1
|
Morrissey S, Vasconcelos AG, Wang CL, Wang S, Cunha GM. Pooled Rate of Pseudoprogression, Patterns of Response, and Tumor Burden Analysis in Patients Undergoing Immunotherapy Oncologic Trials for Different Malignancies. Clin Oncol (R Coll Radiol) 2024; 36:624-631. [PMID: 38937187 DOI: 10.1016/j.clon.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024]
Abstract
AIMS Assess rates of true pseudoprogression in unconfirmed progressive disease (iUPD) in a pool of immunotherapy clinical trials for different cancers, analyze tumor characteristics that drive iUPD classification, and investigate potentials predictors of pseudoprogression. MATERIALS AND METHODS Retrospective interpretation of prospectively acquired data. Patients from 18 immunotherapy clinical trials with two arms (RECIST 1.1, iRECIST), of 10 cancer types were selected. Pooled rate of true pseudoprogression among iUPD was estimated using a common effect meta-analysis. Target, Non-target, and new lesions as the trigger of confirmed-vs pseudo-progression were compared using Chi-Square and Fisher exact tests. Conditional logistic regression was used to investigate the association between age, sex, tumor burden at baseline, and number of follow ups and pseudoprogression. RESULTS 60/287 (21%) patients (17 women) were classified as iUPD with at least one subsequent confirmatory timepoint. The overall pooled estimate of pseudoprogression was 15% (95%CI: 8%--26%). Nontarget lesions were significantly more frequent the cause of iUPD than change in Target lesions size (p< 0.001). Most observations of true pseudoprogression occurred in the first follow-up (77%), whereas confirmed progression occurred in later time points during the trial. Pseudoprogression was not significantly associated with age, sex, tumor burden at baseline, or number of timepoints. CONCLUSION In a pool of immunotherapy trials, the rate of true pseudoprogression was 15%, most often in the first timepoint after baseline than later in treatment. iUPD categorization was mostly driven by changes in NT lesions rather than objective changes in measurements of target lesions.
Collapse
Affiliation(s)
- S Morrissey
- OncoRad Research Core, Department of Radiology, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, USA
| | - A G Vasconcelos
- Department of Statistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - C L Wang
- Department of Radiology, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, USA
| | - S Wang
- OncoRad Research Core, Department of Radiology, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, USA
| | - G M Cunha
- OncoRad Research Core, Department of Radiology, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Pozzessere C, Mazini B, Omoumi P, Jreige M, Noirez L, Digklia A, Fasquelle F, Sempoux C, Dromain C. Immune-Related Adverse Events Induced by Immune Checkpoint Inhibitors and CAR-T Cell Therapy: A Comprehensive Imaging-Based Review. Cancers (Basel) 2024; 16:2585. [PMID: 39061225 PMCID: PMC11274393 DOI: 10.3390/cancers16142585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Immunotherapy has revolutionized oncology care, improving patient outcomes in several cancers. However, these therapies are also associated with typical immune-related adverse events due to the enhanced inflammatory and immune response. These toxicities can arise at any time during treatment but are more frequent within the first few months. Any organ and tissue can be affected, ranging from mild to life-threatening. While some manifestations are common and more often mild, such as dermatitis and colitis, others are rarer and more severe, such as myocarditis. Management depends on the severity, with treatment being held for >grade 2 toxicities. Steroids are used in more severe cases, and immunosuppressive treatment may be considered for non-responsive toxicities, along with specific organ support. A multidisciplinary approach is mandatory for prompt identification and management. The diagnosis is primarily of exclusion. It often relies on imaging features, and, when possible, cytologic and/or pathological analyses are performed for confirmation. In case of clinical suspicion, imaging is required to assess the presence, extent, and features of abnormalities and to evoke and rule out differential diagnoses. This imaging-based review illustrates the diverse system-specific toxicities associated with immune checkpoint inhibitors and chimeric antigen receptor T-cells with a multidisciplinary perspective. Clinical characteristics, imaging features, cytological and histological patterns, as well as the management approach, are presented with insights into radiological tips to distinguish these toxicities from the most important differential diagnoses and mimickers-including tumor progression, pseudoprogression, inflammation, and infection-to guide imaging and clinical specialists in the pathway of diagnosing immune-related adverse events.
Collapse
Affiliation(s)
- Chiara Pozzessere
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland
| | - Bianca Mazini
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland
| | - Patrick Omoumi
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland
| | - Mario Jreige
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland
| | - Leslie Noirez
- Department of Pulmonology, Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland
| | - Antonia Digklia
- Department of Oncology, Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland
| | - François Fasquelle
- Department of Pathology, Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland
| | - Christine Sempoux
- Department of Pathology, Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland
| | - Clarisse Dromain
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland
| |
Collapse
|
3
|
Żukowska P, Ciepiela K, Kudrymska A, Kiełbowski K, Becht R. Successful Treatment of Cutaneous Squamous Cell Cancer with Cemiplimab-A Report of Two Cases Demonstrating the Management of Pseudoprogression and Adverse Events. J Clin Med 2024; 13:4236. [PMID: 39064276 PMCID: PMC11278102 DOI: 10.3390/jcm13144236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Background: Cutaneous squamous cell carcinoma is a common malignancy, which frequently develops in the areas exposed to the sun. Patients with locally advanced disease in the head and neck region are frequently disqualified from surgical resection and require systemic treatment. Methods: In this report, we present the clinicopathological features and treatment of two patients who received cemiplimab, a monoclonal antibody targeting programmed cell death receptor 1 (PD-1). Results: An 80-year-old female and 82-year-old male patient were admitted to the hospital for the treatment of large tumors diagnosed as squamous cell carcinomas. In both patients, surgical treatment was not recommended due to the large dimensions of the tumors. These patients qualified for systemic treatment with cemiplimab. In the first patient, immunotherapy was interrupted due to adverse events. Nevertheless, a continuous regression of the tumor was observed despite treatment cessation. The second patient experienced a pseudoprogression, which is an increase in the tumor size caused by infiltration of immune cells. The treatment significantly reduced tumor size in both patients, which highly improved their quality of life. Conclusions: Cemiplimab offers clinical benefits in patients with cutaneous squamous cell carcinoma who are ineligible for surgical treatment. Systemic treatment can significantly improve the quality of life and reduce tumor diameters.
Collapse
Affiliation(s)
- Paulina Żukowska
- Department of Clinical Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University, 71-252 Szczecin, Poland; (P.Ż.); (K.C.); (K.K.)
| | - Katarzyna Ciepiela
- Department of Clinical Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University, 71-252 Szczecin, Poland; (P.Ż.); (K.C.); (K.K.)
| | - Aleksandra Kudrymska
- Department of Pathology, Pomeranian Medical University, 71-252 Szczecin, Poland;
| | - Kajetan Kiełbowski
- Department of Clinical Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University, 71-252 Szczecin, Poland; (P.Ż.); (K.C.); (K.K.)
| | - Rafał Becht
- Department of Clinical Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University, 71-252 Szczecin, Poland; (P.Ż.); (K.C.); (K.K.)
| |
Collapse
|
4
|
Moriguchi M, Kataoka S, Itoh Y. Evolution of Systemic Treatment for Hepatocellular Carcinoma: Changing Treatment Strategies and Concepts. Cancers (Basel) 2024; 16:2387. [PMID: 39001448 PMCID: PMC11240810 DOI: 10.3390/cancers16132387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Systemic therapy for hepatocellular carcinoma (HCC) has undergone substantial advancements. With the advent of atezolizumab plus bevacizumab (ATZ/BEV) combination therapy, followed by durvalumab plus tremelimumab, the era of immunotherapy for HCC has commenced. The emergence of systemic treatment with high response rates has led to improvements in overall survival while enabling conversion to radical surgical resection in some patients with HCC. In patients with intermediate-stage HCC, new treatment strategies combining systemic treatment and transcatheter arterial chemoembolization (TACE) are under development in clinical trials. Moreover, the addition of local therapies, such as TACE, to systemic treatment according to the treatment effect could achieve a certain percentage of complete response. In the IMbrave050 trial, the efficacy of ATZ/BEV combination therapy was validated in patients predicted to have a high risk of recurrence, especially in those who had undergone radical surgery or radiofrequency ablation for HCC. Therefore, systemic treatment for HCC is entering a new phase for all disease stages. The objective of this review is to organize the current position of systemic therapy for each HCC stage and discuss the development of new treatment methods and strategies, with a focus on regimens incorporating immune checkpoint inhibitors, along with future prospects.
Collapse
Affiliation(s)
- Michihisa Moriguchi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan; (S.K.); (Y.I.)
| | | | | |
Collapse
|
5
|
Yano S, Uematsu S, Kunimune N, Harima T, Yoshida Y, Takahashi S, Ito M, Sakamoto H, Nishizaka Y. PD-L1-negative Non-small-cell Lung Cancer Treated with Nivolumab Plus Ipilimumab during Maintenance Hemodialysis Results in Rapid Initial Progression Followed by a Long-lasting Response. Intern Med 2024; 63:985-988. [PMID: 37558475 PMCID: PMC11045368 DOI: 10.2169/internalmedicine.2270-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/02/2023] [Indexed: 08/11/2023] Open
Abstract
Nivolumab plus ipilimumab is one of the first-line treatments for advanced non-small-cell lung cancer (NSCLC), but the safety and efficacy in patients on hemodialysis (HD) is unclear. We herein report a patient with NSCLC on HD in whom nivolumab and ipilimumab were initiated. We observed general deterioration and enlarged lesions, followed by a long-term response. The patient developed secondary hypoadrenocorticism, an immune-related adverse event that was easily controlled. Nivolumab plus ipilimumab can be used safely for patients with NSCLC on HD. Long-term effectiveness can be observed after initial progression, so we should carefully assess the response.
Collapse
Affiliation(s)
- Shohei Yano
- Department of Respiratory Medicine, Osaka Red Cross Hospital, Japan
| | - Shinya Uematsu
- Department of Respiratory Medicine, Osaka Red Cross Hospital, Japan
| | - Naohiro Kunimune
- Department of Respiratory Medicine, Osaka Red Cross Hospital, Japan
| | - Tomoko Harima
- Department of Respiratory Medicine, Osaka Red Cross Hospital, Japan
| | - Yuki Yoshida
- Department of Respiratory Medicine, Osaka Red Cross Hospital, Japan
| | - Shota Takahashi
- Department of Respiratory Medicine, Osaka Red Cross Hospital, Japan
| | - Masahiro Ito
- Department of Respiratory Medicine, Osaka Red Cross Hospital, Japan
| | - Hiroto Sakamoto
- Department of Respiratory Medicine, Osaka Red Cross Hospital, Japan
| | - Yasuo Nishizaka
- Department of Respiratory Medicine, Osaka Red Cross Hospital, Japan
| |
Collapse
|
6
|
Yirgin IK, Dogan I, Engin G, Vatansever S, Erturk SM. Immune checkpoint inhibitors: Assessment of the performance and the agreement of iRECIST, irRC, and irRECIST. J Cancer Res Ther 2024; 20:156-162. [PMID: 38554314 DOI: 10.4103/jcrt.jcrt_1898_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 04/01/2024]
Abstract
INTRODUCTION Immunotherapy has become more widely accepted and used by medical oncologists. Radiologists face challenges in assessing tumor response and becoming more involved in the management of treatment. We aimed to assess the agreement between immune-related response criteria (irRC), immune-related RECIST (irRECIST), and immune RECIST (iRECIST) to correlate the response measured by them with overall survival (OS), and to determine the confirmation rate of progressive disease (PD). METHODS A total of 43 patients (28 men, 15 women; average age = 54.6 ± 15.7 years) treated with immunotherapy were included in this study. Pairwise agreements between iRECIST, irRC, and irRECIST were calculated using Cohen's kappa statistics. The correlation of the criteria-based response and OS was evaluated using the Kaplan-Meier method and log-rank test. A confirmation rate with 95% confidence intervals (CI) was calculated in patients with PD. RESULTS The kappa values between iRECIST and irRC, iRECIST and irRECIST, and irRC and irRECIST were 0.961 (almost perfect; P < 0.001), 0.961 (almost perfect; P < 0.001), and 0.922 (almost perfect; P < 0.001), respectively. The Kaplan-Meier method and log-rank test showed for each criterion a statistically significant correlation with OS (P < 0.05). The confirmation rates of PD for irRC, irRECIST, and iRECIST were 95% (19/20; 95% CI = 76.4-99.1%), 90% (18/20; 95% CI = 69.9-97.2%), and 90.5% (19/21; 95% CI = 71.1-97.4%), respectively. CONCLUSION There was an almost perfect and statistically significant agreement between iRECIST, irRC, and irRECIST. The measurements performed with them significantly correlated with the OS; their confirmation rates were similar. iRECIST and irRECIST might be favored over irRC because of their relative ease of use.
Collapse
Affiliation(s)
- Inci Kizildag Yirgin
- Department of Radiology, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - Izzet Dogan
- Department of Medical Oncology, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - Gulgun Engin
- Department of Radiology, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - Sezai Vatansever
- Department of Medical Oncology, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - Sukru Mehmet Erturk
- Department of Radiology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
7
|
Howroyd LR, Cornell I, Benson C, Napolitano A, Blackledge M, Sumhonmun T, Moskovic E, Kelly-Morland C, Adejolu M, Jones RL, Messiou C. Pseudoprogression in patients with uterine leiomyosarcoma treated with first-line single-agent doxorubicin. Eur J Cancer 2023; 192:113261. [PMID: 37604068 DOI: 10.1016/j.ejca.2023.113261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/13/2023] [Accepted: 07/24/2023] [Indexed: 08/23/2023]
Abstract
AIM To evaluate the incidence of pseudoprogression in patients with metastatic or inoperable uterine leiomyosarcoma (LMS) treated with first-line single-agent doxorubicin. METHODS The Royal Marsden NHS Foundation Trust Sarcoma Unit database was searched to identify all patients with metastatic or inoperable LMS treated with first-line doxorubicin from January 2006 to January 2022. Patients with available computed tomography scans performed at baseline and during doxorubicin therapy were included. Response evaluation criteria in solid tumours v1.1 and Choi criteria were applied. Any increase in the sum of the longest diameter that decreased on the subsequent scan was labelled as pseudoprogression. RESULTS The total number of patients evaluated was 52. In total, 19% (n = 10) of patients treated with doxorubicin showed pseudoprogression. However, pseudoprogression at the time of the second scan was not associated with time to doxorubicin failure. Choi criteria identified 30% (n = 3) of pseudoprogressors as responding. CONCLUSION Despite the use of doxorubicin as first-line therapy for soft-tissue sarcomas for over 40 years, pseudoprogression has not been described. This retrospective study shows that pseudoprogression occurs in 19% of patients with metastatic/inoperable uterine LMS treated with first-line doxorubicin. Choi criteria were not consistently able to differentiate pseudoprogression from true progression. It is imperative that oncologists and radiologists are aware of this as symptomatically stable/improving patients may benefit from continued treatment despite initial radiological growth in tumour size.
Collapse
Affiliation(s)
| | - Isabel Cornell
- Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK.
| | | | | | | | - Timothy Sumhonmun
- Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK
| | | | | | | | - Robin L Jones
- Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK; Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK
| | - Christina Messiou
- Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK; Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK.
| |
Collapse
|
8
|
Crotty EE, Wilson AL, Davidson T, Tahiri S, Gust J, Griesinger AM, Venkataraman S, Park JR, Mueller S, Rood BR, Hwang EI, Wang LD, Vitanza NA. Cellular Therapy for Children with Central Nervous System Tumors: Mining and Mapping the Correlative Data. Curr Oncol Rep 2023; 25:847-855. [PMID: 37160547 PMCID: PMC10326126 DOI: 10.1007/s11912-023-01423-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2023] [Indexed: 05/11/2023]
Abstract
PURPOSE OF REVIEW Correlative studies should leverage clinical trial frameworks to conduct biospecimen analyses that provide insight into the bioactivity of the intervention and facilitate iteration toward future trials that further improve patient outcomes. In pediatric cellular immunotherapy trials, correlative studies enable deeper understanding of T cell mobilization, durability of immune activation, patterns of toxicity, and early detection of treatment response. Here, we review the correlative science in adoptive cell therapy (ACT) for childhood central nervous system (CNS) tumors, with a focus on existing chimeric antigen receptor (CAR) and T cell receptor (TCR)-expressing T cell therapies. RECENT FINDINGS We highlight long-standing and more recently understood challenges for effective alignment of correlative data and offer practical considerations for current and future approaches to multi-omic analysis of serial tumor, serum, and cerebrospinal fluid (CSF) biospecimens. We highlight the preliminary success in collecting serial cytokine and proteomics from patients with CNS tumors on ACT clinical trials.
Collapse
Affiliation(s)
- Erin E Crotty
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, M/S JMB-8, 1900 9thAvenue, Seattle, WA, 98101, USA
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | | | - Tom Davidson
- Cancer and Blood Disease Institute, Keck School of Medicine, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Sophia Tahiri
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, M/S JMB-8, 1900 9thAvenue, Seattle, WA, 98101, USA
| | - Juliane Gust
- Division of Pediatric Neurology, Department of Neurology, University of Washington, Seattle, WA, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Andrea M Griesinger
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sujatha Venkataraman
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Julie R Park
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, M/S JMB-8, 1900 9thAvenue, Seattle, WA, 98101, USA
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
- Seattle Children's Therapeutics, Seattle, WA, USA
| | - Sabine Mueller
- Department of Neurology, Neurosurgery, and Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Brian R Rood
- Center for Cancer and Blood Disorders, Children's National Hospital, Washington, DC, USA
| | - Eugene I Hwang
- Center for Cancer and Blood Disorders, Children's National Hospital, Washington, DC, USA
| | - Leo D Wang
- Departments of Pediatrics and ImmunoOncology, City of Hope, Duarte, CA, USA
| | - Nicholas A Vitanza
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, M/S JMB-8, 1900 9thAvenue, Seattle, WA, 98101, USA.
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
9
|
Guven DC, Yekeduz E, Erul E, Yazgan SC, Sahin TK, Karatas G, Aksoy S, Erman M, Yalcin S, Urun Y, Kilickap S. The benefit of treatment beyond progression with immune checkpoint inhibitors: a multi-center retrospective cohort study. J Cancer Res Clin Oncol 2023; 149:3599-3606. [PMID: 35960374 DOI: 10.1007/s00432-022-04268-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/04/2022] [Indexed: 10/15/2022]
Abstract
OBJECTIVE Treatment beyond progression (TBP) with immune checkpoint inhibitors (ICIs) is an evolving field due to the limitations of conventional imaging in response evaluation. However, real-life data on the benefit of TBP is scarce, especially from the limited resource settings and patients treated in the later lines. Therefore, we aimed to investigate the survival benefit of TBP with ICIs in patients with advanced tumors from a limited resource setting. METHODS For this multi-center retrospective cohort study, we included 282 patients treated with ICIs and had radiological progression according to RECIST 1.1 criteria. We evaluated post-progression survival according to the use of TBP (TBP and non-TBP groups) with univariate and multivariate analyses. RESULTS The cohort's median age was 61, and 84.4% were treated in the second or later lines. 82 (29.1%) of 282 patients continued on ICIs following the initial progression. In multivariate analyses, patients in the TBP group had improved post-progression survival compared to non-TBP (13.18 vs. 4.63 months, HR: 0.500, 95% CI: 0.349-0.717, p < 0.001). The benefit of the TBP was independent of the tumor type, treatment line, and age. Furthermore, TBP with ICIs remained associated with improved post-progression survival (HR: 0.600, 95% CI: 0.380-0.947, p = 0.028) after excluding the patients with no further treatment after progression in the non-TBP arm. CONCLUSIONS In this study, we observed that patients receiving ICIs beyond progression had considerably longer survival. Continuation of ICIs after progression should be considered a reasonable management option for patients with advanced cancer, specifically for patients with limited alternative options.
Collapse
Affiliation(s)
- Deniz Can Guven
- Department of Medical Oncology, Hacettepe University Cancer Institute, Sihhiye, 06100, Ankara, Turkey.
| | - Emre Yekeduz
- Department of Medical Oncology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Enes Erul
- Department of Internal Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Sati Coskun Yazgan
- Department of Internal Medicine, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Taha Koray Sahin
- Department of Internal Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Gokturk Karatas
- Department of Internal Medicine, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Sercan Aksoy
- Department of Medical Oncology, Hacettepe University Cancer Institute, Sihhiye, 06100, Ankara, Turkey
| | - Mustafa Erman
- Department of Medical Oncology, Hacettepe University Cancer Institute, Sihhiye, 06100, Ankara, Turkey
| | - Suayib Yalcin
- Department of Medical Oncology, Hacettepe University Cancer Institute, Sihhiye, 06100, Ankara, Turkey
| | - Yuksel Urun
- Department of Medical Oncology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Saadettin Kilickap
- Faculty of Medicine, Istinye University, Istanbul, Turkey
- Medical Oncology Unit, Liv Hospital Ankara, Ankara, Turkey
| |
Collapse
|
10
|
Foster JB, Alonso MM, Sayour E, Davidson TB, Persson ML, Dun MD, Kline C, Mueller S, Vitanza NA, van der Lugt J. Translational considerations for immunotherapy clinical trials in pediatric neuro-oncology. Neoplasia 2023; 42:100909. [PMID: 37244226 DOI: 10.1016/j.neo.2023.100909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/20/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023]
Abstract
While immunotherapy for pediatric cancer has made great strides in recent decades, including the FDA approval of agents such as dinutuximab and tisgenlecleucel, these successes have rarely impacted children with pediatric central nervous system (CNS) tumors. As our understanding of the biological underpinnings of these tumors evolves, new immunotherapeutics are undergoing rapid clinical translation specifically designed for children with CNS tumors. Most recently, there have been notable clinical successes with oncolytic viruses, vaccines, adoptive cellular therapy, and immune checkpoint inhibition. In this article, the immunotherapy working group of the Pacific Pediatric Neuro-Oncology Consortium (PNOC) reviews the current and future state of immunotherapeutic CNS clinical trials with a focus on clinical trial development. Based on recent therapeutic trials, we discuss unique immunotherapy clinical trial challenges, including toxicity considerations, disease assessment, and correlative studies. Combinatorial strategies and future directions will be addressed. Through internationally collaborative efforts and consortia, we aim to direct this promising field of immuno-oncology to the next frontier of successful application against pediatric CNS tumors.
Collapse
Affiliation(s)
- Jessica B Foster
- Division of Oncology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA.
| | - Marta M Alonso
- Department of Pediatrics, Program of Solid Tumors, University Clinic of Navarra, Center for the Applied Medical Research (CIMA), Pamplona, Spain
| | - Elias Sayour
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL USA
| | - Tom B Davidson
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - Mika L Persson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Mark Hughes Foundation Centre for Brain Cancer Research, Paediatric Program, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Cassie Kline
- Division of Oncology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Sabine Mueller
- Department of Neurology, Department of Neurosurgery and Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Nicholas A Vitanza
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
11
|
Tabari A, Cox M, D'Amore B, Mansur A, Dabbara H, Boland G, Gee MS, Daye D. Machine Learning Improves the Prediction of Responses to Immune Checkpoint Inhibitors in Metastatic Melanoma. Cancers (Basel) 2023; 15:2700. [PMID: 37345037 DOI: 10.3390/cancers15102700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/12/2023] [Accepted: 04/27/2023] [Indexed: 06/23/2023] Open
Abstract
Pretreatment LDH is a standard prognostic biomarker for advanced melanoma and is associated with response to ICI. We assessed the role of machine learning-based radiomics in predicting responses to ICI and in complementing LDH for prognostication of metastatic melanoma. From 2008-2022, 79 patients with 168 metastatic hepatic lesions were identified. All patients had arterial phase CT images 1-month prior to initiation of ICI. Response to ICI was assessed on follow-up CT at 3 months using RECIST criteria. A machine learning algorithm was developed using radiomics. Maximum relevance minimum redundancy (mRMR) was used to select features. ROC analysis and logistic regression analyses evaluated performance. Shapley additive explanations were used to identify the variables that are the most important in predicting a response. mRMR selection revealed 15 features that are associated with a response to ICI. The machine learning model combining both radiomics features and pretreatment LDH resulted in better performance for response prediction compared to models that included radiomics or LDH alone (AUC of 0.89 (95% CI: [0.76-0.99]) vs. 0.81 (95% CI: [0.65-0.94]) and 0.81 (95% CI: [0.72-0.91]), respectively). Using SHAP analysis, LDH and two GLSZM were the most predictive of the outcome. Pre-treatment CT radiomic features performed equally well to serum LDH in predicting treatment response.
Collapse
Affiliation(s)
- Azadeh Tabari
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02215, USA
| | | | - Brian D'Amore
- Harvard Medical School, Boston, MA 02215, USA
- Department of Surgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | | | - Harika Dabbara
- Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Genevieve Boland
- Harvard Medical School, Boston, MA 02215, USA
- Department of Surgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Michael S Gee
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Dania Daye
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
12
|
Mallio CA, Bernetti C, Cea L, Buoso A, Stiffi M, Vertulli D, Greco F, Zobel BB. Adverse Effects of Immune-Checkpoint Inhibitors: A Comprehensive Imaging-Oriented Review. Curr Oncol 2023; 30:4700-4723. [PMID: 37232813 DOI: 10.3390/curroncol30050355] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/22/2023] [Accepted: 05/01/2023] [Indexed: 05/27/2023] Open
Abstract
Immune-checkpoint inhibitors (ICIs) are immunomodulatory monoclonal antibodies, which increase antitumor immunity of the host and facilitate T-cell-mediated actions against tumors. These medications have been used in recent years as a weapon against advanced stage malignancies, such as melanoma, renal cell carcinoma, lymphoma, small or non-small cell lung cancer, and colorectal cancer. Unfortunately, they are not free from possible adverse effects (immune-related adverse events-irAEs) that mainly affect skin, gastrointestinal, hepatic, and endocrine systems. Early diagnosis of irAEs is essential to correctly and rapidly manage patients, with ICIs suspension and therapies administration. Deep knowledge of the imaging and clinical patterns of irAEs is the key to promptly rule out other diagnoses. Here, we performed a review of the radiological signs and differential diagnosis, based on the organ involved. The aim of this review is to provide guidance to recognize the most significant radiological findings of the main irAEs, based on incidence, severity, and the role of imaging.
Collapse
Affiliation(s)
- Carlo Augusto Mallio
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
- Department of Medicine and Surgery, Research Unit of Radiology, Università Campus Bio-Medico di Roma, 00128 Roma, Italy
| | - Caterina Bernetti
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
- Department of Medicine and Surgery, Research Unit of Radiology, Università Campus Bio-Medico di Roma, 00128 Roma, Italy
| | - Laura Cea
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
- Department of Medicine and Surgery, Research Unit of Radiology, Università Campus Bio-Medico di Roma, 00128 Roma, Italy
| | - Andrea Buoso
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
- Department of Medicine and Surgery, Research Unit of Radiology, Università Campus Bio-Medico di Roma, 00128 Roma, Italy
| | - Massimo Stiffi
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
- Department of Medicine and Surgery, Research Unit of Radiology, Università Campus Bio-Medico di Roma, 00128 Roma, Italy
| | - Daniele Vertulli
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
- Department of Medicine and Surgery, Research Unit of Radiology, Università Campus Bio-Medico di Roma, 00128 Roma, Italy
| | - Federico Greco
- Unità Operativa Complessa Diagnostica per Immagini Territoriale Aziendale, Cittadella della Salute Azienda Sanitaria Locale di Lecce, Piazza Filippo Bottazzi, 73100 Lecce, Italy
| | - Bruno Beomonte Zobel
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
- Department of Medicine and Surgery, Research Unit of Radiology, Università Campus Bio-Medico di Roma, 00128 Roma, Italy
| |
Collapse
|
13
|
Prendergast CM, Capaccione KM, Lopci E, Das JP, Shoushtari AN, Yeh R, Amin D, Dercle L, De Jong D. More than Just Skin-Deep: A Review of Imaging's Role in Guiding CAR T-Cell Therapy for Advanced Melanoma. Diagnostics (Basel) 2023; 13:992. [PMID: 36900136 PMCID: PMC10000712 DOI: 10.3390/diagnostics13050992] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Advanced melanoma is one of the deadliest cancers, owing to its invasiveness and its propensity to develop resistance to therapy. Surgery remains the first-line treatment for early-stage tumors but is often not an option for advanced-stage melanoma. Chemotherapy carries a poor prognosis, and despite advances in targeted therapy, the cancer can develop resistance. CAR T-cell therapy has demonstrated great success against hematological cancers, and clinical trials are deploying it against advanced melanoma. Though melanoma remains a challenging disease to treat, radiology will play an increasing role in monitoring both the CAR T-cells and response to therapy. We review the current imaging techniques for advanced melanoma, as well as novel PET tracers and radiomics, in order to guide CAR T-cell therapy and manage potential adverse events.
Collapse
Affiliation(s)
- Conor M. Prendergast
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kathleen M. Capaccione
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Egesta Lopci
- Department of Nuclear Medicine, IRCSS Humanitas Research Hospital, 20089 Milan, Italy
| | - Jeeban P. Das
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Randy Yeh
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daniel Amin
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Laurent Dercle
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Dorine De Jong
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
14
|
Milanese G, Mazzaschi G, Ledda RE, Balbi M, Lamorte S, Caminiti C, Colombi D, Tiseo M, Silva M, Sverzellati N. The radiological appearances of lung cancer treated with immunotherapy. Br J Radiol 2023; 96:20210270. [PMID: 36367539 PMCID: PMC10078868 DOI: 10.1259/bjr.20210270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Therapy and prognosis of several solid and hematologic malignancies, including non-small cell lung cancer (NSCLC), have been favourably impacted by the introduction of immune checkpoint inhibitors (ICIs). Their mechanism of action relies on the principle that some cancers can evade immune surveillance by expressing surface inhibitor molecules, known as "immune checkpoints". ICIs aim to conceal tumoural checkpoints on the cell surface and reinvigorate the ability of the host immune system to recognize tumour cells, triggering an antitumoural immune response.In this review, we will focus on the imaging patterns of different responses occurring in patients treated by ICIs. We will also discuss imaging findings of immune-related adverse events (irAEs), along with current and future perspectives of metabolic imaging. Finally, we will explore the role of radiomics in the setting of ICI-treated patients.
Collapse
Affiliation(s)
- Gianluca Milanese
- Department of Medicine and Surgery, Unit of Radiological Sciences, University of Parma, Parma, Italy
| | - Giulia Mazzaschi
- Department of Medicine and Surgery, Unit of Medical Oncology, University of Parma, Parma, Italy
| | - Roberta Eufrasia Ledda
- Department of Medicine and Surgery, Unit of Radiological Sciences, University of Parma, Parma, Italy
| | - Maurizio Balbi
- Department of Medicine and Surgery, Unit of Radiological Sciences, University of Parma, Parma, Italy
| | - Sveva Lamorte
- Department of Medicine and Surgery, Unit of Radiological Sciences, University of Parma, Parma, Italy
| | - Caterina Caminiti
- Unit of Research and Innovation, University Hospital of Parma, Parma, Italy
| | - Davide Colombi
- Department of Radiological Functions, Radiology Unit, Guglielmo da Saliceto Hospital, Piacenza, Italy
| | - Marcello Tiseo
- Department of Medicine and Surgery, Unit of Medical Oncology, University of Parma, Parma, Italy
| | - Mario Silva
- Department of Medicine and Surgery, Unit of Radiological Sciences, University of Parma, Parma, Italy
| | - Nicola Sverzellati
- Department of Medicine and Surgery, Unit of Radiological Sciences, University of Parma, Parma, Italy
| |
Collapse
|
15
|
Chen X, Zhang J, Jiang L, Yan F. Shotgun-2: A Bayesian phase I/II basket trial design to identify indication-specific optimal biological doses. Stat Methods Med Res 2023; 32:443-464. [PMID: 36217826 DOI: 10.1177/09622802221129049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
For novel molecularly targeted agents and immunotherapies, the objective of dose-finding is often to identify the optimal biological dose, rather than the maximum tolerated dose. However, optimal biological doses may not be the same for different indications, challenging the traditional dose-finding framework. Therefore, we proposed a Bayesian phase I/II basket trial design, named "shotgun-2," to identify indication-specific optimal biological doses. A dose-escalation part is conducted in stage I to identify the maximum tolerated dose and admissible dose sets. In stage II, dose optimization is performed incorporating both toxicity and efficacy for each indication. Simulation studies under both fixed and random scenarios show that, compared with the traditional "phase I + cohort expansion" design, the shotgun-2 design is robust and can improve the probability of correctly selecting the optimal biological doses. Furthermore, this study provides a useful tool for identifying indication-specific optimal biological doses and accelerating drug development.
Collapse
Affiliation(s)
- Xin Chen
- Research Center of Biostatistics and Computational Pharmacy, 56651China Pharmaceutical University, Nanjing, China
| | - Jingyi Zhang
- Research Center of Biostatistics and Computational Pharmacy, 56651China Pharmaceutical University, Nanjing, China
| | - Liyun Jiang
- Research Center of Biostatistics and Computational Pharmacy, 56651China Pharmaceutical University, Nanjing, China
| | - Fangrong Yan
- Research Center of Biostatistics and Computational Pharmacy, 56651China Pharmaceutical University, Nanjing, China
| |
Collapse
|
16
|
Berz AM, Boughdad S, Vietti-Violi N, Digklia A, Dromain C, Dunet V, Duran R. Imaging assessment of toxicity related to immune checkpoint inhibitors. Front Immunol 2023; 14:1133207. [PMID: 36911692 PMCID: PMC9995973 DOI: 10.3389/fimmu.2023.1133207] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
In recent years, a wide range of cancer immunotherapies have been developed and have become increasingly important in cancer treatment across multiple oncologic diseases. In particular, immune checkpoint inhibitors (ICIs) offer promising options to improve patient outcomes. However, a major limitation of these treatments consists in the development of immune-related adverse events (irAEs) occurring in potentially any organ system and affecting up to 76% of the patients. The most frequent toxicities involve the skin, gastrointestinal tract, and endocrine system. Although mostly manageable, potentially life-threatening events, particularly due to neuro-, cardiac, and pulmonary toxicity, occur in up to 30% and 55% of the patients treated with ICI-monotherapy or -combination therapy, respectively. Imaging, in particular computed tomography (CT), magnetic resonance imaging (MRI), and 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography (18F-FDG-PET/CT), plays an important role in the detection and characterization of these irAEs. In some patients, irAEs can even be detected on imaging before the onset of clinical symptoms. In this context, it is particularly important to distinguish irAEs from true disease progression and specific immunotherapy related response patterns, such as pseudoprogression. In addition, there are irAEs which might be easily confused with other pathologies such as infection or metastasis. However, many imaging findings, such as in immune-related pneumonitis, are nonspecific. Thus, accurate diagnosis may be delayed underling the importance for adequate imaging features characterization in the appropriate clinical setting in order to provide timely and efficient patient management. 18F-FDG-PET/CT and radiomics have demonstrated to reliably detect these toxicities and potentially have predictive value for identifying patients at risk of developing irAEs. The purpose of this article is to provide a review of the main immunotherapy-related toxicities and discuss their characteristics on imaging.
Collapse
Affiliation(s)
- Antonia M Berz
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Sarah Boughdad
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Naïk Vietti-Violi
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Antonia Digklia
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Clarisse Dromain
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Vincent Dunet
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Rafael Duran
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Berz AM, Dromain C, Vietti-Violi N, Boughdad S, Duran R. Tumor response assessment on imaging following immunotherapy. Front Oncol 2022; 12:982983. [PMID: 36387133 PMCID: PMC9641095 DOI: 10.3389/fonc.2022.982983] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, various systemic immunotherapies have been developed for cancer treatment, such as monoclonal antibodies (mABs) directed against immune checkpoints (immune checkpoint inhibitors, ICIs), oncolytic viruses, cytokines, cancer vaccines, and adoptive cell transfer. While being estimated to be eligible in 38.5% of patients with metastatic solid or hematological tumors, ICIs, in particular, demonstrate durable disease control across many oncologic diseases (e.g., in melanoma, lung, bladder, renal, head, and neck cancers) and overall survival benefits. Due to their unique mechanisms of action based on T-cell activation, response to immunotherapies is characterized by different patterns, such as progression prior to treatment response (pseudoprogression), hyperprogression, and dissociated responses following treatment. Because these features are not encountered in the Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST 1.1), which is the standard for response assessment in oncology, new criteria were defined for immunotherapies. The most important changes in these new morphologic criteria are, firstly, the requirement for confirmatory imaging examinations in case of progression, and secondly, the appearance of new lesions is not necessarily considered a progressive disease. Until today, five morphologic (immune-related response criteria (irRC), immune-related RECIST (irRECIST), immune RECIST (iRECIST), immune-modified RECIST (imRECIST), and intra-tumoral RECIST (itRECIST)) criteria have been developed to accurately assess changes in target lesion sizes, taking into account the specific response patterns after immunotherapy. In addition to morphologic response criteria, 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography (18F-FDG-PET/CT) is a promising option for metabolic response assessment and four metabolic criteria are used (PET/CT Criteria for Early Prediction of Response to Immune Checkpoint Inhibitor Therapy (PECRIT), PET Response Evaluation Criteria for Immunotherapy (PERCIMT), immunotherapy-modified PET Response Criteria in Solid Tumors (imPERCIST5), and immune PERCIST (iPERCIST)). Besides, there is evidence that parameters on 18F-FDG-PET/CT, such as the standardized uptake value (SUV)max and several radiotracers, e.g., directed against PD-L1, may be potential imaging biomarkers of response. Moreover, the emerge of human intratumoral immunotherapy (HIT-IT), characterized by the direct injection of immunostimulatory agents into a tumor lesion, has given new importance to imaging assessment. This article reviews the specific imaging patterns of tumor response and progression and available imaging response criteria following immunotherapy.
Collapse
Affiliation(s)
- Antonia M. Berz
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
- Department of Radiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clarisse Dromain
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Naïk Vietti-Violi
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Sarah Boughdad
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Lausanne, Switzerland
| | - Rafael Duran
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
18
|
Taylor EN, Wilson CM, Franco S, De May H, Medina LY, Yang Y, Flores EB, Bartee E, Selwyn RG, Serda RE. Monitoring Therapeutic Responses to Silicified Cancer Cell Immunotherapy Using PET/MRI in a Mouse Model of Disseminated Ovarian Cancer. Int J Mol Sci 2022; 23:ijms231810525. [PMID: 36142437 PMCID: PMC9504323 DOI: 10.3390/ijms231810525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Current imaging approaches used to monitor tumor progression can lack the ability to distinguish true progression from pseudoprogression. Simultaneous metabolic 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography (PET) and magnetic resonance imaging (MRI) offers new opportunities to overcome this challenge by refining tumor identification and monitoring therapeutic responses to cancer immunotherapy. In the current work, spatial and quantitative analysis of tumor burden were performed using simultaneous [18F]FDG-PET/MRI to monitor therapeutic responses to a novel silicified cancer cell immunotherapy in a mouse model of disseminated serous epithelial ovarian cancer. Tumor progression was validated by bioluminescence imaging of luciferase expressing tumor cells, flow cytometric analysis of immune cells in the tumor microenvironment, and histopathology. While PET demonstrated the presence of metabolically active cancer cells through [18F]FDG uptake, MRI confirmed cancer-related accumulation of ascites and tissue anatomy. This approach provides complementary information on disease status without a confounding signal from treatment-induced inflammation. This work provides a possible roadmap to facilitate accurate monitoring of therapeutic responses to cancer immunotherapies.
Collapse
Affiliation(s)
- Erik N. Taylor
- Department of Radiology, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Colin M. Wilson
- Department of Radiology, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Stefan Franco
- Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Henning De May
- Department of Obstetrics & Gynecology, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Lorél Y. Medina
- Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Yirong Yang
- Pharmaceutical Sciences, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Erica B. Flores
- Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Eric Bartee
- Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Reed G. Selwyn
- Department of Radiology, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Rita E. Serda
- Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
- Correspondence:
| |
Collapse
|
19
|
PD1 blockade alters cell-cycle distribution and affects 3'-deoxy-3'-[ 18F]fluorothymidine uptake in a mouse CT26 tumor model. Ann Nucl Med 2022; 36:931-940. [PMID: 35969311 DOI: 10.1007/s12149-022-01782-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/08/2022] [Indexed: 11/01/2022]
Abstract
OBJECTIVE We previously reported that alterations of the tumor microenvironment (TME) by programmed death receptor-1 (PD1) blockade affected tumor glucose metabolism and tumor 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) uptake. In cancer cells, high glycolysis allows cells to sustain rapid proliferation since glycolysis is closely related to the proliferation of cancer cells. Therefore, imaging of cellular proliferation may provide more detail of TME alterations. In this study, we investigated how TME alterations by PD1 blockade affects the uptake of 3'-deoxy-3'-[18F]fluorothymidine ([18F]FLT), which is a 18F-radiolabeled thymidine derivative and is taken up by proliferating cells. METHODS Mice inoculated with murine colon carcinoma CT26 cells were intraperitoneally administered an anti-PD1 antibody on Day 0, when the tumor volume exceeded 50 mm3, and Day 5. [18F]FLT-PET imaging was performed pre-treatment (Day 0) and post treatment (Day 7). Tumor infiltrating lymphocytes (TILs) were identified by flow cytometry. [18F]FLT accumulation and localization in tumor tissue was evaluated by autoradiography and immunohistochemistry. The cell-cycle distribution of tumors and CT26 cells exposed to cytokines (interleukin-2, interferon [INF]-γ, and tumor necrosis factor [TNF]-α) was analyzed by flow cytometry. RESULTS PD1 blockade increased CD8+ and CD4+ T cells in tumor tissue and significantly suppressed tumor proliferation; however, tumor [18F]FLT uptake remained unchanged. Autoradiography and immunohistochemistry showed that [18F]FLT was mainly taken up by cancer cells, but not TILs. Flow cytometric analysis demonstrated that the population of cells in G2/M phase increased after PD1 blockade. Moreover, INF-γ and TNF-α significantly increased cells in G2/M phase in vitro. CONCLUSION PD1 blockade-induced alteration of the TME increased CT26 tumor cells in the G2/M phase, which have high thymidine kinase 1 activity. Therefore, [18F]FLT is taken up by tumor cells even if tumor proliferation is suppressed. This observation may be useful for evaluating the response to immunotherapy.
Collapse
|
20
|
Tettamanti S, Rotiroti MC, Attianese GMPG, Arcangeli S, Zhang R, Banerjee P, Galletti G, McManus S, Mazza M, Nicolini F, Martinelli G, Ivan C, Rodriguez TV, Barbaglio F, Scarfò L, Ponzoni M, Wierda W, Gandhi V, Keating MJ, Biondi A, Caligaris-Cappio F, Biagi E, Ghia P, Bertilaccio MTS. Lenalidomide enhances CD23.CAR T cell therapy in chronic lymphocytic leukemia. Leuk Lymphoma 2022; 63:1566-1579. [PMID: 35259043 PMCID: PMC9828187 DOI: 10.1080/10428194.2022.2043299] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Chimeric antigen receptors (CAR)-modified T cells are an emerging therapeutic tool for chronic lymphocytic leukemia (CLL). However, in patients with CLL, well-known T-cell defects and the inhibitory properties of the tumor microenvironment (TME) hinder the efficacy of CAR T cells. We explored a novel approach combining CARs with lenalidomide, an immunomodulatory drug that tempers the immunosuppressive activity of the CLL TME. T cells from patients with CLL were engineered to express a CAR specific for CD23, a promising target antigen. Lenalidomide maintained the in vitro effector functions of CD23.CAR+ T cells effector functions in terms of antigen-specific cytotoxicity, cytokine release and proliferation. Overall, lenalidomide preserved functional CAR T-CLL cell immune synapses. In a Rag2-/-γc-/--based xenograft model of CLL, we demonstrated that, when combined with low-dose lenalidomide, CD23.CAR+ T cells efficiently migrated to leukemic sites and delayed disease progression when compared to CD23.CAR+ T cells given with rhIL-2. These observations underline the therapeutic potential of this novel CAR-based combination strategy in CLL.
Collapse
Affiliation(s)
- Sarah Tettamanti
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università Milano Bicocca, Osp. San Gerardo/Fondazione MBBM, Monza, Italy
| | - Maria Caterina Rotiroti
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università Milano Bicocca, Osp. San Gerardo/Fondazione MBBM, Monza, Italy
| | - Greta Maria Paola Giordano Attianese
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università Milano Bicocca, Osp. San Gerardo/Fondazione MBBM, Monza, Italy;,GMPGA is presently at Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Silvia Arcangeli
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università Milano Bicocca, Osp. San Gerardo/Fondazione MBBM, Monza, Italy
| | - Ronghua Zhang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Priyanka Banerjee
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,P.B. is presently at Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Giovanni Galletti
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,GG is presently at Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Sheighlah McManus
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences (GSBS), Houston, Texas, USA
| | - Massimiliano Mazza
- Immunotherapy, Cell Therapy and Biobank (ITCB), IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori, Meldola, Italy
| | - Fabio Nicolini
- Immunotherapy, Cell Therapy and Biobank (ITCB), IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori, Meldola, Italy
| | - Giovanni Martinelli
- Immunotherapy, Cell Therapy and Biobank (ITCB), IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori, Meldola, Italy
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Federica Barbaglio
- Division of Experimental Oncology, IRCCS San Raffaele Hospital, Milan, Italy
| | - Lydia Scarfò
- Division of Experimental Oncology, IRCCS San Raffaele Hospital, Milan, Italy,Università Vita-Salute San Raffaele, Milan, Italy,Strategic Research Program on CLL, IRCCS San Raffaele Hospital, Milan, Italy
| | - Maurilio Ponzoni
- Università Vita-Salute San Raffaele, Milan, Italy,Strategic Research Program on CLL, IRCCS San Raffaele Hospital, Milan, Italy;,Pathology Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - William Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael J. Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Andrea Biondi
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università Milano Bicocca, Osp. San Gerardo/Fondazione MBBM, Monza, Italy
| | - Federico Caligaris-Cappio
- Division of Experimental Oncology, IRCCS San Raffaele Hospital, Milan, Italy,FCC is presently scientific director of AIRC (Associazione Italiana per la Ricerca sul Cancro), 20123 Milan, Italy
| | - Ettore Biagi
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università Milano Bicocca, Osp. San Gerardo/Fondazione MBBM, Monza, Italy;,EB is presently at BMS/Celgene, Boudry, Canton Neuchâtel, Switzerland
| | - Paolo Ghia
- Division of Experimental Oncology, IRCCS San Raffaele Hospital, Milan, Italy,Università Vita-Salute San Raffaele, Milan, Italy,Strategic Research Program on CLL, IRCCS San Raffaele Hospital, Milan, Italy
| | | |
Collapse
|
21
|
Gill S, Nowak AK, Bowyer S, Endersby R, Ebert MA, Cook A. Clinical evidence for synergy between immunotherapy and radiotherapy (SITAR). J Med Imaging Radiat Oncol 2022; 66:881-895. [PMID: 35699321 PMCID: PMC9543060 DOI: 10.1111/1754-9485.13441] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/25/2022] [Indexed: 12/14/2022]
Abstract
Previous preclinical and clinical trials have shown promising antitumour activity and toxicity profile when employing the 'Synergy between Immunotherapy and Radiotherapy' (SITAR) strategy. Approximately, one in seven radiation therapy studies currently recruiting is investigating SITAR. This article reviews the range of cancers known to respond to immunotherapy and publications analysing SITAR. It sets the background for work that needs to be done in future clinical trials. It also reviews the potential toxicities of immunotherapy and discusses areas where caution is required when combining treatments.
Collapse
Affiliation(s)
- Suki Gill
- Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,University of Western Australia, Crawley, Western Australia, Australia
| | - Anna K Nowak
- Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,University of Western Australia, Crawley, Western Australia, Australia.,Institute for Respiratory Health, Nedlands, Western Australia, Australia
| | - Samantha Bowyer
- Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,University of Western Australia, Crawley, Western Australia, Australia
| | - Raelene Endersby
- University of Western Australia, Crawley, Western Australia, Australia.,Telethon Kids Institute, Nedlands, Western Australia, Australia
| | - Martin A Ebert
- Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,University of Western Australia, Crawley, Western Australia, Australia
| | - Alistair Cook
- University of Western Australia, Crawley, Western Australia, Australia.,Institute for Respiratory Health, Nedlands, Western Australia, Australia
| |
Collapse
|
22
|
Immunotherapy-Based Treatments of Hepatocellular Carcinoma: AJR Expert Panel Narrative Review. AJR Am J Roentgenol 2022; 219:533-546. [PMID: 35506555 DOI: 10.2214/ajr.22.27633] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The advent of immunotherapy for patients with hepatocellular carcinoma (HCC) has changed the treatment landscape and conferred survival benefit for patients with advanced HCC who typically have a very poor prognosis. The most pronounced improvements in response, as documented by standardized response criteria based on CT or MRI, have been achieved when immunotherapy is combined with other systemic or locoregional therapies. Immune checkpoint inhibitor treatments result in unique patterns on CT and MRI that challenge the application of conventional response criteria such as RECIST, modified RECIST, and European Association for the Study of the Liver criteria. Thus, newer criteria have been developed to gauge therapy response or disease progression for patients on immunotherapy, including immune-related RECIST (iRECIST) and immune-modified RECIST (imRECIST), though these remain unvalidated. In this review, we describe the current landscape of immunotherapeutic agents used for HCC, summarize results of published studies, review pathobiological mechanisms that provide a rationale for the use of these agents, and report on the status of response assessment for immunotherapy, either alone or in combination with other treatment options. Finally, consensus statements are provided to inform radiologists on essential considerations in the era of a rapidly changing treatment paradigm for patients with HCC.
Collapse
|
23
|
Lou E. Quantity versus quality: Keys to adoptive cell therapy success in breast cancer. MED 2022; 3:220-222. [DOI: 10.1016/j.medj.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
The Role of Radiomics in the Era of Immune Checkpoint Inhibitors: A New Protagonist in the Jungle of Response Criteria. J Clin Med 2022; 11:jcm11061740. [PMID: 35330068 PMCID: PMC8948743 DOI: 10.3390/jcm11061740] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The introduction of immune checkpoint inhibitors has represented a milestone in cancer treatment. Despite PD-L1 expression being the standard biomarker used before the start of therapy, there is still a strict need to identify complementary non-invasive biomarkers in order to better select patients. In this context, radiomics is an emerging approach for examining medical images and clinical data by capturing multiple features hidden from human eye and is potentially able to predict response assessment and survival in the course of immunotherapy. We reviewed the available studies investigating the role of radiomics in cancer patients, focusing on non-small cell lung cancer treated with immune checkpoint inhibitors. Although preliminary research shows encouraging results, different issues need to be solved before radiomics can enter into clinical practice. Abstract Immune checkpoint inhibitors (ICI) have demonstrated encouraging results in terms of durable clinical benefit and survival in several malignancies. Nevertheless, the search to identify an “ideal” biomarker for predicting response to ICI is still far from over. Radiomics is a new translational field of study aiming to extract, by dedicated software, several features from a given medical image, ranging from intensity distribution and spatial heterogeneity to higher-order statistical parameters. Based on these premises, our review aims to summarize the current status of radiomics as a potential predictor of clinical response following immunotherapy treatment. A comprehensive search of PubMed results was conducted. All studies published in English up to and including December 2021 were selected, comprising those that explored computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) for radiomic analyses in the setting of ICI. Several studies have demonstrated the potential applicability of radiomic features in the monitoring of the therapeutic response beyond the traditional morphologic and metabolic criteria, as well as in the prediction of survival or non-invasive assessment of the tumor microenvironment. Nevertheless, important limitations emerge from our review in terms of standardization in feature selection, data sharing, and methods, as well as in external validation. Additionally, there is still need for prospective clinical trials to confirm the potential significant role of radiomics during immunotherapy.
Collapse
|
25
|
Chakrabarty N, Mahajan A, Baheti AD, Choudhari A, Patil V, Popat P, Unde H. A Radiologist's Perspective on Treatment-Related Pseudoprogression: Clues and Hues. Indian J Med Paediatr Oncol 2022. [DOI: 10.1055/s-0042-1742609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AbstractPseudoprogression refers to the initial apparent increase in tumor burden observed on imaging after cancer therapy, with subsequent delayed response to the same treatment, thus giving a false initial appearance of disease progression. It is essential to differentiate pseudoprogression from true progression to prevent the patients from getting deprived of the benefits of their ongoing cancer therapy owing to their early withdrawal. It also affects their recruitment for clinical trials. Pseudoprogression, albeit uncommon, has been observed after various types of cancer therapy; however, this phenomenon has gained momentum of late due to the emergence of immunotherapy for the treatment of various malignancies. Besides immunotherapy, pseudoprogression has predominantly been of concern in a few patients after radiation therapy for brain tumors and metastasis, after molecular targeted therapy for a variety of tumors, and after chemotherapy in metastatic bone lesions. This article reviews the available data on imaging of pseudoprogression from various types of cancer therapies, highlighting ways to suspect or identify it on imaging.
Collapse
Affiliation(s)
- Nivedita Chakrabarty
- Department of Radiodiagnosis, Tata Memorial Centre, Tata Memorial Hospital, Homi Bhabha National Institute (HBNI), Mumbai, Maharashtra, India
| | - Abhishek Mahajan
- Department of Radiodiagnosis, Tata Memorial Centre, Tata Memorial Hospital, Homi Bhabha National Institute (HBNI), Mumbai, Maharashtra, India
| | - Akshay D. Baheti
- Department of Radiodiagnosis, Tata Memorial Centre, Tata Memorial Hospital, Homi Bhabha National Institute (HBNI), Mumbai, Maharashtra, India
| | - Amit Choudhari
- Department of Radiodiagnosis, Tata Memorial Centre, Tata Memorial Hospital, Homi Bhabha National Institute (HBNI), Mumbai, Maharashtra, India
| | - Vasundhara Patil
- Department of Radiodiagnosis, Tata Memorial Centre, Tata Memorial Hospital, Homi Bhabha National Institute (HBNI), Mumbai, Maharashtra, India
| | - Palak Popat
- Department of Radiodiagnosis, Tata Memorial Centre, Tata Memorial Hospital, Homi Bhabha National Institute (HBNI), Mumbai, Maharashtra, India
| | - Himangi Unde
- Department of Radiodiagnosis, Tata Memorial Centre, Tata Memorial Hospital, Homi Bhabha National Institute (HBNI), Mumbai, Maharashtra, India
| |
Collapse
|
26
|
Xie P, Zheng H, Chen H, Wei K, Pan X, Xu Q, Wang Y, Tang C, Gevaert O, Meng X. Tumor response as defined by iRECIST in gastrointestinal malignancies treated with PD-1 and PD-L1 inhibitors and correlation with survival. BMC Cancer 2021; 21:1246. [PMID: 34798858 PMCID: PMC8605503 DOI: 10.1186/s12885-021-08944-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/28/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Atypical tumor response patterns during immune checkpoint inhibitor therapy pose a challenge to clinicians and investigators in immuno-oncology practice. This study evaluated tumor burden dynamics to identify imaging biomarkers for treatment response and overall survival (OS) in advanced gastrointestinal malignancies treated with PD-1/PD-L1 inhibitors. METHODS This retrospective study enrolled a total of 198 target lesions in 75 patients with advanced gastrointestinal malignancies treated with PD-1/PD-L1 inhibitors between January 2017 and March 2021. Tumor diameter changes as defined by immunotherapy Response Evaluation Criteria in Solid Tumors (iRECIST) were studied to determine treatment response and association with OS. RESULTS Based on the best overall response, the tumor diameter ranged from - 100 to + 135.3% (median: - 9.6%). The overall response rate was 32.0% (24/75), and the rate of durable disease control for at least 6 months was 30.7% (23/75, one (iCR, immune complete response) or 20 iPR (immune partial response), or 2iSD (immune stable disease). Using univariate analysis, patients with a tumor diameter maintaining a < 20% increase (48/75, 64.0%) from baseline had longer OS than those with ≥20% increase (27/75, 36.0%) and, a reduced risk of death (median OS: 80 months vs. 48 months, HR = 0.22, P = 0.034). The differences in age (HR = 1.09, P = 0.01), combined surgery (HR = 0.15, P = 0.01) and cancer type (HR = 0.23, P = 0.001) were significant. In multivariable analysis, patients with a tumor diameter with a < 20% increase had notably reduced hazards of death (HR = 0.15, P = 0.01) after adjusting for age, combined surgery, KRAS status, cancer type, mismatch repair (MMR) status, treatment course and cancer differentiation. Two patients (2.7%) showed pseudoprogression. CONCLUSIONS Tumor diameter with a < 20% increase from baseline during therapy in gastrointestinal malignancies was associated with therapeutic benefit and longer OS and may serve as a practical imaging marker for treatment response, clinical outcome and treatment decision making.
Collapse
Affiliation(s)
- Peiyi Xie
- Department of Radiology, The Sixth Affiliated Hospital of Sun Yat-sen University, No.26 Yuancunerheng Road, Guangzhou, 510655, Guangdong, China
- Department of Medicine and Department of Biomedical Data Science, The Stanford Center for Biomedical Informatics Research (BMIR), 1265 Welch Rd, Stanford, CA, 94305, USA
| | - Hong Zheng
- Department of Medicine and Department of Biomedical Data Science, The Stanford Center for Biomedical Informatics Research (BMIR), 1265 Welch Rd, Stanford, CA, 94305, USA
| | - Haiyang Chen
- Department of Radiation Oncology, The Sixth Affiliated Hospital of Sun Yat-sen University, No.26 Yuancunerheng Road, Guangzhou, 510655, Guangdong, China
| | - Kaikai Wei
- Department of Radiology, The Sixth Affiliated Hospital of Sun Yat-sen University, No.26 Yuancunerheng Road, Guangzhou, 510655, Guangdong, China
| | - Ximin Pan
- Department of Radiology, The Sixth Affiliated Hospital of Sun Yat-sen University, No.26 Yuancunerheng Road, Guangzhou, 510655, Guangdong, China
| | - Qinmei Xu
- Department of Medicine and Department of Biomedical Data Science, The Stanford Center for Biomedical Informatics Research (BMIR), 1265 Welch Rd, Stanford, CA, 94305, USA
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, No.305, Zhongshan East Road, Nanjing, 210002, China
| | - Yongchen Wang
- Department of Radiology, The Sixth Affiliated Hospital of Sun Yat-sen University, No.26 Yuancunerheng Road, Guangzhou, 510655, Guangdong, China
| | - Changguan Tang
- Department of Radiology, The Sixth Affiliated Hospital of Sun Yat-sen University, No.26 Yuancunerheng Road, Guangzhou, 510655, Guangdong, China
| | - Olivier Gevaert
- Department of Medicine and Department of Biomedical Data Science, The Stanford Center for Biomedical Informatics Research (BMIR), 1265 Welch Rd, Stanford, CA, 94305, USA.
| | - Xiaochun Meng
- Department of Radiology, The Sixth Affiliated Hospital of Sun Yat-sen University, No.26 Yuancunerheng Road, Guangzhou, 510655, Guangdong, China.
| |
Collapse
|
27
|
Guerrisi A, Russillo M, Loi E, Ganeshan B, Ungania S, Desiderio F, Bruzzaniti V, Falcone I, Renna D, Ferraresi V, Caterino M, Solivetti FM, Cognetti F, Morrone A. Exploring CT Texture Parameters as Predictive and Response Imaging Biomarkers of Survival in Patients With Metastatic Melanoma Treated With PD-1 Inhibitor Nivolumab: A Pilot Study Using a Delta-Radiomics Approach. Front Oncol 2021; 11:704607. [PMID: 34692481 PMCID: PMC8529867 DOI: 10.3389/fonc.2021.704607] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/08/2021] [Indexed: 01/08/2023] Open
Abstract
In the era of artificial intelligence and precision medicine, the use of quantitative imaging methodological approaches could improve the cancer patient’s therapeutic approaches. Specifically, our pilot study aims to explore whether CT texture features on both baseline and first post-treatment contrast-enhanced CT may act as a predictor of overall survival (OS) and progression-free survival (PFS) in metastatic melanoma (MM) patients treated with the PD-1 inhibitor Nivolumab. Ninety-four lesions from 32 patients treated with Nivolumab were analyzed. Manual segmentation was performed using a free-hand polygon approach by drawing a region of interest (ROI) around each target lesion (up to five lesions were selected per patient according to RECIST 1.1). Filtration-histogram-based texture analysis was employed using a commercially available research software called TexRAD (Feedback Medical Ltd, London, UK; https://fbkmed.com/texrad-landing-2/) Percentage changes in texture features were calculated to perform delta-radiomics analysis. Texture feature kurtosis at fine and medium filter scale predicted OS and PFS. A higher kurtosis is correlated with good prognosis; kurtosis values greater than 1.11 for SSF = 2 and 1.20 for SSF = 3 were indicators of higher OS (fine texture: 192 HR = 0.56, 95% CI = 0.32–0.96, p = 0.03; medium texture: HR = 0.54, 95% CI = 0.29–0.99, p = 0.04) and PFS (fine texture: HR = 0.53, 95% CI = 0.29–0.95, p = 0.03; medium texture: HR = 0.49, 209 95% CI = 0.25–0.96, p = 0.03). In delta-radiomics analysis, the entropy percentage variation correlated with OS and PFS. Increasing entropy indicates a worse outcome. An entropy variation greater than 5% was an indicator of bad prognosis. CT delta-texture analysis quantified as entropy predicted OS and PFS. Baseline CT texture quantified as kurtosis also predicted survival baseline. Further studies with larger cohorts are mandatory to confirm these promising exploratory results.
Collapse
Affiliation(s)
- Antonino Guerrisi
- Radiology and Diagnostic Imaging Unit, Department of Clinical and Dermatological Research, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Michelangelo Russillo
- Medical Oncology Unit 1, Department of Clinical and Cancer Research IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Emiliano Loi
- Medical Physics and Expert Systems Laboratory, 3 Department of Research and Advanced Technologies, Istituti Fisioterapici Ospitalieri - IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Balaji Ganeshan
- Institute of Nuclear Medicine, Imaging Department, University College Hospital, London, United Kingdom
| | - Sara Ungania
- Medical Physics and Expert Systems Laboratory, 3 Department of Research and Advanced Technologies, Istituti Fisioterapici Ospitalieri - IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Flora Desiderio
- Radiology and Diagnostic Imaging Unit, Department of Clinical and Dermatological Research, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Vicente Bruzzaniti
- Medical Physics and Expert Systems Laboratory, 3 Department of Research and Advanced Technologies, Istituti Fisioterapici Ospitalieri - IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Italia Falcone
- Medical Oncology Unit 1, Department of Clinical and Cancer Research IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Davide Renna
- Medical Oncology 1, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Virginia Ferraresi
- Medical Oncology Unit 1, Department of Clinical and Cancer Research IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Mauro Caterino
- Radiology and Diagnostic Imaging Unit, Department of Clinical and Dermatological Research, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Francesco Maria Solivetti
- Radiology and Diagnostic Imaging Unit, Department of Clinical and Dermatological Research, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Francesco Cognetti
- Medical Oncology Unit 1, Department of Clinical and Cancer Research IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Aldo Morrone
- Scientific Director, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| |
Collapse
|
28
|
Koguchi Y, Iwamoto N, Shimada T, Chang SC, Cha J, Curti BD, Urba WJ, Piening BD, Redmond WL. Trough levels of ipilimumab in serum as a potential biomarker of clinical outcomes for patients with advanced melanoma after treatment with ipilimumab. J Immunother Cancer 2021; 9:jitc-2021-002663. [PMID: 34620702 PMCID: PMC8499328 DOI: 10.1136/jitc-2021-002663] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2021] [Indexed: 12/29/2022] Open
Abstract
Background Immune checkpoint blockade (ICB) using anti-CTLA-4 and anti-PD-1/PD-L1 has revolutionized the treatment of advanced cancer. However, ICB is effective for only a small fraction of patients, and biomarkers such as expression of PD-L1 in tumor or serum levels of CXCL11 have suboptimal sensitivity and specificity. Exposure–response (E-R) relationships have been observed with other therapeutic monoclonal antibodies. There are many factors influencing E-R relationships, yet several studies have shown that trough levels of anti-PD-1/PD-L1 correlated with clinical outcomes. However, the potential utility of anti-CTLA-4 levels as a biomarker remains unknown. Methods Serum was obtained at trough levels at weeks 7 and 12 (after doses 2 and 4) from patients with advanced melanoma who received ipilimumab alone (3 mg/kg every 3 weeks for four treatments) via an expanded access program (NCT00495066). We have successfully established a proteomics assay to measure the concentration of ipilimumab in serum using an liquid chromatography with tandem mass spectrometry-based nanosurface and molecular-orientation limited proteolysis (nSMOL) approach. Serum samples from 38 patients were assessed for trough levels of ipilimumab by the nSMOL assay. Results We found that trough levels of ipilimumab were higher in patients who developed immune-related adverse events but did not differ based on the presence or absence of disease progression. We found that patients with higher trough levels of ipilimumab had better overall survival when grouped based on ipilimumab trough levels. Trough levels of ipilimumab were inversely associated with pretreatment serum levels of CXCL11, a predictive biomarker we previously identified, and soluble CD25 (sCD25), a prognostic biomarker for advanced melanoma, as well as C reactive protein (CRP) and interleukin (IL)-6 levels at week 7. Conclusions Our results suggest that trough levels of ipilimumab may be a useful biomarker for the long-term survival of patients with advanced melanoma treated with ipilimumab. The association of ipilimumab trough levels with pretreatment serum levels of CXCL11 and sCD25 is suggestive of a baseline-driven E-R relationship, and the association of ipilimumab trough levels with on-treatment levels of CRP and IL-6 is suggestive of response-driven E-R relationship. Our findings highlight the potential utility of trough levels of ipilimumab as a biomarker. Trial registration number NCT00495066.
Collapse
Affiliation(s)
- Yoshinobu Koguchi
- Earle A Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Noriko Iwamoto
- Shimadzu Bioscience Research Partnership, Shimadzu Scientific Instruments, Bothell, Washington, USA
| | - Takashi Shimada
- Shimadzu Bioscience Research Partnership, Shimadzu Scientific Instruments, Bothell, Washington, USA
| | - Shu-Ching Chang
- Medical Data Research Center, Providence St Joseph Health, Portland, Oregon, USA
| | - John Cha
- Earle A Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Brendan D Curti
- Earle A Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Walter J Urba
- Earle A Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Brian D Piening
- Earle A Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - William L Redmond
- Earle A Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| |
Collapse
|
29
|
Sachpekidis C, Kopp-Schneider A, Hassel JC, Dimitrakopoulou-Strauss A. Assessment of early metabolic progression in melanoma patients under immunotherapy: an 18F-FDG PET/CT study. EJNMMI Res 2021; 11:89. [PMID: 34495433 PMCID: PMC8426446 DOI: 10.1186/s13550-021-00832-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The usage of immune checkpoint inhibitors (ICIs) is the standard practice for the treatment of metastatic melanoma. However, a significant amount of patients show no response to immunotherapy, while issues on its reliable response interpretation exist. Aim of this study was to investigate the phenomenon of early disease progression in 2-deoxy-2-(18F)fluoro-D-glucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) in melanoma patients treated with ICIs. METHODS Thirty-one patients under ICIs serially monitored with 18F-FDG PET/CT were enrolled. All patients exhibited progressive metabolic disease (PMD) after two ICIs' cycles according to the European Organization for Research and Treatment of Cancer (EORTC) criteria, and were characterized as unconfirmed PMD (uPMD). They were further followed with at least one PET/CT for either confirmation of PMD (cPMD) or demonstration of pseudoprogression remission. Patients were also evaluated with the PET Response Evaluation Criteria for Immunotherapy (PERCIMT). Moreover, in an attempt to investigate immune activation, the spleen to liver ratios (SLRmean, SLRmax) of 18F-FDG uptake were measured. RESULTS Median follow up was 69.7 months [64.6-NA]. According to EORTC, 26/31 patients with uPMD eventually showed cPMD (83.9%) and 5/31 patients showed pseudoprogression (16.1%). Patients with cPMD (n = 26) had a median OS of 10.9 months [8.5-NA], while those with pseudoprogression (n = 5) did not reach a median OS [40.9-NA]. Respectively, after application of PERCIMT, 2/5 patients of the pseudoprogression group were correctly classified as non-PMD, reducing the uPMD cohort to 29 patients; eventually, 26/29 patients demonstrated cPMD (89.7%) and 3/29 pseudoprogression (10.3%). One further patient with pseudoprogression exhibited transient, sarcoid-like, mediastinal/hilar lymphadenopathy, a known immune-related adverse event (irAE). Finally, patients eventually showing cPMD exhibited a significantly higher SLRmean than those showing pseudoprogression after two ICIs' cycles (p = 0.038). CONCLUSION PET/CT, performed already after administration of two ICIs' cycles, can identify the majority of non-responders in melanoma immunotherapy. In order to tackle however, the non-negligible phenomenon of pseudoprogression, another follow-up PET/CT, the usage of novel response criteria and vigilance over emergence of radiological irAEs are recommended. Moreover, the investigation of spleen glucose metabolism may offer further prognostic information in melanoma patients under ICIs.
Collapse
Affiliation(s)
- Christos Sachpekidis
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany.
| | | | - Jessica C Hassel
- Department of Dermatology and National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Antonia Dimitrakopoulou-Strauss
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| |
Collapse
|
30
|
Fan J. Sintilimab plus IBI305 for hepatocellular carcinoma - Author's reply. Lancet Oncol 2021; 22:e388. [PMID: 34478672 DOI: 10.1016/s1470-2045(21)00479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jia Fan
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200030, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China.
| |
Collapse
|
31
|
Ansari J, Farrag A, Ali A, Abdelgelil M, Murshid E, Alhamad A, Ali M, Ansari H, Hussain S, Glaholm J. Concurrent use of nivolumab and radiotherapy for patients with metastatic non-small cell lung cancer and renal cell carcinoma with oligometastatic disease progression on nivolumab. Mol Clin Oncol 2021; 15:214. [PMID: 34476098 PMCID: PMC8408674 DOI: 10.3892/mco.2021.2376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 07/09/2021] [Indexed: 11/22/2022] Open
Abstract
Checkpoint inhibitors (CPIs), such as nivolumab, have transformed the treatment paradigm for patients with metastatic non-small cell lung cancer (mNSCLC) and metastatic renal cell carcinoma (mRCC). The combination of CPIs and radiotherapy (RT) constitutes a multimodal treatment approach that may work synergistically and facilitate augmented systemic responses. The aim of the present retrospective study was to assess the efficacy and safety of continuation of nivolumab treatment with the addition of RT in patients with mNSCLC and mRCC who develop oligometastatic disease progression on single-agent nivolumab. All patients with mNSCLC and mRCC who received nivolumab at the Department of Oncology, Prince Sultan Military Medical City (Riyadh, Saudi Arabia) between November 2016 and April 2018 were identified. The records of patients who developed oligometastatic disease progression during nivolumab treatment and were subsequently treated with RT, with nivolumab continued beyond disease progression, were retrospectively reviewed. Details of RT, clinical outcomes and toxicity data were collected. Of the 96 patients who received nivolumab, 22 received multiple courses of RT. A total of 39 sites were irradiated: Bone (n=15), lung (n=9), brain (n=8), adrenal gland (n=2), renal bed (n=2), skin (n=1), ethmoid sinus (n=1) and scalp (n=1). Partial response and complete response were noted at 25 (64%) and 3 (8%) sites, respectively. Stable disease was noted at 6 sites (15%) and disease progression was noted at 5 sites (13%). The median time on nivolumab from the date of the first fraction of RT was 4.5 months (range, 1.5-29 months) for patients with mNSCLC and 5 months (range, 1-38.5 months) for patients with mRCC. No patients developed grade 3-4 toxicities. Grade 2 pneumonitis was noted in 3 patients receiving lung RT. The addition of RT appeared to initiate a response and prolong the duration of nivolumab treatment. Therefore, the combination of nivolumab and RT was found to be well tolerated, with response rates exceeding those in published studies of nivolumab monotherapy.
Collapse
Affiliation(s)
- Jawaher Ansari
- Department of Oncology, Prince Sultan Military Medical City, Riyadh 12233, Saudi Arabia.,Department of Oncology, Tawam Hospital, Al Ain 15258, United Arab Emirates
| | - Ashraf Farrag
- Department of Oncology, Prince Sultan Military Medical City, Riyadh 12233, Saudi Arabia.,Clinical Oncology Department, Assiut University Hospital, Assiut 71515, Egypt
| | - Arwa Ali
- Department of Oncology, Prince Sultan Military Medical City, Riyadh 12233, Saudi Arabia.,Medical Oncology Department, South Egypt Cancer Institute, Assiut University, Assiut 71515, Egypt
| | - Mai Abdelgelil
- Department of Oncology, Prince Sultan Military Medical City, Riyadh 12233, Saudi Arabia.,Clinical Oncology Department, Assiut University Hospital, Assiut 71515, Egypt
| | - Esam Murshid
- Department of Oncology, Prince Sultan Military Medical City, Riyadh 12233, Saudi Arabia
| | - Abdulaziz Alhamad
- Department of Oncology, Prince Sultan Military Medical City, Riyadh 12233, Saudi Arabia
| | - Muhammad Ali
- Department of Oncology, Prince Sultan Military Medical City, Riyadh 12233, Saudi Arabia.,Department of Radiation Oncology, Icon Cancer Centre, Warrnambool, Victoria 3280, Australia
| | - Hidayath Ansari
- Department of Imaging, Cleveland Clinic Abu Dhabi, Abu Dhabi 112412, United Arab Emirates
| | - Syed Hussain
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
| | - John Glaholm
- Department of Oncology, Royal Marsden Hospital, London SW3 6JJ, UK
| |
Collapse
|
32
|
Greten TF, Abou-Alfa GK, Cheng AL, Duffy AG, El-Khoueiry AB, Finn RS, Galle PR, Goyal L, He AR, Kaseb AO, Kelley RK, Lencioni R, Lujambio A, Mabry Hrones D, Pinato DJ, Sangro B, Troisi RI, Wilson Woods A, Yau T, Zhu AX, Melero I. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of hepatocellular carcinoma. J Immunother Cancer 2021; 9:e002794. [PMID: 34518290 PMCID: PMC8438858 DOI: 10.1136/jitc-2021-002794] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2021] [Indexed: 12/11/2022] Open
Abstract
Patients with advanced hepatocellular carcinoma (HCC) have historically had few options and faced extremely poor prognoses if their disease progressed after standard-of-care tyrosine kinase inhibitors (TKIs). Recently, the standard of care for HCC has been transformed as a combination of the immune checkpoint inhibitor (ICI) atezolizumab plus the anti-vascular endothelial growth factor (VEGF) antibody bevacizumab was shown to offer improved overall survival in the first-line setting. Immunotherapy has demonstrated safety and efficacy in later lines of therapy as well, and ongoing trials are investigating novel combinations of ICIs and TKIs, in addition to interventions earlier in the course of disease or in combination with liver-directed therapies. Because HCC usually develops against a background of cirrhosis, immunotherapy for liver tumors is complex and oncologists need to account for both immunological and hepatological considerations when developing a treatment plan for their patients. To provide guidance to the oncology community on important concerns for the immunotherapeutic care of HCC, the Society for Immunotherapy of Cancer (SITC) convened a multidisciplinary panel of experts to develop a clinical practice guideline (CPG). The expert panel drew on the published literature as well as their clinical experience to develop recommendations for healthcare professionals on these important aspects of immunotherapeutic treatment for HCC, including diagnosis and staging, treatment planning, immune-related adverse events (irAEs), and patient quality of life (QOL) considerations. The evidence- and consensus-based recommendations in this CPG are intended to give guidance to cancer care providers treating patients with HCC.
Collapse
Affiliation(s)
- Tim F Greten
- Thoracic and GI Malignancies Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Ghassan K Abou-Alfa
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Medical College at Cornell University, New York, New York, USA
| | - Ann-Lii Cheng
- Department of Medical Oncology, National Taiwan University Cancer Center and National Taiwan University Hospital, Taipei, Taiwan
| | - Austin G Duffy
- The Mater Hospital/University College Dublin, Dublin, Ireland
| | - Anthony B El-Khoueiry
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Richard S Finn
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | | | - Lipika Goyal
- Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Aiwu Ruth He
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Ahmed O Kaseb
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Robin Kate Kelley
- Department of Medicine (Hematology/Oncology), UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | - Riccardo Lencioni
- Department of Radiology, University of Pisa School of Medicine, Pisa, Italy
- Miami Cancer Institute, Miami, Florida, USA
| | - Amaia Lujambio
- Oncological Sciences Department, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Donna Mabry Hrones
- Thoracic and GI Malignancies Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - David J Pinato
- Department of Surgery & Cancer, Imperial College London, London, UK
| | - Bruno Sangro
- Clinica Universidad de Navarra-Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | | | - Andrea Wilson Woods
- Blue Faery: The Adrienne Wilson Liver Cancer Association, Birmingham, Alabama, USA
| | - Thomas Yau
- Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong
| | - Andrew X Zhu
- Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
- Jiahui Health, Jiahui International Cancer Center, Shanghai, China
| | - Ignacio Melero
- Clinica Universidad de Navarra-Instituto de Investigación Sanitaria de Navarra (IDISNA), Pamplona, Spain
- Foundation for Applied Medical Research (FIMA), Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
33
|
Tang WJ, Kong QC, Cheng ZX, Liang YS, Jin Z, Chen LX, Hu WK, Liang YY, Wei XH, Guo Y, Jiang XQ. Performance of radiomics models for tumour-infiltrating lymphocyte (TIL) prediction in breast cancer: the role of the dynamic contrast-enhanced (DCE) MRI phase. Eur Radiol 2021; 32:864-875. [PMID: 34430998 DOI: 10.1007/s00330-021-08173-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/20/2021] [Accepted: 06/25/2021] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To systematically investigate the effect of imaging features at different DCE-MRI phases to optimise a radiomics model based on DCE-MRI for the prediction of tumour-infiltrating lymphocyte (TIL) levels in breast cancer. MATERIALS AND METHODS This study retrospectively collected 133 patients with pathologically proven breast cancer, including 73 patients with low TIL levels and 60 patients with high TIL levels. The volumes of breast cancer lesions were manually delineated on T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and each phase of DCE-MRI, followed by 6250 quantitative feature extractions. The least absolute shrinkage and selection operator (LASSO) method was used to select predictive feature sets for the classifiers. Four models were developed for predicting TILs: (1) single enhanced phase radiomics models; (2) fusion enhanced multi-phase radiomics models; (3) fusion multi-sequence radiomics models; and (4) a combined radiomics-based clinical model. RESULTS Image features extracted from the delayed phase MRI, especially DCE_Phase 6 (DCE_P6), demonstrated dominant predictive performances over features from other phases. The fusion multi-sequence radiomics model and combined radiomics-based clinical model achieved the highest predictive performances with areas under the curve (AUCs) of 0.934 and 0.950, respectively; however, the differences were not statistically significant. CONCLUSION The DCE-MRI radiomics model, especially image features extracted from the delayed phases, can help improve the performance in predicting TILs. The radiomics nomogram is effective in predicting TILs in breast cancer. KEY POINTS • Radiomics features extracted from DCE-MRI, especially delayed phase images, help predict TIL levels in breast cancer. • We developed a nomogram based on MRI to predict TILs in breast cancer that achieved the highest AUC of 0.950.
Collapse
Affiliation(s)
- Wen-Jie Tang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Qing-Cong Kong
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Zi-Xuan Cheng
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Yun-Shi Liang
- Department of Pathology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Zhe Jin
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Lei-Xin Chen
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Wen-Ke Hu
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Ying-Ying Liang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Xin-Hua Wei
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Yuan Guo
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China.
| | - Xin-Qing Jiang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China.
| |
Collapse
|
34
|
Buma AIG, Muller M, de Vries R, Sterk PJ, van der Noort V, Wolf-Lansdorf M, Farzan N, Baas P, van den Heuvel MM. eNose analysis for early immunotherapy response monitoring in non-small cell lung cancer. Lung Cancer 2021; 160:36-43. [PMID: 34399166 DOI: 10.1016/j.lungcan.2021.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Exhaled breath analysis by electronic nose (eNose) has shown to be a potential predictive biomarker before start of anti-PD-1 therapy in patients with non-small cell lung carcinoma (NSCLC). We hypothesized that the eNose could also be used as an early monitoring tool to identify responders more accurately at early stage of treatment when compared to baseline. In this proof-of-concept study we aimed to definitely discriminate responders from non-responders after six weeks of treatment. MATERIALS AND METHODS This was a prospective observational study in patients with advanced NSCLC eligible for anti-PD-1 treatment. The efficacy of treatment was assessed by the Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 at 3-month follow-up. We analyzed SpiroNose exhaled breath data of 94 patients (training cohort n = 62, validation cohort n = 32). Data analysis involved signal processing and statistics based on Independent Samples T-tests and Linear Discriminant Analysis (LDA) followed by Receiver Operating Characteristic (ROC) analysis. RESULTS In the training cohort, a specificity of 73% was obtained at a 100% sensitivity level to identify objective responders. The Area Under the Curve (AUC) was 0.95 (CI: 0.89-1.00). In the validation cohort, these results were confirmed with an AUC of 0.97 (CI: 0.91-1.00). CONCLUSION Exhaled breath analysis by eNose early during treatment allows for a highly accurate, non-invasive and low-cost identification of advanced NSCLC patients who benefit from anti-PD-1 therapy.
Collapse
Affiliation(s)
| | - Mirte Muller
- Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Rianne de Vries
- Amsterdam University Medical Center, Amsterdam, the Netherlands; Breathomix B.V. (www.breathomix.com), Leiden, the Netherlands
| | - Peter J Sterk
- Amsterdam University Medical Center, Amsterdam, the Netherlands
| | | | | | - Niloufar Farzan
- Breathomix B.V. (www.breathomix.com), Leiden, the Netherlands
| | - Paul Baas
- Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | |
Collapse
|
35
|
Emens LA, Adams S, Cimino-Mathews A, Disis ML, Gatti-Mays ME, Ho AY, Kalinsky K, McArthur HL, Mittendorf EA, Nanda R, Page DB, Rugo HS, Rubin KM, Soliman H, Spears PA, Tolaney SM, Litton JK. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of breast cancer. J Immunother Cancer 2021; 9:e002597. [PMID: 34389617 PMCID: PMC8365813 DOI: 10.1136/jitc-2021-002597] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2021] [Indexed: 12/17/2022] Open
Abstract
Breast cancer has historically been a disease for which immunotherapy was largely unavailable. Recently, the use of immune checkpoint inhibitors (ICIs) in combination with chemotherapy for the treatment of advanced/metastatic triple-negative breast cancer (TNBC) has demonstrated efficacy, including longer progression-free survival and increased overall survival in subsets of patients. Based on clinical benefit in randomized trials, ICIs in combination with chemotherapy for the treatment of some patients with advanced/metastatic TNBC have been approved by the United States (US) Food and Drug Administration (FDA), expanding options for patients. Ongoing questions remain, however, about the optimal chemotherapy backbone for immunotherapy, appropriate biomarker-based selection of patients for treatment, the optimal strategy for immunotherapy treatment in earlier stage disease, and potential use in histological subtypes other than TNBC. To provide guidance to the oncology community on these and other important concerns, the Society for Immunotherapy of Cancer (SITC) convened a multidisciplinary panel of experts to develop a clinical practice guideline (CPG). The expert panel drew upon the published literature as well as their clinical experience to develop recommendations for healthcare professionals on these important aspects of immunotherapeutic treatment for breast cancer, including diagnostic testing, treatment planning, immune-related adverse events (irAEs), and patient quality of life (QOL) considerations. The evidence-based and consensus-based recommendations in this CPG are intended to give guidance to cancer care providers treating patients with breast cancer.
Collapse
Affiliation(s)
- Leisha A Emens
- Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sylvia Adams
- Perlmutter Cancer Center, New York University Langone, New York, New York, USA
| | - Ashley Cimino-Mathews
- Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mary L Disis
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
| | - Margaret E Gatti-Mays
- Pelotonia Institute for Immuno-Oncology, Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Alice Y Ho
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kevin Kalinsky
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | | | - Elizabeth A Mittendorf
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Breast Oncology Program, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Rita Nanda
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago Medicine Comprehensive Cancer Center, Chicago, Illinois, USA
| | - David B Page
- Earle A Chiles Research Institute, Portland, Oregon, USA
| | - Hope S Rugo
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Krista M Rubin
- Center for Melanoma, Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| | - Hatem Soliman
- Department of Breast Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Patricia A Spears
- University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, USA
| | - Sara M Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jennifer K Litton
- Department of Breast Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
36
|
Current Imaging Evaluation of Tumor Response to Advanced Medical Treatment in Metastatic Renal-Cell Carcinoma: Clinical Implications. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11156930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The present review is focused on the role of diagnostic tomographic imaging such as computed tomography and magnetic resonance imaging to assess and predict tumor response to advanced medical treatments in metastatic renal cell carcinoma (RCC) patients. In this regard, antiangiogenic agents and immune checkpoint inhibitors (ICIs) have developed as advanced treatment options replacing the conventional therapy based on interferon-alpha and interleuchin-2 which had unfavorable toxicity profile and low response rates. In clinical practice, the imaging evaluation of treatment response in cancer patients is based on dimensional changes of tumor lesions in sequential scans; in particular, Response Evaluation Criteria in Solid Tumors (RECIST) have been defined for this purpose and also applied in patients with metastatic RCC. However, these new drugs with predominant cytostatic effect make RECIST insufficient to realize an adequate response imaging evaluation. Therefore, new imaging criteria (mCHOI and iRECIST) have been proposed to assess tumor response to advanced medical treatments of metastatic RCC, they correlate better than RECIST with the progression-free survival and overall survival. Finally, a potential role of radiomics and machine learning models has been suggested to predict tumor response.
Collapse
|
37
|
Palma Dos Reis AF, Hennig I, Wilcock A. Immune checkpoint inhibitors: current status. BMJ Support Palliat Care 2021:bmjspcare-2021-002954. [PMID: 34130996 DOI: 10.1136/bmjspcare-2021-002954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
The use of immune checkpoint inhibitors (ICIs) is growing rapidly in oncology and palliative care clinicians and other generalists will increasingly see patients who are receiving, or who have received ICI. For optimal care, it is important that clinicians have a basic understanding of the unique nature of ICI as anticancer treatments, including patterns of response, potential issues with concurrent corticosteroid use and the wide range of possible immune-related adverse effects (IrAEs). This paper, informed by a recent literature search, provides a succinct yet comprehensive overview of ICI, with a particular focus on IrAE, highlighting that some are potentially life-threatening and/or can develop a long time, sometimes years, after even a short course of an ICI.
Collapse
Affiliation(s)
- Ana Filipa Palma Dos Reis
- Serviço de Oncologia, Hospital Santo António dos Capuchos, Lisboa, Portugal
- Anatomia, Universidade Nova de Lisboa Faculdade de Ciências Médicas de Lisboa, Lisboa, Portugal
| | - Ivo Hennig
- Clinical Oncology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Andrew Wilcock
- Palliative Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK
| |
Collapse
|
38
|
Sachpekidis C, Kopp-Schneider A, Pan L, Papamichail D, Haberkorn U, Hassel JC, Dimitrakopoulou-Strauss A. Interim [ 18F]FDG PET/CT can predict response to anti-PD-1 treatment in metastatic melanoma. Eur J Nucl Med Mol Imaging 2021; 48:1932-1943. [PMID: 33336264 PMCID: PMC8113306 DOI: 10.1007/s00259-020-05137-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE In an attempt to identify biomarkers that can reliably predict long-term outcomes to immunotherapy in metastatic melanoma, we investigated the prognostic role of [18F]FDG PET/CT, performed at baseline and early during the course of anti-PD-1 treatment. METHODS Twenty-five patients with stage IV melanoma, scheduled for treatment with PD-1 inhibitors, were enrolled in the study (pembrolizumab, n = 8 patients; nivolumab, n = 4 patients; nivolumab/ipilimumab, 13 patients). [18F]FDG PET/CT was performed before the start of treatment (baseline PET/CT) and after the initial two cycles of PD-1 blockade administration (interim PET/CT). Seventeen patients underwent also a third PET/CT scan after administration of four cycles of treatment. Evaluation of patients' response by means of PET/CT was performed after application of the European Organization for Research and Treatment of Cancer (EORTC) 1999 criteria and the PET Response Evaluation Criteria for IMmunoTherapy (PERCIMT). Response to treatment was classified into 4 categories: complete metabolic response (CMR), partial metabolic response (PMR), stable metabolic disease (SMD), and progressive metabolic disease (PMD). Patients were further grouped into two groups: those demonstrating metabolic benefit (MB), including patients with SMD, PMR, and CMR, and those demonstrating no MB (no-MB), including patients with PMD. Moreover, patterns of [18F]FDG uptake suggestive of radiologic immune-related adverse events (irAEs) were documented. Progression-free survival (PFS) was measured from the date of interim PET/CT until disease progression or death from any cause. RESULTS Median follow-up from interim PET/CT was 24.2 months (19.3-41.7 months). According to the EORTC criteria, 14 patients showed MB (1 CMR, 6 PMR, and 7 SMD), while 11 patients showed no-MB (PMD). Respectively, the application of the PERCIMT criteria revealed that 19 patients had MB (1 CMR, 6 PMR, and 12 SMD), and 6 of them had no-MB (PMD). With regard to PFS, no significant difference was observed between patients with MB and no-MB on interim PET/CT according to the EORTC criteria (p = 0.088). In contrary, according to the PERCIMT criteria, patients demonstrating MB had a significantly longer PFS than those showing no-MB (p = 0.045). The emergence of radiologic irAEs (n = 11 patients) was not associated with a significant survival benefit. Regarding the sub-cohort undergoing also a third PET/CT, 14/17 patients (82%) showed concordant responses and 3/17 (18%) had a mismatch of response assessment between interim and late PET/CT. CONCLUSION PET/CT-based response of metastatic melanoma to PD-1 blockade after application of the recently proposed PERCIMT criteria is significantly correlated with PFS. This highlights the potential ability of [18F]FDG PET/CT for early stratification of response to anti-PD-1 agents, a finding with possible significant clinical and financial implications. Further studies including larger numbers of patients are necessary to validate these results.
Collapse
Affiliation(s)
- Christos Sachpekidis
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany.
| | | | - Leyun Pan
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| | - Dimitrios Papamichail
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| | - Uwe Haberkorn
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
- Department of Nuclear Medicine, University of Heidelberg, Heidelberg, Germany
| | - Jessica C Hassel
- Department of Dermatology and National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Antonia Dimitrakopoulou-Strauss
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| |
Collapse
|
39
|
Pozzessere C, Lazor R, Jumeau R, Peters S, Prior JO, Beigelman-Aubry C. Imaging Features of Pulmonary Immune-related Adverse Events. J Thorac Oncol 2021; 16:1449-1460. [PMID: 34087477 DOI: 10.1016/j.jtho.2021.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 03/05/2021] [Accepted: 05/16/2021] [Indexed: 11/24/2022]
Abstract
Pulmonary immune-related adverse events represent rare but potentially severe side effects of immunotherapies. Diagnosis is often challenging, as symptoms and imaging features are not specific and may mimic other lung diseases, thus potentially delaying appropriate patient management. In this setting, an accurate imaging evaluation is essential for a prompt detection and correct management of these drug-induced lung diseases. The purpose of this article is to review the different types of pulmonary immune-related adverse events, describe their imaging characteristics on both high-resolution computed tomography and positron emission tomography/computed tomography and stress their underlying diagnostic challenge by presenting the mimickers.
Collapse
Affiliation(s)
- Chiara Pozzessere
- Department of Radiology, AUSL Toscana Centro, San Giuseppe Hospital, Empoli, Italy; Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.
| | - Romain Lazor
- Respiratory Medicine Department, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Raphael Jumeau
- Department of Radiation Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Solange Peters
- Medical Oncology Department, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - John O Prior
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Catherine Beigelman-Aubry
- Department of Radiodiagnostic and Interventional Radiology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
40
|
Coolens C, Gwilliam MN, Alcaide-Leon P, de Freitas Faria IM, Ynoe de Moraes F. Transformational Role of Medical Imaging in (Radiation) Oncology. Cancers (Basel) 2021; 13:cancers13112557. [PMID: 34070984 PMCID: PMC8197089 DOI: 10.3390/cancers13112557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Onboard, imaging techniques have brought about a huge transformation in the ability to deliver targeted radiation therapies. Each generation of these technologies enables us to better visualize where to deliver lethal doses of radiation and thus allows the shrinking of necessary geometric margins leading to reduced toxicities. Alongside improvements in treatment delivery, advances in medical imaging have also allowed us to better define the volumes we wish to target. The development of imaging techniques that can capture aspects of the tumor’s biology before, during and after therapy is transforming how treatment can be delivered. Technological changes have further made these biological imaging techniques available in real-time providing the opportunity to monitor a patient’s response to treatment closely and often before any volume changes are visible on conventional radiological images. Here we discuss the development of robust quantitative imaging biomarkers and how they can personalize therapy towards meaningful clinical endpoints. Abstract Onboard, real-time, imaging techniques, from the original megavoltage planar imaging devices, to the emerging combined MRI-Linear Accelerators, have brought a huge transformation in the ability to deliver targeted radiation therapies. Each generation of these technologies enables lethal doses of radiation to be delivered to target volumes with progressively more accuracy and thus allows shrinking of necessary geometric margins, leading to reduced toxicities. Alongside these improvements in treatment delivery, advances in medical imaging, e.g., PET, and MRI, have also allowed target volumes themselves to be better defined. The development of functional and molecular imaging is now driving a conceptually larger step transformation to both better understand the cancer target and disease to be treated, as well as how tumors respond to treatment. A biological description of the tumor microenvironment is now accepted as an essential component of how to personalize and adapt treatment. This applies not only to radiation oncology but extends widely in cancer management from surgical oncology planning and interventional radiology, to evaluation of targeted drug delivery efficacy in medical oncology/immunotherapy. Here, we will discuss the role and requirements of functional and metabolic imaging techniques in the context of brain tumors and metastases to reliably provide multi-parametric imaging biomarkers of the tumor microenvironment.
Collapse
Affiliation(s)
- Catherine Coolens
- Department of Medical Physics, Princess Margaret Cancer Centre & University Health Network, Toronto, ON M5G 1Z5, Canada;
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
- Department of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- TECHNA Institute, University Health Network, Toronto, ON M5G 1Z5, Canada
- Correspondence:
| | - Matt N. Gwilliam
- Department of Medical Physics, Princess Margaret Cancer Centre & University Health Network, Toronto, ON M5G 1Z5, Canada;
| | - Paula Alcaide-Leon
- Joint Department of Medical Imaging, University Health Network, Toronto, ON M5G 1Z5, Canada;
| | | | - Fabio Ynoe de Moraes
- Department of Oncology, Division of Radiation Oncology, Queen’s University, Kingston, ON K7L 5P9, Canada;
| |
Collapse
|
41
|
Russo L, Avesani G, Gui B, Trombadori CML, Salutari V, Perri MT, Di Paola V, Rodolfino E, Scambia G, Manfredi R. Immunotherapy-Related Imaging Findings in Patients with Gynecological Malignancies: What Radiologists Need to Know. Korean J Radiol 2021; 22:1310-1322. [PMID: 34047505 PMCID: PMC8316780 DOI: 10.3348/kjr.2020.1299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/26/2021] [Accepted: 03/05/2021] [Indexed: 01/15/2023] Open
Abstract
Immunotherapy is an effective treatment option for gynecological malignancies. Radiologists dealing with gynecological patients undergoing treatment with immune checkpoint inhibitors should be aware of unconventional immune-related imaging features for the evaluation of tumor response and immune-related adverse events. In this paper, immune checkpoint inhibitors used for gynecological malignancies and their mechanisms of action are briefly presented. In the second part, patterns of pseudoprogression are illustrated, and different forms of immune-related adverse events are discussed.
Collapse
Affiliation(s)
- Luca Russo
- UOC Radiologia Generale ed Interventistica Generale, Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Area Diagnostica per Immagini, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giacomo Avesani
- UOC Radiologia Generale ed Interventistica Generale, Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Area Diagnostica per Immagini, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Benedetta Gui
- UOC Radiologia Generale ed Interventistica Generale, Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Area Diagnostica per Immagini, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | | | - Vanda Salutari
- UOC Ginecologia Oncologica, Dipartimento per la Salute della Donna e del Bambino e della Salute Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Maria Teresa Perri
- Istituto di Ginecologia e Ostetricia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valerio Di Paola
- UOC Radiologia Generale ed Interventistica Generale, Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Area Diagnostica per Immagini, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Elena Rodolfino
- UOC Radiologia Generale ed Interventistica Generale, Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Area Diagnostica per Immagini, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giovanni Scambia
- UOC Ginecologia Oncologica, Dipartimento per la Salute della Donna e del Bambino e della Salute Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto di Ginecologia e Ostetricia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Riccardo Manfredi
- UOC Radiologia Generale ed Interventistica Generale, Dipartimento Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Area Diagnostica per Immagini, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Dipartimento Universitario di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
42
|
Rauch M, Tausch D, Stera S, Blanck O, Wolff R, Meissner M, Urban H, Hattingen E. MRI characteristics in treatment for cerebral melanoma metastasis using stereotactic radiosurgery and concomitant checkpoint inhibitors or targeted therapeutics. J Neurooncol 2021; 153:79-87. [PMID: 33761055 PMCID: PMC8131338 DOI: 10.1007/s11060-021-03744-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/18/2021] [Indexed: 11/04/2022]
Abstract
Introduction Combination therapy for melanoma brain metastases (MM) using stereotactic radiosurgery (SRS) and immune checkpoint-inhibition (ICI) or targeted therapy (TT) is currently of high interest. In this collective, time evolution and incidence of imaging findings indicative of pseudoprogression is sparsely researched. We therefore investigated time-course of MRI characteristics in these patients. Methods Data were obtained retrospectively from 27 patients (12 female, 15 male; mean 61 years, total of 169 MMs). Single lesion volumes, total MM burden and edema volumes were analyzed at baseline and follow-up MRIs in 2 months intervals after SRS up to 24 months. The occurrence of intralesional hemorrhages was recorded. Results 17 patients (80 MM) received ICI, 8 (62 MM) TT and 2 (27 MM) ICI + TT concomitantly to SRS. MM-localization was frontal (n = 89), temporal (n = 23), parietal (n = 20), occipital (n = 10), basal ganglia/thalamus/insula (n = 10) and cerebellar (n = 10). A volumetric progression of MM 2–4 months after SRS was observed in combined treatment with ICI (p = 0.028) and ICI + TT (p = 0.043), whereas MMs treated with TT showed an early volumetric regression (p = 0.004). Edema volumes moderately correlated with total MM volumes (r = 0.57; p < 0.0001). Volumetric behavior did not differ significantly over time regarding lesions’ initial sizes or localizations. No significant differences between groups were observed regarding rates of post-SRS intralesional hemorrhages. Conclusion Reversible volumetric increases in terms of pseudoprogression are observed 2–4 months after SRS in patients with MM concomitantly treated with ICI and ICI + TT, rarely after TT. Edema volumes mirror total MM volumes. Medical treatment type does not significantly affect rates of intralesional hemorrhage.
Collapse
Affiliation(s)
- Maximilian Rauch
- Institute for Neuroradiology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany.
| | - Daniel Tausch
- Institute for Neuroradiology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Susanne Stera
- Department of Radiation Oncology, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Oliver Blanck
- Saphir Radiosurgery Center, Frankfurt am Main, Germany
| | - Robert Wolff
- Saphir Radiosurgery Center, Frankfurt am Main, Germany
| | - Markus Meissner
- Department of Dermatology, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Hans Urban
- Institute for Neurooncology, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Elke Hattingen
- Institute for Neuroradiology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| |
Collapse
|
43
|
Rundo F, Bersanelli M, Urzia V, Friedlaender A, Cantale O, Calcara G, Addeo A, Banna GL. Three-Dimensional Deep Noninvasive Radiomics for the Prediction of Disease Control in Patients With Metastatic Urothelial Carcinoma treated With Immunotherapy. Clin Genitourin Cancer 2021; 19:396-404. [PMID: 33849811 DOI: 10.1016/j.clgc.2021.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Immunotherapy is effective in a small percentage of patients with cancer and no reliable predictive biomarkers are currently available. Artificial Intelligence algorithms may automatically quantify radiologic characteristics associated with disease response to medical treatments. METHODS We investigated an innovative approach based on a 3-dimensional (3D) deep radiomics pipeline to classify visual features of chest-abdomen computed tomography (CT) scans with the aim of distinguishing disease control from progressive disease to immune checkpoint inhibitors (ICIs). Forty-two consecutive patients with metastatic urothelial cancer had progressed on first-line platinum-based chemotherapy and had baseline CT scans at immunotherapy initiation. The 3D-pipeline included self-learned visual features and a deep self-attention mechanism. According to the outcome to the ICIs, a 3D deep classifier semiautomatically categorized the most discriminative region of interest on the CT scans. RESULTS With a median follow-up of 13.3 months (95% CI, 11.1-15.6), the median overall survival was 8.5 months (95% CI, 3.1-13.8). According to disease response to immunotherapy, the median overall survival was 3.6 months (95% CI, 2.0-5.2) for patients with progressive disease; it was not yet reached for those with disease control. The predictive accuracy of the 3D-pipeline was 82.5% (sensitivity 96%; specificity, 60%). The addition of baseline clinical factors increased the accuracy to 92.5% by improving specificity to 87%; the accuracy of other architectures ranged from 72.5% to 90%. CONCLUSION Artificial Intelligence by 3D deep radiomics is a potential noninvasive biomarker for the prediction of disease control to ICIs in metastatic urothelial cancer and deserves validation in larger series.
Collapse
Affiliation(s)
| | - Melissa Bersanelli
- Medical Oncology Unit, Medicine and Surgery Department, University of Parma, Parma, Italy.
| | | | - Alex Friedlaender
- Oncology Department, Geneva University Hospital, Geneva, Switzerland
| | - Ornella Cantale
- Department of Experimental Oncology, Istituto Oncologico del Mediterraneo, Viagrande, Italy
| | - Giacomo Calcara
- Division of Medical Oncology and Department of Radiology, Cannizzaro Hospital, Catania, Italy
| | - Alfredo Addeo
- Oncology Department, Geneva University Hospital, Geneva, Switzerland
| | - Giuseppe Luigi Banna
- Division of Medical Oncology and Department of Radiology, Cannizzaro Hospital, Catania, Italy; Department of Oncology, Portsmouth Hospitals NHS Trust, Portsmouth, United Kingdom
| |
Collapse
|
44
|
Abstract
With the ongoing advances in imaging techniques, increasing volumes of anatomical and functional data are being generated as part of the routine clinical workflow. This surge of available imaging data coincides with increasing research in quantitative imaging, particularly in the domain of imaging features. An important and novel approach is radiomics, where high-dimensional image properties are extracted from routine medical images. The fundamental principle of radiomics is the hypothesis that biomedical images contain predictive information, not discernible to the human eye, that can be mined through quantitative image analysis. In this review, a general outline of radiomics and artificial intelligence (AI) will be provided, along with prominent use cases in immunotherapy (e.g. response and adverse event prediction) and targeted therapy (i.e. radiogenomics). While the increased use and development of radiomics and AI in immuno-oncology is highly promising, the technology is still in its early stages, and different challenges still need to be overcome. Nevertheless, novel AI algorithms are being constructed with an ever-increasing scope of applications.
Collapse
Affiliation(s)
- Z. Bodalal
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - I. Wamelink
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Technical Medicine, University of Twente, Enschede, The Netherlands
| | - S. Trebeschi
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - R.G.H. Beets-Tan
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
45
|
Heterogeneity of Response and Immune System Activity during Treatment with Nivolumab in Hepatocellular Carcinoma: Results from a Single-Institution Retrospective Analysis. Cancers (Basel) 2021; 13:cancers13020213. [PMID: 33430142 PMCID: PMC7827490 DOI: 10.3390/cancers13020213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/27/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Immunotherapy is an emerging treatment in hepatocellular carcinoma, both alone and in combination. The advent of this new approach raises challenges for the interpretation of response assessment due to the peculiar patterns of mixed responses, pseudoprogression and hyperprogression. Furthermore, there are no criteria to drive selection of treatment strategy. We analyzed data from the first 10 patients treated with nivolumab in our institution and we identified different patterns of response according to the lesion’s site. Furthermore, we analyzed blood samples from the first four patients, and found differences, between a patient with shorter survival and the other three, that may provide insight into mechanisms underlying the different activities of nivolumab. Although we analyzed data from a small number of patients, our results can help to understand mechanisms of immunotherapy activity in order to define the most appropriate treatment strategy for each patient. Abstract Treatment of hepatocellular carcinoma (HCC) is rapidly evolving, with many new therapeutic options; in particular, immunotherapy (IT) is acquiring a major role, even in combination regimens. Despite these promising results, an important limitation is the lack of prognostic and predictive factors that prevent provision of a tool for patient stratification in order to select the most appropriate strategy. Furthermore, response assessment can be challenging with IT due to peculiar patterns such as mixed responses or pseudoprogression. We analyzed biological and clinical features from the first 10 HCC patients treated with nivolumab in our institution. Analysis of patterns of response in CT assessment revealed complete response in pulmonary lesions, along with heterogeneous behavior in the liver and other organ lesions. Peripheral blood mononuclear cells (PBMC) analysis in the first four patients showed unique alterations in a patient with poor prognosis, both at baseline (lower percentage of effector T cells, higher percentage of natural killer T [NK/T] cells) and during treatment with nivolumab (decrease in nonclassical monocytes, increase in monocytic myeloid-derived suppressor cells [MO-MDSC]), suggesting a possible prognostic role for these features. Although obtained in a small cohort of patients, our results open a new perspective for understanding mechanisms underlying IT outcomes in HCC patients.
Collapse
|
46
|
Cappello G, Molea F, Campanella D, Galioto F, Russo F, Regge D. Gastrointestinal adverse events of immunotherapy. BJR Open 2021; 3:20210027. [PMID: 35707753 PMCID: PMC9185848 DOI: 10.1259/bjro.20210027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/31/2021] [Accepted: 10/04/2021] [Indexed: 11/05/2022] Open
Abstract
Cancer immunotherapy with immune-checkpoint inhibitors (ICIs) has emerged as an effective treatment for different types of cancer. ICIs are monoclonal antibodies that inhibit the signaling pathway that suppress antitumor T-cell activity. Patients benefit from increased overall and progression-free survival, but the enhancement of normal immunity can result in autoimmune manifestations, called immune-related adverse events (IRAEs), which may lead to a discontinuation of cancer therapy and to severe also life-threating events. IRAEs may affect any organs or system in the human body, being the gastrointestinal (GI) tract one of the most involved districts. Imaging plays an important role in recognizing GI IRAEs and radiologist should be familiar with the main spectrum of radiological appearance. Indeed, early detection of GI IRAEs is crucial for proper patient management and reduces morbidity and mortality. The purpose of this review is to present the most relevant imaging manifestation of GI IRAEs.
Collapse
Affiliation(s)
| | | | | | | | - Filippo Russo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy
| | - Daniele Regge
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy
| |
Collapse
|
47
|
Filippi L, Nervi C, Proietti I, Pirisino R, Potenza C, Martelli O, Equitani F, Bagni O. Molecular imaging in immuno-oncology: current status and translational perspectives. Expert Rev Mol Diagn 2020; 20:1199-1211. [PMID: 33215963 DOI: 10.1080/14737159.2020.1854090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Only 20-40% of patients respond to therapy with immune checkpoint inhibitors (ICIs). Therefore, the early identification of subjects that can benefit from such therapeutic regimen is mandatory. Areas covered: The immunobiological mechanisms of ICIs are briefly illustrated. Furthermore, the limitations of traditional radiological approaches are covered. Then, the pros and cons of molecular imaging through positron emission computed tomography (PET/CT) are reviewed, with a particular focus on 18f-fluorodeoxyglucose (18F-FDG) and PET-derived metabolic parameters. Lastly, translational perspective of radiopharmaceuticals others than 18F-FDG such as 89zirconium (89Zr) or fluorine-18 (18F) labeled monoclonal antibodies (e.g.89Zr-atezolizumab, 89Zr-nivolumab) binding to specific biomarkers are discussed. Expert opinion: Molecular imaging presents a prominent role for the management of oncological patients treated with ICIs. Preliminary clinical data indicate that PET/CT with 18F-FDG is useful for assessing the response to treatment and for the imaging of immune-related adverse effects. Nevertheless, the methodological approach (iPERCIST, PERCIMT, or others) to be used for an optimal diagnostic accuracy and patients' evaluation is still a debated issue. PET/CT with radioligands directed toward ICIs biomarkers, although is still in a translational phase, holds the promise of accurately predicting the response to treatment and revealing the acquired resistance to immunotherapy.
Collapse
Affiliation(s)
- Luca Filippi
- Department of Nuclear Medicine, Santa Maria Goretti Hospital, AUSL , Latina, Italy
| | - Clara Nervi
- Department of Medical and Surgical Sciences and Biotechnology, University of Rome "La Sapienza" , Latina, Italy
| | - Ilaria Proietti
- Dermatology Unit Daniele Innocenzi, A. Fiorini Hospital, Polo Pontino , Terracina, Italy
| | - Riccardo Pirisino
- Department of Nuclear Medicine, Santa Maria Goretti Hospital, AUSL , Latina, Italy
| | - Concetta Potenza
- Dermatology Unit Daniele Innocenzi, A. Fiorini Hospital, Polo Pontino , Terracina, Italy
| | | | - Francesco Equitani
- Department of Transfusion Medicine, Santa Maria Goretti Hospital, AUSL , Latina, Italy
| | - Oreste Bagni
- Department of Nuclear Medicine, Santa Maria Goretti Hospital, AUSL , Latina, Italy
| |
Collapse
|
48
|
Zulfiqar M, Menias C, Shetty A, Ludwig DR, Rehman SSU, Orlowski H, Mellnick V. Imaging Spectrum of Infections in the Setting of Immunotherapy and Molecular Targeted Therapy. Curr Probl Diagn Radiol 2020; 51:86-97. [PMID: 33272723 DOI: 10.1067/j.cpradiol.2020.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/28/2020] [Accepted: 11/09/2020] [Indexed: 11/22/2022]
Abstract
Advances in genomics and immunology are revolutionizing our understanding and treatment of cancer with improved treatment outcomes and patient quality of life. With the increasing use of immunotherapy and molecular targeted therapy, a variety of unusual and/or opportunistic infections are also observed. A variety of factors including use of immunosuppression for immune-mediated adverse effects play an important role for increasing the likelihood of these infections and form the basis of this case-based review. Imaging features of infections arising in patients undergoing immunotherapy regimens have not been previously highlighted. Prompt recognition of the spectrum of mycobacterial, bacterial, invasive fungal and viral pathogens can potentially lead to reduction in the high morbidity and mortality in this patient population.
Collapse
Affiliation(s)
- Maria Zulfiqar
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO.
| | - Christine Menias
- Mayo Clinic School of Medicine, Mayo Clinic Hospital, Phoenix, AZ
| | - Anup Shetty
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO
| | - Daniel R Ludwig
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO
| | - Sana Saif Ur Rehman
- Department of Hematology Oncology, Washington University School of Medicine, St Louis, MO
| | - Hilary Orlowski
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO
| | - Vincent Mellnick
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO
| |
Collapse
|
49
|
3D Non-Local Neural Network: A Non-Invasive Biomarker for Immunotherapy Treatment Outcome Prediction. Case-Study: Metastatic Urothelial Carcinoma. J Imaging 2020; 6:jimaging6120133. [PMID: 34460530 PMCID: PMC8321180 DOI: 10.3390/jimaging6120133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy is regarded as one of the most significant breakthroughs in cancer treatment. Unfortunately, only a small percentage of patients respond properly to the treatment. Moreover, to date, there are no efficient bio-markers able to early discriminate the patients eligible for this treatment. In order to help overcome these limitations, an innovative non-invasive deep pipeline, integrating Computed Tomography (CT) imaging, is investigated for the prediction of a response to immunotherapy treatment. We report preliminary results collected as part of a case study in which we validated the implemented method on a clinical dataset of patients affected by Metastatic Urothelial Carcinoma. The proposed pipeline aims to discriminate patients with high chances of response from those with disease progression. Specifically, the authors propose ad-hoc 3D Deep Networks integrating Self-Attention mechanisms in order to estimate the immunotherapy treatment response from CT-scan images and such hemato-chemical data of the patients. The performance evaluation (average accuracy close to 92%) confirms the effectiveness of the proposed approach as an immunotherapy treatment response biomarker.
Collapse
|
50
|
Huang J, Rong L, Wang E, Fang Y. Pseudoprogression of extramedullary disease in relapsed acute lymphoblastic leukemia after CAR T-cell therapy. Immunotherapy 2020; 13:5-10. [PMID: 33045890 DOI: 10.2217/imt-2020-0188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background: CD19-targeted chimeric antigen receptor (CAR) T-cell therapy has emerged as a powerful immunotherapy in relapsed or refractory B-cell acute lymphoblastic leukemia. The changes in extramedullary (EM) disease in pediatric relapsed or refractory B-cell acute lymphoblastic leukemia after CAR T-cell therapy have rarely been reported. Materials & methods: A child with relapsed B-ALL was treated with CAR T-cell therapy. Bone marrow morphological examination, minimal residual disease, fusion mutation and radiological evaluation of the EM disease were performed before and after CAR T-cell infusion. Results: Radiological assessment revealed a distinct asymptomatic pseudo progression of EM involvements on day 16 after CAR T-cell infusion. Conclusion: Pseudoprogression of EM disease indicates heterogeneous immune-related patterns of response in patients treated with CAR-T therapy. Such patients should be closely monitored and practical immune-related response criteria should be developed for them.
Collapse
Affiliation(s)
- Jie Huang
- Department of Hematology & Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Liucheng Rong
- Department of Hematology & Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Enxiu Wang
- Nanjing CART Medical Technology Co. Ltd, Nanjing, China
| | - Yongjun Fang
- Department of Hematology & Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|