1
|
Santos LA, Castro Dutra J, Malaquias LCC, Andrade ND, Gomes BN, Burger E. Paracoccidioides spp.: Escape mechanisms and their implications for the development of this mycosis. Microb Pathog 2024; 196:106951. [PMID: 39299555 DOI: 10.1016/j.micpath.2024.106951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Paracoccidioidomycosis (PCM) is a systemic granulomatous mycosis prevalent in individuals who carry out rural activities. Its etiological agent is a thermodimorphic fungus belonging to the genus; Paracoccidioides spp. Seven species of this fungus are known: Paracoccidioides brasiliensis, Paracoccidioides lutzii, Paracoccidioides americana, Paracoccidioides restrepiensis, Paracoccidioides venezuelensis, Paracoccidioides loboi and Paracoccidioides ceti. For a long time, Paracoccidioides brasiliensis was attributed as the only causal agent of this mycosis. What is known about adhesins, virulence, escape mechanisms and fungal involvement with the host's immune system is correlated with the species Paracoccidioides brasiliensis. Interactions between Paracoccidioides spp. and the host are complex and dynamic. The fungus needs nutrients for its needs and must adapt to a hostile environment, evading the host's immune system, thus enabling the development of the infectious process. On the other hand, the host's immune system recognizes Paracoccidioides spp. and employs all protective mechanisms to prevent fungal growth and consequently tissue invasion. Knowing this, understanding how Paracoccidioides spp. escapes the host's immune system, can help to understand the pathogenic mechanisms related to the development of the disease and, therefore, in the design of new specific treatment strategies. In this review we discuss these mechanisms and what are the adhesion molecules of Paracoccidioides spp. uses to escape the hostile environment imposed by the host's defense mechanisms; finally, we suggest how to neutralize them with new antifungal therapies.
Collapse
Affiliation(s)
- Lauana Aparecida Santos
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL, Alfenas, MG, CEP 37130-001, Brazil
| | - Julia Castro Dutra
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL, Alfenas, MG, CEP 37130-001, Brazil
| | - Luiz Cosme Cotta Malaquias
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL, Alfenas, MG, CEP 37130-001, Brazil
| | - Nayara Dias Andrade
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL, Alfenas, MG, CEP 37130-001, Brazil
| | - Bruno Nascimento Gomes
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL, Alfenas, MG, CEP 37130-001, Brazil
| | - Eva Burger
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL, Alfenas, MG, CEP 37130-001, Brazil.
| |
Collapse
|
2
|
Chen FW, Wu YL, Cheng CC, Hsiao YW, Chi JY, Hung LY, Chang CP, Lai MD, Wang JM. Inactivation of pentraxin 3 suppresses M2-like macrophage activity and immunosuppression in colon cancer. J Biomed Sci 2024; 31:10. [PMID: 38243273 PMCID: PMC10799366 DOI: 10.1186/s12929-023-00991-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND The tumor microenvironment is characterized by inflammation-like and immunosuppression situations. Although cancer-associated fibroblasts (CAFs) are among the major stromal cell types in various solid cancers, including colon cancer, the interactions between CAFs and immune cells remains largely uncharacterized. Pentraxin 3 (PTX3) is responsive to proinflammatory cytokines and modulates immunity and tissue remodeling, but its involvement in tumor progression appears to be context-dependent and is unclear. METHODS Open-access databases were utilized to examine the association of PTX3 expression and the fibroblast signature in colon cancer. Loss-of-function assays, including studies in tamoxifen-induced Ptx3 knockout mice and treatment with an anti-PTX3 neutralizing antibody (WHC-001), were conducted to assess the involvement of PTX3 in colon cancer progression as well as its immunosuppressive effect. Finally, bioinformatic analyses and in vitro assays were performed to reveal the downstream effectors and decipher the involvement of the CREB1/CEBPB axis in response to PTX3 and PTX3-induced promotion of M2 macrophage polarization. RESULTS Clinically, higher PTX3 expression was positively correlated with fibroblasts and inflammatory response signatures and associated with a poor survival outcome in colon cancer patients. Blockade of PTX3 significantly reduced stromal cell-mediated tumor development. The decrease of the M2 macrophage population and an increase of the cytotoxic CD8+ T-cell population were observed following PTX3 inactivation in allografted colon tumors. We further revealed that activation of cyclic AMP-responsive element-binding protein 1 (CREB1) mediated the PTX3-induced promotion of M2 macrophage polarization. CONCLUSIONS PTX3 contributes to stromal cell-mediated protumor immunity by increasing M2-like macrophage polarization, and inhibition of PTX3 with WHC-001 is a potential therapeutic strategy for colon cancer.
Collapse
Affiliation(s)
- Feng-Wei Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Ling Wu
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1 University Rd., Tainan, 70101, Taiwan
| | - Chao-Chun Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Wei Hsiao
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1 University Rd., Tainan, 70101, Taiwan
| | - Jhih-Ying Chi
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1 University Rd., Tainan, 70101, Taiwan
| | - Liang-Yi Hung
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1 University Rd., Tainan, 70101, Taiwan
| | - Chih-Peng Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, No. 1 University Rd., Tainan, 70101, Taiwan.
| | - Ju-Ming Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1 University Rd., Tainan, 70101, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
3
|
Wang Y, Chen W, Ding S, Wang W, Wang C. Pentraxins in invertebrates and vertebrates: From structure, function and evolution to clinical applications. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 149:105064. [PMID: 37734429 DOI: 10.1016/j.dci.2023.105064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
The immune system is divided into two broad categories, consisting of innate and adaptive immunity. As recognition and effector factors of innate immunity and regulators of adaptive immune responses, lectins are considered to be important defense chemicals against microbial pathogens, cell trafficking, immune regulation, and prevention of autoimmunity. Pentraxins, important members of animal lectins, play a significant role in protecting the body from pathogen infection and regulating inflammatory reactions. They can recognize and bind to a variety of ligands, including carbohydrates, lipids, proteins, nucleic acids and their complexes, and protect the host from pathogen invasion by activating the complement cascade and Fcγ receptor pathways. Based on the primary structure of the subunit, pentraxins are divided into short and long pentraxins. The short pentraxins are comprised of C-reactive protein (CRP) and serum amyloid P (SAP), and the most important member of the long pentraxins is pentraxin 3 (PTX3). The CRP and SAP exist in both vertebrates and invertebrates, while the PTX3 may be present only in vertebrates. The major ligands and functions of CRP, SAP and PTX3 and three activation pathways involved in the complement system are summarized in this review. Their different characteristics in various animals including humans, and their evolutionary trees are analyzed. The clinical applications of CRP, SAP and PTX3 in human are reviewed. Some questions that remain to be understood are also highlighted.
Collapse
Affiliation(s)
- Yuying Wang
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China
| | - Wei Chen
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China; Yantai Productivity Promotion Center, Yantai, 264003, People's Republic of China
| | - Shuo Ding
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China
| | - Wenjun Wang
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China
| | - Changliu Wang
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China.
| |
Collapse
|
4
|
Li Y, Zhang S, Liu J, Zhang Y, Zhang N, Cheng Q, Zhang H, Wu X. The pentraxin family in autoimmune disease. Clin Chim Acta 2023; 551:117592. [PMID: 37832905 DOI: 10.1016/j.cca.2023.117592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
The pentraxins represent a family of multifunctional proteins composed of long and short pentamers. The latter includes serum amyloid P component (SAP) and C-reactive protein (CRP) whereas the former includes neuronal PTX1 and PTX2 (NPTX1 and NPTX2, respectively), PTX3 and PTX4. These serve as a bridge between adaptive immunity and innate immunity and a link between inflammation and immunity. Similarities and differences between long and short pentamers are examined and their roles in autoimmune disease are discussed. Increased CRP and PTX3 could indicate the activity of rheumatoid arthritis, systemic lupus erythematosus or other autoimmune diseases. Mechanistically, CRP and PTX3 may predict target organ injury, regulate bone metabolic immunity and maintain homeostasis as well as participate in vascular endothelial remodeling. Interestingly, PTX3 is pleiotropic, being involved in inflammation and tissue repair. Given the therapeutic potential of PTX3 and CRP, targeting these factors to exert a beneficial effect is the focus of research efforts. Unfortunately, studies on NPTX1, NPTX2, PTX4 and SAP are scarce and more research is clearly needed to elaborate their potential roles in autoimmune disease.
Collapse
Affiliation(s)
- Yongzhen Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Shouzan Zhang
- Department of Neurosurgery, Peking University Third Hospital, Beijing, PR China
| | - Jingqi Liu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Yudi Zhang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, PR China.
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China.
| | - Xiaochuan Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
5
|
d'Amati A, Ronca R, Maccarinelli F, Turati M, Lorusso L, De Giorgis M, Tamma R, Ribatti D, Annese T. PTX3 shapes profibrotic immune cells and epithelial/fibroblast repair and regeneration in a murine model of pulmonary fibrosis. Pathol Res Pract 2023; 251:154901. [PMID: 37922722 DOI: 10.1016/j.prp.2023.154901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
The long pentraxin 3 (PTX3) is protective in different pathologies but was not analyzed in-depth in Idiopathic Pulmonary Fibrosis (IPF). Here, we have explored the influence of PTX3 in the bleomycin (BLM)-induced murine model of IPF by looking at immune cells (macrophages, mast cells, T cells) and stemness/regenerative markers of lung epithelium (SOX2) and fibro-blasts/myofibroblasts (CD44) at different time points that retrace the progression of the disease from onset at day 14, to full-blown disease at day 21, to incomplete regression at day 28. We took advantage of transgenic PTX3 overexpressing mice (Tie2-PTX3) and Ptx3 null ones (PTX3-KO) in which pulmonary fibrosis was induced. Our data have shown that PTX3 overexpression in Tie2-PTX3 compared to WT or PTX3-KO: reduced CD68+ and CD163+ macrophages and the Tryptase+ mast cells during the whole experimental time; on the contrary, CD4+ T cells are consistently present on day 14 and dramatically decreased on day 21; CD8+ T cells do not show significant differences on day 14, but are significantly reduced on day 21; SOX2 is reduced on days 14 and 21; CD44 is reduced on day 21. Therefore, PTX3 could act on the proimmune and fibrogenic microenvironment to prevent fibrosis in BLM-treated mice.
Collapse
Affiliation(s)
- Antonio d'Amati
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy; Section of Pathology, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italy
| | - Federica Maccarinelli
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italy
| | - Marta Turati
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italy
| | - Loredana Lorusso
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Michelina De Giorgis
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy; Department of Medicine and Surgery, LUM University, Casamassima, 70010 Bari, Italy.
| |
Collapse
|
6
|
Borges BM, Ramos RBC, Preite NW, Kaminski VDL, Alves de Castro P, Camacho M, Maximo MF, Fill TP, Calich VLG, Traynor AM, Sarikaya-Bayram Ö, Doyle S, Bayram Ö, de Campos CBL, Zelanis A, Goldman GH, Loures FV. Transcriptional profiling of a fungal granuloma reveals a low metabolic activity of Paracoccidioides brasiliensis yeasts and an actively regulated host immune response. Front Cell Infect Microbiol 2023; 13:1268959. [PMID: 37868350 PMCID: PMC10585178 DOI: 10.3389/fcimb.2023.1268959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023] Open
Abstract
Granulomas are important immunological structures in the host defense against the fungus Paracoccidioides brasiliensis, the main etiologic agent of Paracoccidioidomycosis (PCM), a granulomatous systemic mycosis endemic in Latin America. We have performed transcriptional and proteomic studies of yeasts present in the pulmonary granulomas of PCM aiming to identify relevant genes and proteins that act under stressing conditions. C57BL/6 mice were infected with 1x106 yeasts and after 8- and 12-weeks of infection, granulomatous lesions were obtained for extraction of fungal and murine RNAs and fungal proteins. Dual transcriptional profiling was done comparing lung cells and P. brasiliensis yeasts from granulomas with uninfected lung cells and the original yeast suspension used in the infection, respectively. Mouse transcripts indicated a lung malfunction, with low expression of genes related to muscle contraction and organization. In addition, an increased expression of transcripts related to the activity of neutrophils, eosinophils, macrophages, lymphocytes as well as an elevated expression of IL-1β, TNF-α, IFN-γ, IL-17 transcripts were observed. The increased expression of transcripts for CTLA-4, PD-1 and arginase-1, provided evidence of immune regulatory mechanisms within the granulomatous lesions. Also, our results indicate iron as a key element for the granuloma to function, where a high number of transcripts related to fungal siderophores for iron uptake was observed, a mechanism of fungal virulence not previously described in granulomas. Furthermore, transcriptomics and proteomics analyzes indicated a low fungal activity within the granuloma, as demonstrated by the decreased expression of genes and proteins related to energy metabolism and cell cycle.
Collapse
Affiliation(s)
- Bruno Montanari Borges
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Rafael Berton Correia Ramos
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Nycolas Willian Preite
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Valéria de Lima Kaminski
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Patrícia Alves de Castro
- Faculty of Pharmaceutical Science of Ribeirão Preto (FCFRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Maurício Camacho
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | | | - Taicia Pacheco Fill
- Institute of Chemistry, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Vera Lúcia Garcia Calich
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Aimee M. Traynor
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | | | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Özgür Bayram
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | | | - André Zelanis
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Gustavo H. Goldman
- Faculty of Pharmaceutical Science of Ribeirão Preto (FCFRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Flávio Vieira Loures
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| |
Collapse
|
7
|
Bai Q, Fan R, Zhong N, Liu J, Pan X, Yao H, Ma J. Host PTX3 Protein and Bacterial Capsule Coordinately Regulate the Inflammatory Response during Streptococcus suis Infection. Vet Sci 2023; 10:vetsci10030239. [PMID: 36977278 PMCID: PMC10059727 DOI: 10.3390/vetsci10030239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Streptococcus suis serotype 2 (SS2) is a noteworthy zoonotic pathogen that has been responsible for large economic losses in pig production and a great threat to human health. Pentraxin 3 (PTX3) is an essential regulator of the innate immune response to bacterial pathogens; however, its role during SS2 infection is not fully understood. In this study, we found that the SS2 strain HA9801 induced a significant inflammatory response in the mouse air pouch model; this response was amplified by the treatment of exogenous PTX3 simultaneously in terms of the results of inflammatory cell recruitment and proinflammatory cytokine IL-6 production. In addition, PTX3 facilitated the phagocytosis of macrophage Ana-1 against SS2 strain HA9801. The supplementation of exogenous PTX3 significantly reduced the bacterial loads in a dose-dependent manner in lungs, livers and bloods of SS2-infected mice compared to the samples with HA9801 infection alone; this finding indicated that PTX3 may facilitate the bacterial clearance through enhancing the host inflammatory response during SS2 infection. Both PTX3 and SS2 capsular polysaccharide (CPS2) were required for the robust inflammatory response, implying that the host PTX3 protein and SS2 surface CPS2 modulate the host innate immune response in concert. All of these results suggested that PTX3 is a potential novel biological agent for the SS2 infection; however, the recommended dose of PTX3 must be evaluated strictly to avoid inducing an excessive inflammatory response that can cause serious tissue injury and animal death.
Collapse
Affiliation(s)
- Qiankun Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China
| | - Ruhui Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China
| | - Ningyuan Zhong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China
| | - Jianan Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China
| | - Xinming Pan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China
| | - Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China
| |
Collapse
|
8
|
Long Pentraxin 3 as a New Biomarker for Diagnosis of Hip and Knee Periprosthetic Joint Infections. J Clin Med 2023; 12:jcm12031055. [PMID: 36769703 PMCID: PMC9917747 DOI: 10.3390/jcm12031055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Preoperative diagnosis of periprosthetic joint infections (PJIs) poses an unmet clinical challenge. The long pentraxin PTX3 is a component of the innate immune system involved in infection immunity. This study evaluated the potential of synovial and plasmatic PTX3 in the diagnosis of hip and knee PJIs. METHODS Consecutive total hip and knee arthroplasty (THA/TKA) revisions were prospectively included and classified as septic or aseptic according to the European Bone and Joint Infection Society (EBJIS) and Musculoskeletal Infection Society (MSIS) criteria. The concentration of PTX3 in plasma and synovial fluid samples was measured with ELISA. The AUC, threshold value, sensitivity, specificity, and positive and negative likelihood ratios were calculated using the ROC (receiver operating characteristic) curve method. RESULTS The study population included 128 patients (94 THAs; 34 TKAs). The AUC of the synovial PTX3 based on EBJIS criteria was 0.85 (p < 0.0001), with a sensitivity of 81.13% and a specificity of 93.33%. The AUC based on MSIS criteria was 0.95 (p < 0.001), with a sensitivity of 91.43% and a specificity of 89.25%. Plasmatic PTX3 failed to discriminate infected from non-infected patients. CONCLUSIONS Synovial PTX3 demonstrated an excellent diagnostic potential in hip and knee PJIs, with a very high specificity irrespective of the diagnostic criteria for PJI.
Collapse
|
9
|
Molecular insight into pentraxin-3: update advances in innate immunity, inflammation, tissue remodeling, diseases, and drug role. Biomed Pharmacother 2022; 156:113783. [DOI: 10.1016/j.biopha.2022.113783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022] Open
|
10
|
Pemmari A, Leppänen T, Hämäläinen M, Moilanen T, Moilanen E. Chondrocytes from Osteoarthritis Patients Adopt Distinct Phenotypes in Response to Central T H1/T H2/T H17 Cytokines. Int J Mol Sci 2021; 22:ijms22179463. [PMID: 34502384 PMCID: PMC8431052 DOI: 10.3390/ijms22179463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 12/27/2022] Open
Abstract
Chronic low-grade inflammation plays a central role in the pathogenesis of osteoarthritis (OA), and several pro- and anti-inflammatory cytokines have been implicated to mediate and regulate this process. Out of these cytokines, particularly IFNγ, IL-1β, IL-4 and IL-17 are associated with different phenotypes of T helper (TH) cells and macrophages, both examples of cells known for great phenotypic and functional heterogeneity. Chondrocytes also display various phenotypic changes during the course of arthritis. We set out to study the hypothesis of whether chondrocytes might adopt polarized phenotypes analogous to TH cells and macrophages. We studied the effects of IFNγ, IL-1β, IL-4 and IL-17 on gene expression in OA chondrocytes with RNA-Seq. Chondrocytes were harvested from the cartilage of OA patients undergoing knee replacement surgery and then cultured with or without the cytokines for 24 h. Total RNA was isolated and sequenced, and GO (Gene Ontology) functional analysis was performed. We also separately investigated genes linked to OA in recent genome wide expression analysis (GWEA) studies. The expression of more than 2800 genes was significantly altered in chondrocytes treated with IL-1β [in the C(IL-1β) phenotype] with a fold change (FC) > 2.5 in either direction. These included a large number of genes associated with inflammation, cartilage degradation and attenuation of metabolic signaling. The profile of genes differentially affected by IFNγ (the C(IFNγ) phenotype) was relatively distinct from that of the C(IL-1β) phenotype and included several genes associated with antigen processing and presentation. The IL-17-induced C(IL-17) phenotype was characterized by the induction of a more limited set of proinflammatory factors compared to C(IL-1β) cells. The C(IL-4) phenotype induced by IL-4 displayed a differential expression of a rather small set of genes compared with control, primarily those associated with TGFβ signaling and the regulation of inflammation. In conclusion, our results show that OA chondrocytes can adopt diverse phenotypes partly analogously to TH cells and macrophages. This phenotypic plasticity may play a role in the pathogenesis of arthritis and open new therapeutic avenues for the development of disease-modifying treatments for (osteo)arthritis.
Collapse
Affiliation(s)
- Antti Pemmari
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, University of Tampere and Tampere University Hospital, 33100 Tampere, Finland; (A.P.); (T.L.); (M.H.)
| | - Tiina Leppänen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, University of Tampere and Tampere University Hospital, 33100 Tampere, Finland; (A.P.); (T.L.); (M.H.)
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, University of Tampere and Tampere University Hospital, 33100 Tampere, Finland; (A.P.); (T.L.); (M.H.)
| | - Teemu Moilanen
- Coxa Hospital for Joint Replacement, 33520 Tampere, Finland;
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, University of Tampere and Tampere University Hospital, 33100 Tampere, Finland; (A.P.); (T.L.); (M.H.)
- Correspondence:
| |
Collapse
|
11
|
Greggi C, Cariati I, Onorato F, Iundusi R, Scimeca M, Tarantino U. PTX3 Effects on Osteogenic Differentiation in Osteoporosis: An In Vitro Study. Int J Mol Sci 2021; 22:ijms22115944. [PMID: 34073015 PMCID: PMC8198053 DOI: 10.3390/ijms22115944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
Pentraxin 3 (PTX3) is a glycoprotein belonging to the humoral arm of innate immunity that participates in the body’s defence mechanisms against infectious diseases. It has recently been defined as a multifunctional protein, given its involvement in numerous physiological and pathological processes, as well as in the pathogenesis of age-related diseases such as osteoporosis. Based on this evidence, the aim of our study was to investigate the possible role of PTX3 in both the osteoblastic differentiation and calcification process: to this end, primary osteoblast cultures from control and osteoporotic patients were incubated with human recombinant PTX3 (hrPTX3) for 72 h. Standard osteinduction treatment, consisting of β-glycerophosphate, dexamethasone and ascorbic acid, was used as control. Our results showed that treatment with hrPTX3, as well as with the osteogenic cocktail, induced cell differentiation towards the osteoblastic lineage. We also observed that the treatment not only promoted an increase in cell proliferation, but also the formation of calcification-like structures, especially in primary cultures from osteoporotic patients. In conclusion, the results reported here suggest the involvement of PTX3 in osteogenic differentiation, highlighting its osteoinductive capacity, like the standard osteoinduction treatment. Therefore, this study opens new and exciting perspectives about the possible role of PTX3 as biomarker and therapeutic agent for osteoporosis.
Collapse
Affiliation(s)
- Chiara Greggi
- Ph.D. in Medical-Surgical Biotechnologies and Translational Medicine, “Tor Vergata” University of Rome, via Montpellier 1, 00133 Rome, Italy; (C.G.); (I.C.)
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, via Montpellier 1, 00133 Rome, Italy
| | - Ida Cariati
- Ph.D. in Medical-Surgical Biotechnologies and Translational Medicine, “Tor Vergata” University of Rome, via Montpellier 1, 00133 Rome, Italy; (C.G.); (I.C.)
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, via Montpellier 1, 00133 Rome, Italy
| | - Federica Onorato
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, viale Oxford 81, 00133 Rome, Italy; (F.O.); (R.I.)
| | - Riccardo Iundusi
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, viale Oxford 81, 00133 Rome, Italy; (F.O.); (R.I.)
| | - Manuel Scimeca
- Department of Biomedicine and Prevention, “Tor Vergata” University of Rome, via Montpellier 1, 00133 Rome, Italy;
| | - Umberto Tarantino
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, via Montpellier 1, 00133 Rome, Italy
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, viale Oxford 81, 00133 Rome, Italy; (F.O.); (R.I.)
- Correspondence:
| |
Collapse
|
12
|
Velasco-de Andrés M, Català C, Casadó-Llombart S, Martínez-Florensa M, Simões I, García-Luna J, Mourglia-Ettlin G, Zaragoza Ó, Carreras E, Lozano F. The Lymphocytic Scavenger Receptor CD5 Shows Therapeutic Potential in Mouse Models of Fungal Infection. Antimicrob Agents Chemother 2020; 65:e01103-20. [PMID: 33046489 PMCID: PMC7927855 DOI: 10.1128/aac.01103-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Invasive fungal diseases represent an unmet clinical need that could benefit from novel immunotherapeutic approaches. Host pattern recognition receptors (e.g., Toll-like receptors, C-type lectins, or scavenger receptors) that sense conserved fungal cell wall constituents may provide suitable immunotherapeutic antifungal agents. Thus, we explored the therapeutic potential of the lymphocyte class I scavenger receptor CD5, a nonredundant component of the antifungal host immune response that binds to fungal β-glucans. Antifungal properties of the soluble ectodomain of human CD5 (shCD5) were assessed in vivo in experimental models of systemic fungal infection induced by pathogenic species (Candida albicans and Cryptococcus neoformans). In vitro mechanistic studies were performed by means of fungus-spleen cell cocultures. shCD5-induced survival of lethally infected mice was dose and time dependent and concomitant with reduced fungal load and increased leukocyte infiltration in the primary target organ. Additive effects were observed in vivo after shCD5 was combined with suboptimal doses of fluconazole. Ex vivo addition of shCD5 to fungus-spleen cell cocultures increased the release of proinflammatory cytokines involved in antifungal defense (tumor necrosis factor alpha and gamma interferon) and reduced the number of viable C. albicans organisms. The results prompt further exploration of the adjunctive therapeutic potential of shCD5 in severe invasive fungal diseases.
Collapse
Affiliation(s)
- María Velasco-de Andrés
- Immunoreceptors of the Innate and Adaptive System, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Cristina Català
- Immunoreceptors of the Innate and Adaptive System, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Sergi Casadó-Llombart
- Immunoreceptors of the Innate and Adaptive System, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Mario Martínez-Florensa
- Immunoreceptors of the Innate and Adaptive System, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Inês Simões
- Immunoreceptors of the Innate and Adaptive System, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Joaquín García-Luna
- Área Inmunología, Facultad de Química/Facultad de Ciencias, DEPBIO/IQB, Universidad de la República, Montevideo, Uruguay
| | - Gustavo Mourglia-Ettlin
- Área Inmunología, Facultad de Química/Facultad de Ciencias, DEPBIO/IQB, Universidad de la República, Montevideo, Uruguay
| | - Óscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Esther Carreras
- Immunoreceptors of the Innate and Adaptive System, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Francisco Lozano
- Immunoreceptors of the Innate and Adaptive System, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain
- Departament de Biomedicina, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Gupta G, Mou Z, Jia P, Sharma R, Zayats R, Viana SM, Shan L, Barral A, Boaventura VS, Murooka TT, Soussi-Gounni A, de Oliveira CI, Uzonna JE. The Long Pentraxin 3 (PTX3) Suppresses Immunity to Cutaneous Leishmaniasis by Regulating CD4 + T Helper Cell Response. Cell Rep 2020; 33:108513. [PMID: 33326783 DOI: 10.1016/j.celrep.2020.108513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/30/2020] [Accepted: 11/19/2020] [Indexed: 02/01/2023] Open
Abstract
The long pentraxin 3 (PTX3) plays a critical role in inflammation, tissue repair, and wound healing. Here, we show that PTX3 regulates disease pathogenesis in cutaneous leishmaniasis (CL). PTX3 expression increases in skin lesions in patients and mice during CL, with higher expression correlating with severe disease. PTX3-deficient (PTX3-/-) mice are highly resistant to L. major and L. braziliensis infections. This enhanced resistance is associated with increases in Th17 and IL-17A responses. The neutralization of IL-17A abolishes this enhanced resistance, while rPTX3 treatment results in decrease in Th17 and IL-17A responses and increases susceptibility. PTX3-/- CD4+ T cells display increased differentiation to Th17 and expression of Th17-specific transcription factors. The addition of rPTX3 suppresses the expression of Th17 transcription factors, Th17 differentiation, and IL-17A production by CD4+ T cells from PTX3-/- mice. Collectively, our results show that PTX3 contributes to the pathogenesis of CL by negatively regulating Th17 and IL-17A responses.
Collapse
Affiliation(s)
- Gaurav Gupta
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; NIIT University, Rajasthan, India
| | - Zhirong Mou
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ping Jia
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Rohit Sharma
- Instituto Gonçalo Muniz (IGM), FIOCRUZ, Salvador, Brazil
| | - Romaniya Zayats
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | | | - Lianyu Shan
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Aldina Barral
- Instituto Gonçalo Muniz (IGM), FIOCRUZ, Salvador, Brazil
| | | | - Thomas T Murooka
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Abdel Soussi-Gounni
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | | | - Jude E Uzonna
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
14
|
Smole U, Kratzer B, Pickl WF. Soluble pattern recognition molecules: Guardians and regulators of homeostasis at airway mucosal surfaces. Eur J Immunol 2020; 50:624-642. [PMID: 32246830 PMCID: PMC7216992 DOI: 10.1002/eji.201847811] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/25/2020] [Accepted: 03/31/2020] [Indexed: 01/08/2023]
Abstract
Maintenance of homeostasis at body barriers that are constantly challenged by microbes, toxins and potentially bioactive (macro)molecules requires complex, highly orchestrated mechanisms of protection. Recent discoveries in respiratory research have shed light on the unprecedented role of airway epithelial cells (AEC), which, besides immune cells homing to the lung, also significantly contribute to host defence by expressing membrane‐bound and soluble pattern recognition receptors (sPRR). Recent evidence suggests that distinct, evolutionary ancient, sPRR secreted by AEC might become activated by usually innocuous proteins, commonly referred to as allergens. We here provide a systematic overview on sPRR detectable in the mucus lining of AEC. Some of them become actively produced and secreted by AECs (like the pentraxins C‐reactive protein and pentraxin 3; the collectins mannose binding protein and surfactant proteins A and D; H‐ficolin; serum amyloid A; and the complement components C3 and C5). Others are elaborated by innate and adaptive immune cells such as monocytes/macrophages and T cells (like the pentraxins C‐reactive protein and pentraxin 3; L‐ficolin; serum amyloid A; and the complement components C3 and C5). Herein we discuss how sPRRs may contribute to homeostasis but sometimes also to overt disease (e.g. airway hyperreactivity and asthma) at the alveolar–air interface.
Collapse
Affiliation(s)
- Ursula Smole
- Institute of ImmunologyCenter for PathophysiologyInfectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Bernhard Kratzer
- Institute of ImmunologyCenter for PathophysiologyInfectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Winfried F. Pickl
- Institute of ImmunologyCenter for PathophysiologyInfectiology and ImmunologyMedical University of ViennaViennaAustria
| |
Collapse
|
15
|
Basso AMM, De Castro RJA, de Castro TB, Guimarães HI, Polez VLP, Carbonero ER, Pomin VH, Hoffmann C, Grossi-de-Sa MF, Tavares AH, Bocca AL. Immunomodulatory activity of β-glucan-containing exopolysaccharides from Auricularia auricular in phagocytes and mice infected with Cryptococcus neoformans. Med Mycol 2020; 58:227-239. [PMID: 31095342 DOI: 10.1093/mmy/myz042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/01/2019] [Accepted: 04/12/2019] [Indexed: 12/19/2022] Open
Abstract
Current antifungal drugs present poor effectiveness and there is no available vaccine for fungal infections. Thus, novel strategies to treat or prevent invasive mycosis, such as cryptococcosis, are highly desirable. One strategy is the use of immunomodulators of polysaccharide nature isolated from mushrooms. The purpose of the present work was to evaluate the immunostimulatory activity of β-(1,3)-glucan-containing exopolysaccharides (EPS) from the edible mushrooms Auricularia auricula in phagocytes and mice infected with Cryptococcus neoformans. EPS triggered macrophages and dendritic cell activation upon binding to Dectin-1, a pattern recognition receptor of the C-type lectin receptor family. Engagement of Dectin-1 culminated in pro-inflammatory cytokine production and cell maturation via its canonical Syk-dependent pathway signaling. Furthermore, upon EPS treatment, M2-like phenotype macrophages, known to support intracellular survival and replication of C. neoformans, repolarize to M1 macrophage pattern associated with enhanced production of the microbicidal molecule nitric oxide that results in efficient killing of C. neoformans. Treatment with EPS also upregulated transcript levels of genes encoding products associated with host protection against C. neoformans and Dectin-1 mediated signaling in macrophages. Finally, orally administrated β-glucan-containing EPS from A. auricular enhanced the survival of mice infected with C. neoformans. In conclusion, the results demonstrate that EPS from A. auricula exert immunostimulatory activity in phagocytes and induce host protection against C. neoformans, suggesting that polysaccharides from this mushroom may be promising as an adjuvant for vaccines or antifungal therapy.
Collapse
Affiliation(s)
- A M M Basso
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, UnB, Brasilia, DF, Brazil
| | - R J A De Castro
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, UnB, Brasilia, DF, Brazil
| | - T B de Castro
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, UnB, Brasilia, DF, Brazil
| | - H I Guimarães
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - V L P Polez
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - E R Carbonero
- Department of Chemistry, Federal University of Goiás, Campus Catalão, GO, Brazil
| | - V H Pomin
- Program of Glicobiology, Institute of Medical Biochemistry Leopoldo de Meis, Federal University Federal of Rio de Janeiro, RJ, Brazil.,Department of BioMolecular Sciences, Division of Pharmacognosy and Research Institute of Pharmaceutical Sciences, School of Pharmacy, the University of Mississippi, Oxford, MS 38677-1848, USA
| | - C Hoffmann
- Department of Food Sciences and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - M F Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil.,Graduated Program in Genomic Science and Biotechnology, Catholic University of Brasília, Brasília, DF, Brazil
| | - A H Tavares
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, UnB, Brasilia, DF, Brazil
| | - A L Bocca
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, UnB, Brasilia, DF, Brazil
| |
Collapse
|
16
|
Dellière S, Sze Wah Wong S, Aimanianda V. Soluble mediators in anti-fungal immunity. Curr Opin Microbiol 2020; 58:24-31. [PMID: 32604018 DOI: 10.1016/j.mib.2020.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023]
Abstract
Although soluble mediators of our innate immune system have a substantial impact on invading microbes, their role against fungal pathogens has been underexplored. Constituting the humoral immunity, soluble mediators comprise the complement system, collectins, acute-phase proteins, antibodies and antimicrobial peptides. These components can prevent fungal infection either by directly interacting with invading microbes, leading to their aggregation (microbistatic), destruction (microbicidal) or linking them to cellular immunity. The composition of soluble-mediator varies with human body-fluids, resulting in different antifungal mechanisms. Moreover, cellular immune system deploys both oxidative and non-oxidative mechanisms to destroy extracellular or internalized fungal pathogens; however, cellular immune activation is mainly influenced as well as regulated by soluble mediators. This review outlines the antifungal mechanism employed, directly or indirectly, by soluble mediators, and in response, the evading strategies of the fungal pathogens.
Collapse
Affiliation(s)
- Sarah Dellière
- Institut Pasteur, Molecular Mycology Unit, UMR2000, CNRS, Paris, France; Parasitology-Mycoloy Laboratory, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | | | | |
Collapse
|
17
|
Lo SG, Wong SF, Mak JW, Choo KK, Ng KP. Gene expression changes in human bronchial epithelial cells (BEAS-2B) and human pulmonary alveolar epithelial cells (HPAEpiC) after interaction with Cladosporium sphaerospermum. Med Mycol 2020; 58:333-340. [PMID: 31309220 DOI: 10.1093/mmy/myz061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/07/2019] [Accepted: 05/17/2019] [Indexed: 12/21/2022] Open
Abstract
Cladosporium is one of the most abundant spore. Fungi of this genus can cause respiratory allergy and intrabronchial lesion. We studied the differential expression of host genes after the interaction of Cladosporium sphaerospermum conidia with Human Bronchial Epithelial Cells (BEAS-2B) and Human Pulmonary Alveolar Epithelial Cells (HPAEpiC). C. sphaerospermum conidia were harvested and co-cultured with BEAS-2B cells or HPAEpiC cells for 48 hours respectively. This culture duration was chosen as it was associated with high germination rate. RNA was extracted from two biological replicates per treatment. RNA of BEAS-2B cells was used to assess changes in gene expression using AffymetrixGeneChip® Human Transcriptome Array 2.0. After co-culture with Cladosporium spores, 68 individual genes were found differentially expressed (P ≤ 0.05) and up-regulated ≥ 1.5 folds while 75 genes were found differentially expressed at ≤ -1.5 folds compared with controls. Reverse transcription and qPCR were performed on the RNA collected from both BEAS-2B cells and HPAEpiC cells to validate the microarray results with 7 genes. Based on the findings, infected pulmonary epithelial cells exhibited an increase in cell death-related genes and genes associated with innate immunity.
Collapse
Affiliation(s)
- Sing Gee Lo
- International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Shew Fung Wong
- International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Joon Wah Mak
- International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Khi Khi Choo
- International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Kee Peng Ng
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Kang Y, Yu Y, Lu L. The Role of Pentraxin 3 in Aspergillosis: Reality and Prospects. MYCOBIOLOGY 2020; 48:1-8. [PMID: 32158600 PMCID: PMC7048186 DOI: 10.1080/12298093.2020.1722576] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 01/10/2020] [Accepted: 01/23/2020] [Indexed: 02/08/2023]
Abstract
Pentraxin 3 (PTX3) is a soluble pattern recognition receptor (PRR), which is produced by several kinds of cells, such as neutrophils, dendritic cells, macrophages, and epithelial cells. PTX3 is known to play an important protective effect against Aspergillus. Genetic linkage in gene-targeted mice and human PTX3 plays a non-redundant role in the immune protection against specific pathogens, especially Aspergillus. Recent studies have shown that the polymorphism of PTX3 is associated with increased susceptibility to invasive aspergillosis (IA). In this review, we provide an overview of these studies that underline the potential of PTX3 in diagnosis and therapy of IA.
Collapse
Affiliation(s)
- Yuening Kang
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuetian Yu
- Department of Critical Care Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liangjing Lu
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Soluble PTX3 of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Attenuates Hyperoxic Lung Injury by Activating Macrophage Polarization in Neonatal Rat Model. Stem Cells Int 2020; 2020:1802976. [PMID: 32399038 PMCID: PMC7204119 DOI: 10.1155/2020/1802976] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/18/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022] Open
Abstract
Therapeutic treatment of various inflammation-related diseases using mesenchymal stem cells (MSCs) has increased in recent years because of the paracrine action of these cells but shows several limitations. First, MSC-based therapies exhibit varying efficacies; thus, biomarkers should be determined to identify who may benefit from these candidate therapeutic agents. Second, the mechanism underlying the therapeutic effects is poorly understood. To evaluate the effects of human umbilical cord blood-derived MSCs (UCB-MSCs) on macrophages, the macrophage cell line NR8383 stimulated with lipopolysaccharide (LPS) was cocultured by UCB-MSCs. We found that UCB-MSCs mediated changes in macrophage polarization towards M2 from M1 macrophages. To identify the paracrine action underlying the anti-inflammation effect of UCB-MSCs, the secretion of UCB-MSCs exposed to LPS-stimulated NR8383 cells was tested using a biotin label-based 507 antibody array. Among the secreted proteins, we selected pentraxin-related protein PTX3/tumor necrosis factor-inducible gene 14 protein (PTX3) to investigate its association with UCB-MSCs in macrophage polarization. We found that human PTX3 was secreted from UCB-MSCs under inflammation condition and reinforced the M2 macrophage marker via the Dectin-1 receptor by activating MSK1/2 phosphorylation signaling in NR8383 cells. Accordingly, knockdown of PTX3 in UCB-MSCs significantly attenuated their therapeutic effects in a neonatal hyperoxic lung injury resulting in reduced survival, lung alveolarization, M2 marker expression, Dectin-1 levels, anti-inflammatory cytokines, and improved M1 marker expression and inflammatory cytokines compared to control MSC-injected rats. UCB-MSCs show therapeutic potential by controlling macrophage polarization. Interestingly, higher PTX3 levels in UCB-MSCs induced greater improvement in the therapeutic effects than lower PTX3 levels. Collectively, PTX3 is a potential marker with critical paracrine effects for predicting the therapeutic potential of MSC therapy in inflammatory diseases; quality control assessments using PTX3 may be useful for improving the therapeutic effects of UCB-MSCs.
Collapse
|
20
|
Aschenbroich SA, Lafontaine ER, Lopez MC, Baker HV, Hogan RJ. Transcriptome analysis of human monocytic cells infected with Burkholderia species and exploration of pentraxin-3 as part of the innate immune response against the organisms. BMC Med Genomics 2019; 12:127. [PMID: 31492148 PMCID: PMC6729079 DOI: 10.1186/s12920-019-0575-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 08/29/2019] [Indexed: 01/13/2023] Open
Abstract
Background Burkholderia mallei (Bm) is a facultative intracellular bacterial pathogen causing highly-fatal glanders in solipeds and humans. The ability of Bm to thrive intracellularly is thought to be related to exploitation of host immune response-related genes and pathways. Relatively little is known of the molecular strategies employed by this pathogen to modulate these pathways and evade intracellular killing. This manuscript seeks to fill gaps in the understanding of the interface between Bm and innate immunity by examining gene expression changes during infection of host monocytes. Methods The transcriptome of Bm-infected human Mono Mac-6 (MM6) monocytes was profiled on Affymetrix Human Transcriptome GeneChips 2.0. Gene expression changes in Bm-infected monocytes were compared to those of Burkholderia thailandensis (Bt)-infected monocytes and to uninfected monocytes. The resulting dataset was normalized using Robust Multichip Average and subjected to statistical analyses employing a univariate F test with a random variance model. Differentially expressed genes significant at p < 0.001 were subjected to leave-one-out cross-validation studies and 1st and 3rd nearest neighbor prediction model. Significant probe sets were used to populate human pathways in Ingenuity Pathway Analysis, with statistical significance determined by Fisher’s exact test or z-score. Results The Pattern Recognition Receptor (PRR) pathway was represented among significantly enriched immune response-related human canonical pathways, with evidence of upregulation across both infections. Among members of this pathway, pentraxin-3 was significantly upregulated by Bm- or Bt-infected monocytes. Pentraxin-3 (PTX3) was demonstrated to bind to both Bt and Burkholderia pseudomallei (Bp), but not Bm. Subsequent assays did not identify a role for PTX3 in potentiating complement-mediated lysis of Bt or in enhancing phagocytosis or replication of Bt in human monocytes. Conclusion We report on the novel binding of PTX3 to Bt and Bp, with lack of interaction with Bm, suggesting that a possible evasive mechanism by Bm warrants further exploration. We determined that (1) PTX3 may not play a role in activating the lytic pathway of complement in different bacterial species and that (2) the opsonophagocytic properties of PTX3 should be investigated in different primary or immortalized cell lines representing host phagocytes, given lack of binding of PTX3 to MM6 monocytes.
Collapse
Affiliation(s)
- Sophie A Aschenbroich
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI, 53706, USA
| | - Eric R Lafontaine
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Maria Cecilia Lopez
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, 2015 SW 16th Ave, Gainesville, FL, 32608, USA
| | - Henry V Baker
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, 2015 SW 16th Ave, Gainesville, FL, 32608, USA
| | - Robert J Hogan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA, 30602, USA. .,Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA, 30602, USA.
| |
Collapse
|
21
|
McKay PF, Cizmeci D, Aldon Y, Maertzdorf J, Weiner J, Kaufmann SH, Lewis DJ, van den Berg RA, Del Giudice G, Shattock RJ. Identification of potential biomarkers of vaccine inflammation in mice. eLife 2019; 8:46149. [PMID: 31084714 PMCID: PMC6555592 DOI: 10.7554/elife.46149] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 05/13/2019] [Indexed: 12/21/2022] Open
Abstract
Systems vaccinology approaches have been used successfully to define early signatures of the vaccine-induced immune response. However, the possibility that transcriptomics can also identify a correlate or surrogate for vaccine inflammation has not been fully explored. We have compared four licensed vaccines with known safety profiles, as well as three agonists of Toll-like receptors (TLRs) with known inflammatory potential, to elucidate the transcriptomic profile of an acceptable response to vaccination versus that of an inflammatory reaction. In mice, we looked at the transcriptomic changes in muscle at the injection site, the lymph node that drained the muscle, and the peripheral blood mononuclear cells (PBMCs)isolated from the circulating blood from 4 hr after injection and over the next week. A detailed examination and comparative analysis of these transcriptomes revealed a set of novel biomarkers that are reflective of inflammation after vaccination. These biomarkers are readily measurable in the peripheral blood, providing useful surrogates of inflammation, and provide a way to select candidates with acceptable safety profiles. Measles, whooping cough and other diseases can cause serious illness and death in humans, especially in young children and other vulnerable individuals. Giving people vaccines ‘trains’ their immune system to recognize and fight the microbes that cause the conditions. During an infection, the immune system triggers a set of responses that limit the spread of the infectious agent and eliminate it from the body. This can include swelling of tissues (known as inflammation), which in rare cases, can be life threatening. Inoculations work by sparking a mild immune response in the body. Before a new vaccine is licensed for use, it is thoroughly tested in mice and rodents, and then in human volunteers, to ensure it will cause little or no inflammation. Finding a way to predict early on whether a vaccine candidate will trigger dangerous levels of inflammation would improve this process. To explore this, McKay, Cizmeci et al. injected the muscle tissue of different groups of mice with one of four licensed vaccines which, by definition, cause little or no inflammation. Other groups of animals were given one of three drugs known to trigger inflammation. Over the following seven days the team repeatedly collected blood as well as cells from the muscle tissue and the lymph nodes. These samples were then analysed to find out which genes were switched on or off at any given time. The experiments show that the responses of genes in the blood and lymph cells of the mice are connected to those in the muscle cells. Therefore, blood samples may provide a quick and convenient way to assess how an animal is responding to a potential new vaccine. By comparing the genes switched on or off in response to the different vaccines and drugs, McKay, Cizemeci et al. were able to identify a set of genes (known as “biomarkers”) that are associated with inflammation in animals. These biomarkers can be used to spot early on whether a new treatment is triggering inflammation. The next step would then be to identify a similar or identical set of biomarkers in other animals used in vaccine research, and in humans. Ultimately, this approach could make the assessment of the safety of a new vaccine candidate easier.
Collapse
Affiliation(s)
- Paul F McKay
- Department of Medicine, Division of Infectious Diseases, Section of Virology, Imperial College London, London, United Kingdom
| | - Deniz Cizmeci
- Department of Medicine, Division of Infectious Diseases, Section of Virology, Imperial College London, London, United Kingdom
| | - Yoann Aldon
- Department of Medicine, Division of Infectious Diseases, Section of Virology, Imperial College London, London, United Kingdom
| | - Jeroen Maertzdorf
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - January Weiner
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Stefan He Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - David Jm Lewis
- The NIHR Imperial Clinical Research Facility, Imperial Centre for Translational and Experimental Medicine, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, United Kingdom
| | | | | | - Robin J Shattock
- Department of Medicine, Division of Infectious Diseases, Section of Virology, Imperial College London, London, United Kingdom
| |
Collapse
|
22
|
Porte R, Davoudian S, Asgari F, Parente R, Mantovani A, Garlanda C, Bottazzi B. The Long Pentraxin PTX3 as a Humoral Innate Immunity Functional Player and Biomarker of Infections and Sepsis. Front Immunol 2019; 10:794. [PMID: 31031772 PMCID: PMC6473065 DOI: 10.3389/fimmu.2019.00794] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 03/26/2019] [Indexed: 12/12/2022] Open
Abstract
The first line of defense in innate immunity is provided by cellular and humoral mediators. Pentraxins are a superfamily of phylogenetically conserved humoral mediators of innate immunity. PTX3, the first long pentraxin identified, is a soluble pattern recognition molecule rapidly produced by several cell types in response to primary pro-inflammatory signals and microbial recognition. PTX3 acts as an important mediator of innate immunity against pathogens of fungal, bacterial and viral origin, and as a regulator of inflammation, by modulating complement activation and cell extravasation, and facilitating pathogen recognition by myeloid cells. In sepsis, PTX3 plasma levels are associated with severity of the condition, patient survival, and response to therapy. In combination with other established biomarkers, PTX3 could improve stratification of sepsis patients and thus, complement the system of classification and monitoring of this disease.
Collapse
Affiliation(s)
- Rémi Porte
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center-IRCCS, Milan, Italy
| | - Sadaf Davoudian
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Fatemeh Asgari
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Raffaella Parente
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center-IRCCS, Milan, Italy
| | - Alberto Mantovani
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center-IRCCS, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy.,The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Cecilia Garlanda
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center-IRCCS, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Barbara Bottazzi
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center-IRCCS, Milan, Italy
| |
Collapse
|
23
|
Garlanda C, Bottazzi B, Magrini E, Inforzato A, Mantovani A. PTX3, a Humoral Pattern Recognition Molecule, in Innate Immunity, Tissue Repair, and Cancer. Physiol Rev 2018; 98:623-639. [PMID: 29412047 DOI: 10.1152/physrev.00016.2017] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Innate immunity includes a cellular and a humoral arm. PTX3 is a fluid-phase pattern recognition molecule conserved in evolution which acts as a key component of humoral innate immunity in infections of fungal, bacterial, and viral origin. PTX3 binds conserved microbial structures and self-components under conditions of inflammation and activates effector functions (complement, phagocytosis). Moreover, it has a complex regulatory role in inflammation, such as ischemia/reperfusion injury and cancer-related inflammation, as well as in extracellular matrix organization and remodeling, with profound implications in physiology and pathology. Finally, PTX3 acts as an extrinsic oncosuppressor gene by taming tumor-promoting inflammation in murine and selected human tumors. Thus evidence suggests that PTX3 is a key homeostatic component at the crossroad of innate immunity, inflammation, tissue repair, and cancer. Dissecting the complexity of PTX3 pathophysiology and human genetics paves the way to diagnostic and therapeutic exploitation.
Collapse
Affiliation(s)
- Cecilia Garlanda
- Humanitas Clinical and Research Center, Rozzano, Milan , Italy ; Humanitas University, Rozzano, Milan , Italy ; Department of Medical Biotechnologies and Translational Medicine, University of Milan , Milan , Italy ; and The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Barbara Bottazzi
- Humanitas Clinical and Research Center, Rozzano, Milan , Italy ; Humanitas University, Rozzano, Milan , Italy ; Department of Medical Biotechnologies and Translational Medicine, University of Milan , Milan , Italy ; and The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Elena Magrini
- Humanitas Clinical and Research Center, Rozzano, Milan , Italy ; Humanitas University, Rozzano, Milan , Italy ; Department of Medical Biotechnologies and Translational Medicine, University of Milan , Milan , Italy ; and The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Antonio Inforzato
- Humanitas Clinical and Research Center, Rozzano, Milan , Italy ; Humanitas University, Rozzano, Milan , Italy ; Department of Medical Biotechnologies and Translational Medicine, University of Milan , Milan , Italy ; and The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Alberto Mantovani
- Humanitas Clinical and Research Center, Rozzano, Milan , Italy ; Humanitas University, Rozzano, Milan , Italy ; Department of Medical Biotechnologies and Translational Medicine, University of Milan , Milan , Italy ; and The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
24
|
Pilling D, Gomer RH. The Development of Serum Amyloid P as a Possible Therapeutic. Front Immunol 2018; 9:2328. [PMID: 30459752 PMCID: PMC6232687 DOI: 10.3389/fimmu.2018.02328] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023] Open
Abstract
Pentraxins such as serum amyloid P (SAP; also known as PTX2) regulate several aspects of the innate immune system. SAP inhibits the differentiation of monocyte-derived fibroblast-like cells called fibrocytes, promotes the formation of immuno-regulatory macrophages, and inhibits neutrophil adhesion to extracellular matrix proteins. In this minireview, we describe how these effects of SAP have led to its possible use as a therapeutic, and how modulating SAP effects might be used for other therapeutics. Fibrosing diseases such as pulmonary fibrosis, cardiac fibrosis, liver fibrosis, and renal fibrosis are associated with 30-45% of deaths in the US. Fibrosis involves both fibrocyte differentiation and profibrotic macrophage differentiation, and possibly because SAP inhibits both of these processes, in 9 different animal models, SAP inhibited fibrosis. In Phase 1B and Phase 2 clinical trials, SAP injections reduced the decline in lung function in pulmonary fibrosis patients, and in a small Phase 2 trial SAP injections reduced fibrosis in myelofibrosis patients. Acute respiratory distress syndrome/ acute lung injury (ARDS/ALI) involves the accumulation of neutrophils in the lungs, and possibly because SAP inhibits neutrophil adhesion, SAP injections reduced the severity of ARDS in an animal model. Conversely, depleting SAP is a potential therapeutic for amyloidosis, topically removing SAP from wound fluid speeds wound healing in animal models, and blocking SAP binding to one of its receptors makes cultured macrophages more aggressive toward tuberculosis bacteria. These results suggest that modulating pentraxin signaling might be useful for a variety of diseases.
Collapse
Affiliation(s)
- Darrell Pilling
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
25
|
Marschner JA, Mulay SR, Steiger S, Anguiano L, Zhao Z, Boor P, Rahimi K, Inforzato A, Garlanda C, Mantovani A, Anders HJ. The Long Pentraxin PTX3 Is an Endogenous Inhibitor of Hyperoxaluria-Related Nephrocalcinosis and Chronic Kidney Disease. Front Immunol 2018; 9:2173. [PMID: 30319631 PMCID: PMC6167460 DOI: 10.3389/fimmu.2018.02173] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/03/2018] [Indexed: 12/19/2022] Open
Abstract
The long pentraxin 3 (PTX3) exerts a variety of regulatory functions in acute and chronic tissue inflammation. In particular, PTX3 acts as an opsonin for a variety of pathogens and endogenous particles. We hypothesized that PTX3 would exhibit opsonin-like functions toward calcium oxalate crystals, too, and inhibit crystal growth. This process is fundamental in kidney stone disease as well as in hyperoxaluria-related nephrocalcinosis, the paradigmatic cause of chronic kidney disease (CKD) in children with primary hyperoxaluria type I due to genetic defects in oxalate metabolism. Direct effects of PTX3 on calcium oxalate crystals were investigated in chemico by adding recombinant PTX3 to supersaturated calcium and oxalate solutions. PTX3, but not isomolar concentrations of albumin, dose-dependently inhibited crystal growth. In vivo, the PTX3 protein was undetectable in tubular epithelial cells and urine of wild-type mice under physiological conditions. However, its levels increased within 3 weeks of feeding an oxalate-rich diet, an exposure inducing hyperoxaluria-related nephrocalcinosis and CKD in selected mouse strains (male and female C57BL/6N and male Balb/c mice) but not in others (male and female 129SV and CD-1, male and female Balb/c mice). Genetic ablation of ptx3 in nephrocalcinosis un-susceptible B6;129 mice was sufficient to raise the oxalate nephropathy phenotype observed in susceptible strains. We conclude that PTX3 is an endogenous inhibitor of calcium oxalate crystal growth. This mechanism limits hyperoxaluria-related nephrocalcinosis, e.g., in primary or secondary hyperoxaluria, and potentially also in the more prevalent kidney stone disease.
Collapse
Affiliation(s)
- Julian A Marschner
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Shrikant R Mulay
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Stefanie Steiger
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Lidia Anguiano
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Zhibo Zhao
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Peter Boor
- Department of Nephrology, Institute of Pathology, RWTH University of Aachen, Aachen, Germany
| | - Khosrow Rahimi
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany
| | - Antonio Inforzato
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Cecilia Garlanda
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Alberto Mantovani
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Hans-Joachim Anders
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| |
Collapse
|
26
|
Sabry HH, Sabry JH, Daifalla AEH, Akl EM, Hamed AM, Torky AAA. Serum markers for asymptomatic atherosclerosis in Egyptian psoriatic patients: study controlled by Doppler estimation of carotid intima-media thickness. Vasc Health Risk Manag 2018; 14:145-152. [PMID: 30022835 PMCID: PMC6042496 DOI: 10.2147/vhrm.s164274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background The aim of the study was to measure serum levels of endocan, myeloperoxidase (MPO), pentraxin 3 (PTX3) and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) in psoriatic patients and to study their correlations with carotid intima-media thickness (CIMT) in trial to evaluate predictability of these parameters in diagnosing asymptomatic atherosclerosis (AAS). Patients and methods Seventy-five psoriasis patients and 75 control subjects underwent complete clinical examination and Doppler estimation of CIMT using thickness of 0.9 mm as cutoff point for diagnosis of AAS. Blood samples were collected for determination of fasting blood glucose, lipid profile and serum C-reactive protein (CRP), endocan, MPO, PTX3 and 1,25(OH)2D3. Results Estimated blood low-density lipoprotein cholesterol (LDL-c) and serum CRP, PTX3, MPO and endocan levels were significantly higher, while blood high-density lipoprotein cholesterol (HDL-c) and serum 1,25(OH)2D3 levels were significantly lower in patients than in controls. CIMT showed significant positive correlation with disease severity and duration; patients’ age; and endocan, MPO, LDL-c, PTX3 and CRP levels, and significant negative correlation with HDL-c and 1,25(OH)2D3 levels. Regression analysis defined high serum endocan and MPO, low serum 1,25(OH)2D3 and increased disease severity as significant predictors of high CIMT. Conclusion Elevated serum levels of endocan and MPO and low 1,25(OH)2D3 levels may underlie the development of psoriasis-related cardiac manifestations. Elevated serum endocan and low 1,25(OH)2D3 levels could be used as early predictors of increased CIMT, which is a pathognomonic feature of AAS.
Collapse
Affiliation(s)
- Hanan Hassan Sabry
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Benha University, Benha, Egypt,
| | - Jehan Hassan Sabry
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Aliaa El Husseiny Daifalla
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Benha University, Benha, Egypt,
| | - Essam Mohamed Akl
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Benha University, Benha, Egypt,
| | - Ahmed Mohamed Hamed
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Benha University, Benha, Egypt,
| | | |
Collapse
|
27
|
Lai HY, Hsu LW, Tsai HH, Lo YC, Yang SH, Liu PY, Wang JM. CCAAT/enhancer-binding protein delta promotes intracellular lipid accumulation in M1 macrophages of vascular lesions. Cardiovasc Res 2018; 113:1376-1388. [PMID: 28859294 DOI: 10.1093/cvr/cvx134] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 07/09/2017] [Indexed: 12/15/2022] Open
Abstract
Aims Lipid homeostasis is reprogrammed in the presence of inflammation, which results in excessive lipid accumulation in macrophages, and leads to the formation of lipid-laden foam cells. We aimed to link an inflammation-responsive transcription factor CCAAT/enhancer-binding protein delta (CEBPD) with polarized macrophages and dissect its contribution to lipid accumulation. Methods and results We found that CEBPD protein colocalized with macrophages in human and mouse (C57BL/6, Apoe-/-) atherosclerotic plaques and that Cebpd deficiency in bone marrow cells suppressed atherosclerotic lesions in hyperlipidemic Apoe-/- mice. CEBPD was responsive to modified low-density lipoprotein (LDL) via the p38MAPK/CREB pathway, and it promoted lipid accumulation in M1 macrophages but not in M2 macrophages. CEBPD up-regulated pentraxin 3 (PTX3), which promoted the macropinocytosis of LDL, and down-regulated ATP-binding cassette subfamily A member 1 (ABCA1), which impaired the intracellular cholesterol efflux in M1 macrophages. We further found that simvastatin (a HMG-CoA reductase inhibitor) could target CEBPD to block lipid accumulation in a manner not directly related to its cholesterol-lowering effect in M1 macrophages. Conclusion This study underscores how CEBPD functions at the junction of inflammation and lipid accumulation in M1 macrophages. Therefore, CEBPD-mediated lipid accumulation in M1 macrophages could represent a new therapeutic target for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Hong-Yue Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ling-Wei Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsin-Hwa Tsai
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1 University Rd., Tainan 70101, Taiwan
| | - Yu-Chih Lo
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1 University Rd., Tainan 70101, Taiwan
| | - Shang-Hsun Yang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ping-Yen Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Ju-Ming Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, No. 1 University Rd., Tainan 70101, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center of Molecular Inflammation Research, National Cheng Kung University, Tainan, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
28
|
The Anti-bacterial and Anti-adherent Effects of Pentraxin-3 on Porcine Kidney Epithelial PK15 Cells Against Staphylococcus aureus Infection. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9710-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
29
|
Kuneš P, Lonský V, Manďák J, Brtko M, Koláčková M, Andrýs C, Kudlová M, Krejsek J. Essential PTX3 Biology (not only) for Cardiologists and Cardiac Surgeons. ACTA MEDICA (HRADEC KRÁLOVÉ) 2018. [DOI: 10.14712/18059694.2017.56] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Inflammation has been recognized to form an integral part of the atherosclerotic process. Much consideration has been given lately to the role played in atherogenesis by C-reactive protein (CRP). Although not accepted unequivocally, CRP appears to be not only a marker, but also an active mediator of the atherosclerotic process. Pentraxin 3 (PTX3) is a newly identified acute phase reactant which shares some structural and some functional properties with CRP. On the other hand, pentraxin 3 displays unique biological properties of its own, including a possible role in the pathogenesis of cardiovascular diseases and in processes accompanying the natural evolution of surgical wounds. This review article discusses recent information concerning basic pentraxin 3 biology in inflammation and in innate immunity reactions as viewed by a cardiologist in the context of acute coronary events and by a surgeon in patients struck with multiple wounds who are at the same time menaced by bacterial infections.
Collapse
|
30
|
Hyaluronan interactions with innate immunity in lung biology. Matrix Biol 2018; 78-79:84-99. [PMID: 29410190 DOI: 10.1016/j.matbio.2018.01.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/30/2018] [Indexed: 12/28/2022]
Abstract
Lung disease is a leading cause of morbidity and mortality worldwide. Innate immune responses in the lung play a central role in the pathogenesis of lung disease and the maintenance of lung health, and thus it is crucial to understand factors that regulate them. Hyaluronan is ubiquitous in the lung, and its expression is increased following lung injury and in disease states. Furthermore, hyaladherins like inter-α-inhibitor, tumor necrosis factor-stimulated gene 6, pentraxin 3 and versican are also induced and help form a dynamic hyaluronan matrix in injured lung. This review synthesizes present knowledge about the interactions of hyaluronan and its associated hyaladherins with the lung immune system, and the implications of these interactions for lung biology and disease.
Collapse
|
31
|
Long pentraxin 3: A novel multifaceted player in cancer. Biochim Biophys Acta Rev Cancer 2017; 1869:53-63. [PMID: 29175552 DOI: 10.1016/j.bbcan.2017.11.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/22/2017] [Accepted: 11/22/2017] [Indexed: 01/12/2023]
Abstract
Since its discovery in 1992, long pentraxin 3 (PTX3) has been characterized as soluble patter recognition receptor, a key player of the innate immunity arm with non-redundant functions in pathogen recognition and inflammatory responses. As a component of the extra-cellular matrix milieu, PTX3 has been implicated also in wound healing/tissue remodeling, cardiovascular diseases, fertility, and infectious diseases. Consequently, PTX3 levels in biological fluids have been proposed as a fluid-phase biomarker in different pathological conditions. In the last decade, experimental evidences have shown that PTX3 may exert a significant impact also on different aspects of cancer biology, including tumor onset, angiogenesis, metastatic dissemination and immune-modulation. However, it remains unclear whether PTX3 acts as a good cop or bad cop in cancer. In this review, we will summarize and discuss the scientific literature data focusing on the role of PTX3 in experimental and human tumors, including its putative translational implications.
Collapse
|
32
|
Casula M, Montecucco F, Bonaventura A, Liberale L, Vecchié A, Dallegri F, Carbone F. Update on the role of Pentraxin 3 in atherosclerosis and cardiovascular diseases. Vascul Pharmacol 2017; 99:1-12. [PMID: 29051088 DOI: 10.1016/j.vph.2017.10.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/11/2017] [Accepted: 10/15/2017] [Indexed: 12/12/2022]
Abstract
Pentraxin 3 (PTX3) is an acute-phase protein that was recently demonstrated to play pleiotropic activities in cardiovascular (CV) diseases. Tumor necrosis factor and interleukins up-regulates PTX3 transcription in different cell types (i.e. endothelial cells, phagocytes, smooth muscle cells, fibroblasts and glial cells) involved in atherogenesis. By interacting with numerous ligands, PTX3 acts as a modulatory molecule of complement system, inflammatory response, angiogenesis, and vascular/tissue remodeling. Experimental data point to a beneficial role of PTX3 in atherosclerotic plaque development and vulnerability. Animal studies indicated a protective role of PTX3 signaling in ischemic/reperfusion injury and failing heart. Clinical studies have so far provided contrasting results, highlighting a debated role of PTX3 as an active mediator of endothelial dysfunction, atherosclerotic plaque vulnerability and worse outcome after ischemic events. Therefore, substantial evidence suggests a dual role of PTX3 as modulator or amplifiers of the innate immune response. The final result of PTX3 activation might be determined by a fine tuning of time, space and environmental signals. The aim of this review is to provide an overview of biological properties of PTX3 in CV diseases and to discuss the ability of PTX3 to act as a crossroad between pro- and anti-inflammatory pathways.
Collapse
Affiliation(s)
- Matteo Casula
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy; Ospedale Policlinico San Martino, 10 Largo Benzi, 16132 Genoa, Italy; Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 9 viale Benedetto XV, 16132 Genoa, Italy
| | - Aldo Bonaventura
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy; Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, CH-8952 Schlieren, Switzerland
| | - Alessandra Vecchié
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Franco Dallegri
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy; Ospedale Policlinico San Martino, 10 Largo Benzi, 16132 Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.
| |
Collapse
|
33
|
Daigo K, Inforzato A, Barajon I, Garlanda C, Bottazzi B, Meri S, Mantovani A. Pentraxins in the activation and regulation of innate immunity. Immunol Rev 2017; 274:202-217. [PMID: 27782337 DOI: 10.1111/imr.12476] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Humoral fluid phase pattern recognition molecules (PRMs) are a key component of the activation and regulation of innate immunity. Humoral PRMs are diverse. We focused on the long pentraxin PTX3 as a paradigmatic example of fluid phase PRMs. PTX3 acts as a functional ancestor of antibodies and plays a non-redundant role in resistance against selected microbes in mouse and man and in the regulation of inflammation. This molecule interacts with complement components, thus modulating complement activation. In particular, PTX3 regulates complement-driven macrophage-mediated tumor progression, acting as an extrinsic oncosuppressor in preclinical models and selected human tumors. Evidence collected over the years suggests that PTX3 is a biomarker and potential therapeutic agent in humans, and pave the way to translation of this molecule into the clinic.
Collapse
Affiliation(s)
- Kenji Daigo
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Rozzano (Milan), Italy
| | - Antonio Inforzato
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Rozzano (Milan), Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Italy
| | | | - Cecilia Garlanda
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Rozzano (Milan), Italy
| | - Barbara Bottazzi
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Rozzano (Milan), Italy
| | - Seppo Meri
- Immunobiology Research Program, Research Programs Unit, Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki , Helsinki , Finland
| | - Alberto Mantovani
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Rozzano (Milan), Italy.,Humanitas University, Rozzano, Italy
| |
Collapse
|
34
|
Folwaczny M, Karnesi E, Berger T, Paschos E. Clinical association between chronic periodontitis and the leukocyte extravasation inhibitors developmental endothelial locus-1 and pentraxin-3. Eur J Oral Sci 2017. [PMID: 28643381 DOI: 10.1111/eos.12357] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This clinical study aimed to determine whether periodontal disease is associated with expression of developmental endothelial locus-1 (Del-1) and pentraxin-3 (PTX-3), endogenous inhibitors of leukocyte extravasation in humans. Expression of DEL1, PTX3, interleukin-17A (IL17A), and lymphocyte function-associated antigen-1 (LFA1) was determined, using RT-PCR and melting curve analysis, in biopsies of gingival tissues from 95 patients: 42 with moderate periodontitis; 40 with severe periodontitis; and 13 healthy controls. Relative expression of DEL1 and PTX3 was statistically significantly weaker in patients with periodontitis than in the control subjects. On the contrary, both IL17A and LFA1 showed statistically significant stronger expression in patients with periodontitis than in healthy controls. Correlation analysis, performed using Spearman's test, showed that expression of DEL1 was statistically significantly linked to periodontitis (ρ = -0.103) and to age (ρ = -0.134), but not to the gender of the patient, and that expression of PTX3 was significantly correlated with periodontitis (ρ = -0.354). Expression of neutrophil extravasation inhibitors DEL1 and PTX3 show significant, but weak, association with the clinical manifestation of chronic periodontitis.
Collapse
Affiliation(s)
- Matthias Folwaczny
- Department of Operative Dentistry and Periodontology, Ludwig-Maximilians-University, Munich, Germany
| | - Evangelia Karnesi
- Department of Operative Dentistry and Periodontology, Ludwig-Maximilians-University, Munich, Germany
| | - Tamara Berger
- Department of Operative Dentistry and Periodontology, Ludwig-Maximilians-University, Munich, Germany
| | - Ekaterini Paschos
- Department of Orthodontics, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
35
|
Röll S, Härtle S, Lütteke T, Kaspers B, Härtle S. Tissue and time specific expression pattern of interferon regulated genes in the chicken. BMC Genomics 2017; 18:264. [PMID: 28351377 PMCID: PMC5371264 DOI: 10.1186/s12864-017-3641-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/18/2017] [Indexed: 01/21/2023] Open
Abstract
Background Type I interferons are major players against viral infections and mediate their function by the induction of Interferon regulated genes (IRGs). Recently, it became obvious that these cytokines have a multitude of additional functions. Due to the unique features of the chickens’ immune system, available data from mouse models are not easily transferable; hence we performed an extensive analysis of chicken IRGs. Results A broad database search for homologues to described mammalian IRGs (common IRGs, cIRGs) was combined with a transcriptome analysis of spleen and lung at different time points after application of IFNα. To apply physiological amounts of IFN, half-life of IFN in the chicken was determined. Interestingly, the calculated 36 min are considerably shorter than the ones obtained for human and mouse. Microarray analysis revealed many additional IRGs (newly identified IRGs; nIRGs) and network analysis for selected IRGs showed a broad interaction of nIRGs among each other and with cIRGs. We found that IRGs exhibit a highly tissue and time specific expression pattern as expression quality and quantity differed strongly between spleen and lung and over time. While in the spleen for many affected genes changes in RNA abundance peaked already after 3 h, an increasing or plateau-like regulation after 3, 6 and 9 h was observed in the lung. Conclusions The induction or suppression of IRGs in chickens is both tissue and time specific and beside known antiviral mechanisms type I IFN induces many additional cellular functions. We confirmed many known IRGs and established a multitude of so far undescribed ones, thus providing a large database for future research on antiviral mechanisms and additional IFN functions in non-mammalian species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3641-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Susanne Röll
- Department for Veterinary Science, University of Munich, Munich, Germany
| | - Stefan Härtle
- formerly Department for Veterinary Science, University of Munich, Munich, Germany
| | - Thomas Lütteke
- Department for Veterinary Science, University of Munich, Munich, Germany.,Institute of Veterinary Physiology and Biochemistry, JLU Giessen, Giessen, Germany
| | - Bernd Kaspers
- Department for Veterinary Science, University of Munich, Munich, Germany
| | - Sonja Härtle
- Department for Veterinary Science, University of Munich, Munich, Germany. .,Institute of Veterinary Physiology and Biochemistry, JLU Giessen, Giessen, Germany.
| |
Collapse
|
36
|
Abstract
The innate immune system represents the first line of defense against pathogens and comprises both a cellular and a humoral arm. Fluid-phase pattern recognition molecules (PRMs), which include collectins, ficolins, and pentraxins, are key components of the humoral arm of innate immunity and are expressed by a variety of cells, including myeloid, epithelial, and endothelial cells, mainly in response to infectious and inflammatory conditions. Soluble PRMs share basic multifunctional properties including activation and regulation of the complement cascade, opsonization of pathogens and apoptotic cells, regulation of leukocyte extravasation, and fine-tuning of inflammation. Therefore, soluble PRMs are part of the immune response and retain antibody-like effector functions. Here, we will review the expression and general function of soluble PRMs, focusing our attention on the long pentraxin PTX3.
Collapse
|
37
|
The Dual Role of Neutrophils in Inflammatory Bowel Diseases. J Clin Med 2016; 5:jcm5120118. [PMID: 27999328 PMCID: PMC5184791 DOI: 10.3390/jcm5120118] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/06/2016] [Accepted: 12/13/2016] [Indexed: 12/21/2022] Open
Abstract
Inflammatory bowel diseases (IBD), including Crohn’s disease and ulcerative colitis, are characterised by aberrant immunological responses leading to chronic inflammation without tissue regeneration. These two diseases are considered distinct entities, and there is some evidence that neutrophil behaviour, above all other aspects of immunity, clearly separate them. Neutrophils are the first immune cells recruited to the site of inflammation, and their action is crucial to limit invasion by microorganisms. Furthermore, they play an essential role in proper resolution of inflammation. When these processes are not tightly regulated, they can trigger positive feedback amplification loops that promote neutrophil activation, leading to significant tissue damage and evolution toward chronic disease. Defective chemotaxis, as observed in Crohn’s disease, can also contribute to the disease through impaired microbe elimination. In addition, through NET production, neutrophils may be involved in thrombo-embolic events frequently observed in IBD patients. While the role of neutrophils has been studied in different animal models of IBD for many years, their contribution to the pathogenesis of IBD remains poorly understood, and no molecules targeting neutrophils are used and validated for the treatment of these pathologies. Therefore, it is crucial to improve our understanding of their mode of action in these particular conditions in order to provide new therapeutic avenues for IBD.
Collapse
|
38
|
Role of PTX3 in corneal epithelial innate immunity against Aspergillus fumigatus infection. Exp Eye Res 2016; 167:152-162. [PMID: 27889356 DOI: 10.1016/j.exer.2016.11.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/20/2016] [Accepted: 11/22/2016] [Indexed: 11/22/2022]
Abstract
Pentraxin3 (PTX3), a member of long pentraxin family, plays a non-redundant role in human humoral innate immunity. However, whether PTX3 is expressed by corneal epithelial cells and its role during corneal fungi infection has not yet been investigated. To identify the presence of PTX3 in cornea, the possible mechanisms involved in its expression, and also the effects on corneal anti-fungi innate immune response, clinic human corneal tissues and cultured human corneal epithelial cells (HCECs) were resorted. PTX3 mRNA and protein were detected in corneal samples and cultured HCECs, which was significantly up-regulated after exposing to Aspergillus fumigatus (A. fumigatus). Pretreated with specific inhibitors, only Syk contributed to the regulation of PTX3 expression in Dectin-1/Syk signal axis. Furthermore, among the MAPK members (p38 MAPK, ERK1/2 and JNK), only ERK1/2 and JNK were responsible for A. fumigatus induced PTX3 production. Blocking of endogenous PTX3 by siRNA down-regulated the production of IL-1β at both mRNA and protein levels. Meanwhile, blocking of PTX3 also inhibited the phosphorylation of ERK1/2 and JNK, but not p38 MAPK. These findings demonstrate that PTX3 is expressed in human corneal epithelial cells and Syk, ERK1/2, JNK signaling pathways play an important role in the regulation of PTX3 induction. PTX3 plays a proinflammatory role in corneal epithelial anti-fungi immune response by affecting the production of IL-1β and activation of some proinflammatory signaling pathways (ERK1/2 and JNK).
Collapse
|
39
|
Janssen WJ, Stefanski AL, Bochner BS, Evans CM. Control of lung defence by mucins and macrophages: ancient defence mechanisms with modern functions. Eur Respir J 2016; 48:1201-1214. [PMID: 27587549 DOI: 10.1183/13993003.00120-2015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 06/12/2016] [Indexed: 12/14/2022]
Abstract
Owing to the need to balance the requirement for efficient respiration in the face of tremendous levels of exposure to endogenous and environmental challenges, it is crucial for the lungs to maintain a sustainable defence that minimises damage caused by this exposure and the detrimental effects of inflammation to delicate gas exchange surfaces. Accordingly, epithelial and macrophage defences constitute essential first and second lines of protection that prevent the accumulation of potentially harmful agents in the lungs, and under homeostatic conditions do so effectively without inducing inflammation. Though epithelial and macrophage-mediated defences are seemingly distinct, recent data show that they are linked through their shared reliance on airway mucins, in particular the polymeric mucin MUC5B. This review highlights our understanding of novel mechanisms that link mucus and macrophage defences. We discuss the roles of phagocytosis and the effects of factors contained within mucus on phagocytosis, as well as newly identified roles for mucin glycoproteins in the direct regulation of leukocyte functions. The emergence of this nascent field of glycoimmunobiology sets forth a new paradigm for considering how homeostasis is maintained under healthy conditions and how it is restored in disease.
Collapse
Affiliation(s)
- William J Janssen
- Dept of Medicine, National Jewish Health, Denver, CO, USA Dept of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Bruce S Bochner
- Dept of Medicine, Division of Allergy-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christopher M Evans
- Dept of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
40
|
Magrini E, Mantovani A, Garlanda C. The Dual Complexity of PTX3 in Health and Disease: A Balancing Act? Trends Mol Med 2016; 22:497-510. [PMID: 27179743 PMCID: PMC5414840 DOI: 10.1016/j.molmed.2016.04.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/18/2016] [Accepted: 04/18/2016] [Indexed: 12/17/2022]
Abstract
The humoral arm of innate immunity is complex and includes various molecules that serve as markers of inflammation with complementary characteristics, such as the short pentraxins C-reactive protein (CRP) and serum amyloid P (SAP) and the long pentraxin PTX3. There is a growing amount of evidence – including mouse and human genetics – that suggests that PTX3 is essential in conferring host resistance against selected pathogens and, moreover, that it plays a dual antagonistic role in the regulation of inflammation. Dissection of such a yin-and-yang role of pentraxins in immunity and inflammation is timely and significant as it may pave the way for better clinical exploitation against various diseases. The long pentraxin PTX3 is an essential component of humoral innate immunity and plays a role in the regulation of inflammation. PTX3 has complex effects on the vasculature, including an interaction with the angiogenic growth factor FGF2 and the regulation of vessel wall tone. By modulating complement-driven inflammation, PTX3 acts as an oncosuppressor gene in mice and selected human tumors. By interacting with provisional matrix components, PTX3 contributes to the orchestration of wound healing and tissue repair/remodeling. PTX3 and the related pentraxins C-reactive protein (CRP) and serum amyloid P (SAP) can exert dual roles in inflammation and antimicrobial resistance, by either exerting a protective function or amplifying tissue damage. Dissection of the yin–yang role of pentraxins in immunopathology may pave the way towards better exploitation of these molecules as envisaged disease markers and candidate therapeutic agents.
Collapse
Affiliation(s)
- Elena Magrini
- Humanitas Clinical and Research Center, Rozzano, Milan 20089, Italy
| | - Alberto Mantovani
- Humanitas Clinical and Research Center, Rozzano, Milan 20089, Italy; Humanitas University, Rozzano, Milan 20089, Italy.
| | - Cecilia Garlanda
- Humanitas Clinical and Research Center, Rozzano, Milan 20089, Italy
| |
Collapse
|
41
|
Ketter P, Yu JJ, Cap AP, Forsthuber T, Arulanandam B. Pentraxin 3: an immune modulator of infection and useful marker for disease severity assessment in sepsis. Expert Rev Clin Immunol 2016; 12:501-7. [PMID: 26982005 DOI: 10.1586/1744666x.2016.1166957] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The acute phase protein pentraxin 3 (PTX3) is a pattern recognition receptor involved in regulation of the host immune response. This relatively newly discovered member of the pentraxin superfamily elicits both immunostimulatory and immunoregulatory functions preventing autoimmune pathology and orchestrated clearance of pathogens through opsonization of damage- and pathogen-associated molecular patterns (DAMP/PAMP). Thus, PTX3 has been described as a possible evolutionary precursor to immunoglobulins. While shown to provide protection against specific bacterial and fungal pathogens, persistent elevation of PTX3 levels following initial onset of infection appear to predict poor patient outcome and may contribute to disease sequelae such as tissue damage and coagulopathy. Measurement of PTX3 following onset of sepsis may improve patient risk assessment and thus be useful in guiding subsequent therapeutic interventions including steroidal anti-inflammatory and altered antibiotic therapies. In this review, we summarize the role of PTX3 in inflammatory syndromes and its utility as a marker of sepsis disease severity.
Collapse
Affiliation(s)
- Patrick Ketter
- a Blood and Coagulation Program , United States Army Institute of Surgical Research , JBSA-Fort Sam Houston , TX , USA
| | - Jieh-Juen Yu
- b Department of Biology , University of Texas at San Antonio , San Antonio , TX , USA
| | - Andrew P Cap
- a Blood and Coagulation Program , United States Army Institute of Surgical Research , JBSA-Fort Sam Houston , TX , USA
| | - Thomas Forsthuber
- b Department of Biology , University of Texas at San Antonio , San Antonio , TX , USA
| | - Bernard Arulanandam
- b Department of Biology , University of Texas at San Antonio , San Antonio , TX , USA
| |
Collapse
|
42
|
Jaeger M, Stappers MHT, Joosten LAB, Gyssens IC, Netea MG. Genetic variation in pattern recognition receptors: functional consequences and susceptibility to infectious disease. Future Microbiol 2016; 10:989-1008. [PMID: 26059622 DOI: 10.2217/fmb.15.37] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cells of the innate immune system are equipped with surface and cytoplasmic receptors for microorganisms called pattern recognition receptors (PRRs). PRRs recognize specific pathogen-associated molecular patterns and as such are crucial for the activation of the immune system. Currently, five different classes of PRRs have been described: Toll-like receptors, C-type lectin receptors, nucleotide-binding oligomerization domain-like receptors, retinoic acid-inducible gene I-like receptors and absent in melanoma 2-like receptors. Following their discovery, many sequence variants in PRR genes have been uncovered and shown to be implicated in human infectious diseases. In this review, we will discuss the effect of genetic variation in PRRs and their signaling pathways on susceptibility to infectious diseases in humans.
Collapse
Affiliation(s)
- Martin Jaeger
- Department of Internal Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Mark H T Stappers
- Department of Internal Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.,Department of Medical Microbiology & Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands.,Faculty of Medicine, Research group of Immunology & Biochemistry, Hasselt University, Hasselt, Belgium
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Inge C Gyssens
- Department of Internal Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.,Department of Medical Microbiology & Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands.,Faculty of Medicine, Research group of Immunology & Biochemistry, Hasselt University, Hasselt, Belgium
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
43
|
Luo R, Li L, Du X, Shi M, Zhou C, Wang C, Liao G, Lu Y, Zhong Z, Cheng J, Chen Y. Gene expression profile of vascular ischemia-reperfusion injury in rhesus monkeys. Gene 2016; 576:753-62. [DOI: 10.1016/j.gene.2015.10.073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/29/2015] [Indexed: 12/22/2022]
|
44
|
Paeschke A, Possehl A, Klingel K, Voss M, Voss K, Kespohl M, Sauter M, Overkleeft HS, Althof N, Garlanda C, Voigt A. The immunoproteasome controls the availability of the cardioprotective pattern recognition molecule Pentraxin3. Eur J Immunol 2015; 46:619-33. [PMID: 26578407 DOI: 10.1002/eji.201545892] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/19/2015] [Accepted: 11/10/2015] [Indexed: 12/20/2022]
Abstract
Cardiomyocyte death as a result of viral infection is an excellent model for dissecting the inflammatory stress response that occurs in heart tissue. We reported earlier that a specific proteasome isoform, the immunoproteasome, prevents exacerbation of coxsackievirus B3 (CVB3)-induced myocardial destruction and preserves cell vitality in heart tissue inflammation. Following the aim to decipher molecular targets of immunoproteasome-dependent proteolysis, we investigated the function and regulation of the soluble PRR Pentraxin3 (PTX3). We show that the ablation of PTX3 in mice aggravated CVB3-triggered inflammatory injury of heart tissue, without having any significant effect on viral titers. Thus, there might be a role of PTX3 in preventing damage-associated molecular pattern-induced cell death. We found that the catalytic activity of the immunoproteasome subunit LMP7 regulates the timely availability of factors controlling PTX3 production. We report on immunoproteasome-dependent alteration of ERK1/2 and p38MAPKs, which were both found to be involved in PTX3 expression control. Our finding of a cardioprotective function of immunoproteasome-dependent PTX3 expression revealed a crucial mechanism of the stress-induced damage response in myocardial inflammation. In addition to antigen presentation and cytokine production, proteolysis by the immunoproteasome can also regulate the innate immune response during viral infection.
Collapse
Affiliation(s)
- Anna Paeschke
- Institut für Biochemie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Anna Possehl
- Institut für Biochemie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Karin Klingel
- Institut für Molekulare Pathologie, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Martin Voss
- Institut für Biochemie, Charité Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Side Berlin, Berlin, Germany
| | - Karolin Voss
- Institut für Biochemie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Meike Kespohl
- Institut für Biochemie, Charité Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Side Berlin, Berlin, Germany
| | - Martina Sauter
- Institut für Molekulare Pathologie, Universitätsklinikum Tübingen, Tübingen, Germany
| | | | - Nadine Althof
- Institut für Biochemie, Charité Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Side Berlin, Berlin, Germany
| | | | - Antje Voigt
- Institut für Biochemie, Charité Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Side Berlin, Berlin, Germany
| |
Collapse
|
45
|
Xu J, Mu Y, Zhang Y, Dong W, Zhu Y, Ma J, Song W, Pan Z, Lu C, Yao H. Antibacterial effect of porcine PTX3 against Streptococcus suis type 2 infection. Microb Pathog 2015; 89:128-39. [DOI: 10.1016/j.micpath.2015.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 09/07/2015] [Accepted: 09/24/2015] [Indexed: 11/28/2022]
|
46
|
Foo SS, Reading PC, Jaillon S, Mantovani A, Mahalingam S. Pentraxins and Collectins: Friend or Foe during Pathogen Invasion? Trends Microbiol 2015; 23:799-811. [PMID: 26482345 PMCID: PMC7127210 DOI: 10.1016/j.tim.2015.09.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 09/07/2015] [Accepted: 09/22/2015] [Indexed: 12/24/2022]
Abstract
Innate immunity serves as the frontline defence against invading pathogens. Despite decades of research, new insights are constantly challenging our understanding of host-elicited immunity during microbial infections. Recently, two families of humoral innate immune proteins, pentraxins and collectins, have become a major focus of research in the field of innate immunity. Pentraxins and collectins are key players in activating the humoral arm of innate immunity, taking centre stage in immunoregulation and disease modulation. However, increasing evidence suggests that pentraxins and collectins can also mediate pathogenic effects during some infections. Herein, we discuss the protective and pathogenic effects of pentraxins and collectins, as well as their therapeutic significance.
Collapse
Affiliation(s)
- Suan-Sin Foo
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Patrick C Reading
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Sébastien Jaillon
- Humanitas Clinical and Research Center, Department of Inflammation and Immunology, 20089, Rozzano, Milano, Italy
| | - Alberto Mantovani
- Humanitas Clinical and Research Center, Department of Inflammation and Immunology, 20089, Rozzano, Milano, Italy; Humanitas University, 20089, Rozzano, Milano, Italy
| | - Suresh Mahalingam
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia.
| |
Collapse
|
47
|
Differential Gene Expression Profiles and Selected Cytokine Protein Analysis of Mediastinal Lymph Nodes of Horses with Chronic Recurrent Airway Obstruction (RAO) Support an Interleukin-17 Immune Response. PLoS One 2015; 10:e0142622. [PMID: 26561853 PMCID: PMC4642978 DOI: 10.1371/journal.pone.0142622] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/23/2015] [Indexed: 11/19/2022] Open
Abstract
Recurrent airway obstruction (RAO) is a pulmonary inflammatory condition that afflicts certain mature horses exposed to organic dust particulates in hay. Its clinical and pathological features, manifested by reversible bronchoconstriction, excessive mucus production and airway neutrophilia, resemble the pulmonary alterations that occur in agricultural workers with occupational asthma. The immunological basis of RAO remains uncertain although its chronicity, its localization to a mucosal surface and its domination by a neutrophilic, non-septic inflammatory response, suggest involvement of Interleukin-17 (IL-17). We examined global gene expression profiles in mediastinal (pulmonary-draining) lymph nodes isolated from RAO-affected and control horses. Differential expression of > 200 genes, coupled with network analysis, supports an IL-17 response centered about NF-κB. Immunohistochemical analysis of mediastinal lymph node sections demonstrated increased IL-17 staining intensity in diseased horses. This result, along with the finding of increased IL-17 concentrations in lymph node homogenates from RAO-affected horses (P = 0.1) and a down-regulation of IL-4 gene and protein expression, provides additional evidence of the involvement of IL-17 in the chronic stages of RAO. Additional investigations are needed to ascertain the cellular source of IL-17 in this equine model of occupational asthma. Understanding the immunopathogenesis of this disorder likely will enhance the development of therapeutic interventions beneficial to human and animal pulmonary health.
Collapse
|
48
|
Kojic D, Siegler BH, Uhle F, Lichtenstern C, Nawroth PP, Weigand MA, Hofer S, Brenner T. Are there new approaches for diagnosis, therapy guidance and outcome prediction of sepsis? World J Exp Med 2015; 5:50-63. [PMID: 25992320 PMCID: PMC4436940 DOI: 10.5493/wjem.v5.i2.50] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/09/2015] [Accepted: 04/02/2015] [Indexed: 02/06/2023] Open
Abstract
Beside many efforts to improve outcome, sepsis is still one of the most frequent causes of death in critically ill patients. It is the most common condition with high mortality in intensive care units. The complexity of the septic syndrome comprises immunological aspects - i.e., sepsis induced immunosuppression - but is not restricted to this fact in modern concepts. So far, exact mechanisms and variables determining outcome and mortality stay unclear. Since there is no typical risk profile, early diagnosis and risk stratification remain difficult, which hinders rapid and effective treatment initiation. Due to the heterogeneous nature of sepsis, potential therapy options should be adapted to the individual. Biomarkers like C-reactive protein and procalcitonin are routinely used as complementary tools in clinical decision-making. Beyond the acute phase proteins, a wide bunch of promising substances and non-laboratory tools with potential diagnostic and prognostic value is under intensive investigation. So far, clinical decision just based on biomarker assessment is not yet feasible. However, biomarkers should be considered as a complementary approach.
Collapse
|
49
|
Recognition of Neisseria meningitidis by the long pentraxin PTX3 and its role as an endogenous adjuvant. PLoS One 2015; 10:e0120807. [PMID: 25786110 PMCID: PMC4364741 DOI: 10.1371/journal.pone.0120807] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 02/07/2015] [Indexed: 11/21/2022] Open
Abstract
Long pentraxin 3 (PTX3) is a non-redundant component of the humoral arm of innate immunity. The present study was designed to investigate the interaction of PTX3 with Neisseria meningitidis. PTX3 bound acapsular meningococcus, Neisseria-derived outer membrane vesicles (OMV) and 3 selected meningococcal antigens (GNA0667, GNA1030 and GNA2091). PTX3-recognized microbial moieties are conserved structures which fulfil essential microbial functions. Ptx3-deficient mice had a lower antibody response in vaccination protocols with OMV and co-administration of PTX3 increased the antibody response, particularly in Ptx3-deficient mice. Administration of PTX3 reduced the bacterial load in infant rats challenged with Neisseria meningitidis. These results suggest that PTX3 recognizes a set of conserved structures from Neisseria meningitidis and acts as an amplifier/endogenous adjuvant of responses to this bacterium.
Collapse
|
50
|
Abstract
During infection significant alterations in lipid metabolism and lipoprotein composition occur. Triglyceride and VLDL cholesterol levels increase, while reduced HDL cholesterol (HDL-C) and LDL cholesterol (LDL-C) levels are observed. More importantly, endotoxemia modulates HDL composition and size: phospholipids are reduced as well as apolipoprotein (apo) A-I, while serum amyloid A (SAA) and secretory phospholipase A2 (sPLA2) dramatically increase, and, although the total HDL particle number does not change, a significant decrease in the number of small- and medium-size particles is observed. Low HDL-C levels inversely correlate with the severity of septic disease and associate with an exaggerated systemic inflammatory response. HDL, as well as other plasma lipoproteins, can bind and neutralize Gram-negative bacterial lipopolysaccharide (LPS) and Gram-positive bacterial lipoteichoic acid (LTA), thus favoring the clearance of these products. HDLs are emerging also as a relevant player during parasitic infections, and a specific component of HDL, namely, apoL-1, confers innate immunity against trypanosome by favoring lysosomal swelling which kills the parasite. During virus infections, proteins associated with the modulation of cholesterol bioavailability in the lipid rafts such as ABCA1 and SR-BI have been shown to favor virus entry into the cells. Pharmacological studies support the benefit of recombinant HDL or apoA-I mimetics during bacterial infection, while apoL-1-nanobody complexes were tested for trypanosome infection. Finally, SR-BI antagonism represents a novel and forefront approach interfering with hepatitis C virus entry which is currently tested in clinical studies. From the coming years, we have to expect new and compelling observations further linking HDL to innate immunity and infections.
Collapse
|