1
|
Brayan MT, Alejandro AA, Quesada-Gómez C, Chaves-Olarte E, Elías BC. Polymorphonuclear neutrophil depletion in ileal tissues reduces the immunopathology induced by Clostridioides difficile toxins. Anaerobe 2025:102947. [PMID: 40023364 DOI: 10.1016/j.anaerobe.2025.102947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/28/2025] [Accepted: 02/16/2025] [Indexed: 03/04/2025]
Abstract
INTRODUCTION Clostridioides difficile, a leading cause of healthcare-associated infections, causes significant morbidity and mortality. Its pathogenesis centers on TcdA and TcdB toxins, which disrupt intestinal integrity, trigger inflammation, and promote extensive neutrophil infiltration. OBJECTIVE The main objective of this study was to evaluate the role of PMNs in CDI using neutrophil depletion using a murine-ileal-ligated loop. METHODS Mice were treated with C. difficile toxins TcdA, TcdB, and TcdBv, with PMN depletion achieved via intraperitoneal injections of Ly6G/Ly6C antibody. Histopathological analysis, cytokine quantification, and MPO activity assays were performed to assess the inflammatory and tissue damage responses. RESULTS PMN depletion significantly reduced histopathological damage and proinflammatory responses. TcdA induced the highest inflammation and epithelial damage, while TcdB showed lower activity, except for MPO. TcdBvNAP1's activity was comparable to that of TcdBNAP1 but less than TcdA. The findings indicate that TcdA's enterotoxin effects are more damaging than TcdBs from different strains and confirm the critical role of PMNs in CDI pathogenesis. CONCLUSION Our results show that PMN depletion reduced inflammatory responses and tissue damage, highlighting potential therapeutic strategies targeting PMN regulation. Further research on PMN extracellular traps (NETs) and their role in CDI is necessary to develop comprehensive treatments. Future studies should focus on combined in vivo and in vitro approaches to fully understand the pathological mechanisms and identify effective biomarkers for CDI therapy.
Collapse
Affiliation(s)
- Montoya-Torres Brayan
- International Center for Food Industry Excellence (ICFIE), Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA; Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Costa Rica
| | - Alfaro-Alarcón Alejandro
- Departamento de Patología, Escuela de Medicina Veterinaria, Universidad Nacional, Costa Rica; Berlin Institute of Health, Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Carlos Quesada-Gómez
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, Costa Rica
| | - Esteban Chaves-Olarte
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, Costa Rica
| | - Barquero-Calvo Elías
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Costa Rica.
| |
Collapse
|
2
|
Sharafat RH, Saeed A. Ectonucleotidase inhibitors: targeting signaling pathways for therapeutic advancement-an in-depth review. Purinergic Signal 2024:10.1007/s11302-024-10031-0. [PMID: 38958821 DOI: 10.1007/s11302-024-10031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/16/2024] [Indexed: 07/04/2024] Open
Abstract
Ectonucleotidase inhibitors are a family of pharmacological drugs that, by selectively targeting ectonucleotidases, are essential in altering purinergic signaling pathways. The hydrolysis of extracellular nucleotides and nucleosides is carried out by these enzymes, which include ectonucleoside triphosphate diphosphohydrolases (NTPDases) and ecto-5'-nucleotidase (CD73). Ectonucleotidase inhibitors can prevent the conversion of ATP and ADP into adenosine by blocking these enzymes and reduce extracellular adenosine. These molecules are essential for purinergic signaling, which is associated with a variability of physiological and pathological processes. By modifying extracellular nucleotide metabolism and improving purinergic signaling regulation, ectonucleotide pyrophosphatase/phosphodiesterase (ENPP) inhibitors have the potential to improve cancer treatment, inflammatory management, and immune response modulation. Purinergic signaling is affected by CD73 inhibitors because they prevent AMP from being converted to adenosine. These inhibitors are useful in cancer therapy and immunotherapy because they may improve chemotherapy effectiveness and alter immune responses. Purinergic signaling is controlled by NTPDase inhibitors, which specifically target enzymes involved in extracellular nucleotide breakdown. These inhibitors show promise in reducing immunological responses, thrombosis, and inflammation, perhaps assisting in the treatment of cardiovascular and autoimmune illnesses. Alkaline phosphatase (ALP) inhibitors alter the function of enzymes involved in dephosphorylation reactions, which has an impact on a variety of biological processes. By altering the body's phosphate levels, these inhibitors may be used to treat diseases including hyperphosphatemia and certain bone problems. This article provides a guide for researchers and clinicians looking to leverage the remedial capability of ectonucleotidase inhibitors in a variety of illness scenarios by illuminating their processes, advantages, and difficulties.
Collapse
Affiliation(s)
- R Huzaifa Sharafat
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45321, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45321, Pakistan.
| |
Collapse
|
3
|
Gao ZG, Haddad M, Jacobson KA. A 2B adenosine receptor signaling and regulation. Purinergic Signal 2024:10.1007/s11302-024-10025-y. [PMID: 38833181 DOI: 10.1007/s11302-024-10025-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/20/2024] [Indexed: 06/06/2024] Open
Abstract
The A2B adenosine receptor (A2BR) is one of the four adenosine-activated G protein-coupled receptors. In addition to adenosine, protein kinase C (PKC) was recently found to activate the A2BR. The A2BR is coupled to both Gs and Gi, as well as Gq proteins in some cell types. Many primary cells and cell lines, such as bladder and breast cancer, bronchial smooth muscle, skeletal muscle, and fat cells, express the A2BR endogenously at high levels, suggesting its potentially important role in asthma, cancer, diabetes, and other conditions. The A2BR has been characterized as both pro- and anti-inflammatory, inducing cell type-dependent secretion of IL-6, IL-8, and IL-10. Theophylline and enprofylline have long been used for asthma treatment, although it is still not entirely clear if their A2BR antagonism contributes to their therapeutic effects or side effects. The A2BR is required in ischemic cardiac preconditioning by adenosine. Both A2BR and protein kinase C (PKC) contribute to cardioprotection, and both modes of A2BR signaling can be blocked by A2BR antagonists. Inhibitors of PKC and A2BR are in clinical cancer trials. Sulforaphane and other isothiocyanates from cruciferous vegetables such as broccoli and cauliflower have been reported to inhibit A2BR signaling via reaction with an intracellular A2BR cysteine residue (C210). A full, A2BR-selective agonist, critical to elucidate many controversial roles of the A2BR, is still not available, although agonist-bound A2BR structures have recently been reported.
Collapse
Affiliation(s)
- Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Mansour Haddad
- Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
4
|
Boncler M, Bartczak K, Rozalski M. Potential for modulation of platelet function via adenosine receptors during inflammation. Br J Pharmacol 2024; 181:547-563. [PMID: 37218380 DOI: 10.1111/bph.16146] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/15/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023] Open
Abstract
Traditionally, platelets are known to play an important role in haemostasis and thrombosis; however, they serve also as important modulators of inflammation and immunity. Platelets secrete adhesion molecules and cytokines, interact with leukocytes and endothelium, and express toll-like receptors involved in a direct interaction with pathogens. Platelets express A2A and A2B subtypes of receptors for adenosine. The activation of these receptors leads to an increase in cAMP concentration in the cytoplasm, thereby resulting in inhibited secretion of pro-inflammatory mediators and reduced cell activation. Therefore, platelet adenosine receptors could be a potential target for inhibiting platelet activation and thus down-regulating inflammation or immunity. The biological effects of adenosine are short-lasting, because the compound is rapidly metabolized; hence, its lability has triggered efforts to synthesize new, longer-lasting adenosine analogues. In this article, we have reviewed the literature regarding the pharmacological potential of adenosine and other agonists of A2A and A2B receptors to affect platelet function during inflammation. LINKED ARTICLES: This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.
Collapse
Affiliation(s)
- Magdalena Boncler
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, Lodz, Poland
| | - Kinga Bartczak
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, Lodz, Poland
| | - Marcin Rozalski
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
5
|
Figarella K, Kim J, Ruan W, Mills T, Eltzschig HK, Yuan X. Hypoxia-adenosine axis as therapeutic targets for acute respiratory distress syndrome. Front Immunol 2024; 15:1328565. [PMID: 38312838 PMCID: PMC10835146 DOI: 10.3389/fimmu.2024.1328565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
The human respiratory and circulatory systems collaborate intricately to ensure oxygen delivery to all cells, which is vital for ATP production and maintaining physiological functions and structures. During limited oxygen availability, hypoxia-inducible factors (HIFs) are stabilized and play a fundamental role in maintaining cellular processes for hypoxia adaptation. First discovered during investigations of erythropoietin production regulation, HIFs influence physiological and pathological processes, including development, inflammation, wound healing, and cancer. HIFs promote extracellular adenosine signaling by enhancing adenosine generation and receptor signaling, representing an endogenous feedback mechanism that curbs excessive inflammation, supports injury resolution, and enhances hypoxia tolerance. This is especially important for conditions that involve tissue hypoxia, such as acute respiratory distress syndrome (ARDS), which globally poses significant health challenges without specific treatment options. Consequently, pharmacological strategies to amplify HIF-mediated adenosine production and receptor signaling are of great importance.
Collapse
Affiliation(s)
- Katherine Figarella
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jieun Kim
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Wei Ruan
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tingting Mills
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Holger Klaus Eltzschig
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiaoyi Yuan
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
6
|
Waldstein KA, Ganama M, Varga SM, Tilley S, Hua X. Topical Adenosine Inhibits Inflammation and Mucus Production in Viral Acute Rhinosinusitis. Laryngoscope 2023; 133:2095-2103. [PMID: 36576070 PMCID: PMC10300229 DOI: 10.1002/lary.30541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/22/2022] [Accepted: 12/08/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Viral acute rhinosinusitis (ARS) is the leading cause of work and school absence and antibiotic over-prescription. There are limited treatment options available to ameliorate the symptoms caused by viral ARS. We have previously demonstrated that topical adenosine treatment enhances mucociliary clearance in the sino-nasal tract. Here, we assessed the therapeutic potential of topical adenosine in a mouse model of viral ARS. METHODS The effect of topical adenosine on inflammatory response and mucin gene expression was examined in a mouse model of viral ARS induced by respiratory syncytial virus (RSV) nasal-only infection. We also investigated the inflammatory effect of both endogenous and exogenous adenosine in the sino-nasal tract. RESULTS Topical adenosine significantly inhibited the expression of pro-inflammatory cytokines, goblet hyperplasia, mucin expression, and cell damage in the nose of mice with viral ARS. This treatment did not prolong virus clearance. This inhibitory effect was primarily mediated by the A2A adenosine receptor (AR). Although previous studies have shown that adenosine induces a robust inflammatory response in the lungs, neither endogenous nor exogenous adenosine produced inflammation in the sino-nasal tract. Instead, exogenous adenosine inhibited the baseline expression of TNF and IL-1β in the nose. Additionally, baseline expression of ARs was lower in the nose than that in the trachea and lungs. CONCLUSION We demonstrated that intranasal adenosine administration effectively decreased inflammation and mucus production in a mouse model of viral ARS. LEVEL OF EVIDENCE N/A Laryngoscope, 133:2095-2103, 2023.
Collapse
Affiliation(s)
- Kody A Waldstein
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Maria Ganama
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa, USA
| | - Steven M Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, USA
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
- Department of Pathology, University of Iowa, Iowa City, Iowa, USA
| | - Stephen Tilley
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Xiaoyang Hua
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
7
|
Haddad M, Cherchi F, Alsalem M, Al-saraireh YM, Madae’en S. Adenosine Receptors as Potential Therapeutic Analgesic Targets. Int J Mol Sci 2023; 24:13160. [PMID: 37685963 PMCID: PMC10487796 DOI: 10.3390/ijms241713160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Pain represents an international burden and a major socio-economic public health problem. New findings, detailed in this review, suggest that adenosine plays a significant role in neuropathic and inflammatory pain, by acting on its metabotropic adenosine receptors (A1AR, A2AAR, A2BAR, A3AR). Adenosine receptor ligands have a practical translational potential based on the favorable efficacy and safety profiles that emerged from clinical research on various agonists and antagonists for different pathologies. The present review collects the latest studies on selected adenosine receptor ligands in different pain models. Here, we also covered the many hypothesized pathways and the role of newly synthesized allosteric adenosine receptor modulators. This review aims to present a summary of recent research on adenosine receptors as prospective therapeutic targets for a range of pain-related disorders.
Collapse
Affiliation(s)
- Mansour Haddad
- Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan
| | - Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy;
| | - Mohammad Alsalem
- School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Yousef M. Al-saraireh
- Department of Pharmacology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan;
| | - Saba Madae’en
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan;
| |
Collapse
|
8
|
Zhao L, Zhang M, Liu YW, Tan Y, Yin J, Chen Y, Chen D, Ni B. Sinomenine alleviates lipopolysaccharide-induced acute lung injury via a PPARβ/δ-dependent mechanism. Eur J Pharmacol 2023:175838. [PMID: 37307937 DOI: 10.1016/j.ejphar.2023.175838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023]
Abstract
Evidence is mounting that sinomenine and peroxisome proliferator-activated receptor β/δ (PPARβ/δ) are effective against lipopolysaccharide (LPS)-induced acute lung injury (ALI) via anti-inflammatory properties. However, it is unknown whether PPARβ/δ plays a role in the protective effect of sinomenine on ALI. Here, we initially observed that preemptive administration of sinomenine markedly alleviated lung pathological changes, pulmonary edema and neutrophil infiltration, accompanied by inhibition of the expression of the pro-inflammatory cytokines Tumor necrosis factor-α (TNF-α) and Interleukin-6 (IL-6), which were largely reversed following the addition of a PPARβ/δ antagonist. Subsequently, we also noticed that sinomenine upregulated adenosine A2A receptor expression in a PPARβ/δ-dependent manner in LPS-stimulated bone marrow-derived macrophages (BMDMs). Further investigation indicated that PPARβ/δ directly bound to the functional peroxisome proliferator responsive element (PPRE) in the adenosine A2A receptor gene promoter region to enhance the expression of the adenosine A2A receptor. Sinomenine was identified as a PPARβ/δ agonist. It could bind with PPARβ/δ, and promote the nuclear translocation and transcriptional activity of PPARβ/δ. In addition, combined treatment with sinomenine and an adenosine A2A receptor agonist exhibited synergistic effects and better protective roles than their single use against ALI. Taken together, our results reveal that sinomenine exerts advantageous effects on ALI by activating of PPARβ/δ, with the subsequent upregulation of adenosine A2A receptor expression, and provide a novel and potential therapeutic application for ALI.
Collapse
Affiliation(s)
- Li Zhao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| | - Mengjie Zhang
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| | - Yang-Wuyue Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yan Tan
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| | - Jun Yin
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| | - Yuanyuan Chen
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| | - Dewei Chen
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, PLA, Chongqing, China; Department of High Altitude Physiology & Biology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Bing Ni
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China; Key Laboratory of High Altitude Medicine, PLA, Chongqing, China.
| |
Collapse
|
9
|
Yun J, Park S, Park HY, Lee KA. Efficacy of Polydeoxyribonucleotide in Promoting the Healing of Diabetic Wounds in a Murine Model of Streptozotocin-Induced Diabetes: A Pilot Experiment. Int J Mol Sci 2023; 24:ijms24031932. [PMID: 36768255 PMCID: PMC9916466 DOI: 10.3390/ijms24031932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
We assessed the efficacy of polydeoxyribonucleotide (PDRN) in accelerating the healing of diabetic wounds in a murine model of streptozotocin (STZ)-induced diabetes. After the creation of diabetic wounds, the mice of the PDRN SC, PDRN IP and PBS groups received a subcutaneous, an intra-peritoneal injection of PDRN and a subcutaneous injection of PBS, respectively. After euthanasia, time-dependent changes in the wound diameter and histologic scores were measured and vascular endothelial growth factor (VEGF), transforming growth factor-β1 (TGF-β1) and collagen types I and III were assessed for their expression levels. The PDRN SC and the PDRN IP groups showed a significantly smaller diameter of diabetic wounds, significantly higher histologic scores, a significantly greater expression of VEGF, a significantly lower expression of TGF-β1 and a significantly greater expression of collagen types I and III as compared with the PBS group (p < 0.05 or 0.0001). In conclusion, PDRN might be effective in promoting the healing of diabetic wounds in a murine model of STZ-induced diabetes.
Collapse
Affiliation(s)
- Jiyoung Yun
- Department of Plastic and Reconstructive Surgery, Inje University Busan Paik Hospital, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - SaeGwang Park
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan 47392, Republic of Korea
- Innovative Therapeutic Research Institute, Inje University Busan Paik Hospital, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Ha Young Park
- Department of Pathology, Inje University Busan Paik Hospital, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Kyung Ah Lee
- Department of Plastic and Reconstructive Surgery, Inje University Haeundae Paik Hospital, College of Medicine, Inje University, Busan 48108, Republic of Korea
- Correspondence:
| |
Collapse
|
10
|
Pak ES, Cha JJ, Cha DR, Kanasaki K, Ha H. Adenosine receptors as emerging therapeutic targets for diabetic kidney disease. Kidney Res Clin Pract 2022; 41:S74-S88. [PMID: 36239063 PMCID: PMC9590297 DOI: 10.23876/j.krcp.22.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 08/07/2023] Open
Abstract
Diabetic kidney disease (DKD) is now a pandemic worldwide, and novel therapeutic options are urgently required. Adenosine, an adenosine triphosphate metabolite, plays a role in kidney homeostasis through interacting with four types of adenosine receptors (ARs): A1AR, A2AAR, A2BAR, and A3AR. Increasing evidence highlights the role of adenosine and ARs in the development and progression of DKD: 1) increased adenosine in the plasma and urine of diabetics with kidney injury, 2) increased expression of each of the ARs in diabetic kidneys, 3) the protective effect of coffee, a commonly ingested nonselective AR antagonist, on DKD, and 4) the protective effect of AR modulators in experimental DKD models. We propose AR modulators as a new therapeutic option to treat DKD. Detailed mechanistic studies on the pharmacology of AR modulators will help us to develop effective first-in-class AR modulators against DKD.
Collapse
Affiliation(s)
- Eun Seon Pak
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Jin Joo Cha
- Department of Nephrology, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Dae Ryong Cha
- Department of Nephrology, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Keizo Kanasaki
- Department of Internal Medical 1, Shimane University Faculty of Medicine, Izumo, Japan
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Antonioli L, Haskó G. May be adenosine an immuno-quorum-sensing signal? Purinergic Signal 2022; 18:205-209. [PMID: 35501535 PMCID: PMC9123119 DOI: 10.1007/s11302-022-09866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022] Open
Abstract
Quorum sensing indicates a communication process between bacteria based on a coordinate variation in gene expression aimed at coordinating a collective comportment related to the bacterial population density. Increasing pieces of evidence pointed out that a quorum-sensing system can be a regulatory program also used in the immune field to organize the density of the various immune cell populations and to calibrate their responses. In particular, such equilibrium is achieved by the ability of immune cells to perceive the density of their own populations or those of other cells in their environment, through the release of several mediators able to finely shape the cell density via coordinated changes in gene expression and protein signaling. In this regard, adenosine displays the typical characteristics of a mediator involved in the regulation of quorum sensing, thus suggesting a putative role of this nucleoside in shaping the balance between diverse immune cell populations.
Collapse
Affiliation(s)
- Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy.
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
12
|
De Marchi E, Pegoraro A, Turiello R, Di Virgilio F, Morello S, Adinolfi E. A2A Receptor Contributes to Tumor Progression in P2X7 Null Mice. Front Cell Dev Biol 2022; 10:876510. [PMID: 35663396 PMCID: PMC9159855 DOI: 10.3389/fcell.2022.876510] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/05/2022] [Indexed: 12/30/2022] Open
Abstract
ATP and adenosine are key constituents of the tumor niche where they exert opposite and complementary roles. ATP can be released in response to cell damage or actively released by tumor cells and subsequently degraded into adenosine, which accumulates within the tumor microenvironment. Notably, while ATP promotes immune eradicating responses mainly via the P2X7 receptor (P2X7R), extracellular adenosine acts as a potent immune suppressor and facilitates neovascularization thanks to the A2A receptor (A2AR). To date, studies exploring the interplay between P2X7R and A2AR in the tumor microenvironment are as yet missing. Here, we show that, in C57/bl6 P2X7 null mice inoculated with B16-F10 melanoma cells, several pro-inflammatory cytokines, including interleukin 1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), interleukin 12 (IL-12), interleukin 17 (IL-17), interferon gamma (IFN-γ) were significantly decreased, while the immune suppressant transforming growth factor beta (TGF-β) was almost three-fold increased. Interestingly, tumors growing in P2X7-null mice upregulated tumor-associated and splenic A2AR, suggesting that immunosuppression linked to lack of the P2X7R might depend upon A2AR overexpression. Immunohistochemical analysis showed that tumor cells’ A2AR expression was increased, especially around necrotic areas, and that vascular endothelial growth factor (VEGF) and the endothelial marker CD31 were upregulated. A2AR antagonist SCH58261 treatment reduced tumor growth similarly in the P2X7 wild type or null mice strain. However, SCH58261 reduced VEGF only in the P2X7 knock out mice, thus supporting the hypothesis of an A2AR-mediated increase in vascularization observed in the P2X7-null host. SCH58261 administration also significantly reduced intratumor TGF-β levels, thus supporting a key immune suppressive role of A2AR in our model. Altogether, these results indicate that in the absence of host P2X7R, the A2AR favors tumor growth via immune suppression and neovascularization. This study shows a novel direct correlation between P2X7R and A2AR in oncogenesis and paves the way for new combined therapies promoting anti-cancer immune responses and reducing tumor vascularization.
Collapse
Affiliation(s)
- Elena De Marchi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Anna Pegoraro
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | | | - Silvana Morello
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Elena Adinolfi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- *Correspondence: Elena Adinolfi,
| |
Collapse
|
13
|
Catarzi D, Varano F, Vigiani E, Calenda S, Melani F, Varani K, Vincenzi F, Pasquini S, Mennini N, Nerli G, Dal Ben D, Volpini R, Colotta V. 4-Heteroaryl Substituted Amino-3,5-Dicyanopyridines as New Adenosine Receptor Ligands: Novel Insights on Structure-Activity Relationships and Perspectives. Pharmaceuticals (Basel) 2022; 15:ph15040478. [PMID: 35455475 PMCID: PMC9024521 DOI: 10.3390/ph15040478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Accepted: 04/09/2022] [Indexed: 12/04/2022] Open
Abstract
A new set of amino-3,5-dicyanopyridines was synthesized and biologically evaluated at the adenosine receptors (ARs). This chemical class is particularly versatile, as small structural modifications can influence not only affinity and selectivity, but also the pharmacological profile. Thus, in order to deepen the structure–activity relationships (SARs) of this series, different substituents were evaluated at the diverse positions on the dicyanopyridine scaffold. In general, the herein reported compounds show nanomolar binding affinity and interact better with both the human (h) A1 and A2A ARs than with the other subtypes. Docking studies at hAR structure were performed to rationalize the observed affinity data. Of interest are compounds 1 and 5, which can be considered as pan ligands as binding all the ARs with comparable nanomolar binding affinity (A1AR: 1, Ki = 9.63 nM; 5, Ki = 2.50 nM; A2AAR: 1, Ki = 21 nM; 5, Ki = 24 nM; A3AR: 1, Ki = 52 nM; 5, Ki = 25 nM; A2BAR: 1, EC50 = 1.4 nM; 5, EC50 = 1.12 nM). Moreover, these compounds showed a partial agonist profile at all the ARs. This combined AR partial agonist activity could lead us to hypothesize a potential effect in the repair process of damaged tissue that would be beneficial in both wound healing and remodeling.
Collapse
Affiliation(s)
- Daniela Catarzi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy; (F.V.); (E.V.); (S.C.); (F.M.); (V.C.)
- Correspondence:
| | - Flavia Varano
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy; (F.V.); (E.V.); (S.C.); (F.M.); (V.C.)
| | - Erica Vigiani
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy; (F.V.); (E.V.); (S.C.); (F.M.); (V.C.)
| | - Sara Calenda
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy; (F.V.); (E.V.); (S.C.); (F.M.); (V.C.)
| | - Fabrizio Melani
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy; (F.V.); (E.V.); (S.C.); (F.M.); (V.C.)
| | - Katia Varani
- Dipartimento di Medicina Traslazionale, Università degli Studi di Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (K.V.); (F.V.); (S.P.)
| | - Fabrizio Vincenzi
- Dipartimento di Medicina Traslazionale, Università degli Studi di Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (K.V.); (F.V.); (S.P.)
| | - Silvia Pasquini
- Dipartimento di Medicina Traslazionale, Università degli Studi di Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (K.V.); (F.V.); (S.P.)
| | - Natascia Mennini
- Dipartimento di Chimica Ugo Schiff, Università degli Studi di Firenze, Via della Lastruccia, 3, 50019 Sesto Fiorentino, Italy; (N.M.); (G.N.)
| | - Giulia Nerli
- Dipartimento di Chimica Ugo Schiff, Università degli Studi di Firenze, Via della Lastruccia, 3, 50019 Sesto Fiorentino, Italy; (N.M.); (G.N.)
| | - Diego Dal Ben
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, Via S.Agostino 1, 62032 Camerino, Italy; (D.D.B.); (R.V.)
| | - Rosaria Volpini
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, Via S.Agostino 1, 62032 Camerino, Italy; (D.D.B.); (R.V.)
| | - Vittoria Colotta
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff, 6, 50019 Sesto Fiorentino, Italy; (F.V.); (E.V.); (S.C.); (F.M.); (V.C.)
| |
Collapse
|
14
|
Mezzasoma L, Bellezza I, Orvietani P, Manni G, Gargaro M, Sagini K, Llorente A, Scarpelli P, Pascucci L, Cellini B, Talesa VN, Fallarino F, Romani R. Amniotic fluid stem cell-derived extracellular vesicles are independent metabolic units capable of modulating inflammasome activation in THP-1 cells. FASEB J 2022; 36:e22218. [PMID: 35218567 DOI: 10.1096/fj.202101657r] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/15/2022] [Accepted: 02/09/2022] [Indexed: 12/12/2022]
Abstract
An immunoregulatory role of stem cells, often mediated by their secretome, has been claimed by several studies. Stem cell-derived extracellular vesicles (EVs) are crucial components of the secretome. EVs, a heterogeneous group of membranous vesicles released by many cell types into the extracellular space, are now considered as an additional mechanism for intercellular communication. In this study, we aimed at investigating whether human amniotic stem cell-derived extracellular vesicles (HASC-EVs) were able to interfere with inflammasome activation in the THP-1 cell line. Two subsets of HASC-EVs were collected by sequential centrifugation, namely HASC-P10 and HASC-P100. We demonstrated that HASC-EVs were neither internalized into nor undertake a direct interaction with THP-1 cells. We showed that HASC-P10 and P100 were able to intrinsically produce ATP, which was further converted to adenosine by 5'-nucleotidase (CD73) and ectonucleoside triphosphate diphosphohydrolase-1 (CD39). We found that THP-1 cells conditioned with both types of HASC-EVs failed to activate the NLRP3/caspase-1/inflammasome platform in response to LPS and ATP treatment by a mechanism involving A2a adenosine receptor activation. These results support a role for HASC-EVs as independent metabolic units capable of modifying the cellular functions, leading to anti-inflammatory effects in monocytic cells.
Collapse
Affiliation(s)
- Letizia Mezzasoma
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Perugia, Italy
| | - Ilaria Bellezza
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Perugia, Italy
| | - Pierluigi Orvietani
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Perugia, Italy
| | - Giorgia Manni
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Perugia, Italy
| | - Marco Gargaro
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Perugia, Italy
| | - Krizia Sagini
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Paolo Scarpelli
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Perugia, Italy
| | | | - Barbara Cellini
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Perugia, Italy
| | - Vincenzo Nicola Talesa
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Perugia, Italy
| | - Francesca Fallarino
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Perugia, Italy
| | - Rita Romani
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant'Andrea delle Fratte, Perugia, Italy
| |
Collapse
|
15
|
Kermanian F, Seghatoleslam M, Mahakizadeh S. MDMA related neuro-inflammation and adenosine receptors. Neurochem Int 2022; 153:105275. [PMID: 34990730 DOI: 10.1016/j.neuint.2021.105275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/25/2021] [Accepted: 12/30/2021] [Indexed: 12/20/2022]
Abstract
3,4-methylenedioxymethamphetamine (MDMA) is a world-wide abused psychostimulant, which has the neurotoxic effects on dopaminergic and serotonergic neurons in both rodents and non-human primates. Adenosine acts as a neurotransmitter in the brain through the activation of four specific G-protein-coupled receptors and it acts as a neuromodulator of dopamine neurotransmission. Recent studies suggest that stimulation of adenosine receptors oppose many behavioral effects of methamphetamines. This review summarizes the specific cellular mechanisms involved in MDMA neuroinflammatory effects, along with the protective effects of adenosine receptors.
Collapse
Affiliation(s)
- Fatemeh Kermanian
- Department of Anatomy, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Masoumeh Seghatoleslam
- Evaluative Clinical Sciences, Sunnybrook Research Institute, University of Toronto, ON, Canada
| | - Simin Mahakizadeh
- Department of Anatomy, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
16
|
Immunomodulatory Effects Associated with Cladribine Treatment. Cells 2021; 10:cells10123488. [PMID: 34943995 PMCID: PMC8700070 DOI: 10.3390/cells10123488] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/29/2022] Open
Abstract
Cladribine is a synthetic deoxyadenosine analogue with demonstrated efficacy in patients with relapsing-remitting multiple sclerosis (MS). The main mechanism of action described for cladribine is the induction of a cytotoxic effect on lymphocytes, leading to a long-term depletion of peripheral T and B cells. Besides lymphocyte toxicity, the mode of action may include immunomodulatory mechanisms affecting other cells of the immune system. In order to induce its beneficial effects, cladribine is phosphorylated inside the cell by deoxycytidine kinase (DCK) to its active form. However, the mechanism of action of cladribine may also include immunomodulatory pathways independent of DCK activation. This in vitro study was designed to explore the impact of cladribine on peripheral blood mononuclear cells (PBMC) subsets, and to assess whether the immunomodulatory mechanisms induced by cladribine depend on the activation of the molecule. To this end, we obtained PBMCs from healthy donors and MS patients and performed proliferation, apoptosis and activation assays with clinically relevant concentrations of cladribine in DCK-dependent and -independent conditions. We also evaluated the effect of cladribine on myeloid lineage-derived cells, monocytes and dendritic cells (DCs). Cladribine decreased proliferation and increased apoptosis of lymphocyte subsets after prodrug activation via DCK. In contrast, cladribine induced a decrease in immune cell activation through both DCK-dependent and -independent pathways (not requiring prodrug activation). Regarding monocytes and DCs, cladribine induced cytotoxicity and impaired the activation of classical monocytes, but had no effect on DC maturation. Taken together, these data indicate that cladribine, in addition to its cytotoxic function, can mediate immunomodulation in different immune cell populations, by regulating their proliferation, maturation and activation.
Collapse
|
17
|
Welihinda A, Ravikumar P, Kaur M, Mechanic J, Yadav S, Kang GJ, Amento E. Positive Allosteric Modulation of A 2AR Alters Immune Cell Responses and Ameliorates Psoriasis-Like Dermatitis in Mice. J Invest Dermatol 2021; 142:624-632.e6. [PMID: 34536482 DOI: 10.1016/j.jid.2021.07.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 10/20/2022]
Abstract
Psoriasis is an immune cell‒mediated inflammatory disease of the skin with a mixed T helper type 1/T helper type17 cytokine environment combined with an innate immune response engaging toll-like receptors. Inflammatory diseases are characterized by dysregulated immune cell responses and elevated levels of adenosine at disease sites. Adenosine, acting through the A2AR, regulates inflammation, immune response, T-cell homeostasis, and tissue repair. We have identified a unique means to enhance A2AR function using a positive allosteric modulator. We show that oral administration of the A2AR-positive allosteric modulator AEA061 reduced ear swelling, skin thickness, erythema, scale formation, and inflammatory cytokine expression in A2Ar+/+ but not in A2Ar-/- mice with imiquimod-induced psoriasis-like dermatitis. Similar clinical and mRNA improvements were observed with topical administration. AEA061 also reduced clinical scores and cytokine expression in a mouse model of IL-23‒induced psoriasis-like dermatitis. In addition, AEA061 attenuated imiquimod-induced expression of IFN-α in plasmacytoid dendritic cells in vivo and IL-23 and IL-36α in conventional dendritic cells. TCR-mediated IL-17 expression in γδT cells in vivo and IL-17 production by CD4+ T cells enriched for γδT cells in vitro were also inhibited. Thus, the enhancement of A2AR responsiveness to the endogenous agonist adenosine through positive allosteric modulation is sufficient to enhance intrinsic homeostatic mechanisms attenuating disease progression.
Collapse
Affiliation(s)
- Ajith Welihinda
- Molecular Medicine Research Institute, Sunnyvale, California, USA.
| | - Puja Ravikumar
- Molecular Medicine Research Institute, Sunnyvale, California, USA
| | - Manmeet Kaur
- Molecular Medicine Research Institute, Sunnyvale, California, USA
| | - Jordan Mechanic
- Molecular Medicine Research Institute, Sunnyvale, California, USA
| | - Shruti Yadav
- Molecular Medicine Research Institute, Sunnyvale, California, USA
| | - Gyeong Jin Kang
- Molecular Medicine Research Institute, Sunnyvale, California, USA
| | - Edward Amento
- Molecular Medicine Research Institute, Sunnyvale, California, USA
| |
Collapse
|
18
|
Silva-Lagos LA, Pillay J, van Meurs M, Smink A, van der Voort PHJ, de Vos P. DAMPening COVID-19 Severity by Attenuating Danger Signals. Front Immunol 2021; 12:720192. [PMID: 34456928 PMCID: PMC8397524 DOI: 10.3389/fimmu.2021.720192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/26/2021] [Indexed: 12/19/2022] Open
Abstract
COVID-19 might lead to multi-organ failure and, in some cases, to death. The COVID-19 severity is associated with a “cytokine storm.” Danger-associated molecular patterns (DAMPs) are proinflammatory molecules that can activate pattern recognition receptors, such as toll-like receptors (TLRs). DAMPs and TLRs have not received much attention in COVID-19 but can explain some of the gender-, weight- and age-dependent effects. In females and males, TLRs are differentially expressed, likely contributing to higher COVID-19 severity in males. DAMPs and cytokines associated with COVID-19 mortality are elevated in obese and elderly individuals, which might explain the higher risk for severer COVID-19 in these groups. Adenosine signaling inhibits the TLR/NF-κB pathway and, through this, decreases inflammation and DAMPs’ effects. As vaccines will not be effective in all susceptible individuals and as new vaccine-resistant SARS-CoV-2 mutants might develop, it remains mandatory to find means to dampen COVID-19 disease severity, especially in high-risk groups. We propose that the regulation of DAMPs via adenosine signaling enhancement might be an effective way to lower the severity of COVID-19 and prevent multiple organ failure in the absence of severe side effects.
Collapse
Affiliation(s)
- Luis A Silva-Lagos
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, Netherlands
| | - Janesh Pillay
- Department of Intensive Care, University Medical Center Groningen (UMCG), University of Groningen, Groningen, Netherlands
| | - Matijs van Meurs
- Department of Intensive Care, University Medical Center Groningen (UMCG), University of Groningen, Groningen, Netherlands
| | - Alexandra Smink
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, Netherlands
| | - Peter H J van der Voort
- Department of Intensive Care, University Medical Center Groningen (UMCG), University of Groningen, Groningen, Netherlands
| | - Paul de Vos
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, Netherlands
| |
Collapse
|
19
|
Pro- and anti-inflammatory macrophages express a sub-type specific purinergic receptor profile. Purinergic Signal 2021; 17:481-492. [PMID: 34282551 PMCID: PMC8410913 DOI: 10.1007/s11302-021-09798-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 06/07/2021] [Indexed: 11/17/2022] Open
Abstract
Extracellular nucleotides act as danger signals that orchestrate inflammation by purinergic receptor activation. The expression pattern of different purinergic receptors may correlate with a pro- or anti-inflammatory phenotype. Macrophages function as pro-inflammatory M1 macrophages (M1) or anti-inflammatory M2 macrophages (M2). The present study found that murine bone marrow-derived macrophages express a unique purinergic receptor profile during in vitro polarization. As assessed by real-time polymerase chain reaction (PCR), Gαs-coupled P1 receptors A2A and A2B are upregulated in M1 and M2 compared to M0, but A2A 15 times higher in M1. The ionotropic P2 receptor P2X5 is selectively upregulated in M1- and M2-polarized macrophages. P2X7 is temporarily expressed in M1 macrophages. Metabotropic P2Y receptors showed a distinct expression profile in M1 and M2-polarized macrophages: Gαq coupled P2Y1 and P2Y6 are exclusively upregulated in M2, whereas Gαi P2Y13 and P2Y14 are overexpressed in M1. This consequently leads to functional differences between M1 and M2 in response to adenosine di-phosphate stimulation (ADP): In contrast to M1, M2 showed increased cytoplasmatic calcium after ADP stimulation. In the present study we show that bone marrow-derived macrophages express a unique repertoire of purinergic receptors. We show for the first time that the repertoire of purinergic receptors is highly flexible and quickly adapts upon pro- and anti-inflammatory macrophage differentiation with functional consequences to nucleotide stimulation.
Collapse
|
20
|
Matthee C, Terre'Blanche G, Legoabe LJ, Janse van Rensburg HD. Exploration of chalcones and related heterocycle compounds as ligands of adenosine receptors: therapeutics development. Mol Divers 2021; 26:1779-1821. [PMID: 34176057 DOI: 10.1007/s11030-021-10257-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022]
Abstract
Adenosine receptors (ARs) are ubiquitously distributed throughout the mammalian body where they are involved in an extensive list of physiological and pathological processes that scientists have only begun to decipher. Resultantly, AR agonists and antagonists have been the focus of multiple drug design and development programmes within the past few decades. Considered to be a privileged scaffold in medicinal chemistry, the chalcone framework has attracted a substantial amount of interest in this regard. Due to the potential liabilities associated with its structure, however, it has become necessary to explore other potentially promising compounds, such as heterocycles, which have successfully been obtained from chalcone precursors in the past. This review aims to summarise the emerging therapeutic importance of adenosine receptors and their ligands, especially in the central nervous system (CNS), while highlighting chalcone and heterocyclic derivatives as promising AR ligand lead compounds.
Collapse
Affiliation(s)
- Chrisna Matthee
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, North West, South Africa
| | - Gisella Terre'Blanche
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, North West, South Africa.,Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, North West, South Africa
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, North West, South Africa
| | - Helena D Janse van Rensburg
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom, 2520, North West, South Africa.
| |
Collapse
|
21
|
Pak ES, Jeong LS, Hou X, Tripathi SK, Lee J, Ha H. Dual Actions of A 2A and A 3 Adenosine Receptor Ligand Prevents Obstruction-Induced Kidney Fibrosis in Mice. Int J Mol Sci 2021; 22:ijms22115667. [PMID: 34073488 PMCID: PMC8198234 DOI: 10.3390/ijms22115667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/28/2022] Open
Abstract
Kidney fibrosis is the final outcome of chronic kidney disease (CKD). Adenosine plays a significant role in protection against cellular damage by activating four subtypes of adenosine receptors (ARs), A1AR, A2AAR, A2BAR, and A3AR. A2AAR agonists protect against inflammation, and A3AR antagonists effectively inhibit the formation of fibrosis. Here, we showed for the first time that LJ-4459, a newly synthesized dual-acting ligand that is an A2AAR agonist and an A3AR antagonist, prevents the progression of tubulointerstitial fibrosis. Unilateral ureteral obstruction (UUO) surgery was performed on 6-week-old male C57BL/6 mice. LJ-4459 (1 and 10 mg/kg) was orally administered for 7 days, started at 1 day before UUO surgery. Pretreatment with LJ-4459 improved kidney morphology and prevented the progression of tubular injury as shown by decreases in urinary kidney injury molecular-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) excretion. Obstruction-induced tubulointerstitial fibrosis was attenuated by LJ-4459, as shown by a decrease in fibrotic protein expression in the kidney. LJ-4459 also inhibited inflammation and oxidative stress in the obstructed kidney, with reduced macrophage infiltration, reduced levels of pro-inflammatory cytokines, as well as reduced levels of reactive oxygen species (ROS). These data demonstrate that LJ-4459 has potential as a therapeutic agent against the progression of tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Eun Seon Pak
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea;
| | - Lak Shin Jeong
- Future Medicine Co., Ltd., Seongnam 13449, Korea;
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (X.H.); (S.K.T.)
| | - Xiyan Hou
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (X.H.); (S.K.T.)
| | - Sushil K. Tripathi
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (X.H.); (S.K.T.)
| | - Jiyoun Lee
- Future Medicine Co., Ltd., Seongnam 13449, Korea;
- Correspondence: (J.L.); (H.H.); Tel.: +82-2-2289-8689 (J.L.); +82-2-3277-4075 (H.H.); Fax: +82-31-757-2738 (J.L.); +82-2-3277-2851 (H.H.)
| | - Hunjoo Ha
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea;
- Correspondence: (J.L.); (H.H.); Tel.: +82-2-2289-8689 (J.L.); +82-2-3277-4075 (H.H.); Fax: +82-31-757-2738 (J.L.); +82-2-3277-2851 (H.H.)
| |
Collapse
|
22
|
Dal-Fabbro R, Cosme-Silva L, Capalbo LC, Chaves-Neto AH, Ervolino E, Cintra LTA, Gomes-Filho JE. Excessive caffeine intake increases bone resorption associated with periapical periodontitis in rats. Int Endod J 2021; 54:1861-1870. [PMID: 34037986 DOI: 10.1111/iej.13578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/31/2022]
Abstract
AIM To evaluate the effect of excessive caffeine intake on the inflammation/resorption processes associated with periapical periodontitis (PP) in rats. METHODOLOGY Sixteen Wistar rats were used. Periapical periodontitis was induced in the four first molars in each animal. The animals were arranged into two groups: control (C)-rats with periapical periodontitis; and caffeine (CAF)-rats with periapical periodontitis under caffeine administration protocol. The CAF animals received 10 mg/100 g of body weight/day of caffeine via gavage starting fifteen days before PP induction and continuing for thirty more days until euthanasia. On the 30th day, the animals were euthanized and the jaws removed for microcomputed tomography, histological and immunohistochemical analysis for RANKL, OPG, TRAP, IL-10, TNF-⍺ and IL-1β. The Mann-Whitney test was performed for nonparametric data, and Student's t test was performed for parametric data, using p < .05. RESULTS There was no significant difference in the weight change between the groups. The median score of the inflammatory process was significantly greater in the CAF group (3) compared with the C group (2), p = .0256. Bone resorption was greater in the group consuming caffeine (1.08 ± 0.15 mm3 ) compared with the C group (0.88 ± 0.10 mm3 ), p = .0346. The immunolabelling for RANKL, TRAP and IL-1β was significantly higher in the CAF group when compared to the control, p < .05. No differences were found for the OPG, IL-10 and TNF-⍺ immunolabelling. CONCLUSION Excessive caffeine exposure via gavage in rats was able to exacerbate the volume of periapical bone destruction, and the inflammatory pattern deriving from periapical periodontitis altering the expression of RANKL, IL-1β and TRAP.
Collapse
Affiliation(s)
- Renan Dal-Fabbro
- Department of Preventive and Restorative Dentistry, Araçatuba, Brazil
| | - Leopoldo Cosme-Silva
- Department of Restorative Dentistry and Endodontics, School of Dentistry, Federal University of Alagoas (UFAL), Alagoas, Brazil
| | | | | | - Edilson Ervolino
- Department of Basic Science, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
| | | | | |
Collapse
|
23
|
Wei G, Zhang H, Zhao H, Wang J, Wu N, Li L, Wu J, Zhang D. Emerging immune checkpoints in the tumor microenvironment: Implications for cancer immunotherapy. Cancer Lett 2021; 511:68-76. [PMID: 33957184 DOI: 10.1016/j.canlet.2021.04.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022]
Abstract
Immune checkpoints within the tumor microenvironment (TME) play important roles in modulating host antitumor immunity. Checkpoint-based immunotherapies (e.g. immune checkpoint inhibitors) have revolutionized cancer therapy. However, there are still many drawbacks with current checkpoint immunotherapies in clinical practice, such as unresponsiveness, resistance, tumor hyperprogression, autoimmune-related adverse events, and limited efficacy with some solid malignances. These drawbacks highlight the need to further investigate the mechanisms underlying the therapeutic effects, as well as the need to identify new targets for cancer immunotherapy. With the discovery of emerging immune checkpoints in the TME, the development of strategies targeting the pivotal immunomodulators for cancer treatment has been significantly advanced in the past decade. In this review, we summarize and classify the novel emerging immune checkpoints beyond the extensively studied ones (e.g. PD-1, PD-L1, CTLA-4, LAG-3 and TIM-3) in the TME, and provide an update on the clinical trials targeting these key immune molecules.
Collapse
Affiliation(s)
- Gaigai Wei
- Children's Hospital of Fudan University, National Children's Medical Center, And Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Huiling Zhang
- Children's Hospital of Fudan University, National Children's Medical Center, And Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Haiping Zhao
- Children's Hospital of Fudan University, National Children's Medical Center, And Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Jing Wang
- Children's Hospital of Fudan University, National Children's Medical Center, And Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Nana Wu
- Children's Hospital of Fudan University, National Children's Medical Center, And Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Leying Li
- Children's Hospital of Fudan University, National Children's Medical Center, And Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Jiaying Wu
- Children's Hospital of Fudan University, National Children's Medical Center, And Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Duanwu Zhang
- Children's Hospital of Fudan University, National Children's Medical Center, And Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
24
|
Ko KW, Park SY, Lee EH, Yoo YI, Kim DS, Kim JY, Kwon TG, Han DK. Integrated Bioactive Scaffold with Polydeoxyribonucleotide and Stem-Cell-Derived Extracellular Vesicles for Kidney Regeneration. ACS NANO 2021; 15:7575-7585. [PMID: 33724774 DOI: 10.1021/acsnano.1c01098] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Kidney tissue engineering and regeneration approaches offer great potential for chronic kidney disease treatment, but kidney tissue complexity imposes an additional challenge in applying regenerative medicine for renal tissue regeneration. In this study, a porous pneumatic microextrusion (PME) composite scaffold consisting of poly(lactic-co-glycolic acid) (PLGA, P), magnesium hydroxide (MH, M), and decellularized porcine kidney extracellular matrix (kECM, E) is functionalized with bioactive compounds, polydeoxyribonucleotide (PDRN), and tumour necrosis factor-α (TNF-α)/interferon-γ (IFN-γ)-primed mesenchymal stem-cell-derived extracellular vesicles (TI-EVs) to improve the regeneration and maintenance of a functional kidney tissue. The combination of PDRN and TI-EVs showed a significant synergistic effect in regenerative processes including cellular proliferation, angiogenesis, fibrosis, and inflammation. In addition, the PME/PDRN/TI-EV scaffold induced an effective glomerular regeneration and restoration of kidney function compared to the existing PME scaffold in a partial nephrectomy mouse model. Therefore, such an integrated bioactive scaffold that combines biochemical cues from PDRN and TI-EVs and biophysical cues from a porous PLGA scaffold containing MH and kECM can be used as an advanced tissue engineering platform for kidney tissue regeneration.
Collapse
Affiliation(s)
- Kyoung-Won Ko
- Department of Biomedical Science, College of Life Sciences, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi-do 13488, Republic of Korea
| | - So-Yeon Park
- Department of Biomedical Science, College of Life Sciences, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi-do 13488, Republic of Korea
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Eun Hye Lee
- Department of Urology, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Yong-In Yoo
- Department of Biomedical Science, College of Life Sciences, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi-do 13488, Republic of Korea
| | - Da-Seul Kim
- Department of Biomedical Science, College of Life Sciences, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi-do 13488, Republic of Korea
| | - Jun Yong Kim
- Department of Biomedical Science, College of Life Sciences, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi-do 13488, Republic of Korea
| | - Tae Gyun Kwon
- Department of Urology, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu 41944, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, College of Life Sciences, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi-do 13488, Republic of Korea
| |
Collapse
|
25
|
Dettori I, Gaviano L, Ugolini F, Lana D, Bulli I, Magni G, Rossi F, Giovannini MG, Pedata F. Protective Effect of Adenosine A 2B Receptor Agonist, BAY60-6583, Against Transient Focal Brain Ischemia in Rat. Front Pharmacol 2021; 11:588757. [PMID: 33643036 PMCID: PMC7905306 DOI: 10.3389/fphar.2020.588757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/21/2020] [Indexed: 01/03/2023] Open
Abstract
Cerebral ischemia is a multifactorial pathology characterized first by an acute injury, due to excitotoxicity, followed by a secondary brain injury that develops hours to days after ischemia. During ischemia, adenosine acts as an endogenous neuroprotectant. Few studies have investigated the role of A2B receptor in brain ischemia because of the low potency of adenosine for it and the few selective ligands developed so far. A2B receptors are scarcely but widely distributed in the brain on neurons, glial and endothelial cells and on hematopoietic cells, lymphocytes and neutrophils, where they exert mainly anti-inflammatory effects, inhibiting vascular adhesion and inflammatory cells migration. Aim of this work was to verify whether chronic administration of the A2B agonist, BAY60-6583 (0.1 mg/kg i.p., twice/day), starting 4 h after focal ischemia induced by transient (1 h) Middle Cerebral Artery occlusion (tMCAo) in the rat, was protective after the ischemic insult. BAY60-6583 improved the neurological deficit up to 7 days after tMCAo. Seven days after ischemia BAY60-6583 reduced significantly the ischemic brain damage in cortex and striatum, counteracted ischemia-induced neuronal death, reduced microglia activation and astrocytes alteration. Moreover, it decreased the expression of TNF-α and increased that of IL-10 in peripheral plasma. Two days after ischemia BAY60-6583 reduced blood cell infiltration in the ischemic cortex. The present study indicates that A2B receptors stimulation can attenuate the neuroinflammation that develops after ischemia, suggesting that A2B receptors may represent a new interesting pharmacological target to protect from degeneration after brain ischemia.
Collapse
Affiliation(s)
- Ilaria Dettori
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Lisa Gaviano
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Filippo Ugolini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Irene Bulli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Giada Magni
- Institute of Applied Physics "Nello Carrara", National Research Council (IFAC-CNR), Florence, Italy
| | - Francesca Rossi
- Institute of Applied Physics "Nello Carrara", National Research Council (IFAC-CNR), Florence, Italy
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Felicita Pedata
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
26
|
Li ZL, Buck M. Beyond history and "on a roll": The list of the most well-studied human protein structures and overall trends in the protein data bank. Protein Sci 2021; 30:745-760. [PMID: 33550681 DOI: 10.1002/pro.4038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/17/2022]
Abstract
Of the roughly 20,000 canonical human protein sequences, as of January 20, 2021, 7,077 proteins have had their full or partial, medium- to high-resolution structures determined by x-ray crystallography or other methods. Which of these proteins dominate the protein data bank (the PDB) and why? In this paper, we list the 273 top human protein structures based on the number of their PDB entries. This set of proteins accounts for more than 40% of all available human PDB entries and represent past trends as well as current status for protein structural biology. We briefly discuss the relationship which some of the prominent protein structures have with protein research as a whole and mention their relevance to human diseases. The top-10 soluble and membrane proteins are all well-known (most of their first structures being deposited more than 30 years ago). Overall, there is no dramatic change in recent trends in the PDB. Remarkably, the number of structure depositions has grown nearly exponentially over the last 10 or more years (with a doubling time of 7 years for proteins, obtained from any organism). Growth in human protein structures is slightly faster (at 5.9 years). The information in this paper may be informative to senior scientists but also inspire researchers who are new to protein science, providing the year 2021 snap-shot for the state of protein structural biology.
Collapse
Affiliation(s)
- Zhen-Lu Li
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, Ohio, USA
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, Ohio, USA.,Department of Pharmacology; Department of Neurosciences and Case Comprehensive Cancer Center, Case Western Reserve University, School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
27
|
Tian Z, Dixon J, Guo X, Deal B, Liao Q, Zhou Y, Cheng F, Allen-Gipson DS. Co-inhibition of CD73 and ADORA2B Improves Long-Term Cigarette Smoke Induced Lung Injury. Front Physiol 2021; 12:614330. [PMID: 33584346 PMCID: PMC7876334 DOI: 10.3389/fphys.2021.614330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/04/2021] [Indexed: 11/20/2022] Open
Abstract
Adenosine (ADO) involvement in lung injury depends on the activation of its receptors. The ADO A2A receptor (ADORA2A) and A2B receptor (ADORA2B) are best described to have both tissue-protective and tissue-destructive processes. However, no approach has been effective in delineating the mechanism(s) involved with ADO shifting from its tissue-protective to tissue-destructive properties in chronic airway injury. Using cigarette smoke (CS) as our model of injury, we chronically exposed Nuli-1 cells to 5% CS extract (CSE) for 3 years establishing a long-term CSE exposure model (LTC). We found significant morphological changes, decreased proliferation, and migration resulting in impaired airway wound closure in LTC. Further investigations showed that long-term CSE exposure upregulates CD73 and ADORA2B expression, increases ADO production, inhibits PKC alpha activity and p-ERK signaling pathway. Knocking down ADORA2B and/or CD73 in LTC activates PKC alpha and increases p-ERK signaling. Knocking down both showed better improvement in wound repair than either alone. In vivo experiments also showed that double knockout CD73 and ADORA2B remarkably improved CS-induced lung injury by activating PKC alpha, reducing the inflammatory cell number in bronchoalveolar lavage fluid and the production of inflammatory mediator IL-6, inhibiting the fibrosis-like lesions and decreasing collagen deposition surrounding bronchioles. Collectively, long-term CSE exposure upregulates CD73 expression and increases ADO production, which promotes low affinity ADORA2B activation and subsequent diminution of PKC alpha activity and ERK signaling pathway, and inhibition of airway wound repair. Moreover, the data suggesting ADORA2B and CD73 as potential therapeutic targets may be more efficacious in improving chronic CS lung diseases and impaired wound repair.
Collapse
Affiliation(s)
- Zhi Tian
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Jendayi Dixon
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Xiaofang Guo
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Benjamin Deal
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Qianjin Liao
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yujuan Zhou
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Feng Cheng
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Diane S Allen-Gipson
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States.,Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
28
|
Boknik P, Eskandar J, Hofmann B, Zimmermann N, Neumann J, Gergs U. Role of Cardiac A 2A Receptors Under Normal and Pathophysiological Conditions. Front Pharmacol 2021; 11:627838. [PMID: 33574762 PMCID: PMC7871008 DOI: 10.3389/fphar.2020.627838] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
This review presents an overview of cardiac A2A-adenosine receptors The localization of A2A-AR in the various cell types that encompass the heart and the role they play in force regulation in various mammalian species are depicted. The putative signal transduction systems of A2A-AR in cells in the living heart, as well as the known interactions of A2A-AR with membrane-bound receptors, will be addressed. The possible role that the receptors play in some relevant cardiac pathologies, such as persistent or transient ischemia, hypoxia, sepsis, hypertension, cardiac hypertrophy, and arrhythmias, will be reviewed. Moreover, the cardiac utility of A2A-AR as therapeutic targets for agonistic and antagonistic drugs will be discussed. Gaps in our knowledge about the cardiac function of A2A-AR and future research needs will be identified and formulated.
Collapse
Affiliation(s)
- P. Boknik
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Münster, Germany
| | - J. Eskandar
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Münster, Germany
| | - B. Hofmann
- Cardiac Surgery, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - N. Zimmermann
- Bundesinstitut für Arzneimittel und Medizinprodukte, Bonn, Germany
| | - J. Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - U. Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| |
Collapse
|
29
|
Lovászi M, Branco Haas C, Antonioli L, Pacher P, Haskó G. The role of P2Y receptors in regulating immunity and metabolism. Biochem Pharmacol 2021; 187:114419. [PMID: 33460626 DOI: 10.1016/j.bcp.2021.114419] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
P2Y receptors are G protein-coupled receptors whose physiological agonists are the nucleotides ATP, ADP, UTP, UDP and UDP-glucose. Eight P2Y receptors have been cloned in humans: P2Y1R, P2Y2R, P2Y4R, P2Y6R, P2Y11R, P2Y12R, P2Y13R and P2Y14R. P2Y receptors are expressed in lymphoid tissues such as thymus, spleen and bone marrow where they are expressed on lymphocytes, macrophages, dendritic cells, neutrophils, eosinophils, mast cells, and platelets. P2Y receptors regulate many aspects of immune cell function, including phagocytosis and killing of pathogens, antigen presentation, chemotaxis, degranulation, cytokine production, and lymphocyte activation. Consequently, P2Y receptors shape the course of a wide range of infectious, autoimmune, and inflammatory diseases. P2Y12R ligands have already found their way into the therapeutic arena, and we envision additional ligands as future drugs for the treatment of diseases caused by or associated with immune dysregulation.
Collapse
Affiliation(s)
- Marianna Lovászi
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | | | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, USA.
| |
Collapse
|
30
|
Ledderose C, Junger WG. Mitochondria Synergize With P2 Receptors to Regulate Human T Cell Function. Front Immunol 2020; 11:549889. [PMID: 33133068 PMCID: PMC7550529 DOI: 10.3389/fimmu.2020.549889] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022] Open
Abstract
Intracellular ATP is the universal energy carrier that fuels many cellular processes. However, immune cells can also release a portion of their ATP into the extracellular space. There, ATP activates purinergic receptors that mediate autocrine and paracrine signaling events needed for the initiation, modulation, and termination of cell functions. Mitochondria contribute to these processes by producing ATP that is released. Here, we summarize the synergistic interplay between mitochondria and purinergic signaling that regulates T cell functions. Specifically, we discuss how mitochondria interact with P2X1, P2X4, and P2Y11 receptors to regulate T cell metabolism, cell migration, and antigen recognition. These mitochondrial and purinergic signaling mechanisms are indispensable for host immune defense. However, they also represent an Achilles heel that can render the host susceptible to infections and inflammatory disorders. Hypoxia and mitochondrial dysfunction deflate the purinergic signaling mechanisms that regulate T cells, while inflammation and tissue damage generate excessive systemic ATP levels that distort autocrine purinergic signaling and impair T cell function. An improved understanding of the metabolic and purinergic signaling mechanisms that regulate T cells may lead to novel strategies for the diagnosis and treatment of infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Carola Ledderose
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Wolfgang G Junger
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
31
|
Falcone C, Caracciolo M, Correale P, Macheda S, Vadalà EG, La Scala S, Tescione M, Danieli R, Ferrarelli A, Tarsitano MG, Romano L, De Lorenzo A. Can Adenosine Fight COVID-19 Acute Respiratory Distress Syndrome? J Clin Med 2020; 9:E3045. [PMID: 32967358 PMCID: PMC7564484 DOI: 10.3390/jcm9093045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) patients can develop interstitial pneumonia, which, in turn, can evolve into acute respiratory distress syndrome (ARDS). This is accompanied by an inflammatory cytokine storm. severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) has proteins capable of promoting the cytokine storm, especially in patients with comorbidities, including obesity. Since currently no resolutive therapy for ARDS has been found and given the scientific literature regarding the use of adenosine, its application has been hypothesized. Through its receptors, adenosine is able to inhibit the acute inflammatory process, increase the protection capacity of the epithelial barrier, and reduce the damage due to an overactivation of the immune system, such as that occurring in cytokine storms. These features are known in ischemia/reperfusion models and could also be exploited in acute lung injury with hypoxia. Considering these hypotheses, a COVID-19 patient with unresponsive respiratory failure was treated with adenosine for compassionate use. The results showed a rapid improvement of clinical conditions, with negativity of SARS-CoV2 detection.
Collapse
Affiliation(s)
- Carmela Falcone
- Unit of Radiology, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio Calabria, Italy; (C.F.); (A.F.)
| | - Massimo Caracciolo
- Unit of Intensive Postoperative Therapy, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio Calabria, Italy;
| | - Pierpaolo Correale
- Medical Oncology Unit, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio Calabria, Italy;
| | - Sebastiano Macheda
- Unit of Intensive Care Medicine and Anesthesia, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio Calabria, Italy; (S.M.); (E.G.V.); (S.L.S.); (M.T.)
| | - Eugenio Giuseppe Vadalà
- Unit of Intensive Care Medicine and Anesthesia, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio Calabria, Italy; (S.M.); (E.G.V.); (S.L.S.); (M.T.)
| | - Stefano La Scala
- Unit of Intensive Care Medicine and Anesthesia, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio Calabria, Italy; (S.M.); (E.G.V.); (S.L.S.); (M.T.)
| | - Marco Tescione
- Unit of Intensive Care Medicine and Anesthesia, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio Calabria, Italy; (S.M.); (E.G.V.); (S.L.S.); (M.T.)
| | - Roberta Danieli
- Department of Human Sciences and Promotion of the Quality of Life, University San Raffaele, 00166 Rome, Italy;
| | - Anna Ferrarelli
- Unit of Radiology, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124 Reggio Calabria, Italy; (C.F.); (A.F.)
| | | | - Lorenzo Romano
- School of Specialization in Food Science, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
| |
Collapse
|
32
|
Caffeine effects on systemic metabolism, oxidative-inflammatory pathways, and exercise performance. Nutr Res 2020; 80:1-17. [DOI: 10.1016/j.nutres.2020.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 04/11/2020] [Accepted: 05/09/2020] [Indexed: 01/06/2023]
|
33
|
Foschetti DA, Braga-Neto MB, Bolick D, Moore J, Alves LA, Martins CS, Bomfin LE, Santos A, Leitão R, Brito G, Warren CA. Clostridium difficile toxins or infection induce upregulation of adenosine receptors and IL-6 with early pro-inflammatory and late anti-inflammatory pattern. ACTA ACUST UNITED AC 2020; 53:e9877. [PMID: 32725081 PMCID: PMC7405017 DOI: 10.1590/1414-431x20209877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
Clostridium difficile causes intestinal inflammation, which increases adenosine. We compared the expression of adenosine receptors (AR) subtypes A1, A2A, A2B, and A3 in HCT-8, IEC-6 cells, and isolated intestinal epithelial cells, challenged or not with Clostridium difficile toxin A and B (TcdA and TcdB) or infection (CDI). In HCT-8, TcdB induced an early A2BR expression at 6 h and a late A2AR expression at 6 and 24 h. In addition, both TcdA and TcdB increased IL-6 expression at all time-points (peak at 6 h) and PSB603, an A2BR antagonist, decreased IL-6 expression and production. In isolated cecum epithelial cells, TcdA induced an early expression of A2BR at 2s and 6 h, followed by a late expression of A2AR at 6 and 24 h and of A1R at 24 h. In CDI, A2AR and A2BR expressions were increased at day 3, but not at day 7. ARs play a role in regulating inflammation during CDI by inducing an early pro-inflammatory and a late anti-inflammatory response. The timing of interventions with AR antagonist or agonists may be of relevance in treatment of CDI.
Collapse
Affiliation(s)
- D A Foschetti
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - M B Braga-Neto
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - D Bolick
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - J Moore
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - L A Alves
- Departamento de Ciências Médicas, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - C S Martins
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - L E Bomfin
- Departamento de Ciências Médicas, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - Aaqa Santos
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - Rfc Leitão
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - Gac Brito
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | | |
Collapse
|
34
|
Blockade of Adenosine A 2A Receptor Protects Photoreceptors after Retinal Detachment by Inhibiting Inflammation and Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7649080. [PMID: 32714489 PMCID: PMC7354651 DOI: 10.1155/2020/7649080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/19/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022]
Abstract
Purpose Adenosine A2A receptor (A2AR) signaling is neuroprotective in some retinal damage models, but its role in neuronal survival during retinal detachment (RD) is unclear. We tested the hypothesis that A2AR antagonist ZM241385 would prevent photoreceptor apoptosis by inhibiting retinal inflammation and oxidative stress after RD. Methods The A2AR antagonist ZM241385 was delivered daily to C57BL/6J mice for three days at a dose (3 mg/kg, i.p.) starting 2 hours prior to creating RD. A2AR expression, microglia proliferation and reactivity, glial fibrillary acidic protein (GFAP) accumulation, IL-1β expression, and reactive oxygen species (ROS) production were evaluated with immunofluorescence. Photoreceptor TUNEL was analyzed. Results A2AR expression obviously increased and accumulated in microglia and Müller cells in the retinas after RD. The A2AR antagonist ZM241385 effectively inhibited retinal microglia proliferation and reactivity, decreased GFAP upregulation and proinflammatory cytokine IL-1β expression of Müller cells, and suppressed ROS overproduction, resulting in attenuation of photoreceptor apoptosis after RD. Conclusions The A2AR antagonist ZM241385 is an effective suppressor of microglia proliferation and reactivity, gliosis, neuroinflammation, oxidative stress, and photoreceptor apoptosis in a mouse model of RD. This suggests that A2AR blockade may be an important therapeutic strategy to protect photoreceptors in RD and other CNS diseases that share a common etiology.
Collapse
|
35
|
Rehman A, Baloch NUA, Morrow JP, Pacher P, Haskó G. Targeting of G-protein coupled receptors in sepsis. Pharmacol Ther 2020; 211:107529. [PMID: 32197794 PMCID: PMC7388546 DOI: 10.1016/j.pharmthera.2020.107529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022]
Abstract
The Third International Consensus Definitions (Sepsis-3) define sepsis as life-threatening multi-organ dysfunction caused by a dysregulated host response to infection. Sepsis can progress to septic shock-an even more lethal condition associated with profound circulatory, cellular and metabolic abnormalities. Septic shock remains a leading cause of death in intensive care units and carries a mortality of almost 25%. Despite significant advances in our understanding of the pathobiology of sepsis, therapeutic interventions have not translated into tangible differences in the overall outcome for patients. Clinical trials of antagonists of various pro-inflammatory mediators in sepsis have been largely unsuccessful in the past. Given the diverse physiologic roles played by G-protein coupled receptors (GPCR), modulation of GPCR signaling for the treatment of sepsis has also been explored. Traditional pharmacologic approaches have mainly focused on ligands targeting the extracellular domains of GPCR. However, novel techniques aimed at modulating GPCR intracellularly through aptamers, pepducins and intrabodies have opened a fresh avenue of therapeutic possibilities. In this review, we summarize the diverse roles played by various subfamilies of GPCR in the pathogenesis of sepsis and identify potential targets for pharmacotherapy through these novel approaches.
Collapse
Affiliation(s)
- Abdul Rehman
- Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Noor Ul-Ain Baloch
- Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - John P Morrow
- Department of Medicine, Columbia University, New York City, NY, United States
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York City, NY, United States.
| |
Collapse
|
36
|
Kotańska M, Dziubina A, Szafarz M, Mika K, Reguła K, Bednarski M, Zygmunt M, Drabczyńska A, Sapa J, Kieć-Kononowicz K. KD-64-A new selective A2A adenosine receptor antagonist has anti-inflammatory activity but contrary to the non-selective antagonist-Caffeine does not reduce diet-induced obesity in mice. PLoS One 2020; 15:e0229806. [PMID: 32555600 PMCID: PMC7302451 DOI: 10.1371/journal.pone.0229806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/27/2020] [Indexed: 12/23/2022] Open
Abstract
The A2 adenosine receptors play an important role, among others, in the regulation of inflammatory process and glucose homeostasis in diabetes and obesity. Thus, the presented project evaluated of influence of the selective antagonist of A2A adenosine receptor-KD-64 as compared to the known non-selective antagonist-caffeine on these two particular processes. Two different inflammation models were induced namely local and systemic inflammation. Obesity was induced in mice by high-fat diet and the tested compounds (KD-64 and caffeine) were administrated for 21 days. KD-64 showed anti-inflammatory effect in both tested inflammation models and administered at the same dose as ketoprofen exerted stronger effect than this reference compound. Elevated levels of IL-6 and TNF-α observed in obese control mice were significantly lowered by the administration of KD-64 and were similar to the values observed in control non-obese mice. Interestingly, caffeine increased the levels of these parameters. In contrast to caffeine which had no influence on AlaT activity, KD-64 administration significantly lowered AlaT activity in the obese mice. Although, contrary to caffeine, KD-64 did not reduce diet-induced obesity in mice, it improved glucose tolerance. Thus, the activity of the selective adenosine A2A receptor antagonist was quite different from that of the non-selective.
Collapse
Affiliation(s)
- Magdalena Kotańska
- Department of Pharmacological Screening, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Dziubina
- Department of Pharmacodynamics, Jagiellonian University Medical College, Krakow, Poland
| | - Małgorzata Szafarz
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Kamil Mika
- Department of Pharmacological Screening, Jagiellonian University Medical College, Krakow, Poland
| | - Karolina Reguła
- Department of Pharmacological Screening, Jagiellonian University Medical College, Krakow, Poland
| | - Marek Bednarski
- Department of Pharmacological Screening, Jagiellonian University Medical College, Krakow, Poland
| | - Małgorzata Zygmunt
- Department of Pharmacological Screening, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Drabczyńska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Jacek Sapa
- Department of Pharmacological Screening, Jagiellonian University Medical College, Krakow, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
37
|
Abouelkhair MA, Frank LA, Bemis DA, Giannone RJ, Kania SA. Staphylococcus pseudintermedius 5'-nucleotidase suppresses canine phagocytic activity. Vet Microbiol 2020; 246:108720. [PMID: 32605759 DOI: 10.1016/j.vetmic.2020.108720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/15/2022]
Abstract
Staphylococcus pseudintermedius is a major opportunistic bacterial pathogen and the leading cause of pyoderma in dogs. In canines it is also often associated with infections of the urinary system and wounds and occasionally infects people. Widespread antimicrobial resistance has made the development of alternative treatments a high priority. The development of a staphylococcal vaccine, however, has proven challenging. Identification of virulence factors that inhibit phagocytosis and avoid innate immunity may play a significant role in preventing or treating infection with S. pseudintermedius. In this study, we identified a putative 5'-nucleotidase provisionally named SpAdsA, a S. pseudintermedius cell- wall protein encoded by SpAdsA. SpAdsA shares approximately 52% identity with the orthologous protein of Staphylococcus aureus and 14.8% identity with that of Streptococcus suis type2. It catalyzes the dephosphorylation of adenosine triphosphate and attenuation of this enzyme with critical amino acid substitutions nearly eliminated its hydrolytic activity. Exogenous adenosine inhibited phagocytosis of S. pseudintermedius by canine neutrophils and monocytes. Conversely, the addition of SpAdsA inhibitor or A2A adenosine receptor antagonist impaired the capacity of S. pseudintermedius to escape from killing by phagocytic cells. The neutralizing ability of canine antibody produced against SpAdsA-M was determined. Taken together, these results suggest that SpAdsA likely plays an important role in S. pseudintermedius virulence and that attenuated SpAdsA may be a good candidate for inclusion in a vaccine against S. pseudintermedius.
Collapse
Affiliation(s)
- Mohamed A Abouelkhair
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, USA; Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Menoufia, Egypt
| | - Linda A Frank
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| | - David A Bemis
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, USA
| | - Richard J Giannone
- Chemical Sciences Division, Mass Spectrometry and Laser Spectrometry, Oakridge National Laboratories, Oakridge, TN, USA
| | - Stephen A Kania
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, USA.
| |
Collapse
|
38
|
Effendi WI, Nagano T, Kobayashi K, Nishimura Y. Focusing on Adenosine Receptors as a Potential Targeted Therapy in Human Diseases. Cells 2020; 9:E785. [PMID: 32213945 PMCID: PMC7140859 DOI: 10.3390/cells9030785] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Adenosine is involved in a range of physiological and pathological effects through membrane-bound receptors linked to G proteins. There are four subtypes of adenosine receptors, described as A1AR, A2AAR, A2BAR, and A3AR, which are the center of cAMP signal pathway-based drug development. Several types of agonists, partial agonists or antagonists, and allosteric substances have been synthesized from these receptors as new therapeutic drug candidates. Research efforts surrounding A1AR and A2AAR are perhaps the most enticing because of their concentration and affinity; however, as a consequence of distressing conditions, both A2BAR and A3AR levels might accumulate. This review focuses on the biological features of each adenosine receptor as the basis of ligand production and describes clinical studies of adenosine receptor-associated pharmaceuticals in human diseases.
Collapse
Affiliation(s)
- Wiwin Is Effendi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan; (W.I.E.); (K.K.); (Y.N.)
- Department of Pulmonology and Respiratory Medicine, Medical Faculty of Airlangga University, Surabaya 60131, Indonesia
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan; (W.I.E.); (K.K.); (Y.N.)
| | - Kazuyuki Kobayashi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan; (W.I.E.); (K.K.); (Y.N.)
| | - Yoshihiro Nishimura
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan; (W.I.E.); (K.K.); (Y.N.)
| |
Collapse
|
39
|
He Z, Xu X, Chen C, Li H, Wang DW. Adenosine 2A Receptor Activation Contributes to Ang II–Induced Aortic Remodeling by Promoting Macrophage Retention. Hypertension 2020; 75:119-130. [DOI: 10.1161/hypertensionaha.119.13709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The A
2A
R (adenosine 2A receptor) plays a crucial role in the pathophysiological process of cardiovascular diseases, yet its effect on aortic remodeling remains unclear. We observed elevated adenosine and A
2A
R levels following infusion of mice with Ang II (angiotensin II), suggesting a potential role for the adenosine-A
2A
R system in macrophage accumulation and subsequent aortic remodeling. The effects and mechanisms of A
2A
R on macrophage dynamics during aortic remodeling were further investigated using mice with macrophage knockout of A
2A
R and by transplantation of A
2A
R
−/−
bone marrow. We demonstrated that macrophage knockout of A
2A
R inhibited macrophage accumulation and subsequent aortic remodeling by inhibiting macrophage retention. This was shown to occur via promotion of macrophage emigration to the draining lymph node. These effects correlated with restoration of the expression and surface content of CCR7 (CC chemokine receptor 7). Consistently, A
2A
R
−/−
bone marrow transplantation relieved Ang II–induced aortic remodeling, macrophage retention, and CCR7 downregulation and internalization, all of which were rescued by A
2A
R
+
/
+
bone marrow transplantation. In addition, CCR7 antibody treatment blocked all the protective effects observed in A
2A
R-cKO mice, including attenuation of aortic remodeling and decreased macrophage retention. In in vitro studies, A
2A
R activation induced by Ang II suppressed macrophage migration to CCL19 (CC-chemokine ligand) 19 through downregulation and internalization of CCR7. In summary, A
2A
R activation contributes to Ang II–induced macrophage retention and subsequent aortic remodeling by inhibiting migration of macrophages to the draining lymph node through regulating CCR7 expression and internalization.
Collapse
Affiliation(s)
- Zuowen He
- From the Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Z.H., X.X., C.C., H.L., D.W.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan, China (Z.H., X.X., C.C., H.L., D.W.W.)
| | - Xizhen Xu
- From the Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Z.H., X.X., C.C., H.L., D.W.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan, China (Z.H., X.X., C.C., H.L., D.W.W.)
| | - Chen Chen
- From the Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Z.H., X.X., C.C., H.L., D.W.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan, China (Z.H., X.X., C.C., H.L., D.W.W.)
| | - Huaping Li
- From the Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Z.H., X.X., C.C., H.L., D.W.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan, China (Z.H., X.X., C.C., H.L., D.W.W.)
| | - Dao Wen Wang
- From the Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Z.H., X.X., C.C., H.L., D.W.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan, China (Z.H., X.X., C.C., H.L., D.W.W.)
| |
Collapse
|
40
|
Micioni Di Bonaventura MV, Pucci M, Giusepponi ME, Romano A, Lambertucci C, Volpini R, Micioni Di Bonaventura E, Gaetani S, Maccarrone M, D'Addario C, Cifani C. Regulation of adenosine A 2A receptor gene expression in a model of binge eating in the amygdaloid complex of female rats. J Psychopharmacol 2019; 33:1550-1561. [PMID: 31161847 DOI: 10.1177/0269881119845798] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Pharmacological treatment approaches for eating disorders, such as binge eating disorder and bulimia nervosa, are currently limited. METHODS AND AIMS Using a well-characterized animal model of binge eating, we investigated the epigenetic regulation of the A2A Adenosine Receptor (A2AAR) and dopaminergic D2 receptor (D2R) genes. RESULTS Gene expression analysis revealed a selective increase of both receptor mRNAs in the amygdaloid complex of stressed and restricted rats, which exhibited binge-like eating, when compared to non-stressed and non-restricted rats. Consistently, pyrosequencing analysis revealed a significant reduction of the percentage of DNA methylation but only at the A2AAR promoter region in rats showing binge-like behaviour compared to the control animals. Focusing thus on A2AAR agonist (VT 7) administration (which inhibited the episode of binge systemically at 0.1 mg/kg or intra-central amygdala (CeA) injection at 900 ng/side) induced a significant increase of A2AAR mRNA levels in restricted and stressed rats when compared to the control group. In addition, we observed a significant decrease in A2AAR mRNA levels in rats treated with the A2AAR antagonist (ANR 94) at 1 mg/kg. Consistent changes in the DNA methylation status of the A2AAR promoter were found in restricted and stressed rats after administration of VT 7 or ANR 94. CONCLUSION We confirm the role of A2AAR in binge eating behaviours, and we underline the importance of epigenetic regulation of the A2AAR gene, possibly due to a compensatory mechanism to counteract the effect of binge eating. We suggest that A2AAR activation, inducing receptor gene up-regulation, could be relevant to reduction of food consumption.
Collapse
Affiliation(s)
| | - Mariangela Pucci
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | | | - Adele Romano
- Department of Physiology and Pharmacology V. Erspamer, Sapienza University of Rome, Rome, Italy
| | - Catia Lambertucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | - Rosaria Volpini
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | | | - Silvana Gaetani
- Department of Physiology and Pharmacology V. Erspamer, Sapienza University of Rome, Rome, Italy
| | - Mauro Maccarrone
- Campus Bio-Medico, University of Rome, Rome, Italy
- European Center for Brain Research (CERC)/Santa Lucia Foundation, Rome, Italy
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| |
Collapse
|
41
|
Aires ID, Madeira MH, Boia R, Rodrigues-Neves AC, Martins JM, Ambrósio AF, Santiago AR. Intravitreal injection of adenosine A 2A receptor antagonist reduces neuroinflammation, vascular leakage and cell death in the retina of diabetic mice. Sci Rep 2019; 9:17207. [PMID: 31748653 PMCID: PMC6868354 DOI: 10.1038/s41598-019-53627-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 11/01/2019] [Indexed: 12/20/2022] Open
Abstract
Diabetic retinopathy is a major complication of diabetes mellitus and a leading cause of blindness. The pathogenesis of diabetic retinopathy is accompanied by chronic low-grade inflammation. Evidence shows that the blockade of adenosine A2A receptors (A2AR) affords protection to the retina through the control of microglia-mediated neuroinflammation. Herein, we investigated the therapeutic potential of an antagonist of A2AR in a model of diabetic retinopathy. Type 1 diabetes was induced in 4–5 months old C57BL/6 J mice with a single intraperitoneal injection streptozotocin. Animals were treated one month after the onset of diabetes. The A2AR antagonist was delivered by intravitreal injection once a week for 4 weeks. Microglia reactivity and inflammatory mediators were increased in the retinas of diabetic animals. The treatment with the A2AR antagonist was able to control microglial reactivity and halt neuroinflammation. Furthermore, the A2AR antagonist rescued retinal vascular leakage, attenuated alterations in retinal thickness, decreased retinal cell death and the loss of retinal ganglion cells induced by diabetes. These results demonstrate that intravitreal injection of the A2AR antagonist controls inflammation, affords protection against cell loss and reduces vascular leakage associated with diabetes, which could be envisaged as a therapeutic approach for the early complications of diabetes in the retina.
Collapse
Affiliation(s)
- Inês Dinis Aires
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Maria Helena Madeira
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Raquel Boia
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Ana Catarina Rodrigues-Neves
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Joana Margarida Martins
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - António Francisco Ambrósio
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Ana Raquel Santiago
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal. .,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal. .,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
42
|
Abstract
Staphylococcus aureus is a deadly pathogen that causes fatal diseases in humans. During infection, S. aureus secretes nuclease (Nuc) and adenosine synthase A (AdsA) to generate cytotoxic deoxyadenosine (dAdo) from neutrophil extracellular traps which triggers noninflammatory apoptosis in macrophages. In this manner, replicating staphylococci escape phagocytic killing without alerting the immune system. Here, we show that mice lacking caspase-3 in immune cells exhibit increased resistance toward S. aureus Caspase-3-deficient macrophages are resistant to staphylococcal dAdo and gain access to abscess lesions to promote bacterial clearance in infected animals. We identify specific single nucleotide polymorphisms in CASP3 as candidate human resistance alleles that protect macrophages from S. aureus-derived dAdo, raising the possibility that the allelic repertoire of caspase-3 may contribute to the outcome of S. aureus infections in humans.IMPORTANCE Caspase-3 controls the apoptotic pathway, a form of programmed cell death designed to be immunologically silent. Polymorphisms leading to reduced caspase-3 activity are associated with variable effects on tumorigenesis and yet arise frequently. Staphylococcus aureus is a human commensal and a frequent cause of soft tissue and bloodstream infections. Successful commensalism and virulence can be explained by the secretion of a plethora of immune evasion factors. One such factor, AdsA, destroys phagocytic cells by exploiting the apoptotic pathway. However, human CASP3 variants with loss-of-function alleles shield phagocytes from AdsA-mediated killing. This finding raises the possibility that some caspase-3 alleles may arise from exposure to S. aureus and other human pathogens that exploit the apoptotic pathway for infection.
Collapse
|
43
|
Pal Y, Bandyopadhyay N, Pal RS, Ahmed S, Bandopadhyay S. Perspective and Potential of A2A and A3 Adenosine Receptors as Therapeutic Targets for the Treatment of Rheumatoid Arthritis. Curr Pharm Des 2019; 25:2859-2874. [DOI: 10.2174/1381612825666190710111658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/01/2019] [Indexed: 01/10/2023]
Abstract
Adenosine is a purine nucleoside which is an effective controller of inflammation. The inflammatory effect of adenosine is expressed via its four receptor subtypes viz. A1, A2A, A2B and A3. The various inflammatory conditions including rheumatoid arthritis (RA) are initiated by adenosine receptors of which A2A and A3 play a vital role. RA primarily is an auto-immune disorder which is manifested as chronic inflammation in the synovial lining of joints. In order to develop an effective treatment, the role of cytokines, IL–1, TNF-α and IL–6 is crucial. Besides, the knowledge of PI3K-PKB/Akt and NF-kB signaling pathway is also important to understand the antiinflammatory targets. Methotrexate along with various other molecules like, NSAIDs and DMARDs are presently used as treatment lines for controlling RA. The enhanced knowledge of the preclinical stages and pathogenesis along with recent potent therapeutics raises the hopes that RA can be prevented in the near future.
Collapse
Affiliation(s)
- Yogendra Pal
- Department of Pharmacy, Pranveer Singh Institute of Technology, Bhauti, Kanpur, Uttar Pradesh 209305, India
| | - Nabamita Bandyopadhyay
- Molecular Biology Division, National Institute of Malarial Research (NIMR), Dwarka, New Delhi, Delhi 110077, India
| | - Rashmi S. Pal
- Department of Pharmacy, Pranveer Singh Institute of Technology, Bhauti, Kanpur, Uttar Pradesh 209305, India
| | - Sarfaraz Ahmed
- Global Institute of Pharmaceutical Education and Research, Kashipur, Udham Singh Nagar, Uttarakhand 244713, India
| | - Shantanu Bandopadhyay
- Faculty of Pharmacy, Naraina Vidya Peeth Group of Institutions, Panki, Kanpur, Uttar Pradesh 208020, India
| |
Collapse
|
44
|
Agrawal N, Chandrasekaran B, Al-Aboudi A. Recent Advances in the In-silico Structure-based and Ligand-based Approaches for the Design and Discovery of Agonists and Antagonists of A2A Adenosine Receptor. Curr Pharm Des 2019; 25:774-782. [DOI: 10.2174/1381612825666190306162006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 02/26/2019] [Indexed: 01/20/2023]
Abstract
A2A receptor belongs to the family of GPCRs, which are the most abundant membrane protein family.
Studies in the last few decades have shown the therapeutic applications of A2A receptor in various diseases. In the
present mini-review, we have discussed the recent progress in the in-silico studies of the A2A receptor. Herein, we
described the different structures of A2A receptor, the discovery of new agonists and antagonists using virtualscreening/
docking, pharmacophore modeling, and QSAR based pharmacophore modeling. We have also discussed
various molecular dynamics (MD) simulations studies of A2A receptor in complex with ligands.
Collapse
Affiliation(s)
- Nikhil Agrawal
- College of Health Sciences, University of KwaZulu-Natal, P. O. Box: 4000, Westville, Durban, South Africa
| | - Balakumar Chandrasekaran
- College of Health Sciences, University of KwaZulu-Natal, P. O. Box: 4000, Westville, Durban, South Africa
| | - Amal Al-Aboudi
- Faculty of Science, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
45
|
Fassett J, Xu X, Kwak D, Zhu G, Fassett EK, Zhang P, Wang H, Mayer B, Bache RJ, Chen Y. Adenosine kinase attenuates cardiomyocyte microtubule stabilization and protects against pressure overload-induced hypertrophy and LV dysfunction. J Mol Cell Cardiol 2019; 130:49-58. [PMID: 30910669 PMCID: PMC6555768 DOI: 10.1016/j.yjmcc.2019.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/08/2019] [Accepted: 03/15/2019] [Indexed: 02/06/2023]
Abstract
Adenosine exerts numerous protective actions in the heart, including attenuation of cardiac hypertrophy. Adenosine kinase (ADK) converts adenosine to adenosine monophosphate (AMP) and is the major route of myocardial adenosine metabolism, however, the impact of ADK activity on cardiac structure and function is unknown. To examine the role of ADK in cardiac homeostasis and adaptation to stress, conditional cardiomyocyte specific ADK knockout mice (cADK-/-) were produced using the MerCreMer-lox-P system. Within 4 weeks of ADK disruption, cADK-/- mice developed spontaneous hypertrophy and increased β-Myosin Heavy Chain expression without observable LV dysfunction. In response to 6 weeks moderate left ventricular pressure overload (transverse aortic constriction;TAC), wild type mice (WT) exhibited ~60% increase in ventricular ADK expression and developed LV hypertrophy with preserved LV function. In contrast, cADK-/- mice exhibited significantly greater LV hypertrophy and cardiac stress marker expression (atrial natrurietic peptide and β-Myosin Heavy Chain), LV dilation, reduced LV ejection fraction and increased pulmonary congestion. ADK disruption did not decrease protein methylation, inhibit AMPK, or worsen fibrosis, but was associated with persistently elevated mTORC1 and p44/42 ERK MAP kinase signaling and a striking increase in microtubule (MT) stabilization/detyrosination. In neonatal cardiomyocytes exposed to hypertrophic stress, 2-chloroadenosine (CADO) or adenosine treatment suppressed MT detyrosination, which was reversed by ADK inhibition with iodotubercidin or ABT-702. Conversely, adenoviral over-expression of ADK augmented CADO destabilization of MTs and potentiated CADO attenuation of cardiomyocyte hypertrophy. Together, these findings indicate a novel adenosine receptor-independent role for ADK-mediated adenosine metabolism in cardiomyocyte microtubule dynamics and protection against maladaptive hypertrophy.
Collapse
Affiliation(s)
- John Fassett
- Department of Pharmacology and Toxicology, University of Graz, Graz 8010, Austria.
| | - Xin Xu
- Department of Exercise Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Dongmin Kwak
- Cardiovascular Division and Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Guangshuo Zhu
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Erin K Fassett
- Department of Pharmacology and Toxicology, University of Graz, Graz 8010, Austria
| | - Ping Zhang
- Cardiovascular Division and Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Huan Wang
- Cardiovascular Division and Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bernd Mayer
- Department of Pharmacology and Toxicology, University of Graz, Graz 8010, Austria
| | - Robert J Bache
- Department of Pharmacology and Toxicology, University of Graz, Graz 8010, Austria
| | - Yingjie Chen
- Department of Pharmacology and Toxicology, University of Graz, Graz 8010, Austria.
| |
Collapse
|
46
|
Dai J, Lai L, Tang H, Wang W, Wang S, Lu C, Yao H, Fan H, Wu Z. Streptococcus suis synthesizes deoxyadenosine and adenosine by 5'-nucleotidase to dampen host immune responses. Virulence 2019; 9:1509-1520. [PMID: 30221577 PMCID: PMC6177238 DOI: 10.1080/21505594.2018.1520544] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Streptococcus suis is a major porcine bacterial pathogen and emerging zoonotic agent. S. suis 5ʹ-nucleotidase is able to convert adenosine monophosphate to adenosine, resulting in inhibiting neutrophil functions in vitro and it is an important virulence factor. Here, we show that S. suis 5ʹ-nucleotidase not only enables producing 2ʹ-deoxyadenosine from 2ʹ-deoxyadenosine monophosphate by the enzymatic assay and reversed-phase high performance liquid chromatography (RP-HPLC) analysis in vitro, but also synthesizes both 2ʹ-deoxyadenosine and adenosine in mouse blood in vivo by RP-HPLC and liquid chromatography with tandem mass spectrometry analyses. Cellular cytotoxicity assay and Western blot analysis indicated that the production of 2ʹ-deoxyadenosine by 5ʹ-nucleotidase triggered the death of mouse macrophages RAW 264.7 in a caspase-3-dependent way. The in vivo infection experiment showed that 2ʹ-deoxyadenosine synthesized by 5ʹ-nucleotidase caused monocytopenia in mouse blood. The in vivo transcriptome analysis in mouse blood showed the inhibitory effect of 5ʹ-nucleotidase on neutrophil functions and immune responses probably mediated through the generation of adenosine. Taken together, these findings indicate that S. suis synthesizes 2ʹ-deoxyadenosine and adenosine by 5ʹ-nucleotidase to dampen host immune responses, which represents a new mechanism of S. suis pathogenesis.
Collapse
Affiliation(s)
- Jiao Dai
- a College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , China.,b Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing , China.,c OIE Reference Lab for Swine Streptococcosis , Nanjing , China
| | - Liying Lai
- a College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , China.,b Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing , China.,c OIE Reference Lab for Swine Streptococcosis , Nanjing , China
| | - Huanyu Tang
- a College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , China.,b Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing , China.,c OIE Reference Lab for Swine Streptococcosis , Nanjing , China
| | - Weixue Wang
- a College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , China.,b Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing , China.,c OIE Reference Lab for Swine Streptococcosis , Nanjing , China
| | - Shuoyue Wang
- a College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , China.,b Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing , China.,c OIE Reference Lab for Swine Streptococcosis , Nanjing , China
| | - Chengping Lu
- a College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , China.,b Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing , China.,c OIE Reference Lab for Swine Streptococcosis , Nanjing , China
| | - Huochun Yao
- a College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , China.,b Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing , China.,c OIE Reference Lab for Swine Streptococcosis , Nanjing , China
| | - Hongjie Fan
- a College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , China.,b Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing , China.,d Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou , China
| | - Zongfu Wu
- a College of Veterinary Medicine, Nanjing Agricultural University , Nanjing , China.,b Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing , China.,c OIE Reference Lab for Swine Streptococcosis , Nanjing , China
| |
Collapse
|
47
|
Careta O, Cuevas E, Muñoz-Esquerre M, López-Sánchez M, Pascual-González Y, Dorca J, Aliagas E, Santos S. Imbalance in the Expression of Genes Associated with Purinergic Signalling in the Lung and Systemic Arteries of COPD Patients. Sci Rep 2019; 9:2796. [PMID: 30808894 PMCID: PMC6391454 DOI: 10.1038/s41598-019-39233-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/18/2019] [Indexed: 12/14/2022] Open
Abstract
Growing evidence indicates that purinergic signalling is involved in the pathogenesis of chronic obstructive pulmonary disease (COPD) and in the vascular remodelling that occurs in other disorders; however, its role in initial vascular changes of COPD is not entirely known. We hypothesised that expression of genes regulating extracellular ATP and adenosine levels would be altered in the lung and systemic arteries of COPD patients. Quantitative real-time PCR was performed to analyse the relative expression of 17 genes associated with purinergic signalling and inflammation in lungs and intercostal arteries of never smokers (NS) (n = 16), non-obstructed smokers (NOS) (n = 17) and COPD patients (n = 21). Gene expression of ATP-degrading enzymes was decreased in both tissues of NOS and COPD patients compared to NS. NT5E expression (gene transcribing for an AMP hydrolyzing ectonucleotidase) was increased in both tissues in NOS compared to the other groups. P1 and P2 receptors did not show changes in expression. Expression of genes associated with inflammation (interleukin-13) was upregulated only in lung tissues of COPD. These findings suggest that the expression of different extracellular ATP-degrading enzymes is altered in smokers (NOS and COPD patients), promoting inflammation. However, the high NT5E expression found only in NOS could compensate this inflammatory environment.
Collapse
Affiliation(s)
- Oriol Careta
- Pneumology Research Group, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Respiratory Medicine, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ester Cuevas
- Pneumology Research Group, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Respiratory Medicine, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Mariana Muñoz-Esquerre
- Pneumology Research Group, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Respiratory Medicine, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Marta López-Sánchez
- Pneumology Research Group, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Respiratory Medicine, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Yuliana Pascual-González
- Pneumology Research Group, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Respiratory Medicine, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jordi Dorca
- Pneumology Research Group, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Respiratory Medicine, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Elisabet Aliagas
- Pneumology Research Group, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.
- Department of Respiratory Medicine, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain.
- Department of Clinical Sciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Salud Santos
- Pneumology Research Group, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.
- Department of Respiratory Medicine, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain.
- Department of Clinical Sciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.
- Research Network in Respiratory Diseases (CIBERES), Madrid, Spain.
| |
Collapse
|
48
|
Dangel ML, Dettmann JC, Haßelbarth S, Krogull M, Schakat M, Kreikemeyer B, Fiedler T. The 5'-nucleotidase S5nA is dispensable for evasion of phagocytosis and biofilm formation in Streptococcus pyogenes. PLoS One 2019; 14:e0211074. [PMID: 30703118 PMCID: PMC6354987 DOI: 10.1371/journal.pone.0211074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/07/2019] [Indexed: 12/04/2022] Open
Abstract
5’-nucleotidases are widespread among all domains of life. The enzymes hydrolyze phosphate residues from nucleotides and nucleotide derivatives. In some pathobiontic bacteria, 5’-nucleotidases contribute to immune evasion by dephosphorylating adenosine mono-, di-, or tri-phosphates, thereby either decreasing the concentration of pro-inflammatory ATP or increasing the concentration of anti-inflammatory adenosine, both acting on purinergic receptors of phagocytic cells. The strict human pathogen Streptococcus pyogenes expresses a surface-associated 5’-nucleotidase (S5nA) under infection conditions that has previously been discussed as a potential virulence factor. Here we show that deletion of the S5nA gene does not significantly affect growth in human blood, evasion of phagocytosis by neutrophils, formation of biofilms and virulence in an infection model with larvae of the greater wax moth Galleria mellonella in S. pyogenes serotypes M6, M18 and M49. Hence, the surface-associated 5’-nucleotidase S5nA seems dispensable for evasion of phagocytosis and biofilm formation in S. pyogenes.
Collapse
Affiliation(s)
- Marcel-Lino Dangel
- Rostock University Medical Centre; Institute of Medical Microbiology, Virology, and Hygiene, Rostock, Germany
| | - Johann-Christoph Dettmann
- Rostock University Medical Centre; Institute of Medical Microbiology, Virology, and Hygiene, Rostock, Germany
| | - Steffi Haßelbarth
- Rostock University Medical Centre; Institute of Medical Microbiology, Virology, and Hygiene, Rostock, Germany
| | - Martin Krogull
- Rostock University Medical Centre; Institute of Medical Microbiology, Virology, and Hygiene, Rostock, Germany
| | - Miriam Schakat
- Rostock University Medical Centre; Institute of Medical Microbiology, Virology, and Hygiene, Rostock, Germany
| | - Bernd Kreikemeyer
- Rostock University Medical Centre; Institute of Medical Microbiology, Virology, and Hygiene, Rostock, Germany
| | - Tomas Fiedler
- Rostock University Medical Centre; Institute of Medical Microbiology, Virology, and Hygiene, Rostock, Germany
- * E-mail:
| |
Collapse
|
49
|
Aires ID, Boia R, Rodrigues-Neves AC, Madeira MH, Marques C, Ambrósio AF, Santiago AR. Blockade of microglial adenosine A 2A receptor suppresses elevated pressure-induced inflammation, oxidative stress, and cell death in retinal cells. Glia 2019; 67:896-914. [PMID: 30667095 PMCID: PMC6590475 DOI: 10.1002/glia.23579] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 11/08/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022]
Abstract
Glaucoma is a retinal degenerative disease characterized by the loss of retinal ganglion cells and damage of the optic nerve. Recently, we demonstrated that antagonists of adenosine A2A receptor (A2A R) control retinal inflammation and afford protection to rat retinal cells in glaucoma models. However, the precise contribution of microglia to retinal injury was not addressed, as well as the effect of A2A R blockade directly in microglia. Here we show that blocking microglial A2A R prevents microglial cell response to elevated pressure and it is sufficient to protect retinal cells from elevated pressure-induced death. The A2A R antagonist SCH 58261 or the knockdown of A2A R expression with siRNA in microglial cells prevented the increase in microglia response to elevated hydrostatic pressure. Furthermore, in retinal neural cell cultures, the A2A R antagonist decreased microglia proliferation, as well as the expression and release of pro-inflammatory mediators. Microglia ablation prevented neural cell death triggered by elevated pressure. The A2A R blockade recapitulated the effects of microglia depletion, suggesting that blocking A2A R in microglia is able to control neurodegeneration in glaucoma-like conditions. Importantly, in human organotypic retinal cultures, A2A R blockade prevented the increase in reactive oxygen species and the morphological alterations in microglia triggered by elevated pressure. These findings place microglia as the main contributors for retinal cell death during elevated pressure and identify microglial A2A R as a therapeutic target to control retinal neuroinflammation and prevent neural apoptosis elicited by elevated pressure.
Collapse
Affiliation(s)
- Inês Dinis Aires
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Raquel Boia
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Ana Catarina Rodrigues-Neves
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Maria Helena Madeira
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Carla Marques
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - António Francisco Ambrósio
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal
| | - Ana Raquel Santiago
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal.,Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| |
Collapse
|
50
|
Shen HY, Huang N, Reemmer J, Xiao L. Adenosine Actions on Oligodendroglia and Myelination in Autism Spectrum Disorder. Front Cell Neurosci 2018; 12:482. [PMID: 30581380 PMCID: PMC6292987 DOI: 10.3389/fncel.2018.00482] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/26/2018] [Indexed: 11/21/2022] Open
Abstract
Autism spectrum disorder (ASD) is the most commonly diagnosed neurodevelopmental disorder. Independent of neuronal dysfunction, ASD and its associated comorbidities have been linked to hypomyelination and oligodendroglial dysfunction. Additionally, the neuromodulator adenosine has been shown to affect certain ASD comorbidities and symptoms, such as epilepsy, impairment of cognitive function, and anxiety. Adenosine is both directly and indirectly responsible for regulating the development of oligodendroglia and myelination through its interaction with, and modulation of, several neurotransmitters, including glutamate, dopamine, and serotonin. In this review, we will focus on the recent discoveries in adenosine interaction with physiological and pathophysiological activities of oligodendroglia and myelination, as well as ASD-related aspects of adenosine actions on neuroprotection and neuroinflammation. Moreover, we will discuss the potential therapeutic value and clinical approaches of adenosine manipulation against hypomyelination in ASD.
Collapse
Affiliation(s)
- Hai-Ying Shen
- Robert Stone Dow Neurobiology Department, Legacy Research Institute, Legacy Health, Portland, OR, United States.,Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, United States
| | - Nanxin Huang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jesica Reemmer
- Robert Stone Dow Neurobiology Department, Legacy Research Institute, Legacy Health, Portland, OR, United States
| | - Lan Xiao
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|