1
|
López-Tubau JM, Laibach N, Burciaga-Monge A, Alseekh S, Deng C, Fernie AR, Altabella T, Ferrer A. Differential impact of impaired steryl ester biosynthesis on the metabolome of tomato fruits and seeds. PHYSIOLOGIA PLANTARUM 2025; 177:e70022. [PMID: 39710490 DOI: 10.1111/ppl.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024]
Abstract
Steryl esters (SE) are a storage pool of sterols that accumulates in cytoplasmic lipid droplets and helps to maintain plasma membrane sterol homeostasis throughout plant growth and development. Ester formation in plant SE is catalyzed by phospholipid:sterol acyltransferase (PSAT) and acyl-CoA:sterol acyltransferase (ASAT), which transfer long-chain fatty acid groups to free sterols from phospholipids and acyl-CoA, respectively. Comparative mass spectrometry-based metabolomic analysis between ripe fruits and seeds of a tomato (Solanum lycopersicum cv Micro-Tom) mutant lacking functional PSAT and ASAT enzymes (slasat1xslpsat1) shows that disruption of SE biosynthesis has a differential impact on the metabolome of these organs, including changes in the composition of free and glycosylated sterols. Significant perturbations were observed in the fruit lipidome in contrast to the mild effect detected in the lipidome of seeds. A contrasting response was also observed in phenylpropanoid metabolism, which is down-regulated in fruits and appears to be stimulated in seeds. Comparison of global metabolic changes using volcano plot analysis suggests that disruption of SE biosynthesis favours a general state of metabolic activation that is more evident in seeds than fruits. Interestingly, there is an induction of autophagy in both tissues, which may contribute along with other metabolic changes to the phenotypes of early seed germination and enhanced fruit tolerance to Botrytis cinerea displayed by the slasat1xslpsat1 mutant. The results of this study reveal unreported connections between SE metabolism and the metabolic status of plant cells and lay the basis for further studies aimed at elucidating the mechanisms underlying the observed effects.
Collapse
Affiliation(s)
- Joan Manel López-Tubau
- Plant Synthetic Biology and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Cerdanyola, Barcelona, Spain
| | - Natalie Laibach
- Plant Synthetic Biology and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Cerdanyola, Barcelona, Spain
- Hochshule Rhein-Waal. Faculty of Life Sciences, Rhine-Waal University of Applied Sciences, Kleve, Germany
| | - Alma Burciaga-Monge
- Plant Synthetic Biology and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Cerdanyola, Barcelona, Spain
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Cuiyun Deng
- Plant Synthetic Biology and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Cerdanyola, Barcelona, Spain
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Teresa Altabella
- Plant Synthetic Biology and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Cerdanyola, Barcelona, Spain
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Albert Ferrer
- Plant Synthetic Biology and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Cerdanyola, Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Mayobre C, Garcia-Mas J, Pujol M. A matter of smell: The complex regulation of aroma production in melon. Food Chem 2024; 460:140640. [PMID: 39096801 DOI: 10.1016/j.foodchem.2024.140640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
Melon fruit flavor is one of the most valuable traits for consumers. Aroma, formed by volatile organic compounds (VOCs), is a major component of flavor but has been neglected in breeding programs because of its complex regulation. Although the genetic regulation of VOCs biosynthesis is not fully understood, several advances have been recently achieved. VOCs originate from the degradation of fatty acids, aminoacids and terpenes, and the role of newly described enzymes, transcription factors and putative regulators is here discussed. Furthermore, ethylene plays a key role in fruit aroma production in melon, triggering the conversion of green-flavored aldehydes into fruity-flavored esters. A current challenge is to understand the ethylene-independent regulation of VOCs formation. Environmental conditions and human processing can also shape the melon volatile profile, and future research should focus on studying the effect of climate change in aroma formation.
Collapse
Affiliation(s)
- Carlos Mayobre
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Jordi Garcia-Mas
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain; Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | - Marta Pujol
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain; Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| |
Collapse
|
3
|
Bianchetti R, Ali A, Gururani M. Abscisic acid and ethylene coordinating fruit ripening under abiotic stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112243. [PMID: 39233143 DOI: 10.1016/j.plantsci.2024.112243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Fleshy fruit metabolism is intricately influenced by environmental changes, yet the hormonal regulations underlying these responses remain poorly elucidated. ABA and ethylene, pivotal in stress responses across plant vegetative tissues, play crucial roles in triggering fleshy fruit ripening. Their actions are intricately governed by complex mechanisms, influencing key aspects such as nutraceutical compound accumulation, sugar content, and softening parameters. Both hormones are essential orchestrators of significant alterations in fruit development in response to stressors like drought, salt, and temperature fluctuations. These alterations encompass colour development, sugar accumulation, injury mitigation, and changes in cell-wall degradation and ripening progression. This review provides a comprehensive overview of recent research progress on the roles of ABA and ethylene in responding to drought, salt, and temperature stress, as well as the molecular mechanisms controlling ripening in environmental cues. Additionally, we propose further studies aimed at genetic manipulation of ABA and ethylene signalling, offering potential strategies to enhance fleshy fruit resilience in the face of future climate change scenarios.
Collapse
Affiliation(s)
- Ricardo Bianchetti
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Amjad Ali
- Department of Sustainable Crop Production, Università Cattolica Del Sacro Cuore, Via Emilia Parmense 84, Piacenza 29122, Italy
| | - Mayank Gururani
- Biology department, College of Science, UAE University, P.O.Box 15551, Al Ain, United Arab Emirates.
| |
Collapse
|
4
|
Li Y, Zheng L, Mustafa G, Shao Z, Liu H, Li Y, Wang Y, Liu L, Xu C, Wang T, Zheng J, Meng F, Wang Q. Enhancing post-harvest quality of tomato fruits with chitosan oligosaccharide-zinc oxide nanocomposites: A study on biocompatibility, quality improvement, and carotenoid enhancement. Food Chem 2024; 454:139685. [PMID: 38795629 DOI: 10.1016/j.foodchem.2024.139685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/28/2024]
Abstract
In this study, a new composite with combination of chitosan oligosaccharide (COS) and zinc oxide nanoparticles (ZnO NPs), termed Chitosan Oligosaccharide-Zinc Oxide Nanocomposites (COS-ZnO NC), was designed to enhance the quality of tomato fruits during postharvest storage. SEM analysis showed a uniform distribution of COS-ZnO NC films on tomato surfaces, indicating high biocompatibility, while the FTIR spectrum confirmed the interaction of COS and ZnO NPs via hydrogen bonds. The COS-ZnO NC exerts positive effects on post-harvest quality of tomato fruits, including significantly reduced water loss, fewer skin wrinkles, increased sugar-acid ratio, and enhanced vitamin C and carotenoids accumulation. Furthermore, COS-ZnO NC induces transcription of carotenoid biosynthesis genes and promotes carotenoids storage in the chromoplast. These results suggest that the COS-ZnO NC film can significantly improve the quality traits of tomato fruits, and therefore is potential in post-harvest storage of tomato fruits.
Collapse
Affiliation(s)
- Yuanyuan Li
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Lingjie Zheng
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Ghazala Mustafa
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China; Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Zhiyong Shao
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Haoran Liu
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Yuening Li
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Yibo Wang
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Lihong Liu
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Chenyu Xu
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Tonglin Wang
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Jirong Zheng
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Fanliang Meng
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
5
|
Dong S, Zhang J, Ling J, Xie Z, Song L, Wang Y, Zhao L, Zhao T. Comparative analysis of physical traits, mineral compositions, antioxidant contents, and metabolite profiles in five cherry tomato cultivars. Food Res Int 2024; 194:114897. [PMID: 39232525 DOI: 10.1016/j.foodres.2024.114897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
Cherry tomatoes (Solanum lycopersicum var. cerasiforme) are cultivated and consumed worldwide. While numerous cultivars have been bred to enhance fruit quality, few studies have comprehensively evaluated the fruit quality of cherry tomato cultivars. In this study, we assessed fruits of five cherry tomato cultivars (Qianxi, Fengjingling, Fushan88, Yanyu, and Qiyu) at the red ripe stage through detailed analysis of their physical traits, mineral compositions, antioxidant contents, and metabolite profiles. Significant variations were observed among the cultivars in terms of fruit size, shape, firmness, weight, glossiness, and sepal length, with each cultivar displaying unique attributes. Mineral analysis revealed distinct patterns of essential and trace element accumulation, with notable differences in calcium, sodium, manganese, and selenium concentrations. Fenjingling was identified as a selenium enriched cultivar. Analysis of antioxidant contents highlighted Yanyu as particularly rich in vitamin C and Fenjingling as having elevated antioxidant enzyme activities. Metabolomics analysis identified a total number of 3,396 annotated metabolites, and the five cultivars showed distinct metabolomics profiles. Amino acid analysis showed Fushan88 to possess a superior profile, while sweetness and tartness assessments indicated that Yanyu exhibited higher total soluble solids (TSS) and acidity. Notably, red cherry tomato cultivars (Fushan88, Yanyu, and Qiyu) accumulated significantly higher levels of eugenol and α-tomatine, compounds associated with undesirable flavors, compared to pink cultivars (Qianxi and Fengjingling). Taken together, our results provide novel insights into the physical traits, nutritional value, and flavor-associated metabolites of cherry tomatoes, offering knowledge that could be implemented for the breeding, cultivation, and marketing of cherry tomato cultivars.
Collapse
Affiliation(s)
- Shuchao Dong
- Institute of Vegetable Crops, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Jiangsu 210014, China
| | - Jingwen Zhang
- Institute of Vegetable Crops, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Jiangsu 210014, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210000, China
| | - Jiayi Ling
- Institute of Vegetable Crops, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Jiangsu 210014, China; College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225100, China
| | - Zixin Xie
- Institute of Vegetable Crops, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Jiangsu 210014, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210000, China
| | - Liuxia Song
- Institute of Vegetable Crops, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Jiangsu 210014, China
| | - Yinlei Wang
- Institute of Vegetable Crops, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Jiangsu 210014, China
| | - Liping Zhao
- Institute of Vegetable Crops, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Jiangsu 210014, China.
| | - Tongmin Zhao
- Institute of Vegetable Crops, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Jiangsu 210014, China.
| |
Collapse
|
6
|
Li W, Chen L, Zhao W, Li Y, Chen Y, Wen T, Liu Z, Huang C, Zhang L, Zhao L. Mutation of YFT3, an isomerase in the isoprenoid biosynthetic pathway, impairs its catalytic activity and carotenoid accumulation in tomato fruit. HORTICULTURE RESEARCH 2024; 11:uhae202. [PMID: 39308791 PMCID: PMC11415240 DOI: 10.1093/hr/uhae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/11/2024] [Indexed: 09/25/2024]
Abstract
Tomato fruit colors are directly associated with their appearance quality and nutritional value. However, tomato fruit color formation is an intricate biological process that remains elusive. In this work we characterized a tomato yellow fruited tomato 3 (yft3, e9292, Solanum lycopersicum) mutant with yellow fruits. By the map-based cloning approach, we identified a transversion mutation (A2117C) in the YFT3 gene encoding a putative isopentenyl diphosphate isomerase (SlIDI1) enzyme, which may function in the isoprenoid biosynthetic pathway by catalyzing conversion between isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP). The mutated YFT3 (A2117C) (designated YFT3 allele) and the YFT3 genes did not show expression difference at protein level, and their encoded YFT3 allelic (S126R) and YFT3 proteins were both localized in plastids. However, the transcript levels of eight genes (DXR, DXS, HDR, PSY1, CRTISO, CYCB, CYP97A, and NCED) associated with carotenoid synthesis were upregulated in fruits of both yft3 and YFT3 knockout (YFT3-KO) lines at 35 and 47 days post-anthesis compared with the red-fruit tomato cultivar (M82). In vitro and in vivo biochemical analyses indicated that YFT3 (S126R) possessed much lower enzymatic activities than the YFT3 protein, indicating that the S126R mutation can impair YFT3 activity. Molecular docking analysis showed that the YFT3 allele has higher ability to recruit isopentenyl pyrophosphate (IPP), but abolishes attachment of the Mg2+ cofactor to IPP, suggesting that Ser126 is a critical residue for YTF3 biochemical and physiological functions. As a result, the yft3 mutant tomato line has low carotenoid accumulation and abnormal chromoplast development, which results in yellow ripe fruits. This study provides new insights into molecular mechanisms of tomato fruit color formation and development.
Collapse
Affiliation(s)
- Wenzhen Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lulu Chen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetland, Yancheng Teachers University, 2 South Xiwang Avenue, Yancheng 224002, China
| | - Weihua Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yuhang Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ying Chen
- Youlaigu Science and Technology Innovation Center, 588 West Chenfeng, Yushan town, Agriculture Service Center, Kunshan 215300, China
| | - Tengjian Wen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhengjun Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, 2708 South Huaxi Avenue, Guiyang 550025, China
| | - Chao Huang
- Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China
| | - Lida Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lingxia Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
7
|
Lu L, Delrot S, Liang Z. From acidity to sweetness: a comprehensive review of carbon accumulation in grape berries. MOLECULAR HORTICULTURE 2024; 4:22. [PMID: 38835095 DOI: 10.1186/s43897-024-00100-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
Most of the carbon found in fruits at harvest is imported by the phloem. Imported carbon provide the material needed for the accumulation of sugars, organic acids, secondary compounds, in addition to the material needed for the synthesis of cell walls. The accumulation of sugars during fruit development influences not only sweetness but also various parameters controlling fruit composition (fruit "quality"). The accumulation of organic acids and sugar in grape berry flesh cells is a key process for berry development and ripening. The present review presents an update of the research on grape berry development, anatomical structure, sugar and acid metabolism, sugar transporters, and regulatory factors.
Collapse
Affiliation(s)
- Lizhen Lu
- State Key Laboratory of Plant Diversity and Prominent Crop, Beijing Key Laboratory of Grape Science and Oenology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Serge Delrot
- Bordeaux University, Bordeaux Sciences Agro, INRAE, UMR EGFV, ISVV, Villenave d'Ornon, 33882, France
| | - Zhenchang Liang
- State Key Laboratory of Plant Diversity and Prominent Crop, Beijing Key Laboratory of Grape Science and Oenology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| |
Collapse
|
8
|
Li R, Rosado-Souza L, Sampathkumar A, Fernie AR. The relationship between cell wall and postharvest physiological deterioration of fresh produce. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108568. [PMID: 38581806 DOI: 10.1016/j.plaphy.2024.108568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/08/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024]
Abstract
Postharvest physiological deterioration (PPD) reduces the availability and economic value of fresh produces, resulting in the waste of agricultural products and becoming a worldwide problem. Therefore, many studies have been carried out at the anatomical structural, physiological and biochemical levels and molecular levels of PPD of fresh produces to seek ways to manage the postharvest quality of fresh produce. The cell wall is the outermost structure of a plant cell and as such represents the first barrier to prevent external microorganisms and other injuries. Many studies on postharvest quality of crop storage organs relate to changes in plant cell wall-related components. Indeed, these studies evidence the non-negligible role of the plant cell wall in postharvest storage ability. However, the relationship between cell wall metabolism and postharvest deterioration of fresh produces has not been well summarized. In this review, we summarize the structural changes of cell walls in different types of PPD, metabolic changes, and the possible molecular mechanism regulating cell wall metabolism in PPD of fresh produce. This review provides a basis for further research on delaying the occurrence of PPD of fresh produce.
Collapse
Affiliation(s)
- Ruimei Li
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute/Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya, China; Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Laise Rosado-Souza
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
9
|
M’hamdi O, Takács S, Palotás G, Ilahy R, Helyes L, Pék Z. A Comparative Analysis of XGBoost and Neural Network Models for Predicting Some Tomato Fruit Quality Traits from Environmental and Meteorological Data. PLANTS (BASEL, SWITZERLAND) 2024; 13:746. [PMID: 38475592 PMCID: PMC10934895 DOI: 10.3390/plants13050746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
The tomato as a raw material for processing is globally important and is pivotal in dietary and agronomic research due to its nutritional, economic, and health significance. This study explored the potential of machine learning (ML) for predicting tomato quality, utilizing data from 48 cultivars and 28 locations in Hungary over 5 seasons. It focused on °Brix, lycopene content, and colour (a/b ratio) using extreme gradient boosting (XGBoost) and artificial neural network (ANN) models. The results revealed that XGBoost consistently outperformed ANN, achieving high accuracy in predicting °Brix (R² = 0.98, RMSE = 0.07) and lycopene content (R² = 0.87, RMSE = 0.61), and excelling in colour prediction (a/b ratio) with a R² of 0.93 and RMSE of 0.03. ANN lagged behind particularly in colour prediction, showing a negative R² value of -0.35. Shapley additive explanation's (SHAP) summary plot analysis indicated that both models are effective in predicting °Brix and lycopene content in tomatoes, highlighting different aspects of the data. SHAP analysis highlighted the models' efficiency (especially in °Brix and lycopene predictions) and underscored the significant influence of cultivar choice and environmental factors like climate and soil. These findings emphasize the importance of selecting and fine-tuning the appropriate ML model for enhancing precision agriculture, underlining XGBoost's superiority in handling complex agronomic data for quality assessment.
Collapse
Affiliation(s)
- Oussama M’hamdi
- Institute of Horticultural Sciences, Hungarian University of Agriculture and Life Sciences, Páter K. Str. 1, 2100 Gödöllö, Hungary
- Doctoral School of Plant Science, Hungarian University of Agriculture and Life Sciences, Páter K. Str. 1, 2100 Gödöllö, Hungary
| | - Sándor Takács
- Institute of Horticultural Sciences, Hungarian University of Agriculture and Life Sciences, Páter K. Str. 1, 2100 Gödöllö, Hungary
| | - Gábor Palotás
- Univer Product Zrt, Szolnoki út 35, 6000 Kecskemét, Hungary
| | - Riadh Ilahy
- Laboratory of Horticulture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Ariana 1004, Tunisia
| | - Lajos Helyes
- Institute of Horticultural Sciences, Hungarian University of Agriculture and Life Sciences, Páter K. Str. 1, 2100 Gödöllö, Hungary
| | - Zoltán Pék
- Institute of Horticultural Sciences, Hungarian University of Agriculture and Life Sciences, Páter K. Str. 1, 2100 Gödöllö, Hungary
| |
Collapse
|
10
|
Ma L, Zheng Y, Zhou Z, Deng Z, Tan J, Bai C, Fu A, Wang Q, Zuo J. Dissection of mRNA ac 4C acetylation modifications in AC and Nr fruits: insights into the regulation of fruit ripening by ethylene. MOLECULAR HORTICULTURE 2024; 4:5. [PMID: 38369544 PMCID: PMC10875755 DOI: 10.1186/s43897-024-00082-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024]
Abstract
N4-acetylcytidine (ac4C) modification of mRNA has been shown to be present in plant RNAs, but its regulatory function in plant remains largely unexplored. In this study, we investigated the differentially expressed mRNAs, lncRNAs and acetylation modifications of mRNAs in tomato fruits from both genotypes. By comparing wild-type (AC) tomato and the ethylene receptor-mutant (Nr) tomato from mature green (MG) to six days after the breaker (Br6) stage, we identified differences in numerous key genes related to fruit ripening and observed the corresponding lncRNAs positively regulated the target genes expression. At the post-transcriptional level, the acetylation level decreased and increased in AC and Nr tomatoes from MG to Br6 stage, respectively. The integrated analysis of RNA-seq and ac4C-seq data revealed the potential positive role of acetylation modification in regulating gene expression. Furthermore, we found differential acetylation modifications of certain transcripts (ACO, ETR, ERF, PG, CesA, β-Gal, GAD, AMY, and SUS) in AC and Nr fruits which may explain the differences in ethylene production, fruit texture, and flavor during their ripening processes. The present study provides new insights into the molecular mechanisms by which acetylation modification differentially regulates the ripening process of wild-type and mutant tomato fruits deficient in ethylene signaling.
Collapse
Affiliation(s)
- Lili Ma
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
| | - Yanyan Zheng
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
| | - Zhongjing Zhou
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zhiping Deng
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jinjuan Tan
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Chunmei Bai
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
| | - Anzhen Fu
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048, China
| | - Qing Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China.
| | - Jinhua Zuo
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China.
| |
Collapse
|
11
|
Sun C, Yao G, Zhao J, Chen R, Hu K, He G, Zhang H. SlERF109-like and SlNAC1 Coordinately Regulated Tomato Ripening by Inhibiting ACO1 Transcription. Int J Mol Sci 2024; 25:1873. [PMID: 38339150 PMCID: PMC10855853 DOI: 10.3390/ijms25031873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/16/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
As a typical climacteric fruit, tomato (Solanum lycopersicum) is widely used for studying the ripening process. The negative regulation of tomato fruits by transcription factor SlNAC1 has been reported, but its regulatory network was unclear. In the present study, we screened a transcription factor, SlERF109-like, and found it had a stronger relationship with SlNAC1 at the early stage of tomato fruit development through the use of transcriptome data, RT-qPCR, and correlation analysis. We inferred that SlERF109-like could interact with SlNAC1 to become a regulatory complex that co-regulates the tomato fruit ripening process. Results of transient silencing (VIGS) and transient overexpression showed that SlERF109-like and SlNAC1 could regulate chlorophyll degradation-related genes (NYC1, PAO, PPH, SGR1), carotenoids accumulation-related genes (PSY1, PDS, ZDS), ETH-related genes (ACO1, E4, E8), and cell wall metabolism-related genes expression levels (CEL2, EXP, PG, TBG4, XTH5) to inhibit tomato fruit ripening. A dual-luciferase reporter and yeast one-hybrid (Y1H) showed that SlNAC1 could bind to the SlACO1 promoter, but SlERF109-like could not. Furthermore, SlERF109-like could interact with SlNAC1 to increase the transcription for ACO1 by a yeast two-hybrid (Y2H) assay, a luciferase complementation assay, and a dual-luciferase reporter. A correlation analysis showed that SlERF109-like and SlNAC1 were positively correlated with chlorophyll contents, and negatively correlated with carotenoid content and ripening-related genes. Thus, we provide a model in which SlERF109-like could interact with SlNAC1 to become a regulatory complex that negatively regulates the tomato ripening process by inhibiting SlACO1 expression. Our study provided a new regulatory network of tomato fruit ripening and effectively reduced the waste of resources.
Collapse
Affiliation(s)
- Chen Sun
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310012, China; (C.S.); (R.C.)
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (G.Y.); (J.Z.); (K.H.)
| | - Gaifang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (G.Y.); (J.Z.); (K.H.)
| | - Jinghan Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (G.Y.); (J.Z.); (K.H.)
| | - Ruying Chen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310012, China; (C.S.); (R.C.)
| | - Kangdi Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (G.Y.); (J.Z.); (K.H.)
| | - Guanghua He
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310012, China; (C.S.); (R.C.)
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (G.Y.); (J.Z.); (K.H.)
| |
Collapse
|
12
|
Li M, Zhu G, Liu Z, Li L, Wang S, Liu Y, Lu W, Zeng Y, Cheng X, Shen W. Hydrogen Fertilization with Hydrogen Nanobubble Water Improves Yield and Quality of Cherry Tomatoes Compared to the Conventional Fertilizers. PLANTS (BASEL, SWITZERLAND) 2024; 13:443. [PMID: 38337976 PMCID: PMC10857181 DOI: 10.3390/plants13030443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Although hydrogen gas (H2)-treated soil improves crop biomass, this approach appears difficult for field application due to the flammability of H2 gas. In this report, we investigated whether and how H2 applied in hydrogen nanobubble water (HNW) improves the yield and quality of cherry tomato (Lycopersicon esculentum var. cerasiforme) with and without fertilizers. Two-year-long field trials showed that compared to corresponding controls, HNW without and with fertilizers improved the cherry tomato yield per plant by 39.7% and 26.5% in 2021 (Shanghai), respectively, and by 39.4% and 28.2% in 2023 (Nanjing), respectively. Compared to surface water (SW), HNW increased the soil available nitrogen (N), phosphorus (P), and potassium (K) consumption regardless of fertilizer application, which may be attributed to the increased NPK transport-related genes in roots (LeAMT2, LePT2, LePT5, and SlHKT1,1). Furthermore, HNW-irrigated cherry tomatoes displayed a higher sugar-acid ratio (8.6%) and lycopene content (22.3%) than SW-irrigated plants without fertilizers. Importantly, the beneficial effects of HNW without fertilizers on the yield per plant (9.1%), sugar-acid ratio (31.1%), and volatiles (20.0%) and lycopene contents (54.3%) were stronger than those achieved using fertilizers alone. In short, this study clearly indicated that HNW-supplied H2 not only exhibited a fertilization effect on enhancing the tomato yield, but also improved the fruit's quality with a lower carbon footprint.
Collapse
Affiliation(s)
- Min Li
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (G.Z.); (Z.L.); (L.L.); (S.W.); (Y.L.); (W.L.)
| | - Guanjie Zhu
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (G.Z.); (Z.L.); (L.L.); (S.W.); (Y.L.); (W.L.)
| | - Ziyu Liu
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (G.Z.); (Z.L.); (L.L.); (S.W.); (Y.L.); (W.L.)
| | - Longna Li
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (G.Z.); (Z.L.); (L.L.); (S.W.); (Y.L.); (W.L.)
| | - Shu Wang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (G.Z.); (Z.L.); (L.L.); (S.W.); (Y.L.); (W.L.)
| | - Yuhao Liu
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (G.Z.); (Z.L.); (L.L.); (S.W.); (Y.L.); (W.L.)
| | - Wei Lu
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (G.Z.); (Z.L.); (L.L.); (S.W.); (Y.L.); (W.L.)
| | - Yan Zeng
- Life Science Group, Air Liquide (China) R&D Co., Ltd., Shanghai 201108, China; (Y.Z.); (X.C.)
| | - Xu Cheng
- Life Science Group, Air Liquide (China) R&D Co., Ltd., Shanghai 201108, China; (Y.Z.); (X.C.)
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.L.); (G.Z.); (Z.L.); (L.L.); (S.W.); (Y.L.); (W.L.)
| |
Collapse
|
13
|
D’Orso F, Hill L, Appelhagen I, Lawrenson T, Possenti M, Li J, Harwood W, Morelli G, Martin C. Exploring the metabolic and physiological roles of HQT in S. lycopersicum by gene editing. FRONTIERS IN PLANT SCIENCE 2023; 14:1124959. [PMID: 37063176 PMCID: PMC10102458 DOI: 10.3389/fpls.2023.1124959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
The most abundant phenolic compound in Solanaceous plants is chlorogenic acid (CGA), which possesses protective properties such as antimicrobial and antioxidant activities. These properties are particularly relevant when plants are under adverse conditions, such as pathogen attack, excess light, or extreme temperatures that cause oxidative stress. Additionally, CGA has been shown to absorb UV-B light. In tomato and potato, CGA is mainly produced through the HQT pathway mediated by the enzyme hydroxycinnamoyl-CoA:quinate hydroxycinnamoyl transferase. However, the absence of natural or induced mutants of this gene has made it unclear whether other pathways contribute to CGA production and accumulation. To address this question, we used CRISPR technology to generate multiple knock-out mutant lines in the tomato HQT gene. The resulting slhqt plants did not accumulate CGA or other caffeoylquinic acids (CQAs) in various parts of the plant, indicating that CQA biosynthesis depends almost entirely on the HQT pathway in tomato and, likely, other Solanaceous crops. We also found that the lack of CGA in slhqt plants led to higher levels of hydroxycinnamoyl-glucose and flavonoids compared to wild-type plants. Gene expression analysis revealed that this metabolic reorganization was partly due to flux redirection, but also involved modulation of important transcription factor genes that regulate secondary metabolism and sense environmental conditions. Finally, we investigated the physiological role of CGA in tomato and found that it accumulates in the upper epidermis where it acts as a protector against UV-B irradiation.
Collapse
Affiliation(s)
- Fabio D’Orso
- Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics, Rome, Italy
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Lionel Hill
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Ingo Appelhagen
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Tom Lawrenson
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Marco Possenti
- Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics, Rome, Italy
| | - Jie Li
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Wendy Harwood
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Giorgio Morelli
- Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics, Rome, Italy
| | - Cathie Martin
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
14
|
Salas-Sanjuán MDC, Rebolloso MDM, del Moral F, Valenzuela JL. Use of Sub-Atmospheric Pressure Storage to Improve the Quality and Shelf-Life of Marmande Tomatoes cv. Rojito. Foods 2023; 12:1197. [PMID: 36981124 PMCID: PMC10048657 DOI: 10.3390/foods12061197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
In this study, the feasibility of storing Marmande tomatoes (Solanum lycopersicum, cv Rojito) under hypobaric conditions was evaluated. The fruits were sorted into four lots of 72 fruits each. One lot was considered as a control, and the fruits were kept in the open box, while the fruits of the rest of the three remaining lots were enclosed in airtight containers and subjected to 101, 75 and 50 Kpa, respectively. Control fruits and airtight containers were kept at room temperature, and every three days from the beginning of the experiment the following main quality parameters were analysed: ethylene production rate, firmness, colour, total solids content, ascorbic acid, total phenolics and pigments, as well as a sensory analysis carried out by panellists. The results show that sub-atmospheric storage led a reduction in ethylene production, which was associated with a delay in ripening. The differences in the evolution of pigments were very significant, while a large degradation of chlorophylls was observed in the control fruits and in those kept at 101 kPa, in the fruits kept at 75 kPa and 50 kPa the degradation was much slower. In relation to carotenoid pigments, it was observed that sub-atmospheric treatments delayed their appearance compared to control and 101 kPa fruits. In relation to other quality parameters, it was found that control fruit and fruit held at 101 kPa softened more rapidly than fruit under sub-atmospheric conditions, whose loss of firmness was more gradual with differences found only at 9 and 12 days of storage with respect to fruit firmness at harvest. The appearance of these fruits was evaluated with the same score as at the time of harvesting, during 9 of the 12 days of the experiment, then a positive effect of sub-atmospheric treatments was also found in the sensory analysis. The results suggest that sub-atmospheric storage could be a suitable method of increasing the shelf-life of fruits.
Collapse
Affiliation(s)
- María del Carmen Salas-Sanjuán
- Department of Agronomy, Higher Engineering School, Research Centres CIAIMBITAL and CeiA3, University of Almería, 04120 Almería, Spain
| | - María del Mar Rebolloso
- Department of Agronomy, Higher Engineering School, Research Centres CIAIMBITAL and CeiA3, University of Almería, 04120 Almería, Spain
| | - Fernando del Moral
- Department of Agronomy, Higher Engineering School, Research Centres CIAIMBITAL and CeiA3, University of Almería, 04120 Almería, Spain
| | - Juan Luis Valenzuela
- Department of Biology & Geology, Higher Engineering School, Research Centres CIAIMBITAL and CeiA3, University of Almería, 04120 Almería, Spain
| |
Collapse
|
15
|
Zhao YQ, Hu KD, Yao GF, Wang SY, Peng XJ, Zhang H. A D-cysteine desulfhydrase, SlDCD2, participates in tomato fruit ripening by modulating ROS homoeostasis and ethylene biosynthesis. HORTICULTURE RESEARCH 2023; 10:uhad014. [PMID: 36968183 PMCID: PMC10031741 DOI: 10.1093/hr/uhad014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Hydrogen sulfide (H2S) is involved in multiple processes during plant growth and development. D-cysteine desulfhydrase (DCD) can produce H2S with D-cysteine as the substrate; however, the potential developmental roles of DCD have not been explored during the tomato lifecycle. In the present study, SlDCD2 showed increasing expression during fruit ripening. Compared with the control fruits, the silencing of SlDCD2 by pTRV2-SlDCD2 accelerated fruit ripening. A SlDCD2 gene-edited mutant was constructed by CRISPR/Cas9 transformation, and the mutant exhibited accelerated fruit ripening, decreased H2S release, higher total cysteine and ethylene contents, enhanced chlorophyll degradation and increased carotenoid accumulation. Additionally, the expression of multiple ripening-related genes, including NYC1, PAO, SGR1, PDS, PSY1, ACO1, ACS2, E4, CEL2, and EXP was enhanced during the dcd2 mutant tomato fruit ripening. Compared with the wild-type fruits, SlDCD2 mutation induced H2O2 and malondialdehyde (MDA) accumulation in fruits, which led to an imbalance in reactive oxygen species (ROS) metabolism. A correlation analysis indicated that H2O2 content was strongly positively correlated with carotenoids content, ethylene content and ripening-related gene expression and negatively correlated with the chlorophyll content. Additionally, the dcd2 mutant showed earlier leaf senescence, which may be due to disturbed ROS homeostasis. In short, our findings show that SlDCD2 is involved in H2S generation and that the reduction in endogenous H2S production in the dcd2 mutant causes accelerated fruit ripening and premature leaf senescence. Additionally, decreased H2S in the dcd2 mutant causes excessive H2O2 accumulation and increased ethylene release, suggesting a role of H2S and SlDCD2 in modulating ROS homeostasis and ethylene biosynthesis.
Collapse
Affiliation(s)
- Yu-Qi Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kang-Di Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Gai-Fang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Si-Yue Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiang-Jun Peng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
16
|
Geng ZK, Ma L, Rong YL, Li WJ, Yao GF, Zhang H, Hu KD. A Hydrogen-Sulfide-Repressed Methionine Synthase SlMS1 Acts as a Positive Regulator for Fruit Ripening in Tomato. Int J Mol Sci 2022; 23:12239. [PMID: 36293095 PMCID: PMC9603753 DOI: 10.3390/ijms232012239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Ethylene is a key phytohormone that regulates the ripening of climacteric fruits, and methionine is an indirect precursor of ethylene. However, whether methionine synthase plays a role in fruit ripening in Solanum lycopersicum (tomato) is still unknown. In this study, we find that a tomato methionine synthase (named SlMS1), which could be repressed at the transcriptional level by hydrogen sulfide (H2S), acts as a positive regulator for tomato fruit ripening. By a bioinformatics analysis, it is found that SlMS1 and SlMS2 in tomato are highly homologous to methionine synthases in Arabidopsis thaliana. The expression pattern of SlMS1 and SlMS2 is analyzed in tomato, and SlMS1 expression is up-regulated during fruit ripening, suggesting its potential role in regulating fruit ripening. A potential bipartite nuclear localization signal is found in the amino acid sequence of SlMS1; thus, SlMS1 is tagged with GFP and observed in the leaves of Nicotiana benthamiana. Consistently, SlMS1-GFP shows strong nuclear localization and also cytoplasmic localization. The role of SlMS1 in regulating fruit ripening is investigated in tomato fruit by transient silencing (virus-induced gene silencing, VIGS) and transient overexpression. The results show that SlMS1 silencing causes delayed fruit ripening, evidenced by more chlorophyll and less carotenoid accumulation, while SlMS1 overexpression accelerates fruit ripening significantly compared with control. Further investigation shows that SlMS1 overexpression could up-regulate the expression of carotenoid-synthesis-related genes (PSY1, PDS, ZDS), chlorophyll-degradation-related genes (NYC1, PAO, PPH, SGR1), cell-wall-metabolism-related genes (CEL2, EXP, PG, TBG4, XTH5) and ethylene-synthesis-pathway-related genes (ACO1, ACO3, ACS2), while SlMS1 silencing causes the opposite results. The correlation analysis indicates that SlMS1 expression is negatively correlated with chlorophyll content and positively correlated with carotenoid and ripening-related gene expressions. Taken together, our data suggest that SlMS1 is a positive regulator of tomato fruit ripening and a possible target gene for the ripening-delaying effect of H2S.
Collapse
Affiliation(s)
- Zhi-Kun Geng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lin Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yu-Lei Rong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wan-Jie Li
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Gai-Fang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kang-Di Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
17
|
Seymour GB, Rose JKC. Tomato molecular biology - special collection of papers for molecular horticulture. MOLECULAR HORTICULTURE 2022; 2:21. [PMID: 37789457 PMCID: PMC10515225 DOI: 10.1186/s43897-022-00042-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Affiliation(s)
- Graham B Seymour
- School of Biosciences, Division of Plant and Crop Science, University of Nottingham, Loughborough, Leics, LE12 5RD, UK.
| | - Jocelyn K C Rose
- School of Integrative Plant Science, Cornell University, 331 Emerson Hall, Ithaca, NY, 14853, USA
| |
Collapse
|
18
|
Gan SS. Recent progresses in molecular postharvest biology. MOLECULAR HORTICULTURE 2022; 2:18. [PMID: 37789490 PMCID: PMC10515049 DOI: 10.1186/s43897-022-00040-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Affiliation(s)
- Su-Sheng Gan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|