1
|
Saadh MJ, Faisal A, Adil M, Zabibah RS, Mamadaliev AM, Jawad MJ, Alsaikhan F, Farhood B. Parkinson's Disease and MicroRNAs: A Duel Between Inhibition and Stimulation of Apoptosis in Neuronal Cells. Mol Neurobiol 2024; 61:8552-8574. [PMID: 38520611 DOI: 10.1007/s12035-024-04111-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/03/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Parkinson's disease (PD) is one of the most prevalent diseases of central nervous system that is caused by degeneration of the substantia nigra's dopamine-producing neurons through apoptosis. Apoptosis is regulated by initiators' and executioners' caspases both in intrinsic and extrinsic pathways, further resulting in neuronal damage. In that context, targeting apoptosis appears as a promising therapeutic approach for treating neurodegenerative diseases. Non-coding RNAs-more especially, microRNAs, or miRNAs-are a promising target for the therapy of neurodegenerative diseases because they are essential for a number of cellular processes, including signaling, apoptosis, cell proliferation, and gene regulation. It is estimated that a substantial portion of coding genes (more than 60%) are regulated by miRNAs. These small regulatory molecules can have wide-reaching consequences on cellular processes like apoptosis, both in terms of intrinsic and extrinsic pathways. Furthermore, it was recommended that a disruption in miRNA expression levels could also result in perturbation of typical apoptosis pathways, which may be a factor in certain diseases like PD. The latest research on miRNAs and their impact on neural cell injury in PD models by regulating the apoptosis pathway is summarized in this review article. Furthermore, the importance of lncRNA/circRNA-miRNA-mRNA network for regulating apoptosis pathways in PD models and treatment is explored. These results can be utilized for developing new strategies in PD treatment.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Shaheen N, Shaheen A, Osama M, Nashwan AJ, Bharmauria V, Flouty O. MicroRNAs regulation in Parkinson's disease, and their potential role as diagnostic and therapeutic targets. NPJ Parkinsons Dis 2024; 10:186. [PMID: 39369002 PMCID: PMC11455891 DOI: 10.1038/s41531-024-00791-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/15/2024] [Indexed: 10/07/2024] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression by binding to target messenger RNA (mRNA) molecules and promoting their degradation or blocking their translation. Parkinson's disease (PD) is a neurodegenerative disorder caused by the loss of dopaminergic neurons in the substantia nigra. There is increasing evidence to suggest that miRNAs play a role in the pathogenesis of PD. Studies have identified several miRNAs that are dysregulated in the brains of PD patients, and animal models of the disease. MiRNA expression dysregulation contributes to the onset and progression of PD by modulating neuroinflammation, oxidative stress, and protein aggregation genes. Moreover, miRNAs have emerged as potential therapeutic targets for PD. This review elucidates the changes in miRNA expression profiles associated with PD, emphasising their potential as diagnostic biomarkers and therapeutic targets, and detailing specific miRNAs implicated in PD and their downstream targets. Integrated Insights into miRNA Function, Microglial Activation, Diagnostic, and Treatment Prospects in PD Note: This figure is an original figure created by the authors.
Collapse
Affiliation(s)
- Nour Shaheen
- Alexandria University, Alexandria Faculty of Medicine, Alexandria, Egypt
| | - Ahmed Shaheen
- Alexandria University, Alexandria Faculty of Medicine, Alexandria, Egypt
| | - Mahmoud Osama
- Department of Neurosurgery, Nasser Institute for Research and Treatment, Cairo, Egypt
| | | | - Vishal Bharmauria
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
- Center for Vision Research and Center for Integrative and Applied Neuroscience, York University, Toronto, ON, Canada
- Tampa Human Neurophysiology Lab, Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, USA
| | - Oliver Flouty
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA.
- Tampa Human Neurophysiology Lab, Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, USA.
| |
Collapse
|
3
|
Sawant H, Sun B, Mcgrady E, Bihl JC. Role of miRNAs in neurovascular injury and repair. J Cereb Blood Flow Metab 2024; 44:1693-1708. [PMID: 38726895 PMCID: PMC11494855 DOI: 10.1177/0271678x241254772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/29/2024] [Accepted: 04/22/2024] [Indexed: 10/18/2024]
Abstract
MicroRNAs (miRNA) are endogenously produced small, non-coded, single-stranded RNAs. Due to their involvement in various cellular processes and cross-communication with extracellular components, miRNAs are often coined the "grand managers" of the cell. miRNAs are frequently involved in upregulation as well as downregulation of specific gene expression and thus, are often found to play a vital role in the pathogenesis of multiple diseases. Central nervous system (CNS) diseases prove fatal due to the intricate nature of both their development and the methods used for treatment. A considerable amount of ongoing research aims to delineate the complex relationships between miRNAs and different diseases, including each of the neurological disorders discussed in the present review. Ongoing research suggests that specific miRNAs can play either a pathologic or restorative and/or protective role in various CNS diseases. Understanding how these miRNAs are involved in various regulatory processes of CNS such as neuroinflammation, neurovasculature, immune response, blood-brain barrier (BBB) integrity and angiogenesis is of empirical importance for developing effective therapies. Here in this review, we summarized the current state of knowledge of miRNAs and their roles in CNS diseases along with a focus on their association with neuroinflammation, innate immunity, neurovascular function and BBB.
Collapse
Affiliation(s)
- Harshal Sawant
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Bowen Sun
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Erin Mcgrady
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Ji Chen Bihl
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| |
Collapse
|
4
|
Puranik N, Song M. Insights into the Role of microRNAs as Clinical Tools for Diagnosis, Prognosis, and as Therapeutic Targets in Alzheimer's Disease. Int J Mol Sci 2024; 25:9936. [PMID: 39337429 PMCID: PMC11431957 DOI: 10.3390/ijms25189936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Neurodegenerative diseases (NDDs) are a diverse group of neurological disorders characterized by alterations in the structure and function of the central nervous system. Alzheimer's disease (AD), characterized by impaired memory and cognitive abilities, is the most prevalent type of senile dementia. Loss of synapses, intracellular aggregation of hyperphosphorylated tau protein, and extracellular amyloid-β peptide (Aβ) plaques are the hallmarks of AD. MicroRNAs (miRNAs/miRs) are single-stranded ribonucleic acid (RNA) molecules that bind to the 3' and 5' untranslated regions of target genes to cause post-transcriptional gene silencing. The brain expresses over 70% of all experimentally detected miRNAs, and these miRNAs are crucial for synaptic function and particular signals during memory formation. Increasing evidence suggests that miRNAs play a role in AD pathogenesis and we provide an overview of the role of miRNAs in synapse formation, Aβ synthesis, tau protein accumulation, and brain-derived neurotrophic factor-associated AD pathogenesis. We further summarize and discuss the role of miRNAs as potential therapeutic targets and biomarkers for AD detection and differentiation between early- and late-stage AD, based on recent research. In conclusion, altered expression of miRNAs in the brain and peripheral circulation demonstrates their potential as biomarkers and therapeutic targets in AD.
Collapse
Affiliation(s)
- Nidhi Puranik
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
5
|
Khosroshahi PA, Ashayeri H, Ghanbari M, Malek A, Farhang S, Haghi M. Downregulation of miR-29a as a possible diagnostic biomarker for schizophrenia. Mol Biol Rep 2024; 51:617. [PMID: 38705955 PMCID: PMC11070389 DOI: 10.1007/s11033-024-09428-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/08/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND MicroRNAs (miRNAs) are epigenetic factors regulating many genes involved in brain development. Dysregulation of miRNA could result in dysregulation of genes which may contribute to diseases affecting the brain and behavior (e.g., schizophrenia). miR-29 family is a miRNA family contributing to brain maturation. miR-29 knockout in animal studies is reported to correlate with psychiatric disorders very similar to those seen in schizophrenia. In this study, we aimed to evaluate the miR-29a level in patients with schizophrenia and its potential value in the diagnosis of schizophrenia. MATERIALS AND METHODS The serum sample of 42 patients with schizophrenia and 40 healthy subjects were obtained from the Azeri Recent onset/Acute phase psychosis Survey (ARAS) Cohort study. After preparations, the expression level of miR-29a was investigated by real-time PCR. The SPSS and GraphPad prism software were used to analyze the relation between miR-29a level and clinical parameters and its potential as a biomarker for the diagnosis of schizophrenia. RESULTS Our study showed a significantly lower miR-29a level in patients compared to healthy controls (p = 0.0012). Furthermore, miR-29a level was significantly lower in some types of schizophrenia (p = 0.024). miR-29a level was not related to sex, age, or heredity (p > 0.05). miR-29a also showed 80% specificity and 71.43% sensitivity in the diagnosis of schizophrenia. CONCLUSION Downregulation of miR-29a in schizophrenia is significantly related to the development of this illness. It might have the potential as a biomarker for schizophrenia.
Collapse
Affiliation(s)
| | - Hamidreza Ashayeri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ghanbari
- Clinical Research Development Center, Mohammad Kermanshahi and Farabi Hospitals, Imam Khomeini, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ayyoub Malek
- University Medical Center Groningen, University of Groningen, University Center for Psychiatry, Groningen, The Netherlands
| | - Sara Farhang
- University Medical Center Groningen, University of Groningen, University Center for Psychiatry, Groningen, The Netherlands.
- Research center of psychiatry and behavioral sciences, Tabriz university of medical sciences, Tabriz, Iran.
| | - Mehdi Haghi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
6
|
Umoh IO, dos Reis HJ, de Oliveira ACP. Molecular Mechanisms Linking Osteoarthritis and Alzheimer's Disease: Shared Pathways, Mechanisms and Breakthrough Prospects. Int J Mol Sci 2024; 25:3044. [PMID: 38474288 PMCID: PMC10931612 DOI: 10.3390/ijms25053044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease mostly affecting the elderly population. It is characterized by cognitive decline that occurs due to impaired neurotransmission and neuronal death. Even though deposition of amyloid beta (Aβ) peptides and aggregation of hyperphosphorylated TAU have been established as major pathological hallmarks of the disease, other factors such as the interaction of genetic and environmental factors are believed to contribute to the development and progression of AD. In general, patients initially present mild forgetfulness and difficulty in forming new memories. As it progresses, there are significant impairments in problem solving, social interaction, speech and overall cognitive function of the affected individual. Osteoarthritis (OA) is the most recurrent form of arthritis and widely acknowledged as a whole-joint disease, distinguished by progressive degeneration and erosion of joint cartilage accompanying synovitis and subchondral bone changes that can prompt peripheral inflammatory responses. Also predominantly affecting the elderly, OA frequently embroils weight-bearing joints such as the knees, spine and hips leading to pains, stiffness and diminished joint mobility, which in turn significantly impacts the patient's standard of life. Both infirmities can co-occur in older adults as a result of independent factors, as multiple health conditions are common in old age. Additionally, risk factors such as genetics, lifestyle changes, age and chronic inflammation may contribute to both conditions in some individuals. Besides localized peripheral low-grade inflammation, it is notable that low-grade systemic inflammation prompted by OA can play a role in AD pathogenesis. Studies have explored relationships between systemic inflammatory-associated diseases like obesity, hypertension, dyslipidemia, diabetes mellitus and AD. Given that AD is the most common form of dementia and shares similar risk factors with OA-both being age-related and low-grade inflammatory-associated diseases, OA may indeed serve as a risk factor for AD. This work aims to review literature on molecular mechanisms linking OA and AD pathologies, and explore potential connections between these conditions alongside future prospects and innovative treatments.
Collapse
Affiliation(s)
| | - Helton Jose dos Reis
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil;
| | - Antonio Carlos Pinheiro de Oliveira
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Federal University of Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil;
| |
Collapse
|
7
|
Abusree Ahmed A, Fayez Hasan S, Ahmed Rashed L, Ragab N, Shehata Ismail R, Mostafa Gharib D. The Potential Association Between microRNA 135-5P and p62 and Their Effect on NRF2 Pathway in Multiple Sclerosis. Rep Biochem Mol Biol 2024; 12:512-521. [PMID: 39086595 PMCID: PMC11288234 DOI: 10.61186/rbmb.12.4.512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/30/2023] [Indexed: 08/02/2024]
Abstract
Background Multiple Sclerosis (MS) is a prevalent non-traumatic disabling disease affecting young adults, characterized by complexity in its pathogenesis. Nuclear factor erythroid 2-Related Factor 2 (NRF2) serves as a crucial transcriptional regulator of anti-inflammatory and antioxidant enzymes, influenced by the ubiquitous protein p62. It acts as a scaffold directing substrates to autophagosomes. This study aims to explore the potential association between microRNA 135-5p and p62 and their impact on inflammation and oxidative stress through the NRF2 pathway in MS. Methods The study included 30 healthy controls and 60 MS patients (relapsing-remitting and secondary progressive). Real-time PCR was employed for the detection of Nrf2, p62, miRNA135-5P, and NF-κB in serum, while p53 levels were determined using ELISA. Results Nrf2 and p62 expression was significantly downregulated in the MS group compared to controls. Conversely, miRNA135-5P, NF-κB expression, and P53 levels were significantly elevated in the MS group. Conclusions This study reveals a potential association between miRNA 135-5p and p62, indicating their role in the pathogenesis of MS. Results suggest that miRNA 135-5p and p62 may influence inflammation and oxidative stress in MS through the NRF2 pathway, potentially mediated by NF-κB and p53.
Collapse
Affiliation(s)
- Azza Abusree Ahmed
- Medical Biochemistry and Molecular Biology Department, Unit of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Salwa Fayez Hasan
- Medical Biochemistry and Molecular Biology Department, Unit of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Laila Ahmed Rashed
- Medical Biochemistry and Molecular Biology Department, Unit of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Noura Ragab
- Medical Biochemistry and Molecular Biology Department, Unit of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | | | - Doaa Mostafa Gharib
- Medical Biochemistry and Molecular Biology Department, Unit of Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
8
|
Naithani U, Jain P, Sachan A, Khare P, Gabrani R. MicroRNA as a potential biomarker for systemic lupus erythematosus: pathogenesis and targeted therapy. Clin Exp Med 2023; 23:4065-4077. [PMID: 37921874 DOI: 10.1007/s10238-023-01234-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease associated with hyperactive innate and adaptive immune systems that cause dermatological, cardiovascular, renal, and neuropsychiatric problems in patients. SLE's multifactorial nature and complex pathogenesis present significant challenges in its clinical classification. In addition, unpredictable treatment responses in patients emphasize the need for highly specific and sensitive SLE biomarkers that can assist in understanding the exact pathogenesis and, thereby, lead to the identification of novel therapeutic targets. Recent studies on microRNA (miRNA), a non-coding region involved in the regulation of gene expression, indicate its importance in the development of the immune system and thus in the pathogenesis of various autoimmune disorders such as SLE. miRNAs are fascinating biomarker prospects for SLE categorization and disease monitoring owing to their small size and high stability. In this paper, we have discussed the involvement of a wide range of miRNAs in the regulation of SLE inflammation and how their modulation can be a potential therapeutic approach.
Collapse
Affiliation(s)
- Urshila Naithani
- Department of Biotechnology, A 10, Jaypee Institute of Information Technology, Sector-62, Noida, Uttar Pradesh, 201309, India
| | - Priyanjal Jain
- Department of Biotechnology, A 10, Jaypee Institute of Information Technology, Sector-62, Noida, Uttar Pradesh, 201309, India
| | - Aastha Sachan
- Department of Biotechnology, A 10, Jaypee Institute of Information Technology, Sector-62, Noida, Uttar Pradesh, 201309, India
| | - Prachi Khare
- Department of Biotechnology, A 10, Jaypee Institute of Information Technology, Sector-62, Noida, Uttar Pradesh, 201309, India
| | - Reema Gabrani
- Department of Biotechnology, A 10, Jaypee Institute of Information Technology, Sector-62, Noida, Uttar Pradesh, 201309, India.
| |
Collapse
|
9
|
Rai S, Bharti PS, Singh R, Rastogi S, Rani K, Sharma V, Gorai PK, Rani N, Verma BK, Reddy TJ, Modi GP, Inampudi KK, Pandey HC, Yadav S, Rajan R, Nikolajeff F, Kumar S. Circulating plasma miR-23b-3p as a biomarker target for idiopathic Parkinson's disease: comparison with small extracellular vesicle miRNA. Front Neurosci 2023; 17:1174951. [PMID: 38033547 PMCID: PMC10684698 DOI: 10.3389/fnins.2023.1174951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/24/2023] [Indexed: 12/02/2023] Open
Abstract
Background Parkinson's disease (PD) is an increasingly common neurodegenerative condition, which causes movement dysfunction and a broad range of non-motor symptoms. There is no molecular or biochemical diagnosis test for PD. The miRNAs are a class of small non-coding RNAs and are extensively studied owing to their altered expression in pathological states and facile harvesting and analysis techniques. Methods A total of 48 samples (16 each of PD, aged-matched, and young controls) were recruited. The small extracellular vesicles (sEVs) were isolated and validated using Western blot, transmission electron microscope, and nanoparticle tracking analysis. Small RNA isolation, library preparation, and small RNA sequencing followed by differential expression and targeted prediction of miRNA were performed. The real-time PCR was performed with the targeted miRNA on PD, age-matched, and young healthy control of plasma and plasma-derived sEVs to demonstrate their potential as a diagnostic biomarker. Results In RNA sequencing, we identified 14.89% upregulated (fold change 1.11 to 11.04, p < 0.05) and 16.54% downregulated (fold change -1.04 to -7.28, p < 0.05) miRNAs in PD and controls. Four differentially expressed miRNAs (miR-23b-3p, miR-29a-3p, miR-19b-3p, and miR-150-3p) were selected. The expression of miR-23b-3p was "upregulated" (p = 0.002) in plasma, whereas "downregulated" (p = 0.0284) in plasma-derived sEVs in PD than age-matched controls. The ROC analysis of miR-23b-3p revealed better AUC values in plasma (AUC = 0.8086, p = 0.0029) and plasma-derived sEVs (AUC = 0.7278, p = 0.0483) of PD and age-matched controls. Conclusion We observed an opposite expression profile of miR-23b-3p in PD and age-matched healthy control in plasma and plasma-derived sEV fractions, where the expression of miR-23b-3p is increased in PD plasma while decreased in plasma-derived sEV fractions. We further observed the different miR-23b-3p expression profiles in young and age-matched healthy control.
Collapse
Affiliation(s)
- Sanskriti Rai
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | | | - Rishabh Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Simran Rastogi
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Komal Rani
- Department of Pathology and Laboratory Medicine, All India Institute of Medical Sciences Bibinagar, Hyderabad, India
| | - Vaibhav Sharma
- Department of Health, Education and Technology, Luleå University of Technology, Luleå, Sweden
| | - Priya Kumari Gorai
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Neerja Rani
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Bhupendra Kumar Verma
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Gyan Prakash Modi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology BHU, Varanasi, India
| | | | - Hem Chandra Pandey
- Department of Transfusion Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjay Yadav
- Department of Biochemistry, All India Institute of Medical Sciences Raebareli, Uttar Pradesh, India
| | - Roopa Rajan
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Fredrik Nikolajeff
- Department of Health, Education and Technology, Luleå University of Technology, Luleå, Sweden
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
- Department of Health, Education and Technology, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
10
|
Bartelt-Kirbach B, Golenhofen N. Regulation of rat HspB5/alphaB-Crystallin by microRNAs miR-101a-3p, miR-140-5p, miR-330-5p, and miR-376b-3p. Cell Stress Chaperones 2023; 28:787-799. [PMID: 37584866 PMCID: PMC10746672 DOI: 10.1007/s12192-023-01371-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/17/2023] Open
Abstract
HspB5/alphaB-crystallin is an ubiquitously expressed member of the small heat shock protein family which help cells to survive cellular stress conditions and are also implicated in neurodegenerative diseases. MicroRNAs are small non-coding RNAs fine-tuning protein expression mainly by inhibiting the translation of target genes. Our earlier finding of an increase in HspB5/alphaB-crystallin protein amount after heat shock in rat hippocampal neurons without a concomitant increase of mRNA prompted us to look for microRNAs as a posttranscriptional regulatory mechanism. Microarray miRNA expression data of rat hippocampal neurons under control and stress conditions in combination with literature search, miRNA binding site prediction and conservation of target sites yielded nine candidate microRNAs. Of these candidates, five (miR-101a-3p, miR-129-2-3p, miR-330-5p, miR-376b-3p, and miR-491-5p) were able to convey a downregulation by binding to the HspB5 3'- or 5'-UTR in a luciferase reporter gene assay while one (miR-140-5p) led to an upregulation. Overexpression of these six microRNAs in C6 glioma cells showed that three of them (miR-101a-3p, miR-140-5p, and miR-376b-3p) regulated endogenous HspB5 protein amount significantly in the same direction as in the reporter gene assay. In addition, overexpression of miR-330-5p and miR-491-5p in C6 cells resulted in regulation of HspB5 in the opposite direction as expected from the luciferase assay. Analysis of miRNA expression in rat hippocampal neurons after cellular stress by qPCR showed that miR-491-5p was not expressed in these cells. In total, we therefore identified four microRNAs, namely miR-101a-3p, miR-140-5p, miR-330-5p, and miR-376b-3p, which can regulate rat HspB5 directly or indirectly.
Collapse
Affiliation(s)
- Britta Bartelt-Kirbach
- Institute of Anatomy and Cell Biology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Nikola Golenhofen
- Institute of Anatomy and Cell Biology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
11
|
Minz R, Sharma PK, Negi A, Kesari KK. MicroRNAs-Based Theranostics against Anesthetic-Induced Neurotoxicity. Pharmaceutics 2023; 15:1833. [PMID: 37514018 PMCID: PMC10385075 DOI: 10.3390/pharmaceutics15071833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Various clinical reports indicate prolonged exposure to general anesthetic-induced neurotoxicity (in vitro and in vivo). Behavior changes (memory and cognition) are compilations commonly cited with general anesthetics. The ability of miRNAs to modulate gene expression, thereby selectively altering cellular functions, remains one of the emerging techniques in the recent decade. Importantly, engineered miRNAs (which are of the two categories, i.e., agomir and antagomir) to an extent found to mitigate neurotoxicity. Utilizing pre-designed synthetic miRNA oligos would be an ideal analeptic approach for intervention based on indicative parameters. This review demonstrates engineered miRNA's potential as prophylactics and/or therapeutics minimizing the general anesthetics-induced neurotoxicity. Furthermore, we share our thoughts regarding the current challenges and feasibility of using miRNAs as therapeutic agents to counteract the adverse neurological effects. Moreover, we discuss the scientific status and updates on the novel neuro-miRNAs related to therapy against neurotoxicity induced by amyloid beta (Aβ) and Parkinson's disease (PD).
Collapse
Affiliation(s)
- Roseleena Minz
- Department of Life Sciences, Central University of Jharkhand, Brambe, Ranchi 853205, Jharkhand, India
| | - Praveen Kumar Sharma
- Department of Life Sciences, Central University of Jharkhand, Brambe, Ranchi 853205, Jharkhand, India
| | - Arvind Negi
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
| |
Collapse
|
12
|
Shmakova AA, Semina EV, Neyfeld EA, Tsygankov BD, Karagyaur MN. [An analysis of the relationship between genetic factors and the risk of schizophrenia]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:26-36. [PMID: 36843456 DOI: 10.17116/jnevro202312302126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
The etiology and pathogenesis of schizophrenia remain poorly understood, but it has been established that the contribution of heredity to the development of the disease is about 80-85%. Over the past decade, significant progress has been made in the search for specific genetic variants associated with the development of schizophrenia. The review discusses the results of modern large-scale studies aimed at searching for genetic associations with schizophrenia: genome-wide association studies (GWAS) and the search for rare variants (mutations or copy number variations, CNV), including the use of whole exome sequencing. We synthesize data on currently known genes that are significantly associated with schizophrenia and discuss their biological functions in order to identify the main molecular pathways involved in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- A A Shmakova
- Koltzov Institute of Developmental Biology, Moscow, Russia
| | - E V Semina
- Lomonosov Moscow State University, Moscow, Russia.,Institute for Regenerative Medicine - Lomonosov Moscow State University, Moscow, Russia
| | - E A Neyfeld
- Lomonosov Moscow State University, Moscow, Russia
| | | | - M N Karagyaur
- Lomonosov Moscow State University, Moscow, Russia.,Institute for Regenerative Medicine - Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
13
|
Emerging Role of MicroRNA-30c in Neurological Disorders. Int J Mol Sci 2022; 24:ijms24010037. [PMID: 36613480 PMCID: PMC9819962 DOI: 10.3390/ijms24010037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) are a class of small non-coding RNAs that negatively regulate the expression of target genes by interacting with 3' untranslated regions of target mRNAs to induce mRNA degradation and translational repression. The miR-30 family members are involved in the development of many tissues and organs and participate in the pathogenesis of human diseases. As a key member of the miR-30 family, miR-30c has been implicated in neurological disorders such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and stroke. Mechanistically, miR-30c may act as a multi-functional regulator of different pathogenic processes such as autophagy, apoptosis, endoplasmic reticulum stress, inflammation, oxidative stress, thrombosis, and neurovascular function, thereby contributing to different disease states. Here, we review and discuss the biogenesis, gene regulation, and the role and mechanisms of action of miR-30c in several neurological disorders and therapeutic potential in clinics.
Collapse
|
14
|
Dysregulated miRNAs as Biomarkers and Therapeutical Targets in Neurodegenerative Diseases. J Pers Med 2022; 12:jpm12050770. [PMID: 35629192 PMCID: PMC9143965 DOI: 10.3390/jpm12050770] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 12/20/2022] Open
Abstract
Alzheimer’s disease (AD), Parkinson’s disease (PD), and Amyotrophic Lateral Sclerosis (ALS) are representative neurodegenerative diseases (NDs) characterized by degeneration of selective neurons, as well as the lack of effective biomarkers and therapeutic treatments. In the last decade, microRNAs (miRNAs) have gained considerable interest in diagnostics and therapy of NDs, owing to their aberrant expression and their ability to target multiple molecules and pathways. Here, we provide an overview of dysregulated miRNAs in fluids (blood or cerebrospinal fluid) and nervous tissue of AD, PD, and ALS patients. By emphasizing those that are commonly dysregulated in these NDs, we highlight their potential role as biomarkers or therapeutical targets and describe the use of antisense oligonucleotides as miRNA therapies.
Collapse
|
15
|
Bazrgar M, Khodabakhsh P, Dargahi L, Mohagheghi F, Ahmadiani A. MicroRNA modulation is a potential molecular mechanism for neuroprotective effects of intranasal insulin administration in amyloid βeta oligomer induced Alzheimer's like rat model. Exp Gerontol 2022; 164:111812. [PMID: 35476966 DOI: 10.1016/j.exger.2022.111812] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/03/2022] [Accepted: 04/20/2022] [Indexed: 12/22/2022]
Abstract
Substantial evidence indicates that imbalance in the expression of miR-132-3p, miR-181b-5p, miR-125b-5p, miR-26a-5p, miR-124-3p, miR-146a-5p, miR-29a-3p, and miR-30a-5p in the AD brain are associated with amyloid-beta (Aβ) aggregation, tau pathology, neuroinflammation, and synaptic dysfunction, the major pathological hallmarks of Alzheimer's disease)AD(. Several studies have reported that intranasal insulin administration ameliorates memory in AD patients and animal models. However, the underlying molecular mechanisms are not yet completely elucidated. Therefore, the aim of this study was to determine whether insulin is involved in regulating the expression of AD-related microRNAs. Pursuing this objective, we first investigated the therapeutic effect of intranasal insulin on Aβ oligomer (AβO)-induced memory impairment in male rats using the Morris water maze task. Then, molecular and histological changes in response to AβO and/or insulin time course were assessed in the extracted hippocampi on days 1, 14, and 21 of the study using congo red staining, western blot and quantitative real-time PCR analyses. We observed memory impairment, Aβ aggregation, tau hyper-phosphorylation, neuroinflammation, insulin signaling dys-regulation, and down-regulation of miR-26a, miR-124, miR-29a, miR-181b, miR-125b, miR-132, and miR-146a in the hippocampus of AβO-exposed rats 21 days after AβO injection. Intranasal insulin treatment ameliorated memory impairment and concomitantly increased miR-132, miR-181b, and miR-125b expression, attenuated tau phosphorylation levels, Aβ aggregation, and neuroinflammation, and regulated the insulin signaling as well. In conclusion, our study suggest that the neuroprotective effects of insulin on memory observed in AD-like rats could be partially due to the restoration of miR-132, miR-181b, and miR-125b expression in the brain.
Collapse
Affiliation(s)
- Maryam Bazrgar
- Neuroscience Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Pariya Khodabakhsh
- Department of Pharmacology, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Fatemeh Mohagheghi
- Institute of Experimental Hematology, Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran.
| |
Collapse
|
16
|
Bañuelos-Villegas EG, Pérez-yPérez MF, Alvarez-Salas LM. Cervical Cancer, Papillomavirus, and miRNA Dysfunction. Front Mol Biosci 2021; 8:758337. [PMID: 34957212 PMCID: PMC8703027 DOI: 10.3389/fmolb.2021.758337] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/18/2021] [Indexed: 12/21/2022] Open
Abstract
Cervical cancer is the leading cause of death by cancer in women from developing countries. Persistent infection with high-risk human papillomavirus (HPV) types 16 and 18 is a major risk factor for cervical carcinogenesis. Nevertheless, only a few women with morphologic expression of HPV infection progress into invasive disease suggesting the involvement of other factors in cervical carcinogenesis. MicroRNAs (miRNAs) are conserved small non-coding RNAs that negatively regulate gene expression including genes involved in fundamental biological processes and human cancer. Dysregulation of miRNAs has been widely reported in cervical cancer. This work focuses on reviewing the miRNAs affected during the HPV infection process, as well relevant miRNAs that contribute to the development and maintenance of malignant cervical tumor cells. Finally, we recapitulate on miRNAs that may be used to distinguish between healthy individuals from patients with precancerous lesions or cervical tumors.
Collapse
Affiliation(s)
- Evelyn Gabriela Bañuelos-Villegas
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del I.P.N., México City, Mexico
| | - María Fernanda Pérez-yPérez
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del I.P.N., México City, Mexico
| | - Luis Marat Alvarez-Salas
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del I.P.N., México City, Mexico
| |
Collapse
|
17
|
Description of a CSF-Enriched miRNA Panel for the Study of Neurological Diseases. Life (Basel) 2021; 11:life11070594. [PMID: 34206241 PMCID: PMC8305419 DOI: 10.3390/life11070594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/18/2022] Open
Abstract
Background: The study of circulating miRNAs in CSF has gained tremendous attention during the last years, as these molecules might be promising candidates to be used as biomarkers and provide new insights into the disease pathology of neurological disorders. Objective: The main aim of this study was to describe an OpenArray panel of CSF-enriched miRNAs to offer a suitable tool to identify and characterize new molecular signatures in different neurological diseases. Methods: Two hundred and fifteen human miRNAs were selected to be included in the panel, and their expression and abundance in CSF samples were analyzed. In addition, their stability was studied in order to propose suitable endogenous controls for CSF miRNA studies. Results: miR-143-3p and miR-23a-3p were detected in all CSF samples, while another 80 miRNAs were detected in at least 70% of samples. miR-770-5p was the most abundant miRNA in CSF, presenting the lowest mean Cq value. In addition, miR-26b-5p, miR-335-5p and miR-92b-3p were the most stable miRNAs and could be suitable endogenous normalizers for CSF miRNA studies. Conclusions: These OpenArray plates might be a suitable and efficient tool to identify and characterize new molecular signatures in different neurological diseases and would improve the yield of miRNA detection in CSF.
Collapse
|