1
|
Al-Alem U, Rauscher GH, Alem QA, Kajdacsy-Balla A, Mahmoud AM. Prognostic Value of SGK1 and Bcl-2 in Invasive Breast Cancer. Cancers (Basel) 2023; 15:3151. [PMID: 37370761 DOI: 10.3390/cancers15123151] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
It is crucial to understand molecular alterations in breast cancer and how they relate to clinicopathologic factors. We have previously shown that the glucocorticoid receptor (GCR) protein expression was reduced in invasive breast carcinoma compared to normal breast tissue. Glucocorticoids, signaling through the GCR, regulate several cellular processes via downstream targets such as serum/glucocorticoid-regulated kinase 1 (SGK1) and B-cell lymphoma 2 (Bcl-2). We measured the expression of SGK1 and Bcl-2, in respective breast cancer tissue arrays, from a multiracial cohort of breast cancer patients. Higher cytoplasmic SGK1 staining was stronger in breast cancer tissue compared to normal tissue, especially in hormone receptor-negative cases. Conversely, the expression of cytoplasmic Bcl-2 was reduced in breast cancer compared to normal tissue, especially in hormone receptor-negative cases. Bcl-2 staining was associated with the self-reported racial/ethnic category, an earlier clinical stage, a lower histological grade, and a higher survival rate. Bcl-2 expression was associated with longer survival in models adjusted for age and race (HR = 0.32, 95% CI: 0.15, 0.65), and Bcl-2 expression remained strongly positively associated with protection from breast cancer death, with additional adjustments for ER/PR status (HR = 0.41, 95% CI: 0.2, 0.85). SGK1 and Bcl-2 may play biological roles in breast cancer development and/or progression.
Collapse
Affiliation(s)
- Umaima Al-Alem
- Division of Epidemiology and Biostatistics, School of Public Health, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Garth H Rauscher
- Division of Epidemiology and Biostatistics, School of Public Health, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Qais Al Alem
- Division of Epidemiology and Biostatistics, School of Public Health, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Andre Kajdacsy-Balla
- Department of Pathology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Abeer M Mahmoud
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, The University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
2
|
Ying H, Zhang Z, Wang W, Yang Z, You C, Li Y, Cai X, Li X. Inhibition of Calcium-Sensing Receptor Alleviates Chronic Intermittent Hypoxia-Induced Cognitive Dysfunction via CaSR-PKC-ERK1/2 Pathway. Mol Neurobiol 2023; 60:2099-2115. [PMID: 36600080 DOI: 10.1007/s12035-022-03189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/25/2022] [Indexed: 01/06/2023]
Abstract
Obstructive sleep apnea-hypopnea syndrome (OSAHS) is typically characterized by chronic intermittent hypoxia (CIH), associated with cognitive dysfunction in children. Calcium-sensing receptor (CaSR) mediates the apoptosis of hippocampal neurons in various diseases. However, the effect of CaSR on OSAHS remains elusive. In the present study, we investigated the role of CaSR in CIH-induced memory dysfunction and underlying mechanisms on regulation of PKC-ERK1/2 signaling pathway in vivo and in vitro. CIH exposures for 4 weeks in mice, modeling OSAHS, contributed to cognitive dysfunction. CIH accelerated apoptosis of hippocampal neurons and resulted in the synaptic plasticity deficit via downregulated synaptophysin (Syn) protein level. The mice were intraperitoneally injected with CaSR inhibitor (NPS2143) 30 min before CIH exposure and the results demonstrated CaSR inhibitor alleviated the apoptosis and synaptic plasticity deficit in the hippocampus of CIH mice. We established intermittent hypoxia PC12 cell model and found that the activation of CaSR accelerated CIH-induced PC12 apoptosis and synaptic plasticity deficit by upregulated p-ERK1/2 and PKC. Overall, our findings revealed that CaSR held a critical function on CIH-induced cognitive dysfunction in mice by accelerating hippocampal neuronal apoptosis and reducing synaptic plasticity via augmenting CaSR-PKC-ERK1/2 pathway; otherwise, inhibition of CaSR alleviated CIH-induced cognitive dysfunction.
Collapse
Affiliation(s)
- Huiya Ying
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, China
- Clinical Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zilong Zhang
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, China
- Clinical Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Wei Wang
- Department of Pediatric Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zijing Yang
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, China
- Clinical Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Cancan You
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, China
- Clinical Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yuanai Li
- Department of Pediatric Sleep, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaohong Cai
- Department of Pediatric Sleep, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiucui Li
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, China.
| |
Collapse
|
3
|
Wang F, Sun N, Zeng H, Gao Y, Zhang N, Zhang W. Selenium Deficiency Leads to Inflammation, Autophagy, Endoplasmic Reticulum Stress, Apoptosis and Contraction Abnormalities via Affecting Intestinal Flora in Intestinal Smooth Muscle of Mice. Front Immunol 2022; 13:947655. [PMID: 35874733 PMCID: PMC9299101 DOI: 10.3389/fimmu.2022.947655] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/07/2022] [Indexed: 12/17/2022] Open
Abstract
Selenium (Se) is a micronutrient that plays a predominant role in various physiological processes in humans and animals. Long-term lack of Se will lead to many metabolic diseases. Studies have found that chronic Se deficiency can cause chronic diarrhea. The gut flora is closely related to the health of the body. Changes in environmental factors can cause changes in the intestinal flora. Our study found that Se deficiency can disrupt intestinal flora. Through 16s high-throughput sequencing analysis of small intestinal contents of mice, we found that compared with CSe group, the abundance of Lactobacillus, Bifidobacterium, and Ileibacterium in the low selenium group was significantly increased, while Romboutsia abundance was significantly decreased. Histological analysis showed that compared with CSe group, the small intestine tissues of the LSe group had obvious pathological changes. We examined mRNA expression levels in the small intestine associated with inflammation, autophagy, endoplasmic reticulum stress, apoptosis, tight junctions, and smooth muscle contraction. The mRNA levels of NF-κB, IκB, p38, IL-1β, TNF-α, Beclin, ATG7, ATG5, LC3α, BaK, Pum, Caspase-3, RIP1, RIPK3, PERK, IRE1, elF2α, GRP78, CHOP2, ZO-1, ZO-2, Occludin, E-cadherin, CaM, MLC, MLCK, Rho, and RhoA in the LSe group were significantly increased. The mRNA levels of IL-10, p62 BcL-2 and BcL-w were significantly decreased in the LSe group compared with the CSe group. These results suggest that changes in the abundance of Lactobacillus, bifidobacterium, ileum, and Romboutsia may be associated with cellular inflammation, autophagy, endoplasmic reticulum stress, apoptosis, tight junction, and abnormal smooth muscle contraction. Intestinal flora may play an important role in chronic diarrhea caused by selenium deficiency.
Collapse
Affiliation(s)
| | | | | | | | - Naisheng Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenlong Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
4
|
Flavonoids from the Amazon plant Brosimum acutifolium induce C6 glioma cell line apoptosis by disrupting mitochondrial membrane potential and reducing AKT phosphorylation. Biomed Pharmacother 2019; 113:108728. [DOI: 10.1016/j.biopha.2019.108728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 11/18/2022] Open
|
5
|
Zhao Q, Cheng X, Wang X, Wang J, Zhu Y, Ma X. Neuroprotective effect and mechanism of Mu-Xiang-You-Fang on cerebral ischemia-reperfusion injury in rats. JOURNAL OF ETHNOPHARMACOLOGY 2016; 192:140-147. [PMID: 27396346 DOI: 10.1016/j.jep.2016.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 04/29/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The present study is to investigate the neuroprotective effect of Mu-Xiang-You-Fang (MXYF), a classic Traditional Chinese Medicine used by Chinese minorities to treat stroke, on cerebral ischemia-reperfusion (I/R) injury and the related signaling pathways. MATERIALS AND METHODS Male Sprague-Dawley rats were divided into 6 groups: sham group, I/R group, nimodipine and MXYF (58, 116 and 232mg/kg respectively) groups. Cerebral ischemia model was induced by middle cerebral artery occlusion for 2h followed by reperfusion for 48h. Neurological functional score was evaluated according to the method of Zea longa's score and the infarct area was determined by 2,3,5-triphenyltetrazolium chloride (TTC) staining at 48h after reperfusion. The protein expression of cytochrome c (cyt-c), Bcl-2, Bax, caspase-9, caspase-3 and caspase-7 were analyzed by western blot and the mRNA expression of Caspase-9, Caspase-3 and Caspase-7 were determined by the reverse transcription-polymerase chain reaction. RESULTS Oral administration of MXYF (116 and 232mg/kg) significantly reduced the neurological functional score and attenuated the cerebral infarct area. Western blot analysis showed that the expression of Bcl-2 is enhanced and Bax expression is inhibited after treatment with MXYF (116 and 232mg/kg), leading to significant increase of the ratio between Bcl-2 and Bax. Furthermore, the protein expression of cyt-c, caspase-9, caspase-3 and caspase-7 was significantly inhibited while the mRNA expression of caspase-9, caspase-3 and caspase-7 but not cyt-c was markedly inhibited in the MXYF (116 and 232mg/kg) treatment groups compared with the I/R group. CONCLUSIONS The above data suggested that MXYF has potential neuroprotective activities by the regulation of apoptotic pathway, MXYF is a promising agent in treatment of stroke.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/metabolism
- Behavior, Animal/drug effects
- Brain/drug effects
- Brain/metabolism
- Brain/pathology
- Brain/physiopathology
- Cytoprotection
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drugs, Chinese Herbal/pharmacology
- Gas Chromatography-Mass Spectrometry
- Gene Expression Regulation
- Infarction, Middle Cerebral Artery/drug therapy
- Infarction, Middle Cerebral Artery/genetics
- Infarction, Middle Cerebral Artery/metabolism
- Infarction, Middle Cerebral Artery/pathology
- Male
- Neuroprotective Agents/isolation & purification
- Neuroprotective Agents/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Reperfusion Injury/genetics
- Reperfusion Injury/metabolism
- Reperfusion Injury/pathology
- Reperfusion Injury/prevention & control
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Qipeng Zhao
- Department of Pharmacology, Ningxia Medical University, Yinchuan, People's Republic of China; Ningxia Hui Medicine Modern Engineering Research Center, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Xiuli Cheng
- Department of Pharmacology, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Xiaobo Wang
- Department of Pharmacology, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Jing Wang
- Department of Pharmacology, Ningxia Medical University, Yinchuan, People's Republic of China; Ningxia Hui Medicine Modern Engineering Research Center, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Yafei Zhu
- Department of Pharmacology, Ningxia Medical University, Yinchuan, People's Republic of China.
| | - Xueqin Ma
- Department of Pharmacology, Ningxia Medical University, Yinchuan, People's Republic of China; Ningxia Hui Medicine Modern Engineering Research Center, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, People's Republic of China.
| |
Collapse
|
6
|
Georgatza D, Gorgogietas VA, Kylindri P, Charalambous MC, Papadopoulou KK, Hayes JM, Psarra AMG. The triterpene echinocystic acid and its 3-O-glucoside derivative are revealed as potent and selective glucocorticoid receptor agonists. Int J Biochem Cell Biol 2016; 79:277-287. [DOI: 10.1016/j.biocel.2016.08.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 07/19/2016] [Accepted: 08/29/2016] [Indexed: 12/20/2022]
|
7
|
Targeting mTOR/p70S6K/glycolysis signaling pathway restores glucocorticoid sensitivity to 4E-BP1 null Burkitt Lymphoma. BMC Cancer 2015; 15:529. [PMID: 26189041 PMCID: PMC4506760 DOI: 10.1186/s12885-015-1535-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 07/07/2015] [Indexed: 11/10/2022] Open
Abstract
Background Increasing evidence indicates that rapamycin could be used as a potential glucocorticoid (GC) sensitizer in lymphoblastic malignancies via genetic prevention of 4E-BP1 phosphorylation. Interestingly, we found that combined rapamycin with dexamethasone can effectively reverse GC resistance in 4E-BP1 null lymphoma cells. In this study, we investigated the potential link between mTOR/p70S6K signaling pathway, glycolysis, autophagy and GC resistance. Methods Antitumor effects of the combination of rapamycin and dexamethasone were evaluated on cell viability by MTT assay and in vivo studies, on cell cycle and apoptosis by flow cytometry, on autophagy by western blot, MDC staining and transmission electron microscopy and on cell signaling by western blot. Moreover, to test whether inhibiting glycolysis is the core mechanism in rapamycin restoring GC sensitivity, we took glycolysis inhibitor 2-deoxyglucose to replace rapamycin and then evaluated the antitumor effects in vitro. Results Raji cells are resistant to rapamycin (IC50 > 1000 nM) or dexamethasone (IC50 > 100 μM) treatment alone. The combination of rapamycin and dexamethasone synergistically inhibited the viability of Raji cells in vitro and in vivo by inducing caspase-dependent and -independent cell death and G0/G1 cell cycle arrest. These effects were achieved by the inhibition of mTOR/p70S6K signaling pathway, which led to the inhibition of glycolysis and the induction of autophagy. Pretreatment with pan-caspase inhibitor z-VAD-fmk or autophagy inhibitor 3-MA failed to protect the cells from combined treatment-induced death. Glycolysis inhibitor combined with dexamethasone produced a similar antitumor effects in vitro. Conclusions Inhibition of mTOR/p70S6K/glycolysis signaling pathway is the key point of therapy in reversing GC resistant in Burkitt lymphoma patients. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1535-z) contains supplementary material, which is available to authorized users.
Collapse
|
8
|
Zheng P, Liu J, Mai S, Yuan Y, Wang Y, Dai G. Regulation of signal transducer and activator of transcription 3 and apoptotic pathways by betaine attenuates isoproterenol-induced acute myocardial injury in rats. Hum Exp Toxicol 2014; 34:538-47. [PMID: 25080425 DOI: 10.1177/0960327114543936] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The present study was designed to investigate the cardioprotective effects of betaine on acute myocardial ischemia induced experimentally in rats focusing on regulation of signal transducer and activator of transcription 3 (STAT3) and apoptotic pathways as the potential mechanism underlying the drug effect. Male Sprague Dawley rats were treated with betaine (100, 200, and 400 mg/kg) orally for 40 days. Acute myocardial ischemic injury was induced in rats by subcutaneous injection of isoproterenol (85 mg/kg), for two consecutive days. Serum cardiac marker enzyme, histopathological variables and expression of protein levels were analyzed. Oral administration of betaine (200 and 400 mg/kg) significantly reduced the level of cardiac marker enzyme in the serum and prevented left ventricular remodeling. Western blot analysis showed that isoproterenol-induced phosphorylation of STAT3 was maintained or further enhanced by betaine treatment in myocardium. Furthermore, betaine (200 and 400 mg/kg) treatment increased the ventricular expression of Bcl-2 and reduced the level of Bax, therefore causing a significant increase in the ratio of Bcl-2/Bax. The protective role of betaine on myocardial damage was further confirmed by histopathological examination. In summary, our results showed that betaine pretreatment attenuated isoproterenol-induced acute myocardial ischemia via the regulation of STAT3 and apoptotic pathways.
Collapse
Affiliation(s)
- P Zheng
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - J Liu
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - S Mai
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Y Yuan
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Y Wang
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - G Dai
- Department of Pharmaceutical Engineering, College of Chemical and Materials Engineering, Kaili University, Kaili, Guizhou, People's Republic of China
| |
Collapse
|
9
|
Kim JH, Park YK, Kim JE, Lee SP, Kim BC, Jang BC. Crude extract of Ceriporia lacerata has a protective effect on dexamethasone-induced cytotoxicity in INS-1 cells via the modulation of PI3K/PKB activity. Int J Mol Med 2013; 32:179-86. [PMID: 23624822 DOI: 10.3892/ijmm.2013.1364] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 12/14/2012] [Indexed: 11/05/2022] Open
Abstract
Excessive and/or long-term glucocorticoid therapy reduces β-cell mass and induces hyperglycemia, which contribute to the development of steroid‑induced diabetes. Ceriporia (C.) lacerata is one of the white‑rot fungi and has been used in bioremediations, such as lignocellulose degradation, in nature. The pharmacologic effect of C. lacerata on steroid-induced β-cell toxicity is not known. In this study, we evaluated the effect of a crude extract from a submerged cultivation of C. lacerata on the survival and apoptosis of INS-1 rat insulin-secreting cells exposed to dexamethasone (Dex), a synthetic diabetogenic glucocorticoid. Treatment with the C. lacerata crude extract (CLCE) largely blocked the Dex-induced reduction in survival and apoptosis of INS-1 cells. Moreover, CLCE treatment inhibited Dex-induced protein kinase B (PKB) dephosphorylation without affecting Dex-induced extracellular signal-regulated protein kinase-1/2 dephosphorylation and MKP-1 upregulation. Importantly, the protective effect of CLCE on Dex-induced cytotoxicity in INS-1 cells was attenuated by LY294002, an inhibitor of PI3K/PKB. CLCE treatment, however, did not protect the INS-1 cells from the cytotoxic effects triggered by other insults, such as interleukin-1β (an inflammatory cytokine), streptozotocin (a diabetogenic drug), thapsigargin (a calcium mobilizing agent), and tunicamycin (an ER stress inducer). Collectively, these findings demonstrate for the first time the ability of CLCE to specifically protect INS-1 cells from Dex-induced cytotoxicity through the modulation of the PI3K/PKB pathway. It is suggested that CLCE may be applied for the prevention and/or treatment of steroid diabetes in which reduction of β-cell survival and induction of β-cell apoptosis play pathogenic roles.
Collapse
Affiliation(s)
- Ji-Hye Kim
- Department of Medical Genetic Engineering, Keimyung University School of Medicine, Dalseo-gu, Daegu 704-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
10
|
Mao Y, Triantafillou G, Hertlein E, Towns W, Stefanovski M, Mo X, Jarjoura D, Phelps M, Marcucci G, Lee LJ, Goldenberg DM, Lee RJ, Byrd JC, Muthusamy N. Milatuzumab-conjugated liposomes as targeted dexamethasone carriers for therapeutic delivery in CD74+ B-cell malignancies. Clin Cancer Res 2013; 19:347-56. [PMID: 23209030 PMCID: PMC3793126 DOI: 10.1158/1078-0432.ccr-12-2046] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE Corticosteroids are widely used for the treatment of B-cell malignancies, including non-Hodgkin lymphoma, chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia; however, this class of drug is associated with undesirable off-target effects. Herein, we developed novel milatuzumab-conjugated liposomes as a targeted dexamethasone carrier for therapeutic delivery in CD74(+) B-cell malignancies and explored its effect against the disease. EXPERIMENTAL DESIGN The targeting efficiency of milatuzumab-targeted liposomes to CD74(+) cells was evaluated in vitro. The effect of CD74-targeted liposomal dexamethasone was compared with free dexamethasone in primary CLL cells and cell lines in vitro. The therapeutic efficacy of CD74-targeted liposomal dexamethasone was evaluated in a Raji-severe combined immunodeficient (SCID) xenograft model in vivo. RESULTS Milatuzumab-targeted liposomes promoted selective incorporation of carrier molecules into transformed CD74-positive B cells as compared with CD74-negative T-cells. The CD74-dexamethasone-targeted liposomes (CD74-IL-DEX) promoted and increased killing in CD74-positive tumor cells and primary CLL cells. Furthermore, the targeted drug liposomes showed enhanced therapeutic efficacy against a CD74-positive B-cell model as compared with free, or non-targeted, liposomal dexamethasone in SCID mice engrafted with Raji cells in vivo. CONCLUSIONS These studies provide evidence and support for a potential use of CD74-targeted liposomal dexamethasone as a new therapy for B-cell malignancies.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/pharmacology
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Cell Line, Tumor
- Dexamethasone/administration & dosage
- Dexamethasone/pharmacology
- Disease Models, Animal
- Female
- Histocompatibility Antigens Class II/metabolism
- Humans
- Leukemia, B-Cell/drug therapy
- Leukemia, B-Cell/metabolism
- Leukemia, B-Cell/mortality
- Liposomes
- Lymphoma, B-Cell/drug therapy
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/mortality
- Mice
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yicheng Mao
- Division of Hematology, The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Division of Pharmaceutics, The Ohio State University, Columbus, Ohio
| | - Georgia Triantafillou
- Division of Hematology, The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Erin Hertlein
- Division of Hematology, The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - William Towns
- Division of Hematology, The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Matthew Stefanovski
- Division of Hematology, The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, Columbus, Ohio
| | - David Jarjoura
- Center for Biostatistics, The Ohio State University, Columbus, Ohio
| | - Mitch Phelps
- Division of Pharmaceutics, The Ohio State University, Columbus, Ohio
| | - Guido Marcucci
- Division of Hematology, The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Ly James Lee
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - David M. Goldenberg
- Garden State Cancer Center, Center for Molecular Medicine and Immunology, Morris Plains, New Jersey
| | - Robert J. Lee
- Division of Pharmaceutics, The Ohio State University, Columbus, Ohio
| | - John C. Byrd
- Division of Hematology, The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Natarajan Muthusamy
- Division of Hematology, The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
11
|
Li J, Ke T, He C, Cao W, Wei M, Zhang L, Zhang JX, Wang W, Ma J, Wang ZR, Shao ZJ. The Anti-Arthritic Effects of Synthetic Melittin on the Complete Freund's Adjuvant-Induced Rheumatoid Arthritis Model in Rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 38:1039-49. [PMID: 21061459 DOI: 10.1142/s0192415x10008457] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bee venom (BV) has been used for millennia in Chinese traditional medicine to treat rheumatoid arthritis (RA). However, its components and mechanism remain unclear, which has hampered its development and application for the treatment of RA. In this study, we examined the anti-arthritis effects of melittin, which composes nearly 50% of the dry weight of whole BV, on the complete Freund's adjuvant-induced (CFA-induced) RA model in rats. The RA animal models were treated with solutions of BV, melittin, and saline by injection into a specific acupoint (Zusanli). The BV and melittin treatments statistically diminished the thickness of the arthroses in the injected side of the paw, compared to the saline treatment. Melittin therapy also significantly reduced arthritis-induced nociceptive behaviors, as assessed by the thermal hyperalgesia test. In addition, CFA-induced Fos expression in the superficial layer of the lumbar spinal cord was significantly suppressed by the BV and melittin treatments, compared to the saline treatment. These results indicate that melittin is an effective anti-arthritis component of whole bee venom, making it a promising candidate as an anti-arthritis drug.
Collapse
Affiliation(s)
- Jinghua Li
- Department of Chinese Traditional Medicine, Xijing Hospital, China
| | - Tao Ke
- Department of Epidemiology, School of Public Health, China
| | - Chao He
- Department of Aerospace Hygiene and Health Service, School of Aerospace Medicine, China
| | - Wei Cao
- Department of Interventional Section, Tangdu Hospital, Fourth Military Medical University, China 710032, China
| | - Mengqi Wei
- Department of Imaging, School of Public Health, China
| | - Lei Zhang
- Department of Epidemiology, School of Public Health, China
| | - Jin-Xia Zhang
- Department of Epidemiology, School of Public Health, China
| | - Wen Wang
- Department of Chinese Traditional Medicine, Xijing Hospital, China
| | - Jing Ma
- Department of Chinese Traditional Medicine, Xijing Hospital, China
| | - Zong-Ren Wang
- Department of Chinese Traditional Medicine, Xijing Hospital, China
| | - Zhong-Jun Shao
- Department of Epidemiology, School of Public Health, China
| |
Collapse
|
12
|
HIRAYAMA H, USHIZAWA K, TAKAHASHI T, SAWAI K, MORIYASU S, KAGEYAMA S, MIURA R, MATSUI M, FUKUDA S, NAITO A, FUJII T, MINAMIHASHI A. Differences in Apoptotic Status in the Bovine Placentome between Spontaneous and Induced Parturition. J Reprod Dev 2012; 58:585-91. [DOI: 10.1262/jrd.2012-043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Hiroki HIRAYAMA
- Animal Biotechnology Group, Animal Research Center, Hokkaido Research Organization, Hokkaido 081-0038, Japan
- Animal Biotechnology Group, Animal Research Center, Hokkaido Research Organization, Hokkaido 081-0038, Japan
| | - Koichi USHIZAWA
- Animal Physiology Research Unit, Division of Animal Science, National Institute of Agrobiological Sciences, Ibaraki 305-0901, Japan
- Animal Physiology Research Unit, Division of Animal Science, National Institute of Agrobiological Sciences, Ibaraki 305-0901, Japan
| | - Toru TAKAHASHI
- Animal Physiology Research Unit, Division of Animal Science, National Institute of Agrobiological Sciences, Ibaraki 305-0901, Japan
- Animal Physiology Research Unit, Division of Animal Science, National Institute of Agrobiological Sciences, Ibaraki 305-0901, Japan
| | - Ken SAWAI
- Department of Animal Science, Faculty of Agriculture, Iwate University, Iwate 020-8550, Japan
- Department of Animal Science, Faculty of Agriculture, Iwate University, Iwate 020-8550, Japan
| | - Satoru MORIYASU
- Animal Biotechnology Group, Animal Research Center, Hokkaido Research Organization, Hokkaido 081-0038, Japan
- Animal Biotechnology Group, Animal Research Center, Hokkaido Research Organization, Hokkaido 081-0038, Japan
| | - Soichi KAGEYAMA
- Animal Biotechnology Group, Animal Research Center, Hokkaido Research Organization, Hokkaido 081-0038, Japan
- Animal Biotechnology Group, Animal Research Center, Hokkaido Research Organization, Hokkaido 081-0038, Japan
| | - Ryotaro MIURA
- Department of Clinically Veterinary Sciences, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
- Department of Clinically Veterinary Sciences, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | - Motozumi MATSUI
- Department of Clinically Veterinary Sciences, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
- Department of Clinically Veterinary Sciences, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | - Shigeo FUKUDA
- Animal Biotechnology Group, Animal Research Center, Hokkaido Research Organization, Hokkaido 081-0038, Japan
- Animal Biotechnology Group, Animal Research Center, Hokkaido Research Organization, Hokkaido 081-0038, Japan
| | - Akira NAITO
- Animal Biotechnology Group, Animal Research Center, Hokkaido Research Organization, Hokkaido 081-0038, Japan
- Animal Biotechnology Group, Animal Research Center, Hokkaido Research Organization, Hokkaido 081-0038, Japan
| | - Takashi FUJII
- Animal Biotechnology Group, Animal Research Center, Hokkaido Research Organization, Hokkaido 081-0038, Japan
- Animal Biotechnology Group, Animal Research Center, Hokkaido Research Organization, Hokkaido 081-0038, Japan
| | - Akira MINAMIHASHI
- Animal Biotechnology Group, Animal Research Center, Hokkaido Research Organization, Hokkaido 081-0038, Japan
- Animal Biotechnology Group, Animal Research Center, Hokkaido Research Organization, Hokkaido 081-0038, Japan
| |
Collapse
|
13
|
Donskow K, Drela N, Doligalska M. Heligmosomoides bakeri antigen rescues CD4-positive T cells from glucocorticoid-induced apoptosis by Bcl-2 protein expression. Parasite Immunol 2011; 33:158-69. [PMID: 21306399 DOI: 10.1111/j.1365-3024.2010.01262.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heligmosomoides bakeri infection in mice is associated with a dominant CD4(+) T-cell response and with the activity of natural Treg cells with CD4(+) CD25(+) phenotype. The polarization of Th2 T-cell phenotype and the increase in the CD4(+) CD25(+) T cell population are regulated by glucocorticoids that induce apoptosis in CD4(+) CD25(-) T cells and inhibit apoptosis in CD4(+) CD25(+) T cells. However, exposure of mice to H. bakeri antigen induces a high glucocorticoid concentration in serum and a reduction in the number of CD4-positive; CD4(+) CD25(-) and CD4(+) CD25(+) apoptotic T cells in mesenteric lymph node cells. In this study to evaluate the in vitro effect of the anti-apoptotic property of H. bakeri antigen on T cells, apoptosis of these cells was induced by glucocorticoids-dexamethasone (Dex). Excretory-secretory (ES) antigen of the nematode prevented Dex-induced apoptosis in CD4-positive T cells with CD4(+) CD25(-) and CD4(+) CD25(High) phenotype by Bcl-2 protein expression. Contrary to the effect on CD4-positive T cells, survival of CD8(+) T cells was not connected with expression of Bcl-2 protein. This suggest that H. bakeri antigen modulates CD4-positive T cell sensitivity to glucocorticoid-induced apoptosis by induction of Bcl-2 protein.
Collapse
Affiliation(s)
- K Donskow
- Department of Parasitology, University of Warsaw, Warsaw, Poland.
| | | | | |
Collapse
|
14
|
Jiang N, Koh GS, Lim JY, Kham SK, Ariffin H, Chew FT, Yeoh AE. BIM is a prognostic biomarker for early prednisolone response in pediatric acute lymphoblastic leukemia. Exp Hematol 2011; 39:321-9, 329.e1-3. [DOI: 10.1016/j.exphem.2010.11.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 11/02/2010] [Accepted: 11/24/2010] [Indexed: 11/26/2022]
|
15
|
Gu L, Zhou C, Liu H, Gao J, Li Q, Mu D, Ma Z. Rapamycin sensitizes T-ALL cells to dexamethasone-induced apoptosis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:150. [PMID: 21083937 PMCID: PMC2998469 DOI: 10.1186/1756-9966-29-150] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 11/18/2010] [Indexed: 11/30/2022]
Abstract
Background Glucocorticoid (GC) resistance is frequently seen in acute lymphoblastic leukemia of T-cell lineage (T-ALL). In this study we investigate the potential and mechanism of using rapamycin to restore the sensitivity of GC-resistant T-ALL cells to dexamethasone (Dex) treatment. Methods Cell proliferation was detected by 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide (MTT) assay. Fluorescence-activated cell sorting (FACS) analysis was used to analyze apoptosis and cell cycles. Western blot analysis was performed to test the expression of the downstream effector proteins of mammalian target of rapamycin (mTOR), the cell cycle regulatory proteins, and apoptosis associated proteins. Results 10 nM rapamycin markedly increased GC sensitivity in GC-resistant T-ALL cells and this effect was mediated, at least in part, by inhibition of mTOR signaling pathway. Cell cycle arrest was associated with modulation of G1-S phase regulators. Both rapamycin and Dex can induce up-regulation of cyclin-dependent kinase (CDK) inhibitors of p21 and p27 and co-treatment of rapamycin with Dex resulted in a synergistic induction of their expressions. Rapamycin did not obviously affect the expression of cyclin A, whereas Dex induced cyclin A expression. Rapamycin prevented Dex-induced expression of cyclin A. Rapamycin had a stronger inhibition of cyclin D1 expression than Dex. Rapamycin enhanced GC-induced apoptosis and this was not achieved by modulation of glucocorticoid receptor (GR) expression, but synergistically up-regulation of pro-apoptotic proteins like caspase-3, Bax, and Bim, and down-regulation of anti-apoptotic protein of Mcl-1. Conclusion Our data suggests that rapamycin can effectively reverse GC resistance in T-ALL and this effect is achieved by inducing cell cycles arrested at G0/G1 phase and activating the intrinsic apoptotic program. Therefore, combination of mTOR inhibitor rapamycin with GC containing protocol might be an attracting new therapeutic approach for GC resistant T-ALL patients.
Collapse
Affiliation(s)
- Ling Gu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Wei-Chen Chen D, Lynch JT, Demonacos C, Krstic-Demonacos M, Schwartz JM. Quantitative analysis and modeling of glucocorticoid-controlled gene expression. Pharmacogenomics 2010; 11:1545-60. [DOI: 10.2217/pgs.10.125] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Aims: Glucocorticoid hormones are used extensively in the clinic for the treatment of acute lymphoblastic leukemia. Despite intensive research, the molecular mechanisms of glucocorticoid receptor (GR)-mediated transcriptional events that lead to the induction of apoptosis of leukemia cells, as well as the causes for the development of resistance in leukemia patients, are not yet understood. It is thought that the B-cell lymphoma 2 family members that control apoptosis, including some of the GR target genes, may play an important role in deciding cell fate. In this report we have employed pathway modeling due to the recent discovery of its usefulness as a tool for improving understanding of the mechanisms of cellular signaling, and in discovering new therapeutic targets for the treatment of various diseases. Materials & methods: Detailed kinetics of GR autoregulation, as well as the kinetics of expression of its target genes and proteins Bcl-xL, Bim, Bmf and GILZ in glucocorticoid responsive and resistant leukemia cell lines were carried out. Subsequently in order to obtain further insight into the molecular mechanisms of GR signaling in this pathway a dynamic model of the induction of these genes and proteins by GR was constructed. Results: The simulations were in good agreement with the observed experimental data suggesting that Bim was induced between 6 and 10 h after the addition of the synthetic glucocorticoid dexamethasone, possibly through rapid glucocorticoid dependent modulation of an unknown factor. Simulations and experimental results also suggested that Bmf induction did not require novel protein synthesis, and is a potential direct GR target. Conclusion: This combination of experimental analysis and model development initiates a virtuous cycle enabling further data integration and model expansion, and constitutes a novel promising framework towards a global mechanistic understanding of GR function.
Collapse
Affiliation(s)
| | - James T Lynch
- School of Pharmacy & Pharmaceutical Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Constantinos Demonacos
- School of Pharmacy & Pharmaceutical Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | | | | |
Collapse
|
17
|
Saad Rached ICF, Castro FM, Guzzo ML, de Mello SBV. Anti-inflammatory effect of bee venom on antigen-induced arthritis in rabbits: influence of endogenous glucocorticoids. JOURNAL OF ETHNOPHARMACOLOGY 2010; 130:175-178. [PMID: 20457243 DOI: 10.1016/j.jep.2010.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 04/09/2010] [Accepted: 04/11/2010] [Indexed: 05/29/2023]
Abstract
AIM OF THE STUDY This study assessed the involvement of endogenous glucocorticoids (GCs) in the anti-arthritic properties of bee venom (BV) on antigen-induced arthritis (AIA) in rabbits. MATERIALS AND METHODS BV (1.5-6 microg/kg/day) was injected for 7 days before AIA induction, whereas the control group received sterile saline. The total and differential leukocyte count, PGE(2) levels in synovial fluid and synovial membrane cell infiltrate were evaluated. The contribution of GCs to BV action was assessed in rabbits treated with BV plus metyrapone, an inhibitor of GC synthesis, or RU-38 486, a steroid antagonist. RESULTS Treatment with BV (1.5 microg/kg/day) reduced the leukocyte count and PGE(2) level (18571+/-1909 cells/mm(3) and 0.49+/-0.05 ng/mL, respectively) as well as the cellular infiltrate compared with the control group (40968+/-5248 cells/mm(3) and 2.92+/-0.68 ng/mL, p<0.05). The addition of metyrapone to BV treatment completely reversed the inhibition of AIA, whereas RU-38 486 was ineffective. CONCLUSION Our data show that bee venom treatment prevents the development of antigen-induced arthritis in rabbits through the action of GCs.
Collapse
Affiliation(s)
- Izabella Cordeiro Freire Saad Rached
- Allergy and Clinical Immunology Division, Department of Internal Medicine, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo, 455, São Paulo, SP, CEP: 01246-903, Brazil
| | | | | | | |
Collapse
|
18
|
Khalfaoui T, Basora N, Ouertani-Meddeb A. Apoptotic factors (Bcl-2 and Bax) and diabetic retinopathy in type 2 diabetes. J Mol Histol 2010; 41:143-52. [DOI: 10.1007/s10735-010-9271-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 05/25/2010] [Indexed: 12/11/2022]
|
19
|
Spokoini R, Kfir-Erenfeld S, Yefenof E, Sionov RV. Glycogen synthase kinase-3 plays a central role in mediating glucocorticoid-induced apoptosis. Mol Endocrinol 2010; 24:1136-50. [PMID: 20371704 DOI: 10.1210/me.2009-0466] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It is still unclear how glucocorticoids (GCs) induce apoptosis of thymocytes and T lymphoma cells. Emergence of GC-resistant lymphoma cells is a major obstacle in GC therapy, emphasizing the need for novel strategies that maintain the sensitivity of lymphoma cells to the proapoptotic effects of GC. We have undertaken a kinome study to elucidate the signal transduction pathways involved in mediating GC-induced apoptosis. Our study shows that glycogen synthase kinase (GSK3) plays a central role in promoting GC-induced apoptosis. In the absence of a ligand, GSK3alpha, but not GSK3beta, is sequestered to the glucocorticoid receptor (GR). Exposure to GCs leads to dissociation of GSK3alpha from GR and subsequent interaction of GSK3alpha and GSK3beta with the proapoptotic Bim protein, an essential mediator of GC-induced apoptosis. Chemical inhibition of GSK3 by SB216763, BIO-Acetoxime, or LiCl and GSK3 inhibition using a dominant-negative mutant of GSK3 impede this cell death process, indicating that GSK3 is involved in transmitting the apoptotic signal. GC resistance in lymphoma cells can be relieved by inhibiting the phosphatidylinositol-3 kinase-Akt survival pathway, which inactivates GSK3. Notch1, a transcription factor frequently activated in T acute lymphoblastic leukemia cells, confers GC resistance through activation of Akt. Altogether, this study illuminates the link connecting upstream GR signals to the downstream mediators of GC-induced apoptosis. Our data suggest that targeting protein kinases involved in GSK3 inactivation should improve the outcome of GC therapy.
Collapse
Affiliation(s)
- Rachel Spokoini
- The Lautenberg Center of Immunology, Institute of Medical Research, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | | | | | | |
Collapse
|
20
|
|
21
|
Mechanisms regulating the susceptibility of hematopoietic malignancies to glucocorticoid-induced apoptosis. Adv Cancer Res 2009; 101:127-248. [PMID: 19055945 DOI: 10.1016/s0065-230x(08)00406-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glucocorticoids (GCs) are commonly used in the treatment of hematopoietic malignancies owing to their ability to induce apoptosis of these cancerous cells. Whereas some types of lymphoma and leukemia respond well to this drug, others are resistant. Also, GC-resistance gradually develops upon repeated treatments ultimately leading to refractory relapsed disease. Understanding the mechanisms regulating GC-induced apoptosis is therefore uttermost important for designing novel treatment strategies that overcome GC-resistance. This review discusses updated data describing the complex regulation of the cell's susceptibility to apoptosis triggered by GCs. We address both the genomic and nongenomic effects involved in promoting the apoptotic signals as well as the resistance mechanisms opposing these signals. Eventually we address potential strategies of clinical relevance that sensitize GC-resistant lymphoma and leukemia cells to this drug. The major target is the nongenomic signal transduction machinery where the interplay between protein kinases determines the cell fate. Shifting the balance of the kinome towards a state where Glycogen synthase kinase 3alpha (GSK3alpha) is kept active, favors an apoptotic response. Accumulating data show that it is possible to therapeutically modulate GC-resistance in patients, thereby improving the response to GC therapy.
Collapse
|
22
|
Haack D, Luu H, Cho J, Chen MJ, Russo-Neustadt A. Exercise reverses chronic stress-induced Bax oligomer formation in the cerebral cortex. Neurosci Lett 2008; 438:290-4. [PMID: 18487019 DOI: 10.1016/j.neulet.2008.04.070] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 04/17/2008] [Accepted: 04/22/2008] [Indexed: 10/22/2022]
Abstract
Chronic stress may lead to neuronal atrophy and functional impairments within the CNS, and increasing evidence indicates that exercise can protect the brain from these changes. Bax is a key protein of the B-cell lymphoma (Bcl) family that complexes within the mitochondrial membrane and forms pores to initiate cellular apoptosis. Herein, we measured cortical Bax levels following chronic and acute stress via immunoblotting. We reveal that chronic, but not acute, stress increases cortical levels of Bax oligomer 270, a complex revealed in previous studies to be associated with apoptosis. Several recent studies have revealed that physical exercise can protect rodents from neurochemical and/or behavioral changes occurring with stress. Previous studies have also revealed that voluntary exercise enhances the expression and activation of cellular proteins associated with enhanced neuronal survival. Herein, we reveal that 3 weeks of daily restraint led to increased oligomerization of Bax within the cerebral cortex, and that chronic corticosterone administration had a similar effect. Voluntary wheel running, concurrent with chronic restraint, prevented an increase in Bax oligomer 270. Analysis of subcellular fractions also revealed that the combination of exercise with chronic stress reduced the percent of total Bax localized to the mitochondria. Ours is the first study to investigate dynamic molecule complexes associated with the initiation of apoptosis with stress, and the influence of exercise upon the levels of these complexes, suggesting that exercise is an effective preventative measure that can promote neuronal survival and protect the brain against the damaging effects of chronic stress.
Collapse
Affiliation(s)
- Danielle Haack
- Department of Biological Sciences, California State University, Los Angeles, CA 90032, USA
| | | | | | | | | |
Collapse
|
23
|
Ploner C, Rainer J, Niederegger H, Eduardoff M, Villunger A, Geley S, Kofler R. The BCL2 rheostat in glucocorticoid-induced apoptosis of acute lymphoblastic leukemia. Leukemia 2008; 22:370-7. [PMID: 18046449 PMCID: PMC4950962 DOI: 10.1038/sj.leu.2405039] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glucocorticoid (GC)-induced apoptosis is essential in the treatment of acute lymphoblastic leukemia (ALL) and related malignancies. Pro- and anti-apoptotic members of the BCL2 family control many forms of apoptotic cell death, but the extent to which this survival 'rheostat' is involved in the beneficial effects of GC therapy is not understood. We performed systematic analyses of expression, GC regulation and function of BCL2 molecules in primary ALL lymphoblasts and a corresponding in vitro model. Affymetrix-based expression profiling revealed that the response included regulations of pro-apoptotic and, surprisingly, anti-apoptotic BCL2 family members, and varied among patients, but was dominated by induction of the BH3-only molecules BMF and BCL2L11/Bim and repression of PMAIP1/Noxa. Conditional lentiviral gene overexpression and knock-down by RNA interference in the CCRF-CEM model revealed that induction of Bim, and to a lesser extent that of BMF, was required and sufficient for apoptosis. Although anti-apoptotic BCL2 members were not regulated consistently by GC in the various systems, their overexpression delayed, whereas their knock-down accelerated, GC-induced cell death. Thus, the combined clinical and experimental data suggest that GCs induce both pro- and anti-apoptotic BCL2 family member-dependent pathways, with the outcome depending on cellular context and additional signals feeding into the BCL2 rheostat.
Collapse
Affiliation(s)
- C Ploner
- Division Molecular Pathophysiology, Department Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
24
|
Li Y, Wang B, Zhou C, Bi Y. Matrine induces apoptosis in angiotensin II-stimulated hyperplasia of cardiac fibroblasts: effects on Bcl-2/Bax expression and caspase-3 activation. Basic Clin Pharmacol Toxicol 2007; 101:1-8. [PMID: 17577309 DOI: 10.1111/j.1742-7843.2006.00040.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study was designed to assess the effect of matrine, an active component of Chinese traditional medicine, on angiotensin II (Ang II)-induced hyperplastic growth of cardiac fibroblasts in vitro. Cardiac fibroblasts were prepared from hearts of neonatal Kunming mice by collagenase disruption. Cultured cardiac fibroblasts were either not treated, treated with 0.1 microM Ang II, or matrine (2.0 approximately 4.0 mM) plus Ang II for 12-72 hr. Cell morphology was monitored under an inverted phase contrast microscope. Number of cells was counted with a haemocytometer. Cell apoptosis was determined by propidium iodide/Hoechst 33342 staining and flow cytometry. The cleaved caspase-3 fragment expression, anti-apoptotic Bcl-2 and pro-apoptotic Bax protein expressions were also studied. The results show that Ang II stimulation resulted in hyperplastic growth of cardiac fibroblasts. Matrine significantly, dose and time dependently inhibited Ang II-induced cell proliferation. Matrine addition to the culture medium led to most cells being arrested in the G1 phase of the cell cycle, the fraction of cells in S phase was markedly decreased compared to control and Ang II alone groups. Cell apoptosis in matrine treatment group was markedly increased, accompanied by down-regulation in Bcl-2/Bax ratio and up-regulation in cleaved caspase-3 activity. These results suggest that matrine can induce apoptosis and thereby inhibit Ang II-induced hyperplasic growth of cardiac fibroblasts. The regulations of matrine on Bcl-2/Bax expression and caspase-3 activation may be the pro-apoptotic mechanisms involved.
Collapse
Affiliation(s)
- Yang Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, China
| | | | | | | |
Collapse
|
25
|
Pálinkás L, Talabér G, Boldizsár F, Bartis D, Németh P, Berki T. Developmental shift in TcR-mediated rescue of thymocytes from glucocorticoid-induced apoptosis. Immunobiology 2007; 213:39-50. [PMID: 18207026 DOI: 10.1016/j.imbio.2007.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 05/24/2007] [Accepted: 06/22/2007] [Indexed: 01/08/2023]
Abstract
Glucocorticoid hormone (GC) production by thymic epithelial cells influences TcR signalling in DP thymocytes and modifies their survival. In the present work, we focused on exploring details of GC effects on DP thymocyte apoptosis with or without parallel TcR activation in AND transgenic mice, carrying TcR specific for pigeon cytochrome C, in vivo. Here we show that the glucocorticoid receptor (GR) protein level was the lowest in DP thymocytes, and it was slightly down-regulated by GC analogue, anti-CD3, PCC and combined treatments as well. Exogenous GC analogue treatment or TcR stimulation alone lead to marked DP cell depletion, coupled with a significant increase of early apoptotic cell ratio (AnnexinV staining), marked abrogation of the mitochondrial function in DP cells (CMXRos staining), and significant decrease in the Bcl-2(high) DP thymocyte numbers, respectively. On the other hand, the simultaneous exposure to these two proapototic signals effectively reversed all the above-described changes. The parallel analysis of CD4 SP cell numbers, AnnexinV, CMXRos, Bcl-2 and GR stainings revealed, that the GR and TcR signals were not antagonistic on the mature thymocytes. These data provide experimental evidence in TcR transgenic mice, in vivo, that when TcR activation and GR signals are present simultaneously, they rescue double positive thymocytes from programmed cell death. The two separate signalling pathways merge in DP thymocytes at such important apoptosis regulating points as the Bcl-2 and GR, showing that their balanced interplay is essential in DP cell survival.
Collapse
Affiliation(s)
- László Pálinkás
- Department of Immunology and Biotechnology, University of Pécs, Szigeti út 12, H-7643 Pécs, Hungary
| | | | | | | | | | | |
Collapse
|
26
|
Nair A, Hunzeker J, Bonneau RH. Modulation of microglia and CD8(+) T cell activation during the development of stress-induced herpes simplex virus type-1 encephalitis. Brain Behav Immun 2007; 21:791-806. [PMID: 17349776 DOI: 10.1016/j.bbi.2007.01.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 12/20/2006] [Accepted: 01/08/2007] [Indexed: 01/07/2023] Open
Abstract
The central nervous system (CNS) has been shown to be vulnerable to a variety of insults in animals exposed to glucocorticoids. For example, psychological stress, a known inducer of glucocorticoid production, enhances the susceptibility of mice to herpes simplex virus type-1 (HSV-1) infection and results in the development of HSV-1 encephalitis (HSE). To determine the immune mechanisms by which stress promotes the development of HSE, we examined the role of the glucocorticoid receptor (GR) and the N-methyl-d-aspartate (NMDA) receptor in the development of HSE. Our findings demonstrate that blockade of either the GR or the NMDA receptor enhances survival following HSV-1 infection in stressed mice to levels similar to non-stressed mice. Subsequent studies determined the effect of GR and NMDA receptor blockade on immune function by specifically examining both microglia and CD8(+) T cell activation. Stress inhibited the expression of MHC class I by microglia and other brain-derived antigen presenting cells (CD45(hi)) independent of either the glucocorticoid receptor or the NMDA receptor, suggesting that stress-induced suppression of MHC class I expression in the brain does not affect survival during HSE. Blockade of the NMDA receptor, however, diminished HSV-1-induced increases in class I expression by CD45(hi) cells, suggesting that blockade of the NMDA receptor may limit CNS inflammation. Also, while CD8(+) T cell activation and function in the brain were not affected by stress, the number of CD8(+) T cells in the superficial cervical lymph nodes (SCLN) was decreased in stressed mice via GR-mediated mechanisms. These findings indicate that stress-induced hypocellularity is mediated by the GR while NMDA receptor activation is responsible for enhancing CNS inflammation. The combined effects of GR-mediated hypocellularity of the SCLN and NMDA receptor-mediated CNS inflammation during stress promote the development of HSE.
Collapse
MESH Headings
- Animals
- Brain/cytology
- Brain/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/virology
- Cytokines/metabolism
- Disease Models, Animal
- Encephalitis, Herpes Simplex/immunology
- Encephalitis, Herpes Simplex/psychology
- Encephalitis, Herpes Simplex/virology
- Herpesvirus 1, Human/immunology
- Major Histocompatibility Complex/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Microglia/immunology
- Microglia/metabolism
- Microglia/virology
- Receptors, Glucocorticoid/antagonists & inhibitors
- Receptors, Glucocorticoid/physiology
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/physiology
- Stress, Psychological/complications
- Stress, Psychological/immunology
- Stress, Psychological/virology
Collapse
Affiliation(s)
- Aji Nair
- Graduate Program in Neuroscience, The Pennsylvania State University College of Medicine, Milton S Hershey Medical Center, Hershey, PA 17033, USA
| | | | | |
Collapse
|
27
|
Amaral JD, Solá S, Steer CJ, Rodrigues CP. Function of nuclear steroid receptors in apoptosis: role of ursodeoxycholic acid. Expert Rev Endocrinol Metab 2007; 2:487-501. [PMID: 30290423 DOI: 10.1586/17446651.2.4.487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nuclear steroid receptors such as the glucocorticoid and the mineralocorticoid receptors modulate apoptosis in different cell types through transactivation-dependent and -independent mechanisms. They are involved in both the induction and prevention of apoptosis depending on cell type. However, it is unclear how nuclear steroid receptors can affect expression of the same gene in opposing ways for different cells. In addition to their function as modulators of gene expression, nuclear steroid receptors often act as nuclear transporters of other regulatory molecules, thus indirectly regulating several apoptosis-related genes. Curiously, nuclear steroid receptors are thought to cooperate with the antiapoptotic endogenous bile acid, ursodeoxycholic acid, to prevent programmed cell death. The next decade will almost certainly unveil the remarkable role of nuclear steroid receptors in modulating the life and death struggle of cells and organ systems in human development and function.
Collapse
Affiliation(s)
- Joana D Amaral
- a Research Institute for Medicines & Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| | - Susana Solá
- b Research Institute for Medicines & Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| | - Clifford J Steer
- c Departments of Medicine, & Genetics, Cell Biology, & Development, University of Minnesota Medical School, Minneapolis, MN, USA.
| | - Cecília P Rodrigues
- d Research Institute for Medicines & Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| |
Collapse
|
28
|
Baken KA, Arkusz J, Pennings JLA, Vandebriel RJ, van Loveren H. In vitro immunotoxicity of bis(tri-n-butyltin)oxide (TBTO) studied by toxicogenomics. Toxicology 2007; 237:35-48. [PMID: 17553608 DOI: 10.1016/j.tox.2007.04.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 04/24/2007] [Accepted: 04/27/2007] [Indexed: 11/19/2022]
Abstract
The biocide and environmental pollutant bis(tri-n-butyltin)oxide (TBTO) causes thymus atrophy in rodents. Whether the depletion of thymic lymphocytes by tributyltin compounds may be the result of inhibition of cell proliferation or induction of apoptosis is subject of debate. We examined gene expression profiles in primary rat thymocytes exposed to TBTO in vitro at dose levels of 0, 0.1, 0.3, 0.5, and 1.0microM. By measuring cell viability and apoptosis, exposure conditions were selected that would provide information on changes in gene expression preceding or accompanying functional effects of TBTO. Several processes related to TBTO-induced toxicity were detected at the transcriptome level. Effects on lipid metabolisms appeared to be the first indication of disruption of cellular function. Many transcriptional effects of TBTO at higher dose levels were related to apoptotic processes, which corresponded to present or subsequent thymocyte apoptosis observed phenotypically. The gene expression profile was, however, not unambiguous since expression of apoptosis-related genes was both increased and decreased. Stimulation of glucocorticoid receptor signaling appeared to be a relevant underlying mechanism of action. These findings suggest that TBTO exerts its toxic effects on the thymus primarily by affecting apoptotic processes, but the possibility is discussed that this may in fact represent an early effect that precedes inhibition of cell proliferation. At the highest dose level tested, TBTO additionally repressed mitochondrial function and immune cell activation. Our in vitro toxicogenomics approach thus identified several cellular and molecular targets of TBTO that may mediate the toxicity towards thymocytes and thereby its immunosuppressive effects.
Collapse
Affiliation(s)
- Kirsten A Baken
- Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Department of Health Risk Analysis and Toxicology (GRAT), Maastricht University, Maastricht, The Netherlands; National Institute of Public Health and the Environment (RIVM), Laboratory for Toxicology, Pathology and Genetics (TOX), Bilthoven, The Netherlands.
| | - Joanna Arkusz
- Nofer Institute of Occupational Medicine, Department of Toxicology and Carcinogenesis, Lodz, Poland
| | - Jeroen L A Pennings
- National Institute of Public Health and the Environment (RIVM), Laboratory for Toxicology, Pathology and Genetics (TOX), Bilthoven, The Netherlands
| | - Rob J Vandebriel
- National Institute of Public Health and the Environment (RIVM), Laboratory for Toxicology, Pathology and Genetics (TOX), Bilthoven, The Netherlands
| | - Henk van Loveren
- Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Department of Health Risk Analysis and Toxicology (GRAT), Maastricht University, Maastricht, The Netherlands; National Institute of Public Health and the Environment (RIVM), Laboratory for Toxicology, Pathology and Genetics (TOX), Bilthoven, The Netherlands
| |
Collapse
|
29
|
Boldizsár F, Pálinkás L, Czömpöly T, Bartis D, Németh P, Berki T. Low glucocorticoid receptor (GR), high Dig2 and low Bcl-2 expression in double positive thymocytes of BALB/c mice indicates their endogenous glucocorticoid hormone exposure. Immunobiology 2006; 211:785-96. [PMID: 17113916 DOI: 10.1016/j.imbio.2006.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 06/15/2006] [Accepted: 06/16/2006] [Indexed: 10/24/2022]
Abstract
Several studies have shown that of the four major thymocyte subsets, the CD4/CD8 double positive (DP) thymocytes are the most sensitive to in vivo glucocorticoid hormone (GC)-induced apoptosis. Our aim was to analyse fine molecular differences among thymocyte subgroups that could underlie this phenomenon. Therefore, we characterised the glucocorticoid hormone receptor (GR) expression of thymocyte subgroups both at the mRNA and protein levels by real-time PCR and flow cytometry, and correlated these features to their apoptotic sensitivity. We also investigated the time-dependent effects of the GC agonist dexamethasone (DX) with or without GC antagonist (RU486) treatments on GR mRNA/protein expression. We also analysed the expression of two apoptosis-related gene products: dexamethasone-induced gene 2 (Dig2) mRNA and Bcl-2 protein. We found that DN thymocytes had the highest GR expression, followed by CD8 single positive (SP), CD4 SP and DP thymocytes in 4-week-old BALB/c mice, both at the mRNA and protein levels, respectively. In DP cells, the Dig2 expression was significantly higher, while the Bcl-2 expression was significantly lower than in DN, CD4 SP and CD8 SP thymocytes. Single high dose DX treatment caused time-dependent depletion of DP thymocytes due to their higher apoptosis rate, which could not be abolished with RU486 pretreatment. After a single high dose DX treatment, there was a transient, significant increase of the GR mRNA and protein level of unsorted thymocytes after 8 and 16 h, followed by a significant decrease at 24 h, respectively. The time-dependent GR expression changes after DX administration could not be inhibited by the GC antagonist RU486. Twenty-four hours after exposure to high dose DX the DN, CD4 SP and CD8 SP cells showed a significant decrease of GR mRNA and protein expression, whereas the DP thymocytes, showed no significant alteration of GR mRNA or protein expression. The kinetical analysis of GR expression and apoptotic marker changes upon single high dose GC analogue administration revealed a two-phase process in thymocytes: early events, within 4-8 h, include GR upregulation and early apoptosis induction, while the late events appear most prominently at 16-20 h, when the GR is already downregulated and apoptotic cell ratio reaches its peak, with marked DP cell depletion. The low GR, high Dig2 and low Bcl-2 expression, coupled with the absence of homologous downregulation of GR after exogenous GC analogue treatment, could contribute to the high GC sensitivity of DP thymocytes. The downregulated GR and Bcl-2 together with the upregulated Dig2 level in DP cells indicates the significance of intrathymic GC effects at this differentiation stage. Since GR expression changes and apoptotic events could not be completely inhibited by GC antagonist, we propose the involvement of non-genomic GR mechanisms in these processes.
Collapse
Affiliation(s)
- Ferenc Boldizsár
- Department of Immunology and Biotechnology, University of Pecs, Szigeti ut 12., H-7643 Pecs, Hungary.
| | | | | | | | | | | |
Collapse
|
30
|
Zhu ZH, Yang R, Fu X, Wang YQ, Wu GC. Astrocyte-conditioned medium protecting hippocampal neurons in primary cultures against corticosterone-induced damages via PI3-K/Akt signal pathway. Brain Res 2006; 1114:1-10. [PMID: 16930567 DOI: 10.1016/j.brainres.2006.07.070] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2006] [Revised: 06/07/2006] [Accepted: 07/17/2006] [Indexed: 10/24/2022]
Abstract
Prolonged or excessive exposure to corticosterone leads to neuronal damages in the brain regions, including hippocampus. We reported that astrocyte-conditioned medium (ACM) protected the neurons of the primary hippocampal cultures against the corticosterone-induced damages. Corticosterone added to the cultures resulted in a significant number of TUNEL-positive cells. However, corticosterone-induced TUNEL labeling was suppressed as for ACM-cultured neurons. To delineate the molecular basis underlying the neuroprotection of ACM, we assessed the activation of ERK1/2 and (PI3-K)/Akt signal pathways in response to corticosterone-induced neuronal damages. Western blot test revealed that corticosterone increased the phosphorylation of ERK1/2 and PI3-K/Akt in hippocampal neurons grown in Neurobasal medium supplemented with B27 and 500 microm L-glutamine (NBM+). Interestingly, the increase of phospho-ERK1/2 and Akt levels was much pronounced and the time course of phosphorylation was altered in ACM, suggesting that both signaling pathways might participate in ACM protection. Furthermore, the selective inhibitor of Akt, rather than ERK1/2, blocked the neuroprotective activity against corticosterone in ACM-cultured neurons. In summary, our data showed that ACM had a potent neuroprotective effect in cultured neurons. PI3-K/Akt signal pathway, but not ERK1/2, was involved in the protective activity against the corticosterone-induced damages.
Collapse
Affiliation(s)
- Ze-Hua Zhu
- Department of Integrative Medicine and Neurobiology, Institute of Acupuncture Research, Shanghai Medical College, Fudan University, P.O. Box 291 138, Yi Xue Yuan Road, Shanghai 200032, PR China
| | | | | | | | | |
Collapse
|
31
|
Ranta F, Avram D, Berchtold S, Düfer M, Drews G, Lang F, Ullrich S. Dexamethasone induces cell death in insulin-secreting cells, an effect reversed by exendin-4. Diabetes 2006; 55:1380-90. [PMID: 16644695 DOI: 10.2337/db05-1220] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Glucocorticoid excess induces hyperglycemia, which may result in diabetes. The present experiments explored whether glucocorticoids trigger apoptosis in insulin-secreting cells. Treatment of mouse beta-cells or INS-1 cells with the glucocorticoid dexamethasone (0.1 micromol/l) over 4 days in cell culture increased the number of fractionated nuclei from 2 to 7 and 14%, respectively, an effect that was reversed by the glucocorticoid receptor antagonist RU486 (1 micromol/l). In INS-1 cells, dexamethasone increased the number of transferase-mediated dUTP nick-end labeling-staining positive cells, caspase-3 activity, and poly-(ADP-) ribose polymerase protein cleavage; decreased Bcl-2 transcript and protein abundance; dephosphorylated the proapoptotic protein of the Bcl-2 family (BAD) at serine155; and depolarized mitochondria. Dexamethasone increased PP-2B (calcineurin) activity, an effect abrogated by FK506. FK506 (0.1 micromol/l) and another calcineurin inhibitor, deltamethrin (1 micromol/l), attenuated dexamethasone-induced cell death. The stable glucagon-like peptide 1 analog, exendin-4 (10 nmol/l), inhibited dexamethasone-induced apoptosis in mouse beta-cells and INS-1 cells. The protective effect of exendin-4 was mimicked by forskolin (10 micromol/l) but not mimicked by guanine nucleotide exchange factor with the specific agonist 8CPT-Me-cAMP (50 micromol/l). Exendin-4 did not protect against cell death in the presence of cAMP-dependent protein kinase (PKA) inhibition by H89 (10 micromol/l) or KT5720 (5 micromol/l). In conclusion, glucocorticoid-induced apoptosis in insulin-secreting cells is accompanied by a downregulation of Bcl-2, activation of calcineurin with subsequent dephosphorylation of BAD, and mitochondrial depolarization. Exendin-4 protects against glucocorticoid-induced apoptosis, an effect mimicked by forskolin and reversed by PKA inhibitors.
Collapse
Affiliation(s)
- Felicia Ranta
- Institut für Physiologie, University of Tübingen, Gmelinstrasse 5, D-72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Sionov RV, Cohen O, Kfir S, Zilberman Y, Yefenof E. Role of mitochondrial glucocorticoid receptor in glucocorticoid-induced apoptosis. ACTA ACUST UNITED AC 2006; 203:189-201. [PMID: 16390935 PMCID: PMC2118093 DOI: 10.1084/jem.20050433] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The mechanisms by which glucocorticoid receptor (GR) mediates glucocorticoid (GC)-induced apoptosis are unknown. We studied the role of mitochondrial GR in this process. Dexamethasone induces GR translocation to the mitochondria in GC-sensitive, but not in GC-resistant, T cell lines. In contrast, nuclear GR translocation occurs in all cell types. Thymic epithelial cells, which cause apoptosis of the PD1.6 T cell line in a GR-dependent manner, induce GR translocation to the mitochondria, but not to the nucleus, suggesting a role for mitochondrial GR in eliciting apoptosis. This hypothesis is corroborated by the finding that a GR variant exclusively expressed in the mitochondria elicits apoptosis of several cancer cell lines. A putative mitochondrial localization signal was defined to amino acids 558-580 of human GR, which lies within the NH2-terminal part of the ligand-binding domain. Altogether, our data show that mitochondrial and nuclear translocations of GR are differentially regulated, and that mitochondrial GR translocation correlates with susceptibility to GC-induced apoptosis.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Lautenberg Center for General and Tumor Immunology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | |
Collapse
|