM This study explores the possible therapeutic role of rats and mice bone marrow-derived mesenchymal stem cells (BM-MSCs) on renal damage and toxicity brought on by carbon tetrachloride (CCl4) in Wistar rats. METHODS Following an intraperitoneal injection of CCl4 (0.5 mL/kg b.w. twice weekly) for eight weeks, male Wistar rats were intravenously treated with rats and mice BM-MSCs (1 × 106 cells in 0.2 mL Dulbecco's Modified Eagle Medium (DMEM)/rat/week) a week for four weeks. Kidney functions were evaluated and kidney samples were examined using hematoxylin and eosin (H&E), Masson's trichrome (MT) staining techniques, and electron microscopy analysis. Kidney cyclooxygenase-2 (COX-2), protein 53 (p53), and tumor necrosis factor-α (TNF-α) were detected by immunohistochemical staining techniques. Additionally, bioindicators of oxidative stress and antioxidant defense systems were identified in kidney tissue. RESULTS In CCl4-injected rats, serum creatinine, urea, and uric acid levels significantly increased, as did renal lipid peroxidation (LPO), while superoxide dismutase, glutathione peroxidase (GPx), glutathione (GSH) transferase, and GSH levels significantly dropped in the kidneys. Histologically, the kidneys displayed a wide range of structural abnormalities, such as glomerular shrinkage, tubular dilations, inflammatory leukocytic infiltration, fibroblast proliferation, and elevated collagen content. Inflammatory cytokines like COX-2 and TNF-α as well as the pro-apoptotic mediator p53 were considerably upregulated. Treatment of BM-MSCs from mice and rats with CCl4-injected rats considerably reduced the previously noted abnormalities. CONCLUSIONS By boosting antioxidant defense and reducing apoptosis and inflammation, BM-MSCs from mice and rats were able to enhance kidney function and histological integrity in rats that had received CCl4 injections.
Collapse
Affiliation(s)
- Asmaa Adel
- Histology, Cell Biology and Genetic Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Manal Abdul-Hamid
- Histology, Cell Biology and Genetic Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Samraa H. Abdel-Kawi
- Medical Histology and Cell Biology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed A. Abdelaziz
- Basic Medical Sciences Department, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
- Medical Physiology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Hader I. Sakr
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Medical Physiology, General Medicine Practice Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Osama M. Ahmed
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
2
|
Liu H, Huang H, Liu Y, Yang Y, Deng H, Wang X, Zhou Z, Peng G, Jin S, Chen D, Zhong Z. Adipose-derived mesenchymal stem cells inhibit hepatic stellate cells activation to alleviate liver fibrosis via Hippo pathway. Stem Cell Res Ther 2024; 15:378. [PMID: 39449061 PMCID: PMC11515333 DOI: 10.1186/s13287-024-03988-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Liver fibrosis is a common pathological process of chronic liver disease, characterized by excessive deposition of extracellular matrix (ECM). Mesenchymal stem cells (MSCs) have been found to have potential therapy effect on liver fibrosis, but the mechanism involved was still unclear. The objective of this study is to investigate the therapeutic efficacy of adipose-derived mesenchymal stem cells (ADMSCs) on the treatment of liver fibrosis, with particular emphasis on elucidating the underlying mechanism of action through which ADMSCs inhibit the activation of hepatic stellate cells (HSCs). METHODS ADMSCs were isolated from adipose tissue and injected intravenously into hepatic fibrosis model of rats. The histopathological changes, liver function, collagen deposition, the expression of fibroin and Hippo pathway were evaluated. In vitro, ADMSCs were co-cultured with HSCs activated by transforming growth factor beta 1 (TGF-β1), and the inhibitor of Hippo pathway was used to evaluate the therapeutic mechanism of ADMSCs transplantation. RESULTS The results showed that after the transplantation of ADMSCs, the liver function of rats was improved, the degree of liver fibrosis and collagen deposition were reduced, and the Hippo signaling pathway was activated. In vitro, ADMSCs can effectively inhibit the proliferation and activation of HSCs induced by TGF-β1 treatment. However, the inhibitory effect of ADMSCs was weakened after blocking the Hippo signaling pathway. CONCLUSIONS ADMSCs inhibit HSCs activation by regulating YAP/TAZ, thereby promoting functional recovery after liver fibrosis. These findings lay a foundation for further investigation into the precise mechanism by which ADMSCs alleviate liver fibrosis.
Collapse
Affiliation(s)
- Haifeng Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Haocheng Huang
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yifan Liu
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuxue Yang
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongchuan Deng
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xinmiao Wang
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ziyao Zhou
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangneng Peng
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shouchao Jin
- Sichuan Jinbei Banshan Group Co Ltd, Chengdu, 610041, China
| | - Dechun Chen
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China.
| | - Zhijun Zhong
- Department of Veterinary Surgery, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
3
|
Hisamatsu D, Ikeba A, Yamato T, Mabuchi Y, Watanabe M, Akazawa C. Optimization of transplantation methods using isolated mesenchymal stem/stromal cells: clinical trials of inflammatory bowel diseases as an example. Inflamm Regen 2024; 44:37. [PMID: 39152520 PMCID: PMC11328379 DOI: 10.1186/s41232-024-00350-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/26/2024] [Indexed: 08/19/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are distributed in various tissues and are used in clinical applications as a source of transplanted cells because of their easy harvestability. Although MSCs express numerous cell-surface antigens, single-cell analyses have revealed a highly heterogeneous cell population depending on the original tissue and donor conditions, including age and interindividual differences. This heterogeneity leads to differences in their functions, such as multipotency and immunomodulatory effects, making it challenging to effectively treat targeted diseases. The therapeutic efficacy of MSCs is controversial and depends on the implantation site. Thus, there is no established recipe for the transplantation of MSCs (including the type of disease, type of origin, method of cell culture, form of transplanted cells, and site of delivery). Our recent preclinical study identified appropriate MSCs and their suitable transplantation routes in a mouse model of inflammatory bowel disease (IBD). Three-dimensional (3D) cultures of MSCs have been demonstrated to enhance their properties and sustain engraftment at the lesion site. In this note, we explore the methods of MSC transplantation for treating IBDs, especially Crohn's disease, from clinical trials published over the past decade. Given the functional changes in MSCs in 3D culture, we also investigate the clinical trials using 3D constructs of MSCs and explore suitable diseases that might benefit from this approach. Furthermore, we discuss the advantages of the prospective isolation of MSCs in terms of interindividual variability. This note highlights the need to define the method of MSC transplantation, including interindividual variability, the culture period, and the transplantation route.
Collapse
Affiliation(s)
- Daisuke Hisamatsu
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Akimi Ikeba
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Taku Yamato
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Yo Mabuchi
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Tokyo, Japan
| | - Mamoru Watanabe
- Faculty of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Chihiro Akazawa
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
4
|
Kahrizi MS, Mousavi E, Khosravi A, Rahnama S, Salehi A, Nasrabadi N, Ebrahimzadeh F, Jamali S. Recent advances in pre-conditioned mesenchymal stem/stromal cell (MSCs) therapy in organ failure; a comprehensive review of preclinical studies. Stem Cell Res Ther 2023; 14:155. [PMID: 37287066 DOI: 10.1186/s13287-023-03374-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/10/2023] [Indexed: 06/09/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs)-based therapy brings the reassuring capability to regenerative medicine through their self-renewal and multilineage potency. Also, they secret a diversity of mediators, which are complicated in moderation of deregulated immune responses, and yielding angiogenesis in vivo. Nonetheless, MSCs may lose biological performance after procurement and prolonged expansion in vitro. Also, following transplantation and migration to target tissue, they encounter a harsh milieu accompanied by death signals because of the lack of proper tensegrity structure between the cells and matrix. Accordingly, pre-conditioning of MSCs is strongly suggested to upgrade their performances in vivo, leading to more favored transplantation efficacy in regenerative medicine. Indeed, MSCs ex vivo pre-conditioning by hypoxia, inflammatory stimulus, or other factors/conditions may stimulate their survival, proliferation, migration, exosome secretion, and pro-angiogenic and anti-inflammatory characteristics in vivo. In this review, we deliver an overview of the pre-conditioning methods that are considered a strategy for improving the therapeutic efficacy of MSCs in organ failures, in particular, renal, heart, lung, and liver.
Collapse
Affiliation(s)
| | - Elnaz Mousavi
- Department of Endodontics, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
| | - Armin Khosravi
- Department of Periodontics, Dental School, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Iran
| | - Sara Rahnama
- Department of Pediatric Dentistry, School of Dentistry, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Salehi
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Iran
| | - Navid Nasrabadi
- Department of Endodontics, School of Dentistry, Birjand University of Medical Sciences, Birjand, Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Samira Jamali
- Department of Endodontics, Stomatological Hospital, College of Stomatology, Xi'an Jiaotong University, Shaanxi, People's Republic of China.
| |
Collapse
|
5
|
Saadh MJ, Mikhailova MV, Rasoolzadegan S, Falaki M, Akhavanfar R, Gonzáles JLA, Rigi A, Kiasari BA. Therapeutic potential of mesenchymal stem/stromal cells (MSCs)-based cell therapy for inflammatory bowel diseases (IBD) therapy. Eur J Med Res 2023; 28:47. [PMID: 36707899 PMCID: PMC9881387 DOI: 10.1186/s40001-023-01008-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
Recently, mesenchymal stem/stromal cells (MSCs) therapy has become an emerging therapeutic modality for the treatment of inflammatory bowel disease (IBD), given their immunoregulatory and pro-survival attributes. MSCs alleviate dysregulated inflammatory responses through the secretion of a myriad of anti-inflammatory mediators, such as interleukin 10 (IL-10), transforming growth factor-β (TGFβ), prostaglandin E2 (PGE2), tumor necrosis factor-stimulated gene-6 (TSG-6), etc. Indeed, MSC treatment of IBD is largely carried out through local microcirculation construction, colonization and repair, and immunomodulation, thus alleviating diseases severity. The clinical therapeutic efficacy relies on to the marked secretion of various secretory molecules from viable MSCs via paracrine mechanisms that are required for gut immuno-microbiota regulation and the proliferation and differentiation of surrounding cells like intestinal epithelial cells (IECs) and intestinal stem cells (ISCs). For example, MSCs can induce IECs proliferation and upregulate the expression of tight junction (TJs)-associated protein, ensuring intestinal barrier integrity. Concerning the encouraging results derived from animal studies, various clinical trials are conducted or ongoing to address the safety and efficacy of MSCs administration in IBD patients. Although the safety and short-term efficacy of MSCs administration have been evinced, the long-term efficacy of MSCs transplantation has not yet been verified. Herein, we have emphasized the illumination of the therapeutic capacity of MSCs therapy, including naïve MSCs, preconditioned MSCs, and also MSCs-derived exosomes, to alleviate IBD severity in experimental models. Also, a brief overview of published clinical trials in IBD patients has been delivered.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Department of Basic Sciences, Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Maria V Mikhailova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Soheil Rasoolzadegan
- Department of Surgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Falaki
- Department of Internal Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roozbeh Akhavanfar
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Amir Rigi
- Department of Nursing, Young Researchers and Elite Club, Zahedan Branch, Azad University, Zahedan, Iran.
| | - Bahman Abedi Kiasari
- Virology Department, Faculty of Veterinary Medicine, The University of Tehran, Tehran, Iran.
| |
Collapse
|
6
|
Pathogenic Role of Adipose Tissue-Derived Mesenchymal Stem Cells in Obesity and Obesity-Related Inflammatory Diseases. Cells 2023; 12:cells12030348. [PMID: 36766689 PMCID: PMC9913687 DOI: 10.3390/cells12030348] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Adipose tissue-derived mesenchymal stem cells (ASCs) are adult stem cells, endowed with self-renewal, multipotent capacities, and immunomodulatory properties, as mesenchymal stem cells (MSCs) from other origins. However, in a pathological context, ASCs like MSCs can exhibit pro-inflammatory properties and attract inflammatory immune cells at their neighborhood. Subsequently, this creates an inflammatory microenvironment leading to ASCs' or MSCs' dysfunctions. One such example is given by obesity where adipogenesis is impaired and insulin resistance is initiated. These opposite properties have led to the classification of MSCs into two categories defined as pro-inflammatory ASC1 or anti-inflammatory ASC2, in which plasticity depends on the micro-environmental stimuli. The aim of this review is to (i) highlight the pathogenic role of ASCs during obesity and obesity-related inflammatory diseases, such as rheumatoid arthritis, multiple sclerosis, psoriasis, inflammatory bowel disease, and cancer; and (ii) describe some of the mechanisms leading to ASCs dysfunctions. Thus, the role of soluble factors, adhesion molecules; TLRs, Th17, and Th22 cells; γδ T cells; and immune checkpoint overexpression will be addressed.
Collapse
|
7
|
Liang Z, Zhang G, Gan G, Naren D, Liu X, Liu H, Mo J, Lu S, Nie D, Ma L. Preclinical Short-term and Long-term Safety of Human Bone Marrow Mesenchymal Stem Cells. Cell Transplant 2023; 32:9636897231213271. [PMID: 38059278 PMCID: PMC10704945 DOI: 10.1177/09636897231213271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 12/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have become a promising therapeutic method. More safety data are needed to support clinical studies in more diseases. The aim of this study was to investigate the short- and long-term safety of human bone marrow-derived MSCs (hBMMSCs) in mice. In the present study, we injected control (saline infusion only), low (1.0 × 106/kg), medium (1.0 × 107/kg), and high (1.0 × 108/kg) concentrations of hBMMSCs into BALB/c mice. The safety of the treatment was evaluated by observing changes in the general condition, hematology, biochemical indices, pathology of vital organs, lymphocyte subsets, and immune factor levels on days 14 and 150. In the short-term toxicity test, no significant abnormalities were observed in the hematological and biochemical parameters between the groups injected with hBMMSCs, and no significant damage was observed in the major organs, such as the liver and lung. In addition, no significant differences were observed in the toxicity-related parameters among the groups in the long-term toxicity test. Our study also demonstrates that mice infused with different doses of hBMMSCs do not show abnormal immune responses in either short-term or long-term experiments. We confirmed that hBMMSCs are safe through a 150-day study, demonstrating that this is a safe and promising therapy and offering preliminary safety evidence to promote future clinical applications of hBMMSCs in different diseases.
Collapse
Affiliation(s)
- Ziyang Liang
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Guoyang Zhang
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - GuangTing Gan
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Oncology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Duolan Naren
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Hematology, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyan Liu
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongyun Liu
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiani Mo
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shengqin Lu
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Danian Nie
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Liping Ma
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
8
|
Torrico S, Hotter G, Játiva S. Development of Cell Therapies for Renal Disease and Regenerative Medicine. Int J Mol Sci 2022; 23:ijms232415943. [PMID: 36555585 PMCID: PMC9783572 DOI: 10.3390/ijms232415943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The incidence of renal disease is gradually increasing worldwide, and this condition has become a major public health problem because it is a trigger for many other chronic diseases. Cell therapies using multipotent mesenchymal stromal cells, hematopoietic stem cells, macrophages, and other cell types have been used to induce regeneration and provide a cure for acute and chronic kidney disease in experimental models. This review describes the advances in cell therapy protocols applied to acute and chronic kidney injuries and the attempts to apply these treatments in a clinical setting.
Collapse
Affiliation(s)
- Selene Torrico
- M2rlab-XCELL, 28010 Madrid, Spain
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas Institut d’Investigacions Biomèdiques August Pi i Sunyer (IIBB-CSIC-IDIBAPS), 08036 Barcelona, Spain
- Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Georgina Hotter
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas Institut d’Investigacions Biomèdiques August Pi i Sunyer (IIBB-CSIC-IDIBAPS), 08036 Barcelona, Spain
- CIBER-BBN, Networking Center on Bioengineering, Biomaterials and Nanomedicine, 50018 Zaragoza, Spain
- Correspondence: (G.H.); (S.J.)
| | - Soraya Játiva
- M2rlab-XCELL, 28010 Madrid, Spain
- Department of Experimental Pathology, Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas Institut d’Investigacions Biomèdiques August Pi i Sunyer (IIBB-CSIC-IDIBAPS), 08036 Barcelona, Spain
- Correspondence: (G.H.); (S.J.)
| |
Collapse
|
9
|
Stem Cell-Based Therapies for Inflammatory Bowel Disease. Int J Mol Sci 2022; 23:ijms23158494. [PMID: 35955628 PMCID: PMC9368934 DOI: 10.3390/ijms23158494] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, relapsing disease that severely affects patients’ quality of life. The exact cause of IBD is uncertain, but current studies suggest that abnormal activation of the immune system, genetic susceptibility, and altered intestinal flora due to mucosal barrier defects may play an essential role in the pathogenesis of IBD. Unfortunately, IBD is currently difficult to be wholly cured. Thus, more treatment options are needed for different patients. Stem cell therapy, mainly including hematopoietic stem cell therapy and mesenchymal stem cell therapy, has shown the potential to improve the clinical disease activity of patients when conventional treatments are not effective. Stem cell therapy, an emerging therapy for IBD, can alleviate mucosal inflammation through mechanisms such as immunomodulation and colonization repair. Clinical studies have confirmed the effectiveness of stem cell transplantation in refractory IBD and the ability to maintain long-term remission in some patients. However, stem cell therapy is still in the research stage, and its safety and long-term efficacy remain to be further evaluated. This article reviews the upcoming stem cell transplantation methods for clinical application and the results of ongoing clinical trials to provide ideas for the clinical use of stem cell transplantation as a potential treatment for IBD.
Collapse
|
10
|
Tayebi B, Babaahmadi M, Pakzad M, Hajinasrollah M, Mostafaei F, Jahangiri S, Kamali A, Baharvand H, Baghaban Eslaminejad M, Hassani SN, Hajizadeh-Saffar E. Standard toxicity study of clinical-grade allogeneic human bone marrow-derived clonal mesenchymal stromal cells. Stem Cell Res Ther 2022; 13:213. [PMID: 35619148 PMCID: PMC9137136 DOI: 10.1186/s13287-022-02899-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/11/2022] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Mesenchymal stromal cells (MSCs) have opened a new window to treat inflammatory and non-inflammatory diseases. Nonetheless, their clinical applications require rigorous control and monitoring procedures to ensure full compliance with the principles of good manufacturing practice (GMP). Various evaluations should be passed in conjunction with the development of these newly emerging therapeutic products from bench-to-bedside. These evaluations include in vitro characterization, preclinical studies, and clinical trials to ensure product safety and efficacy. Therefore, a robust and well-designed preclinical study is critical to confirm product safety. This study aims to determine the probable toxicity effects of local and systemic injections of cryopreserved human bone marrow-derived clonal MSCs (BM-cMSCs) during subacute and subchronic periods of time. METHODS BM-cMSCs were characterized according to the International Society for Cell and Gene Therapy (ISCT) criteria for MSCs. Both safety and toxicity of the BM-cMSCs population produced under GMP-compatible conditions were assessed in both sexes of Sprague Dawley (SD) rats via systemic intravenous (IV) administration and local injection in intervertebral disc (IVD). Behavioral changes, clinical signs of toxicity, and changes in body weight, water and food consumption were the important variables for product toxicity testing over 14 consecutive days during the subacute period and 90 consecutive days during the subchronic period. At the end of the assessment periods, the rats were killed for histopathology analysis of the target tissues. The BM-cMSCs potential for tumorigenicity was checked in nude mice. RESULTS Single IV and IVD injections of BM-cMSCs did not cause significant signs of clinical toxicity, or changes in laboratory and histopathology data during the subacute (14 day) and subchronic (90 day) periods. Ex vivo-expanded and cryopreserved BM-cMSCs did not induce tumor formation in nude mice. CONCLUSION The results suggest that local and systemic administrations of xenogeneic BM-cMSCs in both sexes of SD rats do not cause toxicity during the subacute and subchronic periods of time. Also, BM-cMSCs were non-tumorigenic in nude mice.
Collapse
Affiliation(s)
- Behnoosh Tayebi
- Department of Applied Cell Sciences, Faculty of Basic Sciences and Advanced Medical Technologies, Royan Institute, ACECR, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahnaz Babaahmadi
- Department of Applied Cell Sciences, Faculty of Basic Sciences and Advanced Medical Technologies, Royan Institute, ACECR, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Pakzad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mostafa Hajinasrollah
- Animal Core Facility, Reproductive Biomedicine Research Center, Royan Institute for Animal Biotechnology, ACECR, Tehran, Iran
| | - Farhad Mostafaei
- Animal Core Facility, Reproductive Biomedicine Research Center, Royan Institute for Animal Biotechnology, ACECR, Tehran, Iran
| | - Shahrbanoo Jahangiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Ensiyeh Hajizadeh-Saffar
- Department of Applied Cell Sciences, Faculty of Basic Sciences and Advanced Medical Technologies, Royan Institute, ACECR, Tehran, Iran. .,Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
11
|
Wu X, Mu Y, Yao J, Lin F, Wu D, Ma Z. Adipose-Derived Stem Cells From Patients With Ulcerative Colitis Exhibit Impaired Immunosuppressive Function. Front Cell Dev Biol 2022; 10:822772. [PMID: 35252190 PMCID: PMC8894714 DOI: 10.3389/fcell.2022.822772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/17/2022] [Indexed: 12/15/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) are able to modulate the immune response and are used for treating ulcerative colitis (UC). However, it is possible that ADSCs from patients with inflammatory or autoimmune disorders may show defective immunosuppression. We investigated the use of ADSCs from UC patients for autologous cell treatment, specifically, ADSCs from healthy donors (H-ADSCs) and UC patients (P-ADSCs) in terms of various functions, including differentiation, proliferation, secretion, and immunosuppression. The efficacy of P-ADSCs for treating UC was examined in mouse models of acute or chronic colitis. Both H-ADSCs and P-ADSCs were similar in cell morphology, size, adipogenic differentiation capabilities, and cell surface markers. We found that P-ADSCs had lower proliferative capacity, cloning ability, and osteogenic and chondrogenic differentiation potential than H-ADSCs. P-ADSCs exhibited a diminished capacity to inhibit peripheral blood mononuclear cell proliferation, suppress CD25 and CD69 marker expression, decrease the production of inflammation-associated cytokines interferon-γ and tumor necrosis factor-α, and reduce their cytotoxic effect on A549 cells. When primed with inflammatory cytokines, P-ADSCs secreted lower levels of prostaglandin E2, indoleamine 2, 3-dioxygenase, and tumor necrosis factor-α–induced protein 6, which mediated their reduced immunopotency. Moreover, P-ADSCs exhibited weaker therapeutic effects than H-ADSCs, determined by disease activity, histology, myeloperoxidase activity, and body weight. These findings indicate that the immunosuppressive properties of ASCs are affected by donor metabolic characteristics. This study shows, for the first time, the presence of defective ADSC immunosuppression in UC, indicating that autologous transplantation of ADSCs may be inappropriate for patients with UC.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Department of Technology, Research Center for Hua-Da Precision Medicine of Inner Mongolia Autonomous Region, Hohhot, China
- Department of Interventional, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Yongxu Mu
- Department of Interventional, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Jingyi Yao
- Experimental Center, Beijing Clinical Research Institute, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Fuhong Lin
- Department of Neurology, Affiliated Hospital of Chifeng College, Chifeng, China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Daocheng Wu, ; Zhijie Ma,
| | - Zhijie Ma
- Department of Pharmacy, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
- *Correspondence: Daocheng Wu, ; Zhijie Ma,
| |
Collapse
|
12
|
Saleh M, Fotook Kiaei SZ, Kavianpour M. Application of Wharton jelly-derived mesenchymal stem cells in patients with pulmonary fibrosis. Stem Cell Res Ther 2022; 13:71. [PMID: 35168663 PMCID: PMC8845364 DOI: 10.1186/s13287-022-02746-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Pulmonary fibrosis is a devastating disease that eventually leads to death and respiratory failure. Despite the wide range of drugs, including corticosteroids, endothelin antagonist, and pirfenidone, there is no effective treatment, and the only main goal of treatment is to alleviate the symptoms as much as possible to slow down the progression of the disease and improve the quality of life. Lung transplantation may be a treatment option for a few people if pulmonary fibrosis develops and there is no established treatment. Pulmonary fibrosis caused by the COVID19 virus is another problem that we face in most patients despite the efforts of the international medical communities. Therefore, achieving alternative treatment for patients is a great success. Today, basic research using stem cells on pulmonary fibrosis has published promising results. New stem cell-based therapies can be helpful in patients with pulmonary fibrosis. Wharton jelly-derived mesenchymal stem cells are easily isolated in large quantities and made available for clinical trials without causing ethical problems. These cells have higher flexibility and proliferation potential than other cells isolated from different sources and differentiated into various cells in laboratory environments. More clinical trials are needed to determine the safety and efficacy of these cells. This study will investigate the cellular and molecular mechanisms and possible effects of Wharton jelly-derived mesenchymal stem cells in pulmonary fibrosis.
Collapse
Affiliation(s)
- Mahshid Saleh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyedeh Zahra Fotook Kiaei
- Department of Pulmonary and Critical Care, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maria Kavianpour
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Trébol J, Georgiev-Hristov T, Pascual-Miguelañez I, Guadalajara H, García-Arranz M, García-Olmo D. Stem cell therapy applied for digestive anastomosis: Current state and future perspectives. World J Stem Cells 2022; 14:117-141. [PMID: 35126832 PMCID: PMC8788180 DOI: 10.4252/wjsc.v14.i1.117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/21/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Digestive tract resections are usually followed by an anastomosis. Anastomotic leakage, normally due to failed healing, is the most feared complication in digestive surgery because it is associated with high morbidity and mortality. Despite technical and technological advances and focused research, its rates have remained almost unchanged the last decades. In the last two decades, stem cells (SCs) have been shown to enhance healing in animal and human studies; hence, SCs have emerged since 2008 as an alternative to improve anastomoses outcomes.
AIM To summarise the published knowledge of SC utilisation as a preventative tool for hollow digestive viscera anastomotic or suture leaks.
METHODS PubMed, Science Direct, Scopus and Cochrane searches were performed using the key words “anastomosis”, “colorectal/colonic anastomoses”, “anastomotic leak”, “stem cells”, “progenitor cells”, “cellular therapy” and “cell therapy” in order to identify relevant articles published in English and Spanish during the years of 2000 to 2021. Studies employing SCs, performing digestive anastomoses in hollow viscera or digestive perforation sutures and monitoring healing were finally included. Reference lists from the selected articles were reviewed to identify additional pertinent articles.
Given the great variability in the study designs, anastomotic models, interventions (SCs, doses and vehicles) and outcome measures, performing a reliable meta-analysis was considered impossible, so we present the studies, their results and limitations.
RESULTS Eighteen preclinical studies and three review papers were identified; no clinical studies have been published and there are no registered clinical trials. Experimental studies, mainly in rat and porcine models and occasionally in very adverse conditions such as ischaemia or colitis, have been demonstrated SCs as safe and have shown some encouraging morphological, functional and even clinical results. Mesenchymal SCs are mostly employed, and delivery routes are mainly local injections and cell sheets followed by biosutures (sutures coated by SCs) or purely topical. As potential weaknesses, animal models need to be improved to make them more comparable and equivalent to clinical practice, and the SC isolation processes need to be standardised. There is notable heterogeneity in the studies, making them difficult to compare. Further investigations are needed to establish the indications, the administration system, potential adjuvants, the final efficacy and to confirm safety and exclude definitively oncological concerns.
CONCLUSION The future role of SC therapy to induce healing processes in digestive anastomoses/sutures still needs to be determined and seems to be currently far from clinical use.
Collapse
Affiliation(s)
- Jacobo Trébol
- Servicio de Cirugía General y del Aparato Digestivo, Complejo Asistencial Universitario de Salamanca, Salamanca 37007, Spain
- Departamento de Anatomía e Histología Humanas, Universidad de Salamanca, Salamanca 37007, Spain
| | - Tihomir Georgiev-Hristov
- Servicio de Cirugía General y del Aparato Digestivo, Hospital General Universitario de Villalba, Madrid 28400, Spain
| | - Isabel Pascual-Miguelañez
- Servicio de Cirugía General y del Aparato Digestivo, Hospital Universitario La Paz, Madrid 28046, Spain
| | - Hector Guadalajara
- Servicio de Cirugía General y del Aparato Digestivo, Hospital Universitario Fundación Jiménez Díaz, Madrid 28040, Spain
| | - Mariano García-Arranz
- Grupo de Investigación en Nuevas Terapias, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Madrid 28040, Spain
- Departamento de Cirugía, Universidad Autónoma de Madrid, Madrid 28029, Spain
| | - Damian García-Olmo
- Departamento de Cirugía, Universidad Autónoma de Madrid, Madrid 28029, Spain
- Servicio de Cirugía General y del Aparato Digestivo, Hospital Universitario Fundación Jiménez Díaz y Grupo Quiron-Salud Madrid, Madrid 28040, Spain
| |
Collapse
|
14
|
Vohra AH, Upadhyay KK, Joshi AS, Vyas HS, Thadani J, Devkar RV. Melatonin-primed ADMSCs elicit an efficacious therapeutic response in improving high-fat diet induced non-alcoholic fatty liver disease in C57BL/6J mice. EGYPTIAN LIVER JOURNAL 2021. [DOI: 10.1186/s43066-021-00157-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Stem cells are widely used for therapy including treatment of liver damage. Adipose-derived mesenchymal stem cells (ADMSCs) administered to treat fatty liver are known to improve liver function but their use is restricted due to a poor success rate. This study investigates efficacy of melatonin-primed ADMSCs (Mel. MSCs) in experimentally induced non-alcoholic fatty liver disease (NAFLD).
Results
MSCs treated with LPS showed prominent DCFDA fluorescence as compared to the untreated cells. Also, the JC-1 staining had accounted for higher intensity of green monomer and a weak fluorescence of red dimer indicating weaker mitochondrial membrane potential. But melatonin co-treatment could make necessary corrective changes as evidenced by reverse set of results. The overall cell survival was also found to be improved following melatonin treatment as evidenced by the MTT assay. Also, the antioxidant (Nrf2 and Ho-1) and anti-inflammatory genes (Il-4 and Il-10) showed a decrement in their mRNA levels following LPS treatment whereas the pro-inflammatory genes (Tnf-α, Il-6, Tlr-4, and Lbp) showed a reciprocal increment in the said group. Melatonin co-treatment accounted for an improved status of antioxidant and anti-inflammatory genes as evidenced by their mRNA levels. High-fat high-fructose diet (HFFD) fed C57BL/6J mice recorded higher serum AST and ALT levels and fatty manifestation in histology of liver along with lowered mRNA levels of antioxidant (Nrf2, Catalase, and Gss) genes and Hgf. These set of parameters showed a significant improvement in HFFD + Mel.MSC group.
Conclusion
A significant improvement in viability of MSCs was recorded due to lowered intracellular oxidative stress and improves mitochondrial membrane potential. Further, melatonin-primed MSCs accounted for a significant decrement in fatty manifestations in liver and an improved physiological status of NAFLD in HFFD fed C57BL/6J mice. Taken together, it is hypothesized that melatonin priming to MSCs prior to its use can significantly augment the success of stem cell therapy.
Collapse
|
15
|
Zou J, Peng H, Liu Y. The Roles of Exosomes in Immunoregulation and Autoimmune Thyroid Diseases. Front Immunol 2021; 12:757674. [PMID: 34867996 PMCID: PMC8634671 DOI: 10.3389/fimmu.2021.757674] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/29/2021] [Indexed: 12/21/2022] Open
Abstract
Exosomes are extracellular microvesicles (30-150 nm) released from cells that contain proteins, lipids, RNA and DNA. They can deliver bioactive molecules and serve as carriers facilitating cell-cell communication, such as antigen presentation, inflammatory activation, autoimmune diseases (AIDs) and tumor metastasis. Recently, much attention has been attracted to the biology and functions of exosomes in immune regulation and AIDs, including autoimmune thyroid diseases (AITDs). Some studies have shown that exosomes are involved in the occurrence and development of AITDs, but they are still in the preliminary stage of exploration. This review mainly introduces the association of exosomes with immune regulation and emphasizes the potential role of exosomes in AITDs, aiming to provide new research strategies and directions for the pathogenesis and early diagnosis of AITDs.
Collapse
Affiliation(s)
- Junli Zou
- Department of Endocrinology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, China
| | - Huiyong Peng
- Department of Laboratory Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yingzhao Liu
- Department of Endocrinology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Medical School of Nanjing Medical University, Zhenjiang, China
| |
Collapse
|
16
|
Role of the Microenvironment in Mesenchymal Stem Cell-Based Strategies for Treating Human Liver Diseases. Stem Cells Int 2021; 2021:5513309. [PMID: 34824587 PMCID: PMC8610645 DOI: 10.1155/2021/5513309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/23/2021] [Accepted: 10/30/2021] [Indexed: 11/17/2022] Open
Abstract
Liver disease is a severe health problem that endangers human health worldwide. Mesenchymal stem cell (MSC) therapy is a novel treatment for patients with different liver diseases due to its vast expansion potential and distinctive immunomodulatory properties. Despite several preclinical trials having confirmed the considerable efficacy of MSC therapy in liver diseases, the questionable safety and efficacy still limit its application. As a precursor cell, MSCs can adjust their characteristics in response to the surrounding microenvironment. The microenvironment provides physical and chemical factors essential for stem cell survival, proliferation, and differentiation. However, the mechanisms are still not completely understood. We, therefore, summarized the mechanisms underlying the MSC immune response, especially the interaction between MSCs and the liver microenvironment, discussing how to achieve better therapeutic effects.
Collapse
|
17
|
Nojiri S, Tsuchiya A, Natsui K, Takeuchi S, Watanabe T, Kojima Y, Watanabe Y, Kamimura H, Ogawa M, Motegi S, Iwasawa T, Sato T, Kumagai M, Ishii Y, Kitayama T, Li YT, Ouchi Y, Shimbo T, Takamura M, Tamai K, Terai S. Synthesized HMGB1 peptide attenuates liver inflammation and suppresses fibrosis in mice. Inflamm Regen 2021; 41:28. [PMID: 34565478 PMCID: PMC8474861 DOI: 10.1186/s41232-021-00177-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/25/2021] [Indexed: 11/20/2022] Open
Abstract
The liver has a high regenerative ability and can induce spontaneous regression of fibrosis when early liver damage occurs; however, these abilities are lost when chronic liver damage results in decompensated cirrhosis. Cell therapies, such as mesenchymal stem cell (MSC) and macrophage therapies, have attracted attention as potential strategies for mitigating liver fibrosis. Here, we evaluated the therapeutic effects of HMGB1 peptide synthesized from box A of high mobility group box 1 protein. Liver damage and fibrosis were evaluated using a carbon tetrachloride (CCl4)-induced cirrhosis mouse model. The effects of HMGB1 peptide against immune cells were evaluated by single-cell RNA-seq using liver tissues, and those against monocytes/macrophages were further evaluated by in vitro analyses. Administration of HMGB1 peptide did not elicit a rapid response within 36 h, but attenuated liver damage after 1 week and suppressed fibrosis after 2 weeks. Fibrosis regression developed over time, despite continuous liver damage, suggesting that administration of this peptide could induce fibrolysis. In vitro analyses could not confirm a direct effect of HMGB1 peptide against monocyte/macrophages. However, macrophages were the most affected immune cells in the liver, and the number of scar-associated macrophages (Trem2+Cd9+ cells) with anti-inflammatory markers increased in the liver following HMGB1 treatment, suggesting that indirect effects of monocytes/macrophages were important for therapeutic efficacy. Overall, we established a new concept for cell-free therapy using HMGB1 peptide for cirrhosis through the induction of anti-inflammatory macrophages.
Collapse
Affiliation(s)
- Shunsuke Nojiri
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan.
| | - Kazuki Natsui
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Suguru Takeuchi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Takayuki Watanabe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Yuichi Kojima
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Yusuke Watanabe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Hiroteru Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Masahiro Ogawa
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Satoko Motegi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Takahiro Iwasawa
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Takeki Sato
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Masaru Kumagai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Yui Ishii
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Tomomi Kitayama
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.,StemRIM Inc., Saito Bio-Incubator 3F 7-7-15, Saito-Asagi, Ibaraki City, Osaka, 567-0085, Japan
| | - Yu-Tung Li
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuya Ouchi
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.,StemRIM Inc., Saito Bio-Incubator 3F 7-7-15, Saito-Asagi, Ibaraki City, Osaka, 567-0085, Japan
| | - Takashi Shimbo
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.,StemRIM Institute of Regeneration-Inducing Medicine, Osaka University, 2-8, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masaaki Takamura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Katsuto Tamai
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan.
| |
Collapse
|
18
|
Terai S, Tsuchiya A, Watanabe Y, Takeuchi S. Transition of clinical and basic studies on liver cirrhosis treatment using cells to seek the best treatment. Inflamm Regen 2021; 41:27. [PMID: 34530931 PMCID: PMC8444392 DOI: 10.1186/s41232-021-00178-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/06/2021] [Indexed: 02/08/2023] Open
Abstract
The liver is a highly regenerative organ; however, its regeneration potential is reduced by chronic inflammation with fibrosis accumulation, leading to cirrhosis. With an aim to tackle liver cirrhosis, a life-threatening disease, trials of autologous bone marrow cell infusion (ABMi) therapy started in 2003. Clinical studies revealed that ABMi attenuated liver fibrosis and improved liver function in some patients; however, this therapy has some limitations such as the need of general anesthesia. Following ABMi therapy, studies have focused on specific cells such as mesenchymal stromal cells (MSCs) from a variety of tissues such as bone marrow, adipose tissue, and umbilical cord tissues. Particularly, studies have focused on gaining mechanistic insights into MSC distribution and effects on immune cells, especially macrophages. Several basic studies have reported the use of MSCs for liver cirrhosis models, while a number of clinical studies have used autologous and allogeneic MSCs; however, there are only a few reports on the obvious substantial effect of MSCs in clinical studies. Since then, studies have analyzed and identified the important signals or components in MSCs that regulate immune cells, such as macrophages, under cirrhotic conditions and have revealed that MSC-derived exosomes are key regulators. Researchers are still seeking the best approach and filling the gap between basic and clinical studies to treat liver cirrhosis. This paper highlights the timeline of basic and clinical studies analyzing ABMi and MSC therapies for cirrhosis and the scope for future studies and therapy.
Collapse
Affiliation(s)
- Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan.
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Yusuke Watanabe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Suguru Takeuchi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| |
Collapse
|
19
|
Wang H, Ye C, Wu Y, Yang P, Chen C, Liu Z, Wang X. Exosomes in Inflammatory Bowel Disease: What Have We Learned So Far? Curr Drug Targets 2021; 21:1448-1455. [PMID: 32342815 DOI: 10.2174/1389450121666200428102330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 01/06/2023]
Abstract
Inflammatory bowel disease (IBD) is an immune-mediated chronic inflammatory disease. Although the etiology is uncertain, there is marked disbalance of mucosal immune responses in part shaped by genetic susceptibility and intestinal microbial dysbiosis. Suppressing inflammatory activity adequately and maintaining this suppression are the main goals of current therapies. However, corticosteroids are only suitable for therapy of active disease, and the effects of immunosuppressive agents are mainly limited to maintenance of remission. Biologics have become widely available and provide therapeutic benefits to IBD patients. However, only a part of patients benefits from them. Thus, there is an urgent need for the development of new substances in the therapy of IBD. Exosomes are nanosized lipid vesicles identified recently. They are secreted from all living cells and then distributed in various human body fluids. The components, such as microRNAs and functional proteins, secreted by exosomes in different cells have been reported to be involved in the pathogenesis of IBD. Therefore, exosomes have the potential to become appealing particles in treating IBD as a cell-free therapeutic approach as well as biomarkers for diagnosis and monitoring disease status. Further studies are needed to investigate the practicality, safety and desirable effects of exosomes in clinical applications in IBD.
Collapse
Affiliation(s)
- Haichao Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Chen Ye
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Soochow University, Jiangsu 215000, China
| | - Yaling Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Pengyu Yang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Chunqiu Chen
- Center for Difficult and Complicated Abdominal Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Zhanju Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Xiaolei Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| |
Collapse
|
20
|
Iwasawa T, Nojiri S, Tsuchiya A, Takeuchi S, Watanabe T, Ogawa M, Motegi S, Sato T, Kumagai M, Nakaya T, Ohbuchi K, Nahata M, Fujitsuka N, Takamura M, Terai S. Combination therapy of Juzentaihoto and mesenchymal stem cells attenuates liver damage and regresses fibrosis in mice. Regen Ther 2021; 18:231-241. [PMID: 34409135 PMCID: PMC8340055 DOI: 10.1016/j.reth.2021.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/29/2021] [Accepted: 07/11/2021] [Indexed: 12/20/2022] Open
Abstract
Background Liver cirrhosis is an end-stage multiple liver disease. Mesenchymal stem cells (MSCs) are an attractive cell source for reducing liver damage and regressing fibrosis; additional therapies accompanying MSCs can potentially enhance their therapeutic effects. Kampo medicines exhibit anti-inflammatory and anti-oxidative effects. Here, we investigated the therapeutic effect of MSCs combined with the Kampo medicine Juzentaihoto (JTT) as a combination therapy in a carbon tetrachloride (CCl4)-induced cirrhosis mouse model. Methods C57BL/6 mice were administered JTT (orally) and/or MSCs (one time, intravenously). The levels of liver proteins were measured in the sera. Sirius Red staining and hydroxyproline quantitation of hepatic tissues and immune cells were conducted, and their associated properties were evaluated. Liver metabolomics of liver tissues was performed. Results JTT monotherapy attenuated liver damage and increased serum albumin level, but it did not effectively induce fibrolysis. JTT rapidly reduced liver damage, in a dose-dependent manner, after a single-dose CCl4 administration. Furthermore, JTT-MSC combination therapy attenuated liver damage, improved liver function, and regressed liver fibrosis. The combination increased the CD4+/CD8+ ratio. JTT had stronger effects on NK and regulatory T cell induction, whereas MSCs more strongly induced anti-inflammatory macrophages. The combination therapy further induced anti-inflammatory macrophages. JTT normalized lipid mediators, and tricarboxylic acid cycle- and urea cycle-related mediators effectively. Conclusions The addition of JTT enhanced the therapeutic effects of MSCs; this combination could be a potential treatment option for cirrhosis. Juzentaihoto (JTT) enhanced the therapeutic effects of mesenchymal stem cells (MSCs). JTT induced NK and regulatory T cells, whereas MSCs induced anti-inflammatory macrophages. JTT normalized lipid mediators, the tricarboxylic acid cycle, and urea cycle-related mediators. This combination could be a potential treatment option against cirrhosis therapy.
Collapse
Affiliation(s)
- Takahiro Iwasawa
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Shunsuke Nojiri
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Suguru Takeuchi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takayuki Watanabe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masahiro Ogawa
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Satoko Motegi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takeki Sato
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaru Kumagai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Taiki Nakaya
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Katsuya Ohbuchi
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Miwa Nahata
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Naoki Fujitsuka
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Masaaki Takamura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
21
|
Zhao B, Zhang X, Zhang Y, Lu Y, Zhang W, Lu S, Fu Y, Zhou Y, Zhang J, Zhang J. Human Exosomes Accelerate Cutaneous Wound Healing by Promoting Collagen Synthesis in a Diabetic Mice Model. Stem Cells Dev 2021; 30:922-933. [PMID: 34167333 DOI: 10.1089/scd.2021.0100] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic wounds including diabetic foot ulcers are clinical emergencies that need careful management. Exosomes from human adipose-derived mesenchymal stem cells (hADSCs-Ex) are a new promising cell-free therapy for the regeneration of dermal wounds. We established a delayed wound healing model using diabetic female mice. A 1.5 cm2 full-thickness cutaneous wound was made ventrally in 6-week-old db/db mice. After treatment with phosphate-buffered saline, recombinant human epidermal growth factor, hADSCs-CM, or hADSCs-Ex three times a day for 2 weeks, we measured wound healing closure rates and performed histological analysis. Human dermal fibroblasts (WS1) were evaluated by PKH26-Exo co-localization test, CCK-8 test, cell scratch test, and the transwell test, while the expression of matrix metalloproteinase-1 (MMP1), MMP3, Collagen I, and Collagen III were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Wound closure and re-epithelialization were accelerated by hADSCs-Ex. Besides, hADSCs-Ex enhanced skin collagen production, angiogenesis, cell proliferation, inhibited apoptosis, promoted skin barrier function repair, and reduced inflammation in skin lesions. Furthermore, negative regulation of MMP1 and MMP3 enhanced collagen synthesis wound healing-promoting effects of hADSCs-Ex. hADSCs-Ex treatment for diabetic wounds provided a novel cell-free therapeutic strategy.
Collapse
Affiliation(s)
- Bo Zhao
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology Tongji University, Shanghai, People's Republic of China
| | - Xingliao Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Stem Cell Translational Research Center of Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Yuanlin Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Stem Cell Translational Research Center of Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Yijun Lu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Stem Cell Translational Research Center of Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Wanting Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology Tongji University, Shanghai, People's Republic of China
| | - Shoutao Lu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Stem Cell Translational Research Center of Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Yu Fu
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology Tongji University, Shanghai, People's Republic of China
| | - Yang Zhou
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Stem Cell Translational Research Center of Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Jun Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Stem Cell Translational Research Center of Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, People's Republic of China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, People's Republic of China
| | - Jing Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology Tongji University, Shanghai, People's Republic of China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Stem Cell Translational Research Center of Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
22
|
Mesenchymal Stem Cells Can Both Enhance and Inhibit the Cellular Response to DNA Immunization by Genes of Nonstructural Proteins of the Hepatitis C Virus. Int J Mol Sci 2021. [DOI: 10.3390/ijms22158121
expr 825321411 + 858242883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Despite extensive research, there is still no vaccine against the hepatitis C virus (HCV). The aim of this study was to investigate whether MSCs can exhibit adjuvant properties during DNA vaccination against hepatitis C. We used the pcNS3-NS5B plasmid encoding five nonstructural HCV proteins and MSCs derived from mice bone marrow. Five groups of DBA mice were immunized with the plasmid and/or MSCs in a different order. Group 1 was injected with the plasmid twice at intervals of 3 weeks; Group 2 with the plasmid, and after 24 h with MSCs; Group 3 with MSCs followed by the plasmid the next day; Group 4 with only MSCs; and Group 5 with saline. When the MSCs were injected prior to DNA immunization, the cell immune response to HCV proteins assessed by the level of IFN-γ synthesis was markedly increased compared to DNA alone. In contrast, MSCs injected after DNA suppressed the immune response. Apparently, the high level of proinflammatory cytokines detected after DNA injection promotes the conversion of MSCs introduced later into the immunosuppressive MSC2. The low level of cytokines in mice before MSC administration promotes the high immunostimulatory activity of MSC1 in response to a DNA vaccine. Thus, when administered before DNA, MSCs are capable of exhibiting promising adjuvant properties.
Collapse
|
23
|
Masalova OV, Lesnova EI, Klimova RR, Ivanov AV, Kushch AA. Mesenchymal Stem Cells Can Both Enhance and Inhibit the Cellular Response to DNA Immunization by Genes of Nonstructural Proteins of the Hepatitis C Virus. Int J Mol Sci 2021; 22:8121. [PMID: 34360889 PMCID: PMC8347804 DOI: 10.3390/ijms22158121&set/a 880446214+990577611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Despite extensive research, there is still no vaccine against the hepatitis C virus (HCV). The aim of this study was to investigate whether MSCs can exhibit adjuvant properties during DNA vaccination against hepatitis C. We used the pcNS3-NS5B plasmid encoding five nonstructural HCV proteins and MSCs derived from mice bone marrow. Five groups of DBA mice were immunized with the plasmid and/or MSCs in a different order. Group 1 was injected with the plasmid twice at intervals of 3 weeks; Group 2 with the plasmid, and after 24 h with MSCs; Group 3 with MSCs followed by the plasmid the next day; Group 4 with only MSCs; and Group 5 with saline. When the MSCs were injected prior to DNA immunization, the cell immune response to HCV proteins assessed by the level of IFN-γ synthesis was markedly increased compared to DNA alone. In contrast, MSCs injected after DNA suppressed the immune response. Apparently, the high level of proinflammatory cytokines detected after DNA injection promotes the conversion of MSCs introduced later into the immunosuppressive MSC2. The low level of cytokines in mice before MSC administration promotes the high immunostimulatory activity of MSC1 in response to a DNA vaccine. Thus, when administered before DNA, MSCs are capable of exhibiting promising adjuvant properties.
Collapse
Affiliation(s)
- Olga V. Masalova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (A.A.K.)
- Correspondence: ; Tel.: +7-499-190-30-49
| | - Ekaterina I. Lesnova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (A.A.K.)
| | - Regina R. Klimova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (A.A.K.)
| | - Alexander V. Ivanov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Alla A. Kushch
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (A.A.K.)
| |
Collapse
|
24
|
Masalova OV, Lesnova EI, Klimova RR, Ivanov AV, Kushch AA. Mesenchymal Stem Cells Can Both Enhance and Inhibit the Cellular Response to DNA Immunization by Genes of Nonstructural Proteins of the Hepatitis C Virus. Int J Mol Sci 2021; 22:8121. [PMID: 34360889 PMCID: PMC8347804 DOI: 10.3390/ijms22158121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/21/2022] Open
Abstract
Despite extensive research, there is still no vaccine against the hepatitis C virus (HCV). The aim of this study was to investigate whether MSCs can exhibit adjuvant properties during DNA vaccination against hepatitis C. We used the pcNS3-NS5B plasmid encoding five nonstructural HCV proteins and MSCs derived from mice bone marrow. Five groups of DBA mice were immunized with the plasmid and/or MSCs in a different order. Group 1 was injected with the plasmid twice at intervals of 3 weeks; Group 2 with the plasmid, and after 24 h with MSCs; Group 3 with MSCs followed by the plasmid the next day; Group 4 with only MSCs; and Group 5 with saline. When the MSCs were injected prior to DNA immunization, the cell immune response to HCV proteins assessed by the level of IFN-γ synthesis was markedly increased compared to DNA alone. In contrast, MSCs injected after DNA suppressed the immune response. Apparently, the high level of proinflammatory cytokines detected after DNA injection promotes the conversion of MSCs introduced later into the immunosuppressive MSC2. The low level of cytokines in mice before MSC administration promotes the high immunostimulatory activity of MSC1 in response to a DNA vaccine. Thus, when administered before DNA, MSCs are capable of exhibiting promising adjuvant properties.
Collapse
Affiliation(s)
- Olga V. Masalova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (A.A.K.)
| | - Ekaterina I. Lesnova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (A.A.K.)
| | - Regina R. Klimova
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (A.A.K.)
| | - Alexander V. Ivanov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Alla A. Kushch
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (E.I.L.); (R.R.K.); (A.A.K.)
| |
Collapse
|
25
|
Saleh M, Vaezi AA, Aliannejad R, Sohrabpour AA, Kiaei SZF, Shadnoush M, Siavashi V, Aghaghazvini L, Khoundabi B, Abdoli S, Chahardouli B, Seyhoun I, Alijani N, Verdi J. Cell therapy in patients with COVID-19 using Wharton's jelly mesenchymal stem cells: a phase 1 clinical trial. Stem Cell Res Ther 2021; 12:410. [PMID: 34271988 PMCID: PMC8283394 DOI: 10.1186/s13287-021-02483-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/26/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have received particular attention because of their ability to modulate the immune system and inhibit inflammation caused by cytokine storms due to SARS-CoV-2. New alternative therapies may reduce mortality rates in patients with COVID19. This study aimed to assess the safety and efficacy of injecting intravenous Wharton's jelly-derived MSCs in patients with COVID-19 as a treatment. METHODS In this study, five patients with severe COVID-19 were treated with Wharton's jelly-derived mesenchymal stem cells (150 × 106 cells per injection). These patients were subject to three intravenous injections 3 days apart, and monitoring was done on days 0, 3, 6, and 14 in routine tests, inflammatory cytokines, and flow cytometry of CD4 and CD8 markers. A lung CT scan was performed on base and days 14 and 28. In addition, IgM and IgG antibodies against SARS-CoV-2 were measured before and after treatment. RESULTS The results showed that IL-10 and SDF-1 increased after cell therapy, but VEGF, TGF-β, IFN-γ, IL-6, and TNFα decreased. Routine hematology tests, myocardial enzyme tests, biochemical tests, and inflammation tests were performed for all patients before and after cell therapy on base and days 3, 6, and 14, which indicated the improvement of test results over time. COVID-19 antibody tests rose in 14 days after WJ-MSC injection. The total score of zonal involvement in both lungs was improved. CONCLUSIONS In patients, the trend of tests was generally improving, and we experienced a reduction in inflammation. No serious complications were observed in patients except the headache in one of them, which was resolved without medication. In this study, we found that patients with severe COVID-19 in the inflammatory phase respond better to cell therapy. More extensive clinical trials should be performed in this regard. TRIAL REGISTRATION IRCT, IRCT20190717044241N2 . Registered April 22, 2020.
Collapse
Affiliation(s)
- Mahshid Saleh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Abbas Vaezi
- Department of Internal Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Rasoul Aliannejad
- Department of Pulmonary and Critical Care, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Advanced Thoracic Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Sohrabpour
- Associate Professor of Gastroenterology and Hepatology, Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mahdi Shadnoush
- Department of Clinical Nutrition, Faculty of Nutrition & Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Siavashi
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Leila Aghaghazvini
- Associate Professor, Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Batoul Khoundabi
- Iran Helal Institute of Applied-Science and Technology, Research Center for Health Management in Mass Gathering, Red Crescent Society of the Islamic Republic of Iran, Tehran, Iran
| | - Shahriyar Abdoli
- Pasteur Institute of Iran, National Cell Bank of Iran, Tehran, Iran
| | - Bahram Chahardouli
- Hematology, Oncology, and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Iman Seyhoun
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Neda Alijani
- Department of Infectious Diseases, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Javad Verdi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Xiao K, Yang L, Xie W, Gao X, Huang R, Xie M. Bcl-xL mutant promotes cartilage differentiation of BMSCs by upregulating TGF-β/BMP expression levels. Exp Ther Med 2021; 22:736. [PMID: 34055053 PMCID: PMC8138271 DOI: 10.3892/etm.2021.10168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 03/19/2021] [Indexed: 12/22/2022] Open
Abstract
Bcl-xL is a transmembrane molecule in the mitochondria, with apoptosis-related and pro-metabolic functions, that also plays a role in chondrogenesis and differentiation. A Bcl-xL mutant, in which the GRI sequence is replaced by ELN, has no anti-apoptotic effect, while other biological functions of this mutant remain unchanged. The present study investigated the impact of this Bcl-xL mutant on cartilage differentiation and the expression levels of TGF-β and bone morphogenetic protein (BMP). Human bone marrow mesenchymal stem cells (BMSCs) were transfected with Bcl-xL and Bcl-xL mutant (∆Bcl-xL) overexpression vectors. The cells were divided into four groups: Control (not subjected to any transfection), EV (empty pcDNA3.1-Bcl-xL vector), OV (Bcl-xL overexpression) and ∆OV (∆Bcl-xL overexpression). Saffron and toluidine blue staining was performed to observe cartilage tissue formation. Flow cytometry was conducted to measure BMSC apoptosis. The expression levels of TGF-β and BMP were evaluated using reverse transcription-quantitative PCR (RT-qPCR) and western blotting. Compared with that in the control group, the expression levels of Bcl-xL in the OV group increased significantly (P<0.05). Western blotting and RT-qPCR results revealed that OV and ∆OV treatment increased the expression levels of TGF-β and BMP in transfected cells, compared to their expression in the control and EV groups (P<0.05). Saffron and toluidine blue staining results showed that cartilage formation was increased in the ∆OV and ∆OV + Bax-/Bak-groups to similar degrees. Cell apoptosis in the ∆OV group did not change compared with that in the control group. The Bcl-xL mutant promoted cartilage differentiation of BMSCs and upregulated TGF-β/BMP expression. This enhancement of chondrogenic differentiation was not related to the expression of Bax and Bak. Taken together, these findings provided for improved application of bone tissue engineering technology in the treatment of articular cartilage defects.
Collapse
Affiliation(s)
- Kai Xiao
- Foot and Ankle Surgery, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| | - Lin Yang
- Department of Allergy, Tongji Hospital of Tongji Medical College of HUST, Wuhan, Hubei 430033, P.R. China
| | - Wei Xie
- Foot and Ankle Surgery, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| | - Xinfeng Gao
- Foot and Ankle Surgery, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| | - Ruokun Huang
- Foot and Ankle Surgery, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| | - Ming Xie
- Foot and Ankle Surgery, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| |
Collapse
|
27
|
Chen F, Liu Q, Xiong Y, Xu L. Current Strategies and Potential Prospects of Nanomedicine-Mediated Therapy in Inflammatory Bowel Disease. Int J Nanomedicine 2021; 16:4225-4237. [PMID: 34188471 PMCID: PMC8236271 DOI: 10.2147/ijn.s310952] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBD) such as Crohn's disease and ulcerative colitis are highly debilitating. IBDs are associated with the imbalance of inflammatory mediators within the inflamed bowel. Conventional drugs for IBD treatment include anti-inflammatory medications and immune suppressants. However, they suffer from a lack of bioavailability and high dose-induced systemic side effects. Nanoparticle (NP)-derived therapy improves therapeutic efficacy and increases targeting specificity. Recent studies have shown that nanomedicines, based on bowel disease's pathophysiology, are a fast-growing field. NPs can prolong the circulation period and reduce side effects by improving drug encapsulation and targeted delivery. Here, this review summarizes various IBD therapies with a focus on NP-derived applications, whereas their challenges and future perspectives have also been discussed.
Collapse
Affiliation(s)
- Fengqian Chen
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Qi Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Yang Xiong
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Li Xu
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310006, People’s Republic of China
| |
Collapse
|
28
|
Nishikawa T, Maeda K, Nakamura M, Yamamura T, Sawada T, Mizutani Y, Ito T, Ishikawa T, Furukawa K, Ohno E, Miyahara R, Kawashima H, Honda T, Ishigami M, Yamamoto T, Matsumoto S, Hotta Y, Fujishiro M. Filtrated Adipose Tissue-Derived Mesenchymal Stem Cell Lysate Ameliorates Experimental Acute Colitis in Mice. Dig Dis Sci 2021; 66:1034-1044. [PMID: 32488819 DOI: 10.1007/s10620-020-06359-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 05/21/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic, persistent, and intractable enteritis; however, an effective treatment strategy is yet to be established. Mesenchymal stem cells (MSCs) and their paracrine factors exhibit anti-inflammatory actions and have been proposed as a new therapeutic candidate for IBD treatment, although the efficacy of MSC lysate on enteritis is unclear. AIMS Here, we examined the efficacy and appropriate regimen of filtrated murine adipose-derived mesenchymal stem cell lysate (FADSTL) in an acute colitis mouse model as a novel cell-free MSC therapy. METHODS To confirm the clinical effects of FADSTL, survival rate, body weight, and disease activity index (DAI) were investigated in the DSS-induced colitis mouse model. Further, differences in efficacy with dosing frequency were assessed to optimize the proper regimen. Colon length, histological findings, gene expression of inflammatory mediators and tight junction proteins in colon tissues, and anti-apoptotic effects were also compared in 3-day continuous FADSTL administration and PBS groups. RESULTS Three-day continuous FADSTL administration significantly improved weight loss and DAI score compared to those in the PBS-treated group, whereas the effect was not observed with single administration. Additionally, colon shortening and histological inflammation were suppressed in the FADSTL-treated group. Further, this treatment decreased gene expression of inflammatory mediators, maintained expression of tight junction proteins in the colon, and showed anti-apoptotic effects. CONCLUSIONS FADSTL effects were dependent on its administration frequency, suggesting the requirement of continuous FADSTL administration. FADSTL improved colitis by maintaining the intestinal barrier function through its anti-inflammatory and anti-apoptotic actions.
Collapse
Affiliation(s)
- Takahiro Nishikawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Keiko Maeda
- Department of Endoscopy, Nagoya University Hospital, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Masanao Nakamura
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takeshi Yamamura
- Department of Endoscopy, Nagoya University Hospital, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tsunaki Sawada
- Department of Endoscopy, Nagoya University Hospital, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yasuyuki Mizutani
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takanori Ito
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takuya Ishikawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kazuhiro Furukawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Eizaburo Ohno
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Ryoji Miyahara
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hiroki Kawashima
- Department of Endoscopy, Nagoya University Hospital, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takashi Honda
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Masatoshi Ishigami
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tokunori Yamamoto
- Laboratory for Clinical Application of Adipose-Derived Regenerative Cells, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan.,Clinical Research Support Center, Asahikawa Medical University Hospital, 2-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Seiji Matsumoto
- Clinical Research Support Center, Asahikawa Medical University Hospital, 2-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan.,Center for Advanced Research and Education, Asahikawa Medical University, 2-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Yuji Hotta
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 1-3 Tanabedori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
29
|
Small extracellular vesicles derived from interferon-γ pre-conditioned mesenchymal stromal cells effectively treat liver fibrosis. NPJ Regen Med 2021; 6:19. [PMID: 33785758 PMCID: PMC8010072 DOI: 10.1038/s41536-021-00132-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are used for ameliorating liver fibrosis and aiding liver regeneration after cirrhosis; Here, we analyzed the therapeutic potential of small extracellular vesicles (sEVs) derived from interferon-γ (IFN-γ) pre-conditioned MSCs (γ-sEVs). γ-sEVs effectively induced anti-inflammatory macrophages with high motility and phagocytic abilities in vitro, while not preventing hepatic stellate cell (HSC; the major source of collagen fiber) activation in vitro. The proteome analysis of MSC-derived sEVs revealed anti-inflammatory macrophage inducible proteins (e.g., annexin-A1, lactotransferrin, and aminopeptidase N) upon IFN-γ stimulation. Furthermore, by enabling CX3CR1+ macrophage accumulation in the damaged area, γ-sEVs ameliorated inflammation and fibrosis in the cirrhosis mouse model more effectively than sEVs. Single cell RNA-Seq analysis revealed diverse effects, such as induction of anti-inflammatory macrophages and regulatory T cells, in the cirrhotic liver after γ-sEV administration. Overall, IFN-γ pre-conditioning altered sEVs resulted in efficient tissue repair indicating a new therapeutic strategy.
Collapse
|
30
|
Watanabe Y, Tsuchiya A, Terai S. The development of mesenchymal stem cell therapy in the present, and the perspective of cell-free therapy in the future. Clin Mol Hepatol 2020; 27:70-80. [PMID: 33317249 PMCID: PMC7820202 DOI: 10.3350/cmh.2020.0194] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
Abstract
Cirrhosis is a chronic condition that can lead to liver failure. Currently, the viable option for decreasing mortality is liver transplantation. However, transplant surgery is highly invasive. Therefore, cell-based therapy has been developed as an alternative. Based on promising findings from preclinical research, some new trials have been registered. One of them was autologous bone marrow cell infusion therapy and found that ameliorating liver fibrosis activated liver regeneration. Now, majority of trials focus on low-immunogenicity mesenchymal stem cells (MSCs) appropriate for allogeneic administration. However, despite about 20 years of research, only a limited number of cell-based therapies have entered routine practice. Furthermore, potential shortcomings of cell-based therapy include a limit on the number of cells, which may be administered, as well as their failure to infiltrate target organs. On the other hand, these research show that MSCs act as "conducting cells" and regulate host cells including macrophages via extracellular vesicles (EVs) or exosome signals, leading to ameliorate liver fibrosis and promote regeneration. Therefore, the concept of cell-free therapy, which makes use of cell-derived EVs or exosomes, is attracting attention. Cell-free therapies may be safely administered in large doses and are able to infiltrate target organs. However, development of cell-free therapy exhibits its own set of challenges and such therapy may not be completely curative in the context of liver disease. This review describes the history of cell-based therapy research and recent advances in cell-free therapy, as well as discussing the need for more effective therapies.
Collapse
Affiliation(s)
- Yusuke Watanabe
- Department of Preemptive Medicine for Digestive Disease and Healthy Active Life, School of Medicine, Niigata University, Niigata, Japan
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
31
|
Esmaeilizadeh Z, Mohammadi B, Rajabibazl M, Ghaderian SMH, Omrani MD, Fazeli Z. Expression Analysis of GDNF/RET Signaling Pathway in Human AD-MSCs Grown in HEK 293 Conditioned Medium (HEK293-CM). Cell Biochem Biophys 2020; 78:531-539. [PMID: 32803668 DOI: 10.1007/s12013-020-00936-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 08/05/2020] [Indexed: 10/23/2022]
Abstract
Mesenchymal stem cells have been considered as the suitable source for the repair of kidney lesions. The study and identification of novel approaches could improve the efficiency of these cells in the recovery of kidney. In the present study, the effect of HEK 293 conditioned medium (HEK293-CM) was evaluated on the expression of GDNF/RET signaling pathway and their downstream genes in the human adipose-derived mesenchymal stem cells (AD-MSCs). For this purpose, the human AD-MSCs were cultured in the medium containing HEK293-CM. After the RNA extraction and cDNA synthesis, the expression level of GFRA1, GDNF, SPRY1, ETV4, ETV5, and CRLF1 genes were determined by SYBR Green Real time PCR. The obtained results indicated that the GDNF and GFRA1 expression enhanced in the AD-MSCs following treatment with 10% HEK293-CM-5%FBS as compared to the untreated AD-MSCs. These results were consistent with the decreased expression of SPRY1. The significant increased expression of ETV4, ETV5, and CRLF1 genes also showed that HEK293-CM activated the GDNF/RET signaling pathway in the AD-MSCs (P < 0.05). The obtained data suggested that the treatment with HEK293-CM activated the GDNF/RET signaling pathway in the human AD-MSCs.
Collapse
Affiliation(s)
- Zahra Esmaeilizadeh
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahar Mohammadi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mir Davood Omrani
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Fazeli
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Human mesenchymal stem cells treatment improved hepatic lesions and reversed gut microbiome disorder in non-alcoholic steatohepatitis. Aging (Albany NY) 2020; 12:21660-21673. [PMID: 33168782 PMCID: PMC7695425 DOI: 10.18632/aging.103962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/01/2020] [Indexed: 01/05/2023]
Abstract
Effective therapies for non-alcoholic steatohepatitis (NASH) are urgently needed. We investigated the effect of human mesenchymal stem cells (hMSCs) on the intestinal flora in NASH treatment. We isolated the hMSCs from the umbilical cords and divided male C57BL/6 mice into three groups, namely, chow, methionine-choline-deficient (MCD), and MCD+hMSCs. After collecting the feces and liver of the mice, we evaluated the histological changes in the liver and measured the inflammatory and fibrogenesis cytokines. Fecal microbiome and metabolome were analyzed using 16S rRNA gene sequencing analyses. The hMSCs treatment could alleviate hepatic steatosis, inflammation and fibrosis induced by MCD diet. It could also reverse the microbiome and metabolome disorders in the NASH model. Correlation analysis of the interaction among bacteria amplified the effects of the bacteria in host. In conclusion, hMSCs treatment could improve NASH-related lesions and reverse gut microbiome and metabolome disorder in NASH.
Collapse
|
33
|
Systemic Administration of Rejuvenated Adipose-Derived Mesenchymal Stem Cells Improves Liver Metabolism in Equine Metabolic Syndrome (EMS)- New Approach in Veterinary Regenerative Medicine. Stem Cell Rev Rep 2020; 15:842-850. [PMID: 31620992 PMCID: PMC6925066 DOI: 10.1007/s12015-019-09913-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Equine metabolic syndrome (EMS) is characterized by adiposity, insulin dysregulation and increased risk for laminitis. Increased levels of specific liver enzymes in the peripheral blood are typical findings in horses diagnosed with EMS. Current management of EMS is based on caloric restriction and increased physical activity. However, new potential treatment options are arising such as the transplantation of autologous adipose stem cells (ASC). However, cytophysiological properties of ASC derived from EMS horses are impaired which strongly limits their therapeutic potential. We hypothesized, that in vitro pharmacotherapy of those cells with 5-azacytidine (AZA) and resveratrol (RES) before their clinical application can reverse the aged phenotype of those cells and improve clinical outcome of autologous therapy. A 9 year old Dutch Warmblood Horse used for driving, was presented with severe obesity, insulin resistance. After EMS diagnosis, the animal received three intravenous injections of autologous, AZA/RES treated ASCs at weekly intervals. The therapeutic effect was assessed by the analysis of liver specific enzymes in the blood. ASC-transplantation reduced levels of glutamate dehydrogenase (GLDH), gamma-glutamyltransferase (GGT), lactate dehydrogenase (LDH) and aspartate transaminase (AST). This case report demonstrates the therapeutic potential of this intervention for EMS as well as apt utility of autologous, rejuvenated ASC injections.
Collapse
|
34
|
Zhang X, Wang S, Ding X, Guo J, Tian Z. Potential methods for improving the efficacy of mesenchymal stem cells in the treatment of inflammatory bowel diseases. Scand J Immunol 2020; 92:e12897. [PMID: 32443180 DOI: 10.1111/sji.12897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel diseases (IBD) are a group of chronic recurrent gastrointestinal inflammatory diseases, including ulcerative colitis (UC), Crohn's disease (CD) and IBD unclassified. The pathogenesis may be related to the mucosal immune dysfunction in genetically susceptible hosts affected by environmental factors. Current therapeutic agents mainly include aminosalicylates, corticosteroids, immunosuppressive drugs and novel biological agents. The purpose of treatment is to suppress inflammation and prevent irreversible structural damage. However, long-term application of these drugs may lead to multiple adverse effects and is not always effective. Mesenchymal stem cells (MSCs) are multipotent progenitors with low immunogenicity, which can be obtained and expanded easily. They play an important role in regulating immune responses and repairing damaged tissues in vivo. Therefore, MSCs are considered to be a promising option for the treatment of IBD. Nonetheless, there are many factors that can reduce the efficacy of MSCs, such as gradual deterioration of functional stem cells with age, low recruitment and persistence in vivo and different routes of administration. In recent years, researchers have been able to improve the efficacy of MSCs by pretreatment, genetic modification or co-application with other substances, as well as using different tissue-derived cells, administration methods or doses. This article reviews these methods to provide references for more effective application of MSCs in the treatment of IBD in the future.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shaojun Wang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xueli Ding
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Guo
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zibin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
35
|
Tsuchiya A, Takeuchi S, Iwasawa T, Kumagai M, Sato T, Motegi S, Ishii Y, Koseki Y, Tomiyoshi K, Natsui K, Takeda N, Yoshida Y, Yamazaki F, Kojima Y, Watanabe Y, Kimura N, Tominaga K, Kamimura H, Takamura M, Terai S. Therapeutic potential of mesenchymal stem cells and their exosomes in severe novel coronavirus disease 2019 (COVID-19) cases. Inflamm Regen 2020; 40:14. [PMID: 32582401 PMCID: PMC7306412 DOI: 10.1186/s41232-020-00121-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19) and the ensuing worldwide pandemic. The spread of the virus has had global effects such as activity restriction, economic stagnation, and collapse of healthcare infrastructure. Severe SARS-CoV-2 infection induces a cytokine storm, leading to acute respiratory distress syndrome (ARDS) and multiple organ failure, which are very serious health conditions and must be mitigated or resolved as soon as possible. Mesenchymal stem cells (MSCs) and their exosomes can affect immune cells by inducing anti-inflammatory macrophages, regulatory T and B cells, and regulatory dendritic cells, and can inactivate T cells. Hence, they are potential candidate agents for treatment of severe cases of COVID-19. In this review, we report the background of severe cases of COVID-19, basic aspects and mechanisms of action of MSCs and their exosomes, and discuss basic and clinical studies based on MSCs and exosomes for influenza-induced ARDS. Finally, we report the potential of MSC and exosome therapy in severe cases of COVID-19 in recently initiated or planned clinical trials of MSCs (33 trials) and exosomes (1 trial) registered in 13 countries on ClinicalTrials.gov.
Collapse
Affiliation(s)
- Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| | - Suguru Takeuchi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| | - Takahiro Iwasawa
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| | - Masaru Kumagai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| | - Takeki Sato
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| | - Satoko Motegi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| | - Yui Ishii
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| | - Youhei Koseki
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| | - Kei Tomiyoshi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| | - Kazuki Natsui
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| | - Nobutaka Takeda
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| | - Yuki Yoshida
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| | - Fusako Yamazaki
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| | - Yuichi Kojima
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| | - Yusuke Watanabe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| | - Naruhiro Kimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| | - Kentaro Tominaga
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| | - Hiroteru Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| | - Masaaki Takamura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| |
Collapse
|
36
|
Ng NN, Thakor AS. Locoregional delivery of stem cell-based therapies. Sci Transl Med 2020; 12:eaba4564. [PMID: 32522806 DOI: 10.1126/scitranslmed.aba4564] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/24/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022]
Abstract
Interventional regenerative medicine (IRM) uses image-guided, minimally invasive procedures for the targeted delivery of stem cell-based therapies to regenerate, replace, or repair damaged organs. Although many cellular therapies have shown promise in the preclinical setting, clinical results have been suboptimal. Most intravenously delivered cells become trapped in the lungs and reticuloendothelial system, resulting in little therapy reaching target tissues. IRM aims to increase the efficacy of cell-based therapies by locoregional stem cell delivery via endovascular, endoluminal, or direct injection into tissues. This review highlights routes of delivery, disease states, and mechanisms of action involved in the targeted delivery of stem cells.
Collapse
Affiliation(s)
- Nathan Norton Ng
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Avnesh Sinh Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Stanford, CA 94304, USA.
| |
Collapse
|
37
|
Chang SH, Kim HJ, Park CG. Allogeneic ADSCs Induce the Production of Alloreactive Memory-CD8 T Cells through HLA-ABC Antigens. Cells 2020; 9:cells9051246. [PMID: 32443511 PMCID: PMC7290988 DOI: 10.3390/cells9051246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/13/2020] [Accepted: 05/16/2020] [Indexed: 12/11/2022] Open
Abstract
We investigated the immunogenicity of allogeneic human adipose-derived mesenchymal stem cells (ADSCs) through the production of alloreactive-CD8 T and -memory CD8 T cells, based on their human leukocyte antigen (HLA) expression. In surface antigen analysis, ADSCs do not express co-stimulatory molecules, but expresses HLA-ABC, which is further increased by exposure to the pro-inflammatory cytokines as well as IFN-γ alone. For immunogenicity analysis, allogeneic ADSCs cultured in xenofree medium (XF-ADSCs) were incubated with the recipient immune cells for allogeneic-antigen stimulation. As a result, XF-ADSCs induced IFN-γ and IL-17A release by alloreactive-CD8 T cells and the production of alloreactive-CD8 T cell through a direct pathway, although they have immunomodulatory activity. In the analysis of alloreactive memory CD8 T cells, XF-ADSCs also significantly induced the production of CFSE-low-CD8 TEM and -CD8 TCM cells. However, HLA-blocking antibodies significantly inhibited the production of CFSE-low memory-CD8 T cells, indicating that HLAs are the main antigens responsible for the development of allogeneic ADSCs' immunogenicity. These results suggested that HLA surface antigens expressed in allogeneic MSCs should be solved in order to address concerns related to the immunogenicity problem.
Collapse
Affiliation(s)
- Sung-Ho Chang
- Departments of Oral Microbiology and Immunology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Korea;
| | - Hyun Je Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea;
- Department of Dermatology, Samsung Medical Center, Seoul 06351, Korea
| | - Chung-Gyu Park
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea;
- Institute of Endemic Diseases, Medical Research center, Seoul National University College of Medicine, Seoul 03080, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Correspondence: ; Tel.: +82-2-740-8308
| |
Collapse
|
38
|
Hara H, Sano K, Ishikawa H, Ohkoshi S. Differentiation of Dental Pulp-Derived MSCs into Hepatocyte-Like Cells and Their Therapeutic Use for Chemical Liver Injuries of Rats. J HARD TISSUE BIOL 2020. [DOI: 10.2485/jhtb.29.215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Hajime Hara
- Department of Internal Medicine, School of Life Dentistry at Niigata, The Nippon Dental University
| | - Kimito Sano
- Department of Dental Anesthesiology, School of Life Dentistry at Niigata, The Nippon Dental University
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Faculty of Medicine, University of Tsukuba
| | - Shogo Ohkoshi
- Department of Internal Medicine, School of Life Dentistry at Niigata, The Nippon Dental University
| |
Collapse
|
39
|
Krüger T, Middeke JM, Stölzel F, Mütherig A, List C, Brandt K, Heidrich K, Teipel R, Ordemann R, Schuler U, Oelschlägel U, Wermke M, Kräter M, Herbig M, Wehner R, Schmitz M, Bornhäuser M, von Bonin M. Reliable isolation of human mesenchymal stromal cells from bone marrow biopsy specimens in patients after allogeneic hematopoietic cell transplantation. Cytotherapy 2019; 22:21-26. [PMID: 31883948 DOI: 10.1016/j.jcyt.2019.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/28/2022]
Abstract
Isolation of mesenchymal stromal cells (MSCs) from pretreated, hematologic patients is challenging. Especially after allogeneic hematopoietic cell transplantation (HCT), standard protocols using bone marrow aspirates fail to reliably recover sufficient cell numbers. Because MSCs are considered to contribute to processes that mainly affect the outcome after transplantation, such as an efficient lymphohematopoietic recovery, extent of graft-versus-host disease as well as the occurrence of leukemic relapse, it is of great clinical relevance to investigate MSC function in this context. Previous studies showed that MSCs can be isolated by collagenase digestion of large bone fragments of hematologically healthy patients undergoing hip replacement or knee surgeries. We have now further developed this procedure for the isolation of MSCs from hematologic patients after allogeneic HCT by using trephine biopsy specimens obtained during routine examinations. Comparison of aspirates and trephine biopsy specimens from patients after allogeneic HCT revealed a significantly higher frequency of clonogenic MSCs (colony-forming unit-fibroblast [CFU-F]) in trephine biopsy specimens (mean, 289.8 ± standard deviation 322.5 CFU-F colonies/1 × 106 total nucleated cells versus 4.2 ± 9.9; P < 0.0001). Subsequent expansion of functional MSCs isolated from trephine biopsy specimen was more robust and led to a significantly higher yield compared with control samples expanded from aspirates (median, 1.6 × 106; range, 0-2.3 × 107 P0 MSCs versus 5.4 × 104; range, 0-8.9 × 106; P < 0.0001). Using trephine biopsy specimens as MSC source facilitates the investigation of various clinical questions.
Collapse
Affiliation(s)
- Thomas Krüger
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Jan Moritz Middeke
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Friedrich Stölzel
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Anke Mütherig
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Catrin List
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Kalina Brandt
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Katharina Heidrich
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Raphael Teipel
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Rainer Ordemann
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Ulrich Schuler
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Uta Oelschlägel
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Martin Wermke
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany; University Cancer Centrum (UCC), Early Clinical Trial Unit (ECTU), University Hospital Carl Gustav Carus, Dresden, Germany
| | - Martin Kräter
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Maik Herbig
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany; Biotechnology Center, Center for Molecular and Cellular Bioengineering TU Dresden Tatzberg 47-49, Dresden, Germany
| | - Rebekka Wehner
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - Marc Schmitz
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany; Center for Regenerative Therapies (CRTD), Dresden, Germany
| | - Martin Bornhäuser
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany; Center for Regenerative Therapies (CRTD), Dresden, Germany
| | - Malte von Bonin
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
40
|
Zheng W, Yang Y, Sequeira RC, Bishop CE, Atala A, Gu Z, Zhao W. Effects of Extracellular Vesicles Derived from Mesenchymal Stem/Stromal Cells on Liver Diseases. Curr Stem Cell Res Ther 2019; 14:442-452. [PMID: 30854976 DOI: 10.2174/1574888x14666190308123714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/17/2018] [Accepted: 02/13/2019] [Indexed: 12/18/2022]
Abstract
Therapeutic effects of Mesenchymal Stem/Stromal Cells (MSCs) transplantation have been observed in various disease models. However, it is thought that MSCs-mediated effects largely depend on the paracrine manner of secreting cytokines, growth factors, and Extracellular Vesicles (EVs). Similarly, MSCs-derived EVs also showed therapeutic benefits in various liver diseases through alleviating fibrosis, improving regeneration of hepatocytes, and regulating immune activity. This review provides an overview of the MSCs, their EVs, and their therapeutic potential in treating various liver diseases including liver fibrosis, acute and chronic liver injury, and Hepatocellular Carcinoma (HCC). More specifically, the mechanisms by which MSC-EVs induce therapeutic benefits in liver diseases will be covered. In addition, comparisons between MSCs and their EVs were also evaluated as regenerative medicine against liver diseases. While the mechanisms of action and clinical efficacy must continue to be evaluated and verified, MSCs-derived EVs currently show tremendous potential and promise as a regenerative medicine treatment for liver disease in the future.
Collapse
Affiliation(s)
- Wenjie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China.,Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC 27157, United States
| | - Yumin Yang
- Co-Innovation Center of Neuro-regeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Russel Clive Sequeira
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC 27157, United States
| | - Colin E Bishop
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC 27157, United States
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC 27157, United States
| | - Zhifeng Gu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Weixin Zhao
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC 27157, United States
| |
Collapse
|
41
|
Kuse Y, Taniguchi H. Present and Future Perspectives of Using Human-Induced Pluripotent Stem Cells and Organoid Against Liver Failure. Cell Transplant 2019; 28:160S-165S. [PMID: 31838891 PMCID: PMC7016460 DOI: 10.1177/0963689719888459] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Organ failure manifests severe symptoms affecting the whole body that may cause death. However, the number of organ donors is not enough for patients requiring transplantation worldwide. Illegal transplantation is also sometimes conducted. To help address this concern, primary hepatocytes are clinically transplanted in the liver. However, donor shortage and host rejection via instant blood-mediated inflammatory reactions are worrisome. Induced pluripotent stem cell-derived hepatocyte-like cells have been developed as an alternative treatment. Recently, organoid technology has been developed to investigate the pathology and mechanism of organoids in cultures. Organoids can be transplanted with vascularization and connected to host blood vessels, and functionally mature better in vivo than in vitro. Hepatic organoids improve pathology in liver disease models. In this review, we introduce induced pluripotent stem cell- and organoid-based therapies against liver diseases considering present and future perspectives.
Collapse
Affiliation(s)
- Yoshiki Kuse
- Department of Regenerative Medicine, Yokohama City University School of Medicine, Japan
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Yokohama City University School of Medicine, Japan.,Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Japan
| |
Collapse
|
42
|
Abo-Aziza FA, Zaki AKA, Abo El-Maaty AM. Bone marrow-derived mesenchymal stem cell (BM-MSC): A tool of cell therapy in hydatid experimentally infected rats. CELL REGENERATION (LONDON, ENGLAND) 2019; 8:58-71. [PMID: 31844519 PMCID: PMC6895685 DOI: 10.1016/j.cr.2019.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 12/21/2022]
Abstract
This study aimed to clarify the potentiality of bone marrow mesenchymal stem cells (BM-MSC) transplantation with albendazole (ABZ) on the modulation of immune responses against hydatid cyst antigens and the regeneration of injured livers in experimentally infected rats. Three different antigens of hydatid cyst fluid (HCF), hydatid cyst protoscolex (HCP) and hydatid cyst germinal layer (HCG) were isolated and their antigenic potencies were determined. The ultrasound, immunological and pathological criteria were investigated. Counting of 80% confluence BM-MSC was 4.68 × 104 cells/cm2 with 92.24% viability. Final population doublings score was 65.31 that indicated proliferation and self-renewability. Phenotyping of BM-MSC showed expression of CD73 and CD29 without exhibition of CD34 and CD14. Ultrasound examination showed multiple hydatid cysts in liver with low blood flow and spleenomegaly 8 weeks' post infection. No significant differences were noted in cystic diameter in uni-cyst liver at 2nd and 4th weeks following ABZ treatment while it was significantly decreased (P < 0.05) following transplantation of BM-MSC + ABZ treatment comparing to experimentally infected untreated group. Igs and IgG responses to the three antigens were significantly elevated while elevation in IgM response was only to HCG (P < 0.05). ABZ treatment accompanied with significant decrease in Igs and IgG titers against HCF and HCG only at 4th week post treatment (P < 0.05). However, Igs titer against HCF, HCP and HCG was significantly decreased at the 4th week following transplantation of BM-MSC + ABZ. Interestingly, the combination of BM-MSC + ABZ treatment resulted in reduction of Igs response to HCP to normal level as that of healthy control. Experimental infection resulted in elevation of TNF-α and IL-6 (P < 0.05) while, IL-4 and IL-10 decreased (P < 0.01). After transplantation of BM-MSC + ABZ treatment, serum TNF-α and IL-6 concentrations were reduced (P < 0.05) at both the 2nd and 4th weeks. However, IL-4 and IL-10 concentrations were significantly elevated (P < 0.05) only at 4th week following transplantation of BM-MSC + ABZ treatment. In conclusion, BM-MSC transplantation following ABZ administration can regenerate injured liver tissue without complete disappearance of hydatid cyst. In addition, it can modulate host protective humeral and cell mediated immune responses against hydatid cyst antigens. Therefore, the current study encourages to move to the step of performing clinical trials in humans.
Collapse
Affiliation(s)
- Faten A.M. Abo-Aziza
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Cairo, Egypt
| | - Abdel Kader A. Zaki
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Amal M. Abo El-Maaty
- Department of Animal Reproduction and AI, Veterinary Research Division, National Research Centre, Cairo, Egypt
| |
Collapse
|
43
|
Poggi A, Zocchi MR. Immunomodulatory Properties of Mesenchymal Stromal Cells: Still Unresolved "Yin and Yang". Curr Stem Cell Res Ther 2019; 14:344-350. [PMID: 30516112 DOI: 10.2174/1574888x14666181205115452] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/18/2022]
Abstract
Mesenchymal stromal cells (MSC) are mesodermal elements characterized by the ability to differentiate into several types of cells present mainly in connective tissues. They play a key function in tissue homeostasis and repair. Furthermore, they exert a strong effect on both innate and adaptive immune response. The main current of thought considers MSC as strong inhibitors of the immune system. Indeed, the first description of MSC immunomodulation pointed out their inability to induce alloimmune responses and their veto effects on mixed lymphocyte reactions. This inhibition appears to be mediated both by direct MSC interaction with immune cells and by soluble factors. Unfortunately, evidence to support this notion comes almost exclusively from in vitro experiments. In complex experimental systems, it has been shown that MSC can exert immunosuppressive effects also in vivo, either in murine models or in transplanted patients to avoid the graft versus host disease. However, it is still debated how the small number of administered MSC can regulate efficiently a large number of host effector lymphocytes. In addition, some reports in the literature indicate that MSC can trigger rather than inhibit lymphocyte activation when a very low number of MSC are co-cultured with lymphocytes. This would imply that the ratio between the number of MSC and immune cells is a key point to forecast whether MSC will inhibit or activate the immune system. Herein, we discuss the conflicting results reported on the immunomodulatory effects of MSC to define which features are relevant to understand their behavior and cross-talk with immune cells.
Collapse
Affiliation(s)
- Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - Maria R Zocchi
- Division of Immunology, Transplants and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
44
|
Ikarashi S, Tsuchiya A, Kawata Y, Kojima Y, Watanabe T, Takeuchi S, Igarashi K, Ideta-Otsuka M, Oki K, Takamura M, Terai S. Effects of Human Adipose Tissue-Derived and Umbilical Cord Tissue-Derived Mesenchymal Stem Cells in a Dextran Sulfate Sodium-Induced Mouse Model. Biores Open Access 2019; 8:185-199. [PMID: 31720090 PMCID: PMC6844129 DOI: 10.1089/biores.2019.0022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can be acquired from medical waste. MSCs are easily expanded and have multiple functions, including anti-inflammatory effects. We evaluated the effects of human adipose tissue-derived MSCs (AD-MSCs) and umbilical cord tissue-derived MSCs (UC-MSCs) in a dextran sulfate sodium (DSS)-induced mouse model. Human AD-MSCs and UC-MSCs (1 × 106 cells) were injected intravenously into a 7-day DSS-induced colitis model. The therapeutic effects of cell origin, injection timing, and supernatants obtained from MSC cultures were evaluated. We also analyzed messenger RNA (mRNA) expression in MSCs, tissues, and intestinal flora. AD-MSCs and UC-MSCs were found to show strong anti-inflammatory effects when injected on day 3 in a mouse model. On day 11, the mRNA levels of inflammatory factors in colon tissues were significantly decreased after injection of MSCs on day 3. Supernatants from MSCs culture decreased mRNA levels of tumor necrosis factor (Tnf)-α, but had reduced therapeutic effects compared with MSC cell injection. RNA sequencing using colon tissues obtained the day after cell injection revealed changes in the TNF-α/nuclear factor-κB and T cell receptor signaling pathways. Additional analyses showed that several factors, including chromosome 10 open reading frame 54, stanniocalcin-1, and TNF receptor superfamily member 11b were increased in MSCs after adding serum from DSS colitis mice. Furthermore, both AD-MSCs and UC-MSCs maintained the balance of intestinal flora. In conclusion, AD-MSCs and UC-MSCs showed therapeutic effects against inflammation after early cell injection while maintaining the intestinal flora. Although supernatants showed therapeutic effects, cell injection was more effective against inflammation.
Collapse
Affiliation(s)
- Shunzo Ikarashi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yuzo Kawata
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yuichi Kojima
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takayuki Watanabe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Suguru Takeuchi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Katsuhide Igarashi
- Laboratory of Biofunctional Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan.,Life Science Tokyo Advanced Research Center (L-StaR), Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Maky Ideta-Otsuka
- Life Science Tokyo Advanced Research Center (L-StaR), Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | | | - Masaaki Takamura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
45
|
Mesenchymal stem cells cultured under hypoxic conditions had a greater therapeutic effect on mice with liver cirrhosis compared to those cultured under normal oxygen conditions. Regen Ther 2019; 11:269-281. [PMID: 31667206 PMCID: PMC6813562 DOI: 10.1016/j.reth.2019.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/18/2019] [Accepted: 08/29/2019] [Indexed: 01/07/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) can be easily expanded. They can be acquired from medical waste such as adipose and umbilical cord tissues, are influenced by culturing conditions, and exert anti-inflammatory, antioxidant, anti-fibrotic, and angiogenic effects. We analyzed the multi-directional effects of MSCs cultured under hypoxic conditions and their underlying mechanisms in the treatment of liver cirrhosis in a mouse model. Methods Human bone marrow-derived MSCs cultured under hypoxic (5% O2; hypoMSCs) and normoxic (21% O2; norMSCs) conditions were compared by cap analysis of gene expression (CAGE) with or without serum from liver cirrhosis patients. The therapeutic effects of MSCs, including serum liver enzyme induction, fibrosis regression, and hepatic oxidative stress, were evaluated by injecting 1 × 106, 2 × 105, or 4 × 104 MSCs/mouse into the tail veins of mice with carbon tetrachloride (CCl4)-induced liver cirrhosis. Intravital imaging was performed with a two-photon excitation microscope to confirm the various MSC migration paths to the liver. Results CAGE analysis revealed that the RNA expression levels of prostaglandin E synthase (Ptges) and miR210 were significantly higher in hypoMSCs than in norMSCs. In vivo analysis revealed that both hypoMSCs and norMSCs reduced serum alanine aminotransferase, oxidative stress, and fibrosis compared to that in control mice in a dose-dependent manner. However, hypoMSCs had stronger therapeutic effects than norMSCs. We confirmed this observation by an in vitro study in which hypoMSCs changed macrophage polarity to an anti-inflammatory phenotype via prostaglandin E2 (PGE2) stimulation. In addition, miR210 reduced the rate of hepatocyte apoptosis. Intravital imaging after MSC administration showed that both cell types were primarily trapped in the lungs. Relatively a few hypoMSCs and norMSCs migrated to the liver. There were no significant differences in their distributions. Conclusion The therapeutic effect of hypoMSCs was mediated by PGE2 and miR210 production and was greater than that of norMSCs. Therefore, MSCs can be manipulated to improve their therapeutic efficacy in the treatment of liver cirrhosis and could potentially serve in effective cell therapy. MSCs produce several factors with multidirectional effects and function as “conducting cells” in liver cirrhosis. HypoMSCs decreased liver damage and fibrosis in mice in a dose-dependent manner. HypoMSCs produced more PTGES and miR-210 than norMSCs. HypoMSCs reduced oxidative stress more effectively than norMSCs. HypoMSCs induced anti-inflammatory macrophage growth via prostaglandin E2 production. miR-210 reduced hepatocyte apoptosis.
Collapse
Key Words
- 8-OHdG, DNA 8-hydroxy-2’-deoxyguanosine
- ALB, Albumin
- ALP, Alkaline phosphatase
- ALT, Alanine aminotransferase
- CAGE, Cap analysis of gene expression
- CCl4, Carbon tetrachloride
- ECM, Extracellular matrix
- HHSteC, Human Hepatic Stellate Cells
- Hypoxic condition
- LC, Liver cirrhosis
- LPS, Lipopolysaccharide
- Liver cirrhosis
- MDA, Malondialdehyde
- MSCs, Mesenchymal stem cells
- Mesenchymal stem cells
- NASH, Non-alcoholic steatohepatitis
- PCR, Polymerase chain reaction
- PGE2
- PGE2, Prostaglandin E2
- SOD, Superoxide dismutase
- T-Bil, Total bilirubin
- hypoMSCs, MSCs cultured under hypoxic oxygen (5% O2) conditions
- id-BMM, Induced Bone Marrow Derived Macrophage
- miR210
- norMSCs, MSCs cultured under normal oxygen (21% O2) conditions
Collapse
|
46
|
Tsuchiya A, Takeuchi S, Watanabe T, Yoshida T, Nojiri S, Ogawa M, Terai S. Mesenchymal stem cell therapies for liver cirrhosis: MSCs as "conducting cells" for improvement of liver fibrosis and regeneration. Inflamm Regen 2019; 39:18. [PMID: 31516638 PMCID: PMC6732839 DOI: 10.1186/s41232-019-0107-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/08/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) can be cultured relatively easily and can be obtained not only from the bone marrow, but also from medical waste such as adipose tissue and umbilical cord tissue. Because of its low antigenicity, allogeneic MSC injection is safe. MSCs have been evaluated in more than 900 clinical trials in a variety of fields, with more than 50 clinical trials related to liver diseases. Experiments have suggested that MSCs function as "conducting cells" to affect various "effective cells" such as T cells, B cells, and macrophages. Recent clinical trials have focused on allogeneic MSCs. Thus, studies are needed to determine the most effective cell source, culture conditions, cell numbers, administration frequency, administration route, cost, safety, and liver disease treatments. Recently, the functions of exosomes have gained attention, and cell-free therapy may become possible as an alternative therapy for liver disease. In this review, we introduce general information, mechanism, representative clinical study data, recently started or planned clinical trials, and possibility of cell-free therapy of MSCs.
Collapse
Affiliation(s)
- Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| | - Suguru Takeuchi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| | - Takayuki Watanabe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| | - Tomoaki Yoshida
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| | - Shunsuke Nojiri
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| | - Masahiro Ogawa
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510 Japan
| |
Collapse
|
47
|
Yin F, Wang WY, Jiang WH. Human umbilical cord mesenchymal stem cells ameliorate liver fibrosis in vitro and in vivo: From biological characteristics to therapeutic mechanisms. World J Stem Cells 2019; 11:548-564. [PMID: 31523373 PMCID: PMC6716089 DOI: 10.4252/wjsc.v11.i8.548] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/26/2019] [Accepted: 07/17/2019] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is a wound-healing response to chronic injuries, characterized by the excessive accumulation of extracellular matrix or scar tissue within the liver; in addition, its formation is associated with multiple cytokines as well as several cell types and a variety of signaling pathways. When liver fibrosis is not well controlled, it can progress to liver cirrhosis, but it is reversible in principle. Thus far, no efficient therapy is available for treatment of liver fibrosis. Although liver transplantation is the preferred strategy, there are many challenges remaining in this approach, such as shortage of donor organs, immunological rejection, and surgical complications. Hence, there is a great need for an alternative therapeutic strategy. Currently, mesenchymal stem cell (MSC) therapy is considered a promising therapeutic strategy for the treatment of liver fibrosis; advantageously, the characteristics of MSCs are continuous self-renewal, proliferation, multipotent differentiation, and immunomodulatory activities. The human umbilical cord-derived (hUC)-MSCs possess not only the common attributes of MSCs but also more stable biological characteristics, relatively easy accessibility, abundant source, and no ethical issues (e.g., bone marrow being the adult source), making hUC-MSCs a good choice for treatment of liver fibrosis. In this review, we summarize the biological characteristics of hUC-MSCs and their paracrine effects, exerted by secretion of various cytokines, which ultimately promote liver repair through several signaling pathways. Additionally, we discuss the capacity of hUC-MSCs to differentiate into hepatocyte-like cells for compensating the function of existing hepatocytes, which may aid in amelioration of liver fibrosis. Finally, we discuss the current status of the research field and its future prospects.
Collapse
Affiliation(s)
- Fei Yin
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun 130021, Jilin Province, China
| | - Wen-Ying Wang
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun 130021, Jilin Province, China
| | - Wen-Hua Jiang
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
48
|
Bagheri-Mohammadi S, Alani B, Karimian M, Moradian-Tehrani R, Noureddini M. Intranasal administration of endometrial mesenchymal stem cells as a suitable approach for Parkinson's disease therapy. Mol Biol Rep 2019; 46:4293-4302. [PMID: 31123907 DOI: 10.1007/s11033-019-04883-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023]
Abstract
This study aimed to investigate the therapeutic effects of intranasal administration of human endometrium-derived stem cells (HEDSCs) in the mouse model of Parkinson's disease (PD). Thirty days after intrastriatal injection of 6-OHDA, HEDSCs were administrated intranasally in three doses (104, 5 × 104 and 105 cells µl-1). During 120 days after stem cell administration, behavioral tests were examined. Then the mice were sacrificed and the fresh section of the substantia nigra pars compacta (SNpc) was used for detection of HEDSCs-GFP labeled by fluorescence microscopy method. In addition, immunohistochemistry was used to assay GFP, human neural Nestin, and tyrosine hydroxylase (TH) markers in the fixed brain tissue at the SNpc. Our data revealed that behavioral parameters were significantly improved after cell therapy. Fluorescence microscopy assay in fresh tissue and GFP analysis in fixed tissue were showed that the HEDSCs-GFP labeled migrated to SNpc. The data from immunohistochemistry revealed that the Nestin as a differential neuronal biomarker was expressed in SNpc. Also, TH as a dopaminergic neuron marker significantly increased after HEDSCs therapy in an optimized dose 5 × 104 cells µl-1. Our results suggest that intranasal administration of HEDSCs improve the PD symptoms in the mouse model of PD dose-dependent manner as a noninvasive method.
Collapse
Affiliation(s)
- Saeid Bagheri-Mohammadi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Physiology Research Centre, Kashan University of Medical Sciences, Kashan, Iran
| | - Behrang Alani
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Karimian
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Rana Moradian-Tehrani
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahdi Noureddini
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Physiology Research Centre, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
49
|
Watanabe Y, Tsuchiya A, Seino S, Kawata Y, Kojima Y, Ikarashi S, Starkey Lewis PJ, Lu W, Kikuta J, Kawai H, Yamagiwa S, Forbes SJ, Ishii M, Terai S. Mesenchymal Stem Cells and Induced Bone Marrow-Derived Macrophages Synergistically Improve Liver Fibrosis in Mice. Stem Cells Transl Med 2019; 8:271-284. [PMID: 30394698 PMCID: PMC6392382 DOI: 10.1002/sctm.18-0105] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 09/22/2018] [Indexed: 02/06/2023] Open
Abstract
We describe a novel therapeutic approach for cirrhosis using mesenchymal stem cells (MSCs) and colony-stimulating factor-1-induced bone marrow-derived macrophages (id-BMMs) and analyze the mechanisms underlying fibrosis improvement and regeneration. Mouse MSCs and id-BMMs were cultured from mouse bone marrow and their interactions analyzed in vitro. MSCs, id-BMMs, and a combination therapy using MSCs and id-BMMs were administered to mice with CCl4 -induced cirrhosis. Fibrosis regression, liver regeneration, and liver-migrating host cells were evaluated. Administered cell behavior was also tracked by intravital imaging. In coculture, MSCs induced switching of id-BMMs toward the M2 phenotype with high phagocytic activity. In vivo, the combination therapy reduced liver fibrosis (associated with increased matrix metalloproteinases expression), increased hepatocyte proliferation (associated with increased hepatocyte growth factor, vascular endothelial growth factor, and oncostatin M in the liver), and reduced blood levels of liver enzymes, more effectively than MSCs or id-BMMs monotherapy. Intravital imaging showed that after combination cell administration, a large number of id-BMMs, which phagocytosed hepatocyte debris and were retained in the liver for more than 7 days, along with a few MSCs, the majority of which were trapped in the lung, migrated to the fibrotic area in the liver. Host macrophages and neutrophils infiltrated after combination therapy and contributed to liver fibrosis regression and promoted regeneration along with administered cells. Indirect effector MSCs and direct effector id-BMMs synergistically improved cirrhosis along with host cells in mice. These studies pave the way for new treatments for cirrhosis. Stem Cells Translational Medicine 2019;8:271&284.
Collapse
Affiliation(s)
- Yusuke Watanabe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Satoshi Seino
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Yuzo Kawata
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Yuichi Kojima
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Shunzo Ikarashi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Philip J. Starkey Lewis
- Medical Research Council Centre for Regenerative MedicineThe University of EdinburghEdinburghUnited Kingdom
| | - Wei‐Yu Lu
- Medical Research Council Centre for Regenerative MedicineThe University of EdinburghEdinburghUnited Kingdom
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier BiosciencesOsaka UniversitySuitaJapan
| | - Hirokazu Kawai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Satoshi Yamagiwa
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Stuart J. Forbes
- Medical Research Council Centre for Regenerative MedicineThe University of EdinburghEdinburghUnited Kingdom
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier BiosciencesOsaka UniversitySuitaJapan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| |
Collapse
|
50
|
Kawata Y, Tsuchiya A, Seino S, Watanabe Y, Kojima Y, Ikarashi S, Tominaga K, Yokoyama J, Yamagiwa S, Terai S. Early injection of human adipose tissue-derived mesenchymal stem cell after inflammation ameliorates dextran sulfate sodium-induced colitis in mice through the induction of M2 macrophages and regulatory T cells. Cell Tissue Res 2019; 376:257-271. [PMID: 30635774 DOI: 10.1007/s00441-018-02981-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 10/26/2018] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel diseases (IBDs) are sometimes refractory to current therapy or associated with severe adverse events during immunosuppressive therapy; thus, new therapies are urgently needed. Recently, mesenchymal stem cells (MSCs) have attracted attention based on their multitude of functions including anti-inflammatory effects. However, proper timing of MSC therapy and the mechanisms underlying the therapeutic effects of MSCs on colitis are not fully elucidated. Human adipose tissue-derived mesenchymal stem cells (hAdMSCs; 1 × 106) were administrated via the tail vein on day 3 (early) or 11 (delayed) using a 7-day dextran sulfate sodium (DSS)-induced mouse model of colitis. The effects were evaluated based on colon length, disease activity index (DAI) and histological score. Cytokine-encoding mRNA levels T cells and macrophages were evaluated by real-time PCR and flow cytometry. Regarding the timing of administration, early (day 3) injection significantly ameliorated DSS-induced colitis in terms of both DAI and histological score, compared to those parameters with delayed (day 11) injection. With early cell injection, the tissue mRNA levels of anti-inflammatory cytokine genes (Il10, Tgfb) increased, whereas those of inflammatory cytokine genes (Il6, Tnfa and Il17a) decreased significantly. Regarding the associated mechanism, hAdMSCs suppressed T cell proliferation and activation in vitro, increased the number of regulatory T cells in vivo and changed the polarity of macrophages (into the anti-inflammatory M2 phenotype) in vitro. Timing of injection is critical for the effective therapeutic effects of hAdMSCs. Furthermore, part of the associated mechanism includes T cell activation and expansion and altered macrophage polarization.
Collapse
Affiliation(s)
- Yuzo Kawata
- Division of Gastroenterology and Hepatology, Graduate school of medical and dental sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate school of medical and dental sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan.
| | - Satoshi Seino
- Division of Gastroenterology and Hepatology, Graduate school of medical and dental sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Yusuke Watanabe
- Division of Gastroenterology and Hepatology, Graduate school of medical and dental sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Yuichi Kojima
- Division of Gastroenterology and Hepatology, Graduate school of medical and dental sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Shunzo Ikarashi
- Division of Gastroenterology and Hepatology, Graduate school of medical and dental sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Kentaro Tominaga
- Division of Gastroenterology and Hepatology, Graduate school of medical and dental sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Junji Yokoyama
- Division of Gastroenterology and Hepatology, Graduate school of medical and dental sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Satoshi Yamagiwa
- Division of Gastroenterology and Hepatology, Graduate school of medical and dental sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate school of medical and dental sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan.
| |
Collapse
|