1
|
Han Q, Yu Y, Sun H, Zhang X, Liu P, Deng J, Hu X, Chen J. Proteomics and Microbiota Conjoint Analysis in the Nasal Mucus: Revelation of Differences in Immunological Function in Manis javanica and Manis pentadactyla. Animals (Basel) 2024; 14:2683. [PMID: 39335272 PMCID: PMC11428827 DOI: 10.3390/ani14182683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/24/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
All eight pangolin species, especially captive Manis pentadactyla, are critically endangered and susceptible to various pathogenic microorganisms, causing mass mortality. They are involved in the complement system, iron transport system, and inflammatory factors. M. pentadactyla exhibited a higher abundance of opportunistic pathogens, Moraxella, which potentially evaded complement-mediated immune response by reducing C5 levels and counteracting detrimental effects through transferrin neutralization. In addition, we found that the major structure of C5a, an important inflammatory factor, was lacking in M. javanica. In brief, this study revealed the differences in immune factors and microbiome between M. javanica and M. pentadactyla, thus providing a theoretical basis for subsequent immunotherapy.
Collapse
Affiliation(s)
- Qing Han
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Yepin Yu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Hongbin Sun
- Shenzhen Natural Reserve Management Center, Shenzhen 518115, China
| | - Xiujuan Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Ping Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Jianfeng Deng
- Shenzhen Natural Reserve Management Center, Shenzhen 518115, China
| | - Xinyuan Hu
- Shenzhen Natural Reserve Management Center, Shenzhen 518115, China
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| |
Collapse
|
2
|
Melnik BC, Stremmel W, Weiskirchen R, John SM, Schmitz G. Exosome-Derived MicroRNAs of Human Milk and Their Effects on Infant Health and Development. Biomolecules 2021; 11:biom11060851. [PMID: 34200323 PMCID: PMC8228670 DOI: 10.3390/biom11060851] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
Multiple biologically active components of human milk support infant growth, health and development. Milk provides a wide spectrum of mammary epithelial cell-derived extracellular vesicles (MEVs) for the infant. Although the whole spectrum of MEVs appears to be of functional importance for the growing infant, the majority of recent studies report on the MEV subfraction of milk exosomes (MEX) and their miRNA cargo, which are in the focus of this review. MEX and the dominant miRNA-148a play a key role in intestinal maturation, barrier function and suppression of nuclear factor-κB (NF-κB) signaling and may thus be helpful for the prevention and treatment of necrotizing enterocolitis. MEX and their miRNAs reach the systemic circulation and may impact epigenetic programming of various organs including the liver, thymus, brain, pancreatic islets, beige, brown and white adipose tissue as well as bones. Translational evidence indicates that MEX and their miRNAs control the expression of global cellular regulators such as DNA methyltransferase 1-which is important for the up-regulation of developmental genes including insulin, insulin-like growth factor-1, α-synuclein and forkhead box P3-and receptor-interacting protein 140, which is important for the regulation of multiple nuclear receptors. MEX-derived miRNA-148a and miRNA-30b may stimulate the expression of uncoupling protein 1, the key inducer of thermogenesis converting white into beige/brown adipose tissue. MEX have to be considered as signalosomes derived from the maternal lactation genome emitted to promote growth, maturation, immunological and metabolic programming of the offspring. Deeper insights into milk's molecular biology allow the conclusion that infants are both "breast-fed" and "breast-programmed". In this regard, MEX miRNA-deficient artificial formula is not an adequate substitute for breastfeeding, the birthright of all mammals.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany;
- Correspondence: ; Tel.: +49-5241-988060
| | - Wolfgang Stremmel
- Private Praxis for Internal Medicine, Beethovenstraße 2, D-76530 Baden-Baden, Germany;
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| | - Swen Malte John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany;
- Institute for Interdisciplinary Dermatological Prevention and Rehabilitation (iDerm), University of Osnabrück, D-49076 Osnabrück, Germany
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, University of Regensburg, D-93053 Regensburg, Germany;
| |
Collapse
|
3
|
Sartorius K, An P, Winkler C, Chuturgoon A, Li X, Makarova J, Kramvis A. The Epigenetic Modulation of Cancer and Immune Pathways in Hepatitis B Virus-Associated Hepatocellular Carcinoma: The Influence of HBx and miRNA Dysregulation. Front Immunol 2021; 12:661204. [PMID: 33995383 PMCID: PMC8117219 DOI: 10.3389/fimmu.2021.661204] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/15/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatitis B virus (HBV)-associated hepatocellular carcinoma (HBV-HCC) pathogenesis is fueled by persistent HBV infection that stealthily maintains a delicate balance between viral replication and evasion of the host immune system. HBV is remarkably adept at using a combination of both its own, as well as host machinery to ensure its own replication and survival. A key tool in its arsenal, is the HBx protein which can manipulate the epigenetic landscape to decrease its own viral load and enhance persistence, as well as manage host genome epigenetic responses to the presence of viral infection. The HBx protein can initiate epigenetic modifications to dysregulate miRNA expression which, in turn, can regulate downstream epigenetic changes in HBV-HCC pathogenesis. We attempt to link the HBx and miRNA induced epigenetic modulations that influence both the HBV and host genome expression in HBV-HCC pathogenesis. In particular, the review investigates the interplay between CHB infection, the silencing role of miRNA, epigenetic change, immune system expression and HBV-HCC pathogenesis. The review demonstrates exactly how HBx-dysregulated miRNA in HBV-HCC pathogenesis influence and are influenced by epigenetic changes to modulate both viral and host genome expression. In particular, the review identifies a specific subset of HBx induced epigenetic miRNA pathways in HBV-HCC pathogenesis demonstrating the complex interplay between HBV infection, epigenetic change, disease and immune response. The wide-ranging influence of epigenetic change and miRNA modulation offers considerable potential as a therapeutic option in HBV-HCC.
Collapse
Affiliation(s)
- Kurt Sartorius
- Hepatitis Virus Diversity Research Unit, School of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa.,Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa.,Department of Surgery, University of KwaZulu-Natal Gastrointestinal Cancer Research Centre, Durban, South Africa
| | - Ping An
- Basic Research Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Cheryl Winkler
- Basic Research Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Anil Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Durban, South Africa
| | - Xiaodong Li
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Julia Makarova
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow, Russia.,Higher School of Economics University, Moscow, Russia
| | - Anna Kramvis
- Hepatitis Virus Diversity Research Unit, School of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
4
|
CaMKII Activity in the Inflammatory Response of Cardiac Diseases. Int J Mol Sci 2019; 20:ijms20184374. [PMID: 31489895 PMCID: PMC6770001 DOI: 10.3390/ijms20184374] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022] Open
Abstract
Inflammation is a physiological process by which the body responds to external insults and stress conditions, and it is characterized by the production of pro-inflammatory mediators such as cytokines. The acute inflammatory response is solved by removing the threat. Conversely, a chronic inflammatory state is established due to a prolonged inflammatory response and may lead to tissue damage. Based on the evidence of a reciprocal regulation between inflammation process and calcium unbalance, here we described the involvement of a calcium sensor in cardiac diseases with inflammatory drift. Indeed, the Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated in several diseases with an inflammatory component, such as myocardial infarction, ischemia/reperfusion injury, pressure overload/hypertrophy, and arrhythmic syndromes, in which it actively regulates pro-inflammatory signaling, among which includes nuclear factor kappa-B (NF-κB), thus contributing to pathological cardiac remodeling. Thus, CaMKII may represent a key target to modulate the severity of the inflammatory-driven degeneration.
Collapse
|
5
|
Friedrich M, Pracht K, Mashreghi MF, Jäck HM, Radbruch A, Seliger B. The role of the miR-148/-152 family in physiology and disease. Eur J Immunol 2017; 47:2026-2038. [DOI: 10.1002/eji.201747132] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/30/2017] [Accepted: 09/01/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Michael Friedrich
- Institute of Medical Immunology; Martin-Luther-University Halle-Wittenberg; Halle/Saale Germany
| | - Katharina Pracht
- Division of Molecular Immunology; Nikolaus-Fiebiger Center; Department of Internal Medicine III; University of Erlangen-Nürnberg; Erlangen Germany
| | | | - Hans-Martin Jäck
- Division of Molecular Immunology; Nikolaus-Fiebiger Center; Department of Internal Medicine III; University of Erlangen-Nürnberg; Erlangen Germany
| | | | - Barbara Seliger
- Institute of Medical Immunology; Martin-Luther-University Halle-Wittenberg; Halle/Saale Germany
| |
Collapse
|
6
|
Cote R, Lynn Eggink L, Kenneth Hoober J. CLEC receptors, endocytosis and calcium signaling. AIMS ALLERGY AND IMMUNOLOGY 2017. [DOI: 10.3934/allergy.2017.4.207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
7
|
Xu X, Gao Y, Wen L, Zhai Z, Zhang S, Shan F, Feng J. Methionine enkephalin regulates microglia polarization and function. Int Immunopharmacol 2016; 40:90-97. [DOI: 10.1016/j.intimp.2016.08.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 12/16/2022]
|
8
|
Liu X, Li J, Qin F, Dai S. miR-152 as a tumor suppressor microRNA: Target recognition and regulation in cancer. Oncol Lett 2016; 11:3911-3916. [PMID: 27313716 DOI: 10.3892/ol.2016.4509] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 03/01/2016] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) are endogenous translation repressors of protein-coding genes that act by binding to the 3'-untranslated region of their target genes, and may contribute to tumorigenesis by functioning as oncogenes or tumor suppressor genes. miR-152, a member of the miR-148/152 family, is aberrantly expressed in various diseases, including various types of cancer. A growing body of evidence has demonstrated that miR-152 may act as a tumor suppressor gene by regulating its target genes, which are associated with cell proliferation, migration and invasion in human cancer. In the present review, the gene structure and functions of miR-152 are discussed, and in particular, its regulatory mechanism, experimentally validated targets and tumor suppressor role in cancer, are highlighted.
Collapse
Affiliation(s)
- Xuexiang Liu
- Department of Laboratory Science, The Fourth Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi 545005, P.R. China
| | - Jinwan Li
- Department of Laboratory Science, The Fourth Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi 545005, P.R. China
| | - Fengxian Qin
- Department of Laboratory Science, The Fourth Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi 545005, P.R. China
| | - Shengming Dai
- Department of Laboratory Science, The Fourth Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi 545005, P.R. China
| |
Collapse
|
9
|
Yan J, Almilaji A, Schmid E, Elvira B, Shimshek DR, van der Putten H, Wagner CA, Shumilina E, Lang F. Leucine-rich repeat kinase 2-sensitive Na+/Ca2+ exchanger activity in dendritic cells. FASEB J 2015; 29:1701-10. [PMID: 25609428 DOI: 10.1096/fj.14-264028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/12/2014] [Indexed: 11/11/2022]
Abstract
Gene variants of the leucine-rich repeat kinase 2 (LRRK2) are associated with susceptibility to Parkinson's disease (PD). Besides brain and periphery, LRRK2 is expressed in various immune cells including dendritic cells (DCs), antigen-presenting cells linking innate and adaptive immunity. However, the function of LRRK2 in the immune system is still incompletely understood. Here, Ca(2+)-signaling was analyzed in DCs isolated from gene-targeted mice lacking lrrk2 (Lrrk2(-/-)) and their wild-type littermates (Lrrk2(+/+)). According to Western blotting, Lrrk2 was expressed in Lrrk2(+/+) DCs but not in Lrrk2(-/-)DCs. Cytosolic Ca(2+) levels ([Ca(2+)]i) were determined utilizing Fura-2 fluorescence and whole cell currents to decipher electrogenic transport. The increase of [Ca(2+)]i following inhibition of sarcoendoplasmatic Ca(2+)-ATPase with thapsigargin (1 µM) in the absence of extracellular Ca(2+) (Ca(2+)-release) and the increase of [Ca(2+)]i following subsequent readdition of extracellular Ca(2+) (SOCE) were both significantly larger in Lrrk2(-/-) than in Lrrk2(+/+) DCs. The augmented increase of [Ca(2+)]i could have been due to impaired Ca(2+) extrusion by K(+)-independent (NCX) and/or K(+)-dependent (NCKX) Na(+)/Ca(2+)-exchanger activity, which was thus determined from the increase of [Ca(2+)]i, (Δ[Ca(2+)]i), and current following abrupt replacement of Na(+) containing (130 mM) and Ca(2+) free (0 mM) extracellular perfusate by Na(+) free (0 mM) and Ca(2+) containing (2 mM) extracellular perfusate. As a result, both slope and peak of Δ[Ca(2+)]i as well as Na(+)/Ca(2+) exchanger-induced current were significantly lower in Lrrk2(-/-) than in Lrrk2(+/+) DCs. A 6 or 24 hour treatment with the LRRK2 inhibitor GSK2578215A (1 µM) significantly decreased NCX1 and NCKX1 transcript levels, significantly blunted Na(+)/Ca(2+)-exchanger activity, and significantly augmented the increase of [Ca(2+)]i following Ca(2+)-release and SOCE. In conclusion, the present observations disclose a completely novel functional significance of LRRK2, i.e., the up-regulation of Na(+)/Ca(2+) exchanger transcription and activity leading to attenuation of Ca(2+)-signals in DCs.
Collapse
Affiliation(s)
- Jing Yan
- *Department of Physiology, University of Tübingen, Tübingen, Germany; Department of Neuroscience, Novartis Institutes for BioMedical Research, Basel, Switzerland; Institute of Physiology, University of Zurich, Zurich, Switzerland; National Contest for Life Foundation, Hamburg, Germany; and Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Ahmad Almilaji
- *Department of Physiology, University of Tübingen, Tübingen, Germany; Department of Neuroscience, Novartis Institutes for BioMedical Research, Basel, Switzerland; Institute of Physiology, University of Zurich, Zurich, Switzerland; National Contest for Life Foundation, Hamburg, Germany; and Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Evi Schmid
- *Department of Physiology, University of Tübingen, Tübingen, Germany; Department of Neuroscience, Novartis Institutes for BioMedical Research, Basel, Switzerland; Institute of Physiology, University of Zurich, Zurich, Switzerland; National Contest for Life Foundation, Hamburg, Germany; and Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Bernat Elvira
- *Department of Physiology, University of Tübingen, Tübingen, Germany; Department of Neuroscience, Novartis Institutes for BioMedical Research, Basel, Switzerland; Institute of Physiology, University of Zurich, Zurich, Switzerland; National Contest for Life Foundation, Hamburg, Germany; and Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Derya R Shimshek
- *Department of Physiology, University of Tübingen, Tübingen, Germany; Department of Neuroscience, Novartis Institutes for BioMedical Research, Basel, Switzerland; Institute of Physiology, University of Zurich, Zurich, Switzerland; National Contest for Life Foundation, Hamburg, Germany; and Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Herman van der Putten
- *Department of Physiology, University of Tübingen, Tübingen, Germany; Department of Neuroscience, Novartis Institutes for BioMedical Research, Basel, Switzerland; Institute of Physiology, University of Zurich, Zurich, Switzerland; National Contest for Life Foundation, Hamburg, Germany; and Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Carsten A Wagner
- *Department of Physiology, University of Tübingen, Tübingen, Germany; Department of Neuroscience, Novartis Institutes for BioMedical Research, Basel, Switzerland; Institute of Physiology, University of Zurich, Zurich, Switzerland; National Contest for Life Foundation, Hamburg, Germany; and Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Ekaterina Shumilina
- *Department of Physiology, University of Tübingen, Tübingen, Germany; Department of Neuroscience, Novartis Institutes for BioMedical Research, Basel, Switzerland; Institute of Physiology, University of Zurich, Zurich, Switzerland; National Contest for Life Foundation, Hamburg, Germany; and Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Florian Lang
- *Department of Physiology, University of Tübingen, Tübingen, Germany; Department of Neuroscience, Novartis Institutes for BioMedical Research, Basel, Switzerland; Institute of Physiology, University of Zurich, Zurich, Switzerland; National Contest for Life Foundation, Hamburg, Germany; and Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
10
|
Onal B, Unudurthi SD, Hund TJ. Modeling CaMKII in cardiac physiology: from molecule to tissue. Front Pharmacol 2014; 5:9. [PMID: 24550832 PMCID: PMC3912431 DOI: 10.3389/fphar.2014.00009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 01/16/2014] [Indexed: 12/02/2022] Open
Abstract
Post-translational modification of membrane proteins (e.g., ion channels, receptors) by protein kinases is an essential mechanism for control of excitable cell function. Importantly, loss of temporal and/or spatial control of ion channel post-translational modification is common in congenital and acquired forms of cardiac disease and arrhythmia. The multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) regulates a number of diverse cellular functions in heart, including excitation-contraction coupling, gene transcription, and apoptosis. Dysregulation of CaMKII signaling has been implicated in human and animal models of disease. Understanding of CaMKII function has been advanced by mathematical modeling approaches well-suited to the study of complex biological systems. Early kinetic models of CaMKII function in the brain characterized this holoenzyme as a bistable molecular switch capable of storing information over a long period of time. Models of CaMKII activity have been incorporated into models of the cell and tissue (particularly in the heart) to predict the role of CaMKII in regulating organ function. Disease models that incorporate CaMKII overexpression clearly demonstrate a link between its excessive activity and arrhythmias associated with congenital and acquired heart disease. This review aims at discussing systems biology approaches that have been applied to analyze CaMKII signaling from the single molecule to intact cardiac tissue. In particular, efforts to use computational biology to provide new insight into cardiac disease mechanisms are emphasized.
Collapse
Affiliation(s)
- Birce Onal
- The Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University Columbus, OH, USA ; Department of Biomedical Engineering, College of Engineering, The Ohio State University Columbus, OH, USA
| | - Sathya D Unudurthi
- The Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University Columbus, OH, USA
| | - Thomas J Hund
- The Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University Columbus, OH, USA ; Department of Biomedical Engineering, College of Engineering, The Ohio State University Columbus, OH, USA ; Department of Internal Medicine, Wexner Medical Center, The Ohio State University Columbus, OH, USA
| |
Collapse
|
11
|
De Riva A, Busch R. MHC Class II Protein Turnover In vivo and Its Relevance for Autoimmunity in Non-Obese Diabetic Mice. Front Immunol 2013; 4:399. [PMID: 24324466 PMCID: PMC3839011 DOI: 10.3389/fimmu.2013.00399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/08/2013] [Indexed: 11/19/2022] Open
Abstract
Major histocompatibility complex class II (MHCII) proteins are loaded with endosomal peptides and reside at the surface of antigen-presenting cells (APCs) for a time before being degraded. In vitro, MHCII protein levels and turnover are affected by peptide loading and by rates of ubiquitin-dependent internalization from the cell surface, which is in turn affected by APC type and activation state. Prior work suggested that fast turnover of disease-associated MHCII alleles may contribute to autoimmunity. We recently developed novel stable isotope tracer techniques to test this hypothesis in vivo. In non-obese diabetic (NOD) mice, a model of type 1 diabetes (T1D), MHCII turnover was affected by APC type, but unaffected by disease-associated structural polymorphism. Differences in MHCII turnover were observed between NOD colonies with high and low T1D incidence, but fast turnover was dispensable for autoimmunity. Moreover, NOD mice with gene knockouts of peptide loading cofactors do not develop T1D. Thus, fast turnover does not appear pathogenic, and conventional antigen presentation is critical for autoimmunity in NOD mice. However, shared environmental factors may underpin colony differences in MHCII protein turnover, immune regulation, and pathogenesis.
Collapse
Affiliation(s)
| | - Robert Busch
- Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Toda M, Shao Z, Yamaguchi KD, Takagi T, D’Alessandro-Gabazza CN, Taguchi O, Salamon H, Leung LLK, Gabazza EC, Morser J. Differential gene expression in thrombomodulin (TM; CD141)(+) and TM(-) dendritic cell subsets. PLoS One 2013; 8:e72392. [PMID: 24009678 PMCID: PMC3751914 DOI: 10.1371/journal.pone.0072392] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 07/08/2013] [Indexed: 11/18/2022] Open
Abstract
Previously we have shown in a mouse model of bronchial asthma that thrombomodulin can convert immunogenic conventional dendritic cells into tolerogenic dendritic cells while inducing its own expression on their cell surface. Thrombomodulin+ dendritic cells are tolerogenic while thrombomodulin− dendritic cells are pro-inflammatory and immunogenic. Here we hypothesized that thrombomodulin treatment of dendritic cells would modulate inflammatory gene expression. Murine bone marrow-derived dendritic cells were treated with soluble thrombomodulin and expression of surface markers was determined. Treatment with thrombomodulin reduces the expression of maturation markers and increases the expression of TM on the DC surface. Thrombomodulin treated and control dendritic cells were sorted into thrombomodulin+ and thrombomodulin− dendritic cells before their mRNA was analyzed by microarray. mRNAs encoding pro-inflammatory genes and dendritic cells maturation markers were reduced while expression of cell cycle genes were increased in thrombomodulin-treated and thrombomodulin+ dendritic cells compared to control dendritic cells and thrombomodulin− dendritic cells. Thrombomodulin-treated and thrombomodulin+ dendritic cells had higher expression of 15-lipoxygenase suggesting increased synthesis of lipoxins. Thrombomodulin+ dendritic cells produced more lipoxins than thrombomodulin− dendritic cells, as measured by ELISA, confirming that this pathway was upregulated. There was more phosphorylation of several cell cycle kinases in thrombomodulin+ dendritic cells while phosphorylation of kinases involved with pro-inflammatory cytokine signaling was reduced. Cultures of thrombomodulin+ dendritic cells contained more cells actively dividing than those of thrombomodulin− dendritic cells. Production of IL-10 is increased in thrombomodulin+ dendritic cells. Antagonism of IL-10 with a neutralizing antibody inhibited the effects of thrombomodulin treatment of dendritic cells suggesting a mechanistic role for IL-10. The surface of thrombomodulin+ dendritic cells supported activation of protein C and procarboxypeptidase B2 in a thrombomodulin-dependent manner. Thus thrombomodulin treatment increases the number of thrombomodulin+ dendritic cells, which have significantly altered gene expression compared to thrombomodulin− dendritic cells in key immune function pathways.
Collapse
Affiliation(s)
- Masaaki Toda
- Department of Immunology, Mie University Graduate School of Medicine, Tsu Shi, Mie Ken, Japan
| | - Zhifei Shao
- Stanford University School of Medicine, Division of Hematology, Stanford, California, United States of America
- Veterans Administration Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Ken D. Yamaguchi
- Knowledge Synthesis Inc., Berkeley, California, United States of America
| | - Takehiro Takagi
- Department of Pulmonary and Critical Medicine, Mie University Graduate School of Medicine, Tsu Shi, Mie Ken, Japan
| | | | - Osamu Taguchi
- Department of Pulmonary and Critical Medicine, Mie University Graduate School of Medicine, Tsu Shi, Mie Ken, Japan
| | - Hugh Salamon
- Knowledge Synthesis Inc., Berkeley, California, United States of America
| | - Lawrence L. K. Leung
- Stanford University School of Medicine, Division of Hematology, Stanford, California, United States of America
- Veterans Administration Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Esteban C. Gabazza
- Department of Immunology, Mie University Graduate School of Medicine, Tsu Shi, Mie Ken, Japan
| | - John Morser
- Stanford University School of Medicine, Division of Hematology, Stanford, California, United States of America
- Veterans Administration Palo Alto Health Care System, Palo Alto, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Aalaei-andabili SH, Rezaei N. Toll like receptor (TLR)-induced differential expression of microRNAs (MiRs) promotes proper immune response against infections: a systematic review. J Infect 2013; 67:251-64. [PMID: 23850616 DOI: 10.1016/j.jinf.2013.07.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/25/2013] [Accepted: 07/06/2013] [Indexed: 12/19/2022]
Abstract
Toll like receptors (TLRs) are one of the major families of pattern recognition receptors (PRRs). MicroRNAs (MiRs) are small noncoding RNAs with regulatory effects on biological process, and it has been recently shown that they can control inflammatory process and the response to an infection by modulating the function of TLRs. In this study, we designed a systematic review to clarify the reciprocal interaction between TLRs and MiRs, in order to identify possible future therapeutic targets and strategies. On the one hand, TLRs stimulation can change expression level of miRs in various ways, which can lead to modulating their effects. On the other hand, MiRs also influence the expression of TLRs and the intensity of the inflammatory reaction. We therefore conclude that the interaction between MiRs and TLRs is a key regulator of innate immune system. Investigations discovering therapeutic approaches by manipulation of miRs expression level may open a new approach for the treatment of inflammatory diseases.
Collapse
|
14
|
Félix R, Crottès D, Delalande A, Fauconnier J, Lebranchu Y, Le Guennec JY, Velge-Roussel F. The Orai-1 and STIM-1 complex controls human dendritic cell maturation. PLoS One 2013; 8:e61595. [PMID: 23700407 PMCID: PMC3659124 DOI: 10.1371/journal.pone.0061595] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 03/11/2013] [Indexed: 11/18/2022] Open
Abstract
Ca(2+) signaling plays an important role in the function of dendritic cells (DC), the professional antigen presenting cells. Here, we described the role of Calcium released activated (CRAC) channels in the maturation and cytokine secretion of human DC. Recent works identified STIM1 and Orai1 in human T lymphocytes as essential for CRAC channel activation. We investigated Ca(2+) signaling in human DC maturation by imaging intracellular calcium signaling and pharmalogical inhibitors. The DC response to inflammatory mediators or PAMPs (Pathogen-associated molecular patterns) is due to a depletion of intracellular Ca(2+) stores that results in a store-operated Ca(2+) entry (SOCE). This Ca(2+) influx was inhibited by 2-APB and exhibited a Ca(2+)permeability similar to the CRAC (Calcium-Released Activated Calcium), found in T lymphocytes. Depending on the PAMPs used, SOCE profiles and amplitudes appeared different, suggesting the involvement of different CRAC channels. Using siRNAi, we identified the STIM1 and Orai1 protein complex as one of the main pathways for Ca(2+) entry for LPS- and TNF-α-induced maturation in DC. Cytokine secretions also seemed to be SOCE-dependent with profile differences depending on the maturating agents since IL-12 and IL10 secretions appeared highly sensitive to 2-APB whereas IFN-γ was less affected. Altogether, these results clearly demonstrate that human DC maturation and cytokine secretions depend on SOCE signaling involving STIM1 and Orai1 proteins.
Collapse
Affiliation(s)
- Romain Félix
- EA 4245 Cellules Dendritiques, Immunomodulation et Greffes, Université François Rabelais, IFR-136 Agents Transmissibles et Infectiologie, UFR de Médecine, Tours, France
| | - David Crottès
- EA 4245 Cellules Dendritiques, Immunomodulation et Greffes, Université François Rabelais, IFR-136 Agents Transmissibles et Infectiologie, UFR de Médecine, Tours, France
| | - Anthony Delalande
- Centre de Biophysique Moléculaire CNRS UPR 4301, Orléans, France
- Institut National de la Santé et de la Recherche Médical U930 Imagerie et Cerveau, Equipe 5, Tours, France
| | - Jérémy Fauconnier
- Institut National de la Santé et de la Recherche Médical U637, Physiopathologie Cardiovasculaire, Montpellier, France
| | - Yvon Lebranchu
- EA 4245 Cellules Dendritiques, Immunomodulation et Greffes, Université François Rabelais, IFR-136 Agents Transmissibles et Infectiologie, UFR de Médecine, Tours, France
- Service de Néphrologie et d'Immunologie Clinique, CHRU Tours, Tours, France
| | - Jean-Yves Le Guennec
- Institut National de la Santé et de la Recherche Médical U637, Physiopathologie Cardiovasculaire, Montpellier, France
| | - Florence Velge-Roussel
- EA 4245 Cellules Dendritiques, Immunomodulation et Greffes, Université François Rabelais, IFR-136 Agents Transmissibles et Infectiologie, UFR de Médecine, Tours, France
- UFR des Sciences Pharmaceutiques, Tours, France
- * E-mail:
| |
Collapse
|
15
|
Swaminathan PD, Purohit A, Hund TJ, Anderson ME. Calmodulin-dependent protein kinase II: linking heart failure and arrhythmias. Circ Res 2012; 110:1661-77. [PMID: 22679140 DOI: 10.1161/circresaha.111.243956] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Understanding relationships between heart failure and arrhythmias, important causes of suffering and sudden death, remains an unmet goal for biomedical researchers and physicians. Evidence assembled over the past decade supports a view that activation of the multifunctional Ca(2+) and calmodulin-dependent protein kinase II (CaMKII) favors myocardial dysfunction and cell membrane electrical instability. CaMKII activation follows increases in intracellular Ca(2+) or oxidation, upstream signals with the capacity to transition CaMKII into a Ca(2+) and calmodulin-independent constitutively active enzyme. Constitutively active CaMKII appears poised to participate in disease pathways by catalyzing the phosphorylation of classes of protein targets important for excitation-contraction coupling and cell survival, including ion channels and Ca(2+) homeostatic proteins, and transcription factors that drive hypertrophic and inflammatory gene expression. This rich diversity of downstream targets helps to explain the potential for CaMKII to simultaneously affect mechanical and electrical properties of heart muscle cells. Proof-of-concept studies from a growing number of investigators show that CaMKII inhibition is beneficial for improving myocardial performance and for reducing arrhythmias. We review the molecular physiology of CaMKII and discuss CaMKII actions at key cellular targets and results of animal models of myocardial hypertrophy, dysfunction, and arrhythmias that suggest CaMKII inhibition may benefit myocardial function while reducing arrhythmias.
Collapse
Affiliation(s)
- Paari Dominic Swaminathan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
16
|
Racioppi L, Noeldner PK, Lin F, Arvai S, Means AR. Calcium/calmodulin-dependent protein kinase kinase 2 regulates macrophage-mediated inflammatory responses. J Biol Chem 2012; 287:11579-91. [PMID: 22334678 DOI: 10.1074/jbc.m111.336032] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcium/calmodulin-dependent kinase kinase 2 (CaMKK2) plays a key role in regulating food intake and energy expenditure at least in part by its actions in hypothalamic neurons. Previously, we showed that loss of CaMKK2 protected mice from high-fat diet (HFD)-induced obesity and glucose intolerance. However, although pair feeding HFD to WT mice to match food consumption of CAMKK2-null mice slowed weight gain, it failed to protect from glucose intolerance. Here we show that relative to WT mice, HFD-fed CaMKK2-null mice are protected from inflammation in adipose and remain glucose-tolerant. Moreover, loss of CaMKK2 also protected mice from endotoxin shock and fulminant hepatitis. We explored the expression of CaMKK2 in immune cells and found it to be restricted to those of the monocyte/macrophage lineage. CaMKK2-null macrophages exhibited a remarkable deficiency to spread, phagocytose bacteria, and synthesize cytokines in response to the Toll-like receptor 4 (TLR4) agonist lipopolysaccharide (LPS). Mechanistically, loss of CaMKK2 uncoupled the TLR4 cascade from activation of protein tyrosine kinase 2 (PYK2; also known as PTK2B). Our findings uncover an important function for CaMKK2 in mediating mechanisms that control the amplitude of macrophage inflammatory responses to excess nutrients or pathogen derivatives.
Collapse
Affiliation(s)
- Luigi Racioppi
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Duke University, Durham, North Carolina 27710, USA.
| | | | | | | | | |
Collapse
|
17
|
Liu X, Zhan Z, Xu L, Ma F, Li D, Guo Z, Li N, Cao X. MicroRNA-148/152 impair innate response and antigen presentation of TLR-triggered dendritic cells by targeting CaMKIIα. THE JOURNAL OF IMMUNOLOGY 2010; 185:7244-51. [PMID: 21068402 DOI: 10.4049/jimmunol.1001573] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) are involved in the regulation of immunity, including the lymphocyte development and differentiation, and inflammatory cytokine production. Dendritic cells (DCs) play important roles in linking innate and adaptive immune responses. However, few miRNAs have been found to regulate the innate response and APC function of DCs to date. Calcium/calmodulin-dependent protein kinase II (CaMKII), a major downstream effector of calcium (Ca(2+)), has been shown to be an important regulator of the maturation and function of DCs. Our previous study showed that CaMKIIα could promote TLR-triggered production of proinflammatory cytokines and type I IFN. Inspired by the observations that dicer mutant Drosophila display defect in endogenous miRNA generation and higher CaMKII expression, we wondered whether miRNAs can regulate the innate response and APC function of DCs by targeting CaMKIIα. By predicting with software and confirming with functional experiments, we demonstrate that three members of the miRNA (miR)-148 family, miR-148a, miR-148b, and miR-152, are negative regulators of the innate response and Ag-presenting capacity of DCs. miR-148/152 expression was upregulated, whereas CaMKIIα expression was downregulated in DCs on maturation and activation induced by TLR3, TLR4, and TLR9 agonists. We showed that miR-148/152 in turn inhibited the production of cytokines including IL-12, IL-6, TNF-α, and IFN-β upregulation of MHC class II expression and DC-initiated Ag-specific T cell proliferation by targeting CaMKIIα. Therefore, miRNA-148/152 can act as fine-tuner in regulating the innate response and Ag-presenting capacity of DCs, which may contribute to the immune homeostasis and immune regulation.
Collapse
Affiliation(s)
- Xingguang Liu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Shumilina E, Xuan NT, Matzner N, Bhandaru M, Zemtsova IM, Lang F. Regulation of calcium signaling in dendritic cells by 1,25‐dihydroxyvitamin D
3. FASEB J 2010; 24:1989-96. [DOI: 10.1096/fj.09-142265] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Nguyen Thi Xuan
- Department of Physiology University of Tübingen Tübingen Germany
| | - Nicole Matzner
- Department of Physiology University of Tübingen Tübingen Germany
| | - Madhuri Bhandaru
- Department of Physiology University of Tübingen Tübingen Germany
| | | | - Florian Lang
- Department of Physiology University of Tübingen Tübingen Germany
| |
Collapse
|
19
|
Khaniya B, Almeida L, Basu U, Taniguchi M, Williams JL, Barreda DR, Moore SS, Guan LL. Microarray analysis of differentially expressed genes from Peyer's patches of cattle orally challenged with bovine spongiform encephalopathy. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2009; 72:1008-1013. [PMID: 19697233 DOI: 10.1080/15287390903084199] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The most likely route of entry of infection following oral exposure to transmissible spongiform encephalopathies (TSE) is via the immunologically active Peyer's patches (PP). These secondary lymphoid organs appear to be the potential route for prion neuroinvasion. However, the molecular mechanisms involved in the uptake of the infectious prion agent and progression of disease remain still unclear. This investigation examined the changes in gene expression in PP following oral exposure of cattle to bovine spongiform encephalopathy (BSE) agents. The gene expression patterns in PP from cows 12 mo after BSE challenge were compared with controls using a microarray platform containing 24,000 oligonucleotides representing 16,846 unique gene loci and 5943 Expressed Sequence Tag (EST) from bovine genome. Between the challanged and control animals, 90 genes and 16 EST were identified as significantly differentially, expressed (>2.0-fold change): 36 were upregulated and 70 were downregulated. Of these genes, five were found to be related to immune function. Major histocompatibility complex (MHC) class II, MHC class II DQ alpha, L-RAP, and two hypothetical proteins. Differentially expressed genes related to cellular and metabolic processes including development and maturation of cells in the PP were also identified. In this context, the potential impacts of these gene expression changes in PP on BSE development are discussed.
Collapse
Affiliation(s)
- Bina Khaniya
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|