1
|
Elazab ST, Hsu WH. Ferulic acid ameliorates concanavalin A-induced hepatic fibrosis in mice via suppressing TGF-β/smad signaling. Toxicol Appl Pharmacol 2024; 492:117099. [PMID: 39260469 DOI: 10.1016/j.taap.2024.117099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/25/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND AND AIM Hepatic fibrosis, one of the main reasons for death globally, is a serious complication of chronic liver disorders. However, the available therapies for liver fibrosis are limited, ineffective, and often associated with adverse events. Hence, seeking for a novel, effective therapy is warranted. Our objective was to investigate the potential efficacy of ferulic acid (FA), a phenolic phytochemical, at different doses in hindering the progress of concanavalin A (Con A)-induced hepatic fibrosis and explore the involved mechanisms. METHODS Thirty-six mice were assorted into 6 groups (n = 6): Group I (control); group II received FA (20 mg/kg/day orally for 4 weeks); group III received Con A (6 mg/kg/week/i.v.) for 4 weeks; groups IV, V, and VI received Con A and were offered FA at 5, 10, and 20 mg/kg/day, respectively. RESULTS The data showed the palliative effect of FA against Con A-induced fibrosis in a dose-dependent manner. This was obvious from the recovery of liver markers and hepatic architecture with the regression of fibrosis in FA-treated mice. FA abolished Con A-mediated oxidative insults and promoted the antioxidant enzyme activities, which run through the Nrf2/HO-1 signaling. Additionally, FA suppressed Con A-induced increase in NF-kB and IL-β levels, and TNF-α immune-expression. The anti-fibrotic effect of FA was evident from the drop in TGF-β, smad3 levels, α-SMA expression, and hydroxyproline content. CONCLUSION FA attenuated Con A-induced liver fibrosis through stimulating Nrf2 signaling, suppressing NF-kB, and inhibiting the TGF-β/smad3 signaling pathway. Thus FA can be considered as a promising therapy for combating liver fibrosis.
Collapse
Affiliation(s)
- Sara T Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Walter H Hsu
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa 50011, USA.
| |
Collapse
|
2
|
Cheng SY, Jiang L, Wang Y, Cai W. Emerging role of regulated cell death in intestinal failure-associated liver disease. Hepatobiliary Pancreat Dis Int 2024; 23:228-233. [PMID: 36621400 DOI: 10.1016/j.hbpd.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/08/2022] [Indexed: 01/10/2023]
Abstract
Intestinal failure-associated liver disease (IFALD) is a common complication of long-term parenteral nutrition that is associated with significant morbidity and mortality. It is mainly characterized by cholestasis in children and steatohepatitis in adults. Unfortunately, there is no effective approach to prevent or reverse the disease. Regulated cell death (RCD) represents a fundamental biological paradigm that determines the outcome of a variety of liver diseases. Nowadays cell death is reclassified into several types, based on the mechanisms and morphological phenotypes. Emerging evidence has linked different modes of RCD, such as apoptosis, necroptosis, ferroptosis, and pyroptosis to the pathogenesis of liver diseases. Recent studies have shown that different modes of RCD are present in animal models and patients with IFALD. Understanding the pathogenic roles of cell death may help uncover the underlying mechanisms and develop novel therapeutic strategies in IFALD. In this review, we discuss the current knowledge on how RCD may link to the pathogenesis of IFALD. We highlight examples of cell death-targeted interventions aiming to attenuate the disease, and provide perspectives for future basic and translational research in the field.
Collapse
Affiliation(s)
- Si-Yang Cheng
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China; Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Lu Jiang
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China; Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Ying Wang
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China; Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Wei Cai
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China; Shanghai Institute for Pediatric Research, Shanghai 200092, China.
| |
Collapse
|
3
|
Zhang Q, Yu T, Tan H, Shi H. Hepatic recruitment of myeloid-derived suppressor cells upon liver injury promotes both liver regeneration and fibrosis. BMC Gastroenterol 2024; 24:163. [PMID: 38745150 PMCID: PMC11092103 DOI: 10.1186/s12876-024-03245-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND The liver regeneration is a highly complicated process depending on the close cooperations between the hepatocytes and non-parenchymal cells involving various inflammatory cells. Here, we explored the role of myeloid-derived suppressor cells (MDSCs) in the processes of liver regeneration and liver fibrosis after liver injury. METHODS We established four liver injury models of mice including CCl4-induced liver injury model, bile duct ligation (BDL) model, concanavalin A (Con A)-induced hepatitis model, and lipopolysaccharide (LPS)-induced hepatitis model. The intrahepatic levels of MDSCs (CD11b+Gr-1+) after the liver injury were detected by flow cytometry. The effects of MDSCs on liver tissues were analyzed in the transwell co-culture system, in which the MDSCs cytokines including IL-10, VEGF, and TGF-β were measured by ELISA assay and followed by being blocked with specific antibodies. RESULTS The intrahepatic infiltrations of MDSCs with surface marker of CD11b+Gr-1+ remarkably increased after the establishment of four liver injury models. The blood served as the primary reservoir for hepatic recruitment of MDSCs during the liver injury, while the bone marrow appeared play a compensated role in increasing the number of MDSCs at the late stage of the inflammation. The recruited MDSCs in injured liver were mainly the M-MDSCs (CD11b+Ly6G-Ly6Chigh) featured by high expression levels of cytokines including IL-10, VEGF, and TGF-β. Co-culture of the liver tissues with MDSCs significantly promoted the proliferation of both hepatocytes and hepatic stellate cells (HSCs). CONCLUSIONS The dramatically and quickly infiltrated CD11b+Gr-1+ MDSCs in injured liver not only exerted pro-proliferative effects on hepatocytes, but also accounted for the activation of profibrotic HSCs.
Collapse
Affiliation(s)
- Qiongwen Zhang
- Department of Head and Neck Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Ting Yu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Huaicheng Tan
- Department of Head and Neck Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Huashan Shi
- Department of Head and Neck Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.
| |
Collapse
|
4
|
Camps G, Maestro S, Torella L, Herrero D, Usai C, Bilbao-Arribas M, Aldaz A, Olagüe C, Vales A, Suárez-Amarán L, Aldabe R, Gonzalez-Aseguinolaza G. Protective role of RIPK1 scaffolding against HDV-induced hepatocyte cell death and the significance of cytokines in mice. PLoS Pathog 2024; 20:e1011749. [PMID: 38739648 PMCID: PMC11115361 DOI: 10.1371/journal.ppat.1011749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 05/23/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Hepatitis delta virus (HDV) infection represents the most severe form of human viral hepatitis; however, the mechanisms underlying its pathology remain incompletely understood. We recently developed an HDV mouse model by injecting adeno-associated viral vectors (AAV) containing replication-competent HBV and HDV genomes. This model replicates many features of human infection, including liver injury. Notably, the extent of liver damage can be diminished with anti-TNF-α treatment. Here, we found that TNF-α is mainly produced by macrophages. Downstream of the TNF-α receptor (TNFR), the receptor-interacting serine/threonine-protein kinase 1 (RIPK1) serves as a cell fate regulator, playing roles in both cell survival and death pathways. In this study, we explored the function of RIPK1 and other host factors in HDV-induced cell death. We determined that the scaffolding function of RIPK1, and not its kinase activity, offers partial protection against HDV-induced apoptosis. A reduction in RIPK1 expression in hepatocytes through CRISPR-Cas9-mediated gene editing significantly intensifies HDV-induced damage. Contrary to our expectations, the protective effect of RIPK1 was not linked to TNF-α or macrophage activation, as their absence did not alter the extent of damage. Intriguingly, in the absence of RIPK1, macrophages confer a protective role. However, in animals unresponsive to type-I IFNs, RIPK1 downregulation did not exacerbate the damage, suggesting RIPK1's role in shielding hepatocytes from type-I IFN-induced cell death. Interestingly, while the damage extent is similar between IFNα/βR KO and wild type mice in terms of transaminase elevation, their cell death mechanisms differ. In conclusion, our findings reveal that HDV-induced type-I IFN production is central to inducing hepatocyte death, and RIPK1's scaffolding function offers protective benefits. Thus, type-I IFN together with TNF-α, contribute to HDV-induced liver damage. These insights may guide the development of novel therapeutic strategies to mitigate HDV-induced liver damage and halt disease progression.
Collapse
Affiliation(s)
- Gracián Camps
- DNA & RNA Medicine Division, CIMA, University of Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
| | - Sheila Maestro
- DNA & RNA Medicine Division, CIMA, University of Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
| | - Laura Torella
- DNA & RNA Medicine Division, CIMA, University of Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
| | - Diego Herrero
- DNA & RNA Medicine Division, CIMA, University of Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
| | - Carla Usai
- DNA & RNA Medicine Division, CIMA, University of Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
| | - Martin Bilbao-Arribas
- DNA & RNA Medicine Division, CIMA, University of Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
| | - Ana Aldaz
- DNA & RNA Medicine Division, CIMA, University of Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
| | - Cristina Olagüe
- DNA & RNA Medicine Division, CIMA, University of Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
| | - Africa Vales
- DNA & RNA Medicine Division, CIMA, University of Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
| | - Lester Suárez-Amarán
- DNA & RNA Medicine Division, CIMA, University of Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
| | - Rafael Aldabe
- DNA & RNA Medicine Division, CIMA, University of Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
| | - Gloria Gonzalez-Aseguinolaza
- DNA & RNA Medicine Division, CIMA, University of Navarra, Instituto de Investigación Sanitaria de Navarra, IdisNA, Pamplona, Spain
| |
Collapse
|
5
|
Hasan M, Choi J, Akter H, Kang H, Ahn M, Lee S. Antibody-Conjugated Magnetic Nanoparticle Therapy for Inhibiting T-Cell Mediated Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307148. [PMID: 38161230 PMCID: PMC10953552 DOI: 10.1002/advs.202307148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Tolerance induction is critical for mitigating T cell-mediated inflammation. Treatments based on anti-CD3 monoclonal antibody (mAb) play a pivotal role in inducing such tolerance. Anti-CD3 mAb conjugated with dextran-coated magnetic nanoparticles (MNPs) may induce inflammatory tolerance is posited. MNPs conjugated with anti-CD3 mAb (Ab-MNPs) are characterized using transmission and scanning electron microscopy, and their distribution is assessed using a nanoparticle tracking analyzer. Compared to MNPs, 90% of Ab-MNPs increased in size from 54.7 ± 0.5 to 71.7 ± 2.7 nm. The in vitro and in vivo studies confirmed the therapeutic material as nontoxic and biocompatible. Mice are administered various dosages of Ab-MNPs before receiving concanavalin-A (ConA), an inflammation inducer. Preadministration of Ab-MNPs, as opposed to MNPs or anti-CD3 mAb alone, significantly reduced the serum levels of interferon-γ and interleukin-6 in ConA-treated mice. Additionally, the transdermal stamp patch as an effective delivery system for Ab-MNPs is validated. This study demonstrates the utility of the Ab-MNP complex in pathologies associated with T cell-mediated hyperinflammation, such as organ transplantation and COVID-19.
Collapse
Affiliation(s)
- Mahbub Hasan
- Department of Digital HealthcareSangji UniversityWonju26339South Korea
- Department of Biochemistry and Molecular BiologyLife Science FacultyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganj8100Bangladesh
| | - Jong‐Gu Choi
- Department of Digital HealthcareSangji UniversityWonju26339South Korea
| | - Hafeza Akter
- Department of Digital HealthcareSangji UniversityWonju26339South Korea
| | - Hasung Kang
- Department of MedicineCollege of MedicineSeoul National UniversitySeoul08826South Korea
| | - Meejung Ahn
- Department of Animal ScienceCollege of Life ScienceSangji UniversityWonju26339South Korea
| | - Sang‐Suk Lee
- Department of Digital HealthcareSangji UniversityWonju26339South Korea
| |
Collapse
|
6
|
Azuma I, Mizuno T, Morita K, Suzuki Y, Kusuhara H. Investigation of the usefulness of liver-specific deconvolution method by establishing a liver benchmark dataset. NAR Genom Bioinform 2024; 6:lqad111. [PMID: 38187088 PMCID: PMC10768887 DOI: 10.1093/nargab/lqad111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/31/2023] [Accepted: 12/16/2023] [Indexed: 01/09/2024] Open
Abstract
Immune responses in the liver are related to the development and progression of liver failure, and precise prediction of their behavior is important. Deconvolution is a methodology for estimating the immune cell proportions from the transcriptome, and it is mainly applied to blood-derived samples and tumor tissues. However, the influence of tissue-specific modeling on the estimation results has rarely been investigated. Here, we constructed a system to evaluate the performance of the deconvolution method on liver transcriptome data. We prepared seven mouse liver injury models using small-molecule compounds and established a benchmark dataset with corresponding liver bulk RNA-Seq and immune cell proportions. RNA-Seq expression for nine leukocyte subsets and four liver-associated cell types were obtained from the Gene Expression Omnibus to provide a reference. We found that the combination of reference cell sets affects the estimation results of reference-based deconvolution methods and established a liver-specific deconvolution by optimizing the reference cell set for each cell to be estimated. We applied this model to independent datasets and showed that liver-specific modeling is highly extrapolatable. We expect that this approach will enable sophisticated estimation from rich tissue data accumulated in public databases and to obtain information on aggregated immune cell trafficking.
Collapse
Affiliation(s)
- Iori Azuma
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Tadahaya Mizuno
- To whom correspondence should be addressed. Tel: +81 3 5841 4771; Fax: +81 3 5841 4766;
| | - Katsuhisa Morita
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Yutaka Suzuki
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| | - Hiroyuki Kusuhara
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| |
Collapse
|
7
|
Li C, Wu Y, Chen K, Chen R, Xu S, Yang B, Lian Z, Wang X, Wang K, Xie H, Zheng S, Liu Z, Wang D, Xu X. Gp78 deficiency in hepatocytes alleviates hepatic ischemia-reperfusion injury via suppressing ACSL4-mediated ferroptosis. Cell Death Dis 2023; 14:810. [PMID: 38065978 PMCID: PMC10709349 DOI: 10.1038/s41419-023-06294-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023]
Abstract
Ferroptosis, which is driven by iron-dependent lipid peroxidation, plays an essential role in liver ischemia-reperfusion injury (IRI) during liver transplantation (LT). Gp78, an E3 ligase, has been implicated in lipid metabolism and inflammation. However, its role in liver IRI and ferroptosis remains unknown. Here, hepatocyte-specific gp78 knockout (HKO) or overexpressed (OE) mice were generated to examine the effect of gp78 on liver IRI, and a multi-omics approach (transcriptomics, proteomics, and metabolomics) was performed to explore the potential mechanism. Gp78 expression decreased after reperfusion in LT patients and mice with IRI, and gp78 expression was positively correlated with liver damage. Gp78 absence from hepatocytes alleviated liver damage in mice with IRI, ameliorating inflammation. However, mice with hepatic gp78 overexpression showed the opposite phenotype. Mechanistically, gp78 overexpression disturbed lipid homeostasis, remodeling polyunsaturated fatty acid (PUFA) metabolism, causing oxidized lipids accumulation and ferroptosis, partly by promoting ACSL4 expression. Chemical inhibition of ferroptosis or ACSL4 abrogated the effects of gp78 on ferroptosis and liver IRI. Our findings reveal a role of gp78 in liver IRI pathogenesis and uncover a mechanism by which gp78 promotes hepatocyte ferroptosis by ACSL4, suggesting the gp78-ACSL4 axis as a feasible target for the treatment of IRI-associated liver damage.
Collapse
Affiliation(s)
- Changbiao Li
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Yichao Wu
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Kangchen Chen
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Ronggao Chen
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shengjun Xu
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Beng Yang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zhengxing Lian
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Xiaodong Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Kai Wang
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Haiyang Xie
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shusen Zheng
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, 311112, China
| | - Zhikun Liu
- Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China.
| | - Di Wang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, 310058, China.
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China.
| |
Collapse
|
8
|
Zhang Y, Fan Y, Hu H, Zhang X, Wang Z, Wu Z, Wang L, Yu X, Song X, Xiang P, Zhang X, Wang T, Tan S, Li C, Gao L, Liang X, Li S, Li N, Yue X, Ma C. ZHX2 emerges as a negative regulator of mitochondrial oxidative phosphorylation during acute liver injury. Nat Commun 2023; 14:7527. [PMID: 37980429 PMCID: PMC10657347 DOI: 10.1038/s41467-023-43439-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023] Open
Abstract
Mitochondria dysfunction contributes to acute liver injuries, and mitochondrial regulators, such as PGC-1α and MCJ, affect liver regeneration. Therefore, identification of mitochondrial modulators may pave the way for developing therapeutic strategies. Here, ZHX2 is identified as a mitochondrial regulator during acute liver injury. ZHX2 both transcriptionally inhibits expression of several mitochondrial electron transport chain genes and decreases PGC-1α stability, leading to reduction of mitochondrial mass and OXPHOS. Loss of Zhx2 promotes liver recovery by increasing mitochondrial OXPHOS in mice with partial hepatectomy or CCl4-induced liver injury, and inhibition of PGC-1α or electron transport chain abolishes these effects. Notably, ZHX2 expression is higher in liver tissues from patients with drug-induced liver injury and is negatively correlated with mitochondrial mass marker TOM20. Delivery of shRNA targeting Zhx2 effectively protects mice from CCl4-induced liver injury. Together, our data clarify ZHX2 as a negative regulator of mitochondrial OXPHOS and a potential target for developing strategies for improving liver recovery after acute injuries.
Collapse
Affiliation(s)
- Yankun Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China
| | - Yuchen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Huili Hu
- Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xiaohui Zhang
- Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Zehua Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China
| | - Liyuan Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China
| | - Xiangguo Yu
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China
| | - Xiaojia Song
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China
| | - Peng Xiang
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China
| | - Xiaodong Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China
| | - Tixiao Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China
| | - Siyu Tan
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China
| | - Shuijie Li
- College of Pharmacy, Harbin Medical University, Harbin, China
| | - Nailin Li
- Department of Medicine-Solna, Cardiovascular Medicine Unit, Karolinska Institute, Stockholm, Sweden
| | - Xuetian Yue
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China.
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Sciences, Qilu Hospital, Cheeloo Medical College of Shandong University, Jinan, China.
| |
Collapse
|
9
|
Lossio CF, Osterne VJS, Pinto-Junior VR, Chen S, Oliveira MV, Verduijn J, Verbeke I, Serna S, Reichardt NC, Skirtach A, Cavada BS, Van Damme EJM, Nascimento KS. Structural Analysis and Characterization of an Antiproliferative Lectin from Canavalia villosa Seeds. Int J Mol Sci 2023; 24:15966. [PMID: 37958949 PMCID: PMC10649158 DOI: 10.3390/ijms242115966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Cells use glycans to encode information that modulates processes ranging from cell-cell recognition to programmed cell death. This information is encoded within a glycocode, and its decoding is performed by carbohydrate-binding proteins. Among these, lectins stand out due to their specific and reversible interaction with carbohydrates. Changes in glycosylation patterns are observed in several pathologies, including cancer, where abnormal glycans are found on the surfaces of affected tissues. Given the importance of the bioprospection of promising biomolecules, the current work aimed to determine the structural properties and anticancer potential of the mannose-specific lectin from seeds of Canavalia villosa (Cvill). Experimental elucidation of the primary and 3D structures of the lectin, along with glycan array and molecular docking, facilitated the determination of its fine carbohydrate-binding specificity. These structural insights, coupled with the lectin's specificity, have been combined to explain the antiproliferative effect of Cvill against cancer cell lines. This effect is dependent on the carbohydrate-binding activity of Cvill and its uptake in the cells, with concomitant activation of autophagic and apoptotic pathways.
Collapse
Affiliation(s)
- Claudia F. Lossio
- Laboratory of Biologically Active Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60440-970, Brazil (B.S.C.)
| | - Vinicius J. S. Osterne
- Laboratory of Biologically Active Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60440-970, Brazil (B.S.C.)
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Vanir R. Pinto-Junior
- Laboratory of Biologically Active Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60440-970, Brazil (B.S.C.)
- Department of Physics, Federal University of Ceara, Fortaleza 60440-970, Brazil
| | - Simin Chen
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Messias V. Oliveira
- Laboratory of Biologically Active Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60440-970, Brazil (B.S.C.)
| | - Joost Verduijn
- Nano-Biotechnology Group, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Isabel Verbeke
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Sonia Serna
- Glycotechnology Lab, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain
| | - Niels C. Reichardt
- Glycotechnology Lab, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain
- Centro de Investigación Biomédica en Red (CIBER-BBN), Paseo de Miramon 194, 20014 Donostia-San Sebastián, Spain
| | - Andre Skirtach
- Nano-Biotechnology Group, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Benildo S. Cavada
- Laboratory of Biologically Active Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60440-970, Brazil (B.S.C.)
| | - Els J. M. Van Damme
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Kyria S. Nascimento
- Laboratory of Biologically Active Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza 60440-970, Brazil (B.S.C.)
| |
Collapse
|
10
|
Gong X, Zhang F, Li Y, Peng C. Study on the mechanism of acute liver injury protection in Rhubarb anthraquinone by metabolomics based on UPLC-Q-TOF-MS. Front Pharmacol 2023; 14:1141147. [PMID: 36950014 PMCID: PMC10025310 DOI: 10.3389/fphar.2023.1141147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
As a traditional Chinese medicine, rhubarb has been used in a variety of liver diseases and it is widely used in clinic to prevent and treat acute liver injury. Anthraquinone, as the main medicinal component of rhubarb, can reverse the further development of liver fibrosis caused by acute liver injury. In this study, metabonomics was used to explore the mechanism of different doses of rhubarb anthraquinone on acute liver injury in rats. Rhubarb anthraquinone was administered intragastric to rats at doses of 3.9, 7.8 and 15.6 mg/kg, respectively, for 7 days, and then 30% CCl4 was injected intraperitoneally at the dose of 1 ml/kg to replicate the acute liver injury model. The biochemical indicators content of ALT, AST, ALP, γ-GT, TG, TC, LDL, HDL in serum and GSH, Hyp, SOD, TNF-α, IL-6 and IL-8 in liver tissue extract were tested respectively, and liver tissue was histopathologically analysis. At the same time, UPLC-Q-TOF-MS combined with non-targeted metabolomics were used to study the metabolites and metabolic pathways of rhubarb anthraquinone in treating acute liver injury. Compared with normal rats, the contents of ALT, AST, ALP, TG, TC, LDL, γ-GT in serum and Hyp, MDA, IL-6, IL-8, TNF-α in the liver tissue extract were significantly increased in model rats (p < 0.05, p < 0.01), and the content of HDL in the serum was significantly decreased (p < 0.05); the activities of GSH and SOD in liver tissue extract were also significantly decreased (p < 0.05). After administration of rhubarb anthraquinone, compared with the model group, with the increase of dosage, some biochemical indexes showed opposite changes, and gradually approached to normal rats. 12 different metabolites were identified by metabonomics, and the biosynthesis and metabolism of phenylalanine, tyrosine and tryptophan, the metabolism of amino sugars, nucleotide sugars and pyrimidines metabolism, and the biosynthesis of steroid hormone were identified based on the biomarker analysis. Based on the biochemical analysis and metabonomics analysis of rats with acute liver injury treated with different doses of rhubarb anthraquinone, combined with histopathological observation, the results show that the protective effect of rhubarb anthraquinone on acute liver injury is related to the dosage; Meanwhile, the metabolic pathway analysis suggested that rhubarb anthraquinone alleviate acute liver injury by regulating inflammation, oxidative stress and fibrosis disorders. This study explained the therapeutic effect of rhubarb anthraquinone on acute liver injury from both material basis and action pathway, and provided safe and effective research ideas for clinical application of rhubarb.
Collapse
Affiliation(s)
| | | | - Yunxia Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Shi FL, Ni ST, Luo SQ, Hu B, Xu R, Liu SY, Huang XD, Zeng B, Liang QQ, Chen SY, Qiu JH, He XH, Zha QB, Ouyang DY. Dimethyl fumarate ameliorates autoimmune hepatitis in mice by blocking NLRP3 inflammasome activation. Int Immunopharmacol 2022; 108:108867. [DOI: 10.1016/j.intimp.2022.108867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/05/2022]
|
12
|
Liu X, Xie X, Ren Y, Shao Z, Zhang N, Li L, Ding X, Zhang L. The role of necroptosis in disease and treatment. MedComm (Beijing) 2021; 2:730-755. [PMID: 34977874 PMCID: PMC8706757 DOI: 10.1002/mco2.108] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022] Open
Abstract
Necroptosis, a distinctive type of programmed cell death different from apoptosis or necrosis, triggered by a series of death receptors such as tumor necrosis factor receptor 1 (TNFR1), TNFR2, and Fas. In case that apoptosis process is blocked, necroptosis pathway is initiated with the activation of three key downstream mediators which are receptor-interacting serine/threonine protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like protein (MLKL). The whole process eventually leads to destruction of the cell membrane integrity, swelling of organelles, and severe inflammation. Over the past decade, necroptosis has been found widely involved in life process of human beings and animals. In this review, we attempt to explore the therapeutic prospects of necroptosis regulators by describing its molecular mechanism and the role it played in pathological condition and tissue homeostasis, and to summarize the research and clinical applications of corresponding regulators including small molecule inhibitors, chemicals, Chinese herbal extracts, and biological agents in the treatment of various diseases.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Xin Xie
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Yuanyuan Ren
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Zhiying Shao
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Cancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Nie Zhang
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Liantao Li
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Xin Ding
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| | - Longzhen Zhang
- Department of Radiation OncologyAffiliated Hospital of Xuzhou Medical UniversityXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
- Jiangsu Center for the Collaboration and Innovation of Cancer BiotherapyCancer InstituteXuzhou Medical UniversityXuzhouJiangsu ProvinceP. R. China
| |
Collapse
|