1
|
He R, Zuo Y, Yi K, Liu B, Song C, Li N, Geng Q. The role and therapeutic potential of itaconate in lung disease. Cell Mol Biol Lett 2024; 29:129. [PMID: 39354366 PMCID: PMC11445945 DOI: 10.1186/s11658-024-00642-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/04/2024] [Indexed: 10/03/2024] Open
Abstract
Lung diseases triggered by endogenous or exogenous factors have become a major concern, with high morbidity and mortality rates, especially after the coronavirus disease 2019 (COVID-19) pandemic. Inflammation and an over-activated immune system can lead to a cytokine cascade, resulting in lung dysfunction and injury. Itaconate, a metabolite produced by macrophages, has been reported as an effective anti-inflammatory and anti-oxidative stress agent with significant potential in regulating immunometabolism. As a naturally occurring metabolite in immune cells, itaconate has been identified as a potential therapeutic target in lung diseases through its role in regulating inflammation and immunometabolism. This review focuses on the origin, regulation, and function of itaconate in lung diseases, and briefly discusses its therapeutic potential.
Collapse
Affiliation(s)
- Ruyuan He
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Hubei Province, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Yifan Zuo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Hubei Province, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Ke Yi
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Hubei Province, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Bohao Liu
- Department of Thoracic Surgery, Jilin University, Changchun, China
| | - Congkuan Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Hubei Province, 99 Zhangzhidong Road, Wuhan, 430060, China.
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Hubei Province, 99 Zhangzhidong Road, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Hubei Province, 99 Zhangzhidong Road, Wuhan, 430060, China.
| |
Collapse
|
2
|
Patiño-Martinez E, Nakabo S, Jiang K, Carmona-Rivera C, Tsai WL, Claybaugh D, Yu ZX, Romero A, Bohrnsen E, Schwarz B, Solís-Barbosa MA, Blanco LP, Naqi M, Temesgen-Oyelakin Y, Davis M, Manna Z, Gupta S, Mehta N, Naz F, dell'Orso S, Hasni S, Kaplan MJ. The Aconitate Decarboxylase 1/Itaconate Pathway Modulates Immune Dysregulation and Associates with Cardiovascular Disease Markers and Disease Activity in Systemic Lupus Erythematosus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:419-434. [PMID: 38949522 DOI: 10.4049/jimmunol.2400241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/10/2024] [Indexed: 07/02/2024]
Abstract
The Krebs cycle enzyme aconitate decarboxylase 1 (ACOD1) mediates itaconate synthesis in monocytes and macrophages. Previously, we reported that administration of 4-octyl itaconate to lupus-prone mice abrogated immune dysregulation and clinical features. In this study, we explore the role of the endogenous ACOD1/itaconate pathway in the development of TLR7-induced lupus (imiquimod [IMQ] model). We found that, in vitro, ACOD1 was induced in mouse bone marrow-derived macrophages and human monocyte-derived macrophages following TLR7 stimulation. This induction was partially dependent on type I IFN receptor signaling and on specific intracellular pathways. In the IMQ-induced mouse model of lupus, ACOD1 knockout (Acod1-/-) displayed disruptions of the splenic architecture, increased serum levels of anti-dsDNA and proinflammatory cytokines, and enhanced kidney immune complex deposition and proteinuria, when compared with the IMQ-treated wild-type mice. Consistent with these results, Acod1-/- bone marrow-derived macrophages treated in vitro with IMQ showed higher proinflammatory features. Furthermore, itaconate serum levels in systemic lupus erythematosus patients were decreased compared with healthy individuals, in association with disease activity and specific perturbed cardiometabolic parameters. These findings suggest that the ACOD1/itaconate pathway plays important immunomodulatory and vasculoprotective roles in systemic lupus erythematosus, supporting the potential therapeutic role of itaconate analogs in autoimmune diseases.
Collapse
Affiliation(s)
- Eduardo Patiño-Martinez
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Shuichiro Nakabo
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Kan Jiang
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Carmelo Carmona-Rivera
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Wanxia Li Tsai
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Dillon Claybaugh
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Zu-Xi Yu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Aracely Romero
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Eric Bohrnsen
- Protein & Chemistry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT
| | - Benjamin Schwarz
- Protein & Chemistry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT
| | - Miguel A Solís-Barbosa
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Luz P Blanco
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Mohammad Naqi
- Lupus Clinical Trials Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Yenealem Temesgen-Oyelakin
- Lupus Clinical Trials Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Michael Davis
- Lupus Clinical Trials Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Zerai Manna
- Lupus Clinical Trials Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Sarthak Gupta
- Lupus Clinical Trials Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Nehal Mehta
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Faiza Naz
- Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Stefania dell'Orso
- Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Sarfaraz Hasni
- Lupus Clinical Trials Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
3
|
Tie H, Kuang G, Gong X, Zhang L, Zhao Z, Wu S, Huang W, Chen X, Yuan Y, Li Z, Li H, Zhang L, Wan J, Wang B. LXA4 protected mice from renal ischemia/reperfusion injury by promoting IRG1/Nrf2 and IRAK-M-TRAF6 signal pathways. Clin Immunol 2024; 261:110167. [PMID: 38453127 DOI: 10.1016/j.clim.2024.110167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/26/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Excessive inflammatory response and increased oxidative stress play an essential role in the pathophysiology of ischemia/reperfusion (I/R)-induced acute kidney injury (IRI-AKI). Emerging evidence suggests that lipoxin A4 (LXA4), as an endogenous negative regulator in inflammation, can ameliorate several I/R injuries. However, the mechanisms and effects of LXA4 on IRI-AKI remain unknown. In this study, A bilateral renal I/R mouse model was used to evaluate the role of LXA4 in wild-type, IRG1 knockout, and IRAK-M knockout mice. Our results showed that LXA4, as well as 5-LOX and ALXR, were quickly induced, and subsequently decreased by renal I/R. LXA4 pretreatment improved renal I/R-induced renal function impairment and renal damage and inhibited inflammatory responses and oxidative stresses in mice kidneys. Notably, LXA4 inhibited I/R-induced the activation of TLR4 signal pathway including decreased phosphorylation of TAK1, p36, and p65, but did not affect TLR4 and p-IRAK-1. The analysis of transcriptomic sequencing data and immunoblotting suggested that innate immune signal molecules interleukin-1 receptor-associated kinase-M (IRAK-M) and immunoresponsive gene 1 (IRG1) might be the key targets of LXA4. Further, the knockout of IRG1 or IRAK-M abolished the beneficial effects of LXA4 on IRI-AKI. In addition, IRG1 deficiency reversed the up-regulation of IRAK-M by LXA4, while IRAK-M knockout had no impact on the IRG1 expression, indicating that IRAK-M is a downstream molecule of IRG1. Mechanistically, we found that LXA4-promoted IRG1-itaconate not only enhanced Nrf2 activation and increased HO-1 and NQO1, but also upregulated IRAK-M, which interacted with TRAF6 by competing with IRAK-1, resulting in deactivation of TLR4 downstream signal in IRI-AKI. These data suggested that LXA4 protected against IRI-AKI via promoting IRG1/Itaconate-Nrf2 and IRAK-M-TRAF6 signaling pathways, providing the rationale for a novel strategy for preventing and treating IRI-AKI.
Collapse
Affiliation(s)
- Hongtao Tie
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Ge Kuang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Xia Gong
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Lidan Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zizuo Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengwang Wu
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Wenya Huang
- Yiling Women and Children's Hospital of Yichang City, Hubei, China
| | - Xiahong Chen
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China
| | - Yinglin Yuan
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenhan Li
- Department of Endocrinology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Hongzhong Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University; Chongqing, China
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Jingyuan Wan
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China; Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China..
| | - Bin Wang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, China; Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Yang W, Wang Y, Tao K, Li R. Metabolite itaconate in host immunoregulation and defense. Cell Mol Biol Lett 2023; 28:100. [PMID: 38042791 PMCID: PMC10693715 DOI: 10.1186/s11658-023-00503-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/20/2023] [Indexed: 12/04/2023] Open
Abstract
Metabolic states greatly influence functioning and differentiation of immune cells. Regulating the metabolism of immune cells can effectively modulate the host immune response. Itaconate, an intermediate metabolite derived from the tricarboxylic acid (TCA) cycle of immune cells, is produced through the decarboxylation of cis-aconitate by cis-aconitate decarboxylase in the mitochondria. The gene encoding cis-aconitate decarboxylase is known as immune response gene 1 (IRG1). In response to external proinflammatory stimulation, macrophages exhibit high IRG1 expression. IRG1/itaconate inhibits succinate dehydrogenase activity, thus influencing the metabolic status of macrophages. Therefore, itaconate serves as a link between macrophage metabolism, oxidative stress, and immune response, ultimately regulating macrophage function. Studies have demonstrated that itaconate acts on various signaling pathways, including Keap1-nuclear factor E2-related factor 2-ARE pathways, ATF3-IκBζ axis, and the stimulator of interferon genes (STING) pathway to exert antiinflammatory and antioxidant effects. Furthermore, several studies have reported that itaconate affects cancer occurrence and development through diverse signaling pathways. In this paper, we provide a comprehensive review of the role IRG1/itaconate and its derivatives in the regulation of macrophage metabolism and functions. By furthering our understanding of itaconate, we intend to shed light on its potential for treating inflammatory diseases and offer new insights in this field.
Collapse
Affiliation(s)
- Wenchang Yang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yaxin Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Ruidong Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China.
| |
Collapse
|
5
|
Wu R, Liu J, Tang D, Kang R. The Dual Role of ACOD1 in Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:518-526. [PMID: 37549395 DOI: 10.4049/jimmunol.2300101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/27/2023] [Indexed: 08/09/2023]
Abstract
Immunometabolism is an interdisciplinary field that focuses on the relationship between metabolic pathways and immune responses. Dysregulated immunometabolism contributes to many pathological settings, such as cytokine storm or immune tolerance. Aconitate decarboxylase 1 (ACOD1, also known as immunoresponsive gene 1), the mitochondrial enzyme responsible for catalyzing itaconate production, was originally identified as a bacterial LPS-inducible gene involved in innate immunity in mouse macrophages. We now know that the upregulation of ACOD1 expression in immune or nonimmune cells plays a context-dependent role in metabolic reprogramming, signal transduction, inflammasome regulation, and protein modification. The emerging function of ACOD1 in inflammation and infection is a double-edged sword. In this review, we discuss how ACOD1 regulates anti-inflammatory or proinflammatory responses in an itaconate-dependent or -independent manner. Further understanding of ACOD1 expression and function may pave the way for the development of precision therapies for inflammatory diseases.
Collapse
Affiliation(s)
- Runliu Wu
- Department of Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiao Liu
- DAMP Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
6
|
Feng J, Read OJ, Dinkova-Kostova AT. Nrf2 in TIME: The Emerging Role of Nuclear Factor Erythroid 2-Related Factor 2 in the Tumor Immune Microenvironment. Mol Cells 2023; 46:142-152. [PMID: 36927604 PMCID: PMC10070167 DOI: 10.14348/molcells.2023.2183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/12/2022] [Indexed: 03/18/2023] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) mediates the cellular antioxidant response, allowing adaptation and survival under conditions of oxidative, electrophilic and inflammatory stress, and has a role in metabolism, inflammation and immunity. Activation of Nrf2 provides broad and long-lasting cytoprotection, and is often hijacked by cancer cells, allowing their survival under unfavorable conditions. Moreover, Nrf2 activation in established human tumors is associated with resistance to chemo-, radio-, and immunotherapies. In addition to cancer cells, Nrf2 activation can also occur in tumor-associated macrophages (TAMs) and facilitate an anti-inflammatory, immunosuppressive tumor immune microenvironment (TIME). Several cancer cell-derived metabolites, such as itaconate, L-kynurenine, lactic acid and hyaluronic acid, play an important role in modulating the TIME and tumor-TAMs crosstalk, and have been shown to activate Nrf2. The effects of Nrf2 in TIME are context-depended, and involve multiple mechanisms, including suppression of pro-inflammatory cytokines, increased expression of programmed cell death ligand 1 (PD-L1), macrophage colony-stimulating factor (M-CSF) and kynureninase, accelerated catabolism of cytotoxic labile heme, and facilitating the metabolic adaptation of TAMs. This understanding presents both challenges and opportunities for strategic targeting of Nrf2 in cancer.
Collapse
Affiliation(s)
- Jialin Feng
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Oliver J. Read
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Albena T. Dinkova-Kostova
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
- Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
7
|
Maassen S, Coenen B, Ioannidis M, Harber K, Grijpstra P, Van den Bossche J, van den Bogaart G. Itaconate promotes a wound resolving phenotype in pro-inflammatory macrophages. Redox Biol 2022; 59:102591. [PMID: 36574745 PMCID: PMC9800195 DOI: 10.1016/j.redox.2022.102591] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022] Open
Abstract
Pathological conditions associated with dysfunctional wound healing are characterized by impaired remodelling of extracellular matrix (ECM), increased macrophage infiltration, and chronic inflammation. Macrophages also play an important role in wound healing as they drive wound closure by secretion of molecules like transforming growth factor beta-1 (TGF-β). As the functions of macrophages are regulated by their metabolism, local administration of small molecules that alter this might be a novel approach for treatment of wound-healing disorders. Itaconate is a tricarboxylic acid (TCA) cycle-derived metabolite that has been associated with resolution of macrophage-mediated inflammation. However, its effects on macrophage wound healing functions are unknown. In this study, we investigated the effects of the membrane-permeable 4-octyl itaconate (4-OI) derivative on ECM scavenging by cultured human blood monocyte-derived macrophages (hMDM). We found that 4-OI reduced signalling of p38 mitogen-activated protein kinase (MAPK) induced by the canonical immune stimulus lipopolysaccharide (LPS). Likely as a consequence of this, the production of the inflammatory mediators like tumor necrosis factor (TNF)-α and cyclooxygenase (COX)-2 were also reduced. On the transcriptional level, 4-OI increased expression of the gene coding for TGF-β (TGFB1), whereas expression of the collagenase matrix metalloprotease-8 (MMP8) was reduced. Furthermore, surface levels of the anti-inflammatory marker CD36, but not CD206 and CD11c, were increased in these cells. To directly investigate the effect of 4-OI on scavenging of ECM by macrophages, we developed an assay to measure uptake of fibrous collagen. We observed that LPS promoted collagen uptake and that this was reversed by 4-OI-induced signaling of nuclear factor erythroid 2-related factor 2 (NRF2), a regulator of cellular resistance to oxidative stress and the reduced glycolytic capacity of the macrophage. These results indicate that 4-OI lowers macrophage inflammation, likely promoting a more wound-resolving phenotype.
Collapse
Affiliation(s)
- Sjors Maassen
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Groningen, the Netherlands
| | - Britt Coenen
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Groningen, the Netherlands
| | - Melina Ioannidis
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Groningen, the Netherlands
| | - Karl Harber
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Institute for Infection and Immunity, Cancer Centre Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Pieter Grijpstra
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Groningen, the Netherlands
| | - Jan Van den Bossche
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Institute for Infection and Immunity, Cancer Centre Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Geert van den Bogaart
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Groningen, the Netherlands; Department of Medical Biology and Pathology, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
8
|
Ki N, Kim J, Jo I, Hyun Y, Ryu S, Ha NC. Isocitrate binds to the itaconic acid-responsive LysR-type transcriptional regulator RipR in Salmonella pathogenesis. J Biol Chem 2022; 298:102562. [PMID: 36198361 PMCID: PMC9637912 DOI: 10.1016/j.jbc.2022.102562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 11/20/2022] Open
Abstract
Macrophages produce itaconic acid in phagosomes in response to bacterial cell wall component lipopolysaccharide to eliminate invading pathogenic bacteria. Itaconic acid competitively inhibits the first enzyme of the bacterial glyoxylate cycle. To overcome itaconic acid stress, bacteria employ the bacterial LysR-type transcriptional regulator RipR. However, it remains unknown which molecule activates RipR in bacterial pathogenesis. In this study, we determined the crystal structure of the regulatory domain of RipR from the intracellular pathogen Salmonella. The RipR regulatory domain structure exhibited the typical dimeric arrangement with the putative ligand-binding site between the two subdomains. Our isothermal titration calorimetry experiments identified isocitrate as the physiological ligand of RipR, whose intracellular level is increased in response to itaconic acid stress. We further found that 3-phenylpropionic acid significantly decreased the resistance of the bacteria to an itaconic acid challenge. Consistently, the complex structure revealed that the compound is antagonistically bound to the RipR ligand-binding site. This study provides the molecular basis of bacterial survival in itaconic acid stress from our immune systems. Further studies are required to reveal biochemical activity, which would elucidate how Salmonella survives in macrophage phagosomes by defending against itaconic acid inhibition of bacterial metabolism.
Collapse
Affiliation(s)
- Nayeon Ki
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Jinshil Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Inseong Jo
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Yongseong Hyun
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea.
| | - Nam-Chul Ha
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Wu R, Liu J, Wang N, Zeng L, Yu C, Chen F, Wang H, Billiar TR, Jiang J, Tang D, Kang R. Aconitate decarboxylase 1 is a mediator of polymicrobial sepsis. Sci Transl Med 2022; 14:eabo2028. [PMID: 36001682 DOI: 10.1126/scitranslmed.abo2028] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Sepsis is a challenging clinical syndrome caused by a dysregulated host response to infection. Here, we identified an unexpected proseptic activity of aconitate decarboxylase 1 (ACOD1) in monocytes and macrophages. Previous studies have suggested that ACOD1, also known as immune-responsive gene 1, is an immunometabolic regulator that favors itaconate production to inhibit bacterial lipopolysaccharide-induced innate immunity. We used next-generation sequencing of lipopolysaccharide-activated THP1 cells to demonstrate that ACOD1 accumulation confers a robust proinflammation response by activating a cytokine storm, predominantly through the tumor necrosis factor signaling pathway. We further revealed that the phosphorylation of cyclin-dependent kinase 2 (CDK2) on threonine-160 mediates the activation of mitogen-activated protein kinase 8 through receptor for activated C kinase 1, leading to JUN-dependent transcription of ACOD1 in human and mouse macrophages or monocytes. Genetic deletion of CDK2 or ACOD1 in myeloid cells, or the administration of the CDK inhibitor dinaciclib, protected mice against polymicrobial sepsis and was associated with improved survival and decreased cytokine storm. The expression of the CDK2-ACOD1 axis also correlated with severity of illness in a cohort of 40 patients with bacterial sepsis. Thus, our findings provide evidence for a previously unrecognized function of ACOD1 in innate immunity and suggest it as a potential therapeutic target for the treatment of sepsis.
Collapse
Affiliation(s)
- Runliu Wu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.,Department of General Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Nian Wang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ling Zeng
- Research Institute of Surgery, Daping Hospital, Chongqing 400042, China
| | - Chunhua Yu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Feng Chen
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, North Shore University Hospital and the Feinsteins Institute for Medical Research, Manhasset, NY 11030, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Jianxin Jiang
- Research Institute of Surgery, Daping Hospital, Chongqing 400042, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
10
|
Yaker L, Tebani A, Lesueur C, Dias C, Jung V, Bekri S, Guerrera IC, Kamel S, Ausseil J, Boullier A. Extracellular Vesicles From LPS-Treated Macrophages Aggravate Smooth Muscle Cell Calcification by Propagating Inflammation and Oxidative Stress. Front Cell Dev Biol 2022; 10:823450. [PMID: 35356285 PMCID: PMC8959646 DOI: 10.3389/fcell.2022.823450] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/09/2022] [Indexed: 12/29/2022] Open
Abstract
Background: Vascular calcification (VC) is a cardiovascular complication associated with a high mortality rate among patients with diseases such as atherosclerosis and chronic kidney disease. During VC, vascular smooth muscle cells (VSMCs) undergo an osteogenic switch and secrete a heterogeneous population of extracellular vesicles (EVs). Recent studies have shown involvement of EVs in the inflammation and oxidative stress observed in VC. We aimed to decipher the role and mechanism of action of macrophage-derived EVs in the propagation of inflammation and oxidative stress on VSMCs during VC. Methods: The macrophage murine cell line RAW 264.7 treated with lipopolysaccharide (LPS-EK) was used as a cellular model for inflammatory and oxidative stress. EVs secreted by these macrophages were collected by ultracentrifugation and characterized by transmission electron microscopy, cryo-electron microscopy, nanoparticle tracking analysis, and the analysis of acetylcholinesterase activity, as well as that of CD9 and CD81 protein expression by western blotting. These EVs were added to a murine VSMC cell line (MOVAS-1) under calcifying conditions (4 mM Pi—7 or 14 days) and calcification assessed by the o-cresolphthalein calcium assay. EV protein content was analyzed in a proteomic study and EV cytokine content assessed using an MSD multiplex immunoassay. Results: LPS-EK significantly decreased macrophage EV biogenesis. A 24-h treatment of VSMCs with these EVs induced both inflammatory and oxidative responses. LPS-EK-treated macrophage-derived EVs were enriched for pro-inflammatory cytokines and CAD, PAI-1, and Saa3 proteins, three molecules involved in inflammation, oxidative stress, and VC. Under calcifying conditions, these EVs significantly increase the calcification of VSMCs by increasing osteogenic markers and decreasing contractile marker expression. Conclusion: Our results show that EVs derived from LPS-EK–treated-macrophages are able to induce pro-inflammatory and pro-oxidative responses in surrounding cells, such as VSMCs, thus aggravating the VC process.
Collapse
Affiliation(s)
- Linda Yaker
- MP3CV-UR7517, CURS-University of Picardie Jules Verne, Amiens, France
| | - Abdellah Tebani
- INSERM U1245, CHU Rouen, Normandie University, UNIROUEN, Rouen, France
- Department of Metabolic Biochemistry, Rouen University Hospital, Rouen, France
| | - Céline Lesueur
- INSERM U1245, CHU Rouen, Normandie University, UNIROUEN, Rouen, France
| | - Chloé Dias
- Infinity, INSERM UMR1291, CNRS UMR5051, University of Toulouse III, Toulouse, France
| | - Vincent Jung
- INSERM US24/CNRS UAR3633, Proteomic Platform Necker, University of Paris—Federative Research Structure Necker, Paris, France
| | - Soumeya Bekri
- INSERM U1245, CHU Rouen, Normandie University, UNIROUEN, Rouen, France
- Department of Metabolic Biochemistry, Rouen University Hospital, Rouen, France
| | - Ida Chiara Guerrera
- INSERM US24/CNRS UAR3633, Proteomic Platform Necker, University of Paris—Federative Research Structure Necker, Paris, France
| | - Saïd Kamel
- MP3CV-UR7517, CURS-University of Picardie Jules Verne, Amiens, France
- Laboratory of Biochemistry, CHU Amiens-Picardie, Amiens, France
| | - Jérôme Ausseil
- Infinity, INSERM UMR1291, CNRS UMR5051, University of Toulouse III, Toulouse, France
- Service de Biochimie, Institut Fédératif de Biologie, CHU Toulouse, Toulouse, France
| | - Agnès Boullier
- MP3CV-UR7517, CURS-University of Picardie Jules Verne, Amiens, France
- Laboratory of Biochemistry, CHU Amiens-Picardie, Amiens, France
- *Correspondence: Agnès Boullier,
| |
Collapse
|
11
|
Itaconate inhibits TET DNA dioxygenases to dampen inflammatory responses. Nat Cell Biol 2022; 24:353-363. [DOI: 10.1038/s41556-022-00853-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/26/2022] [Indexed: 12/19/2022]
|
12
|
Wu R, Kang R, Tang D. Mitochondrial ACOD1/IRG1 in infection and sterile inflammation. JOURNAL OF INTENSIVE MEDICINE 2022; 2:78-88. [PMID: 36789185 PMCID: PMC9924012 DOI: 10.1016/j.jointm.2022.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/31/2021] [Accepted: 01/12/2022] [Indexed: 12/15/2022]
Abstract
Immunometabolism is a dynamic process involving the interplay of metabolism and immune response in health and diseases. Increasing evidence suggests that impaired immunometabolism contributes to infectious and inflammatory diseases. In particular, the mitochondrial enzyme aconitate decarboxylase 1 (ACOD1, best known as immunoresponsive gene 1 [IRG1]) is upregulated under various inflammatory conditions and serves as a pivotal regulator of immunometabolism involved in itaconate production, macrophage polarization, inflammasome activation, and oxidative stress. Consequently, the activation of the ACOD1 pathway is implicated in regulating the pathogenic process of sepsis and septic shock, which are part of a clinical syndrome of life-threatening organ failure caused by a dysregulated host response to pathogen infection. In this review, we discuss the latest research advances in ACOD1 expression and function, with particular attention to how the ACOD1-itaconate pathway affects infection and sterile inflammation diseases. These new insights may give us a deeper understanding of the role of immunometabolism in innate immunity.
Collapse
Affiliation(s)
- Runliu Wu
- Department of Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas 75390, USA,Corresponding author: Daolin Tang, Department of Surgery, UT Southwestern Medical Center, Dallas, Texas 75390, USA.
| |
Collapse
|
13
|
Immune-responsive gene 1/itaconate activates nuclear factor erythroid 2-related factor 2 in microglia to protect against spinal cord injury in mice. Cell Death Dis 2022; 13:140. [PMID: 35145070 PMCID: PMC8831631 DOI: 10.1038/s41419-022-04592-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/16/2022] [Accepted: 01/28/2022] [Indexed: 12/17/2022]
Abstract
The pathophysiology of spinal cord injury (SCI) involves primary injury and secondary injury. Secondary injury is a major target for SCI therapy, whereas microglia play an important role in secondary injury. The immunoresponsive gene 1 (Irg-1) has been recorded as one of the most significantly upregulated genes in SCI tissues in gene chip data; however, its role in SCI remains unclear. This study aims to illustrate the role of Irg-1 as well as its regulated metabolite itaconate in SCI. It was demonstrated that the expression of Irg-1 was increased in spinal cord tissues in mice as well as in microglia stimulated by lipopolysaccharides (LPS). It was also shown that overexpression of Irg-1 may suppress LPS-induced inflammation in microglia, while these protective effects were attenuated by Nrf2 silencing. In vivo, overexpression of Irg-1 was shown to suppress neuroinflammation and improve motor function recovery. Furthermore, treatment of microglia with itaconate demonstrated similar inflammation suppressive effects as Irg-1 overexpression in vitro and improved motor function recovery in vivo. In conclusion, the current study shows that Irg-1 and itaconate are involved in the recovery process of SCI, either Irg-1 overexpression or itaconate treatment may provide a promising strategy for the treatment of SCI.
Collapse
|
14
|
Duncan D, Auclair K. Itaconate: an antimicrobial metabolite of macrophages. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Itaconate is a conjugated 1,4-dicarboxylate produced by macrophages. This small molecule has recently received increasing attention due to its role in modulating the immune response of macrophages upon exposure to pathogens. Itaconate has also been proposed to play an antimicrobial function; however, this has not been explored as intensively. Consistent with the latter, itaconate is known to show antibacterial activity in vitro and was reported to inhibit isocitrate lyase, an enzyme required for survival of bacterial pathogens in mammalian systems. Recent studies have revealed bacterial growth inhibition under biologically relevant conditions. In addition, an antimicrobial role for itaconate is substantiated by the high concentration of itaconate found in bacteria-containing vacuoles, and by the production of itaconate-degrading enzymes in pathogens such as Salmonella enterica ser. Typhimurium, Pseudomonas aeruginosa, and Yersinia pestis. This review describes the current state of literature in understanding the role of itaconate as an antimicrobial agent in host–pathogen interactions.
Collapse
Affiliation(s)
- Dustin Duncan
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| | - Karine Auclair
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
15
|
Jaiswal AK, Yadav J, Makhija S, Mazumder S, Mitra AK, Suryawanshi A, Sandey M, Mishra A. Irg1/itaconate metabolic pathway is a crucial determinant of dendritic cells immune-priming function and contributes to resolute allergen-induced airway inflammation. Mucosal Immunol 2022; 15:301-313. [PMID: 34671116 PMCID: PMC8866123 DOI: 10.1038/s41385-021-00462-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 02/04/2023]
Abstract
Itaconate is produced from the mitochondrial TCA cycle enzyme aconitase decarboxylase (encoded by immune responsive gene1; Irg1) that exerts immunomodulatory function in myeloid cells. However, the role of the Irg1/itaconate pathway in dendritic cells (DC)-mediated airway inflammation and adaptive immunity to inhaled allergens, which are the primary antigen-presenting cells in allergic asthma, remains largely unknown. House dust mite (HDM)-challenged Irg1-/- mice displayed increases in eosinophilic airway inflammation, mucous cell metaplasia, and Th2 cytokine production with a mechanism involving impaired mite antigen presentations by DC. Adoptive transfer of HDM-pulsed DC from Irg1-deficient mice into naïve WT mice induced a similar phenotype of elevated type 2 airway inflammation and allergic sensitization. Untargeted metabolite analysis of HDM-pulsed DC revealed itaconate as one of the most abundant polar metabolites that potentially suppress mitochondrial oxidative damage. Furthermore, the immunomodulatory effect of itaconate was translated in vivo, where intranasal administration of 4-octyl itaconate 4-OI following antigen priming attenuated the manifestations of HDM-induced airway disease and Th2 immune response. Taken together, these data demonstrated for the first time a direct regulatory role of the Irg1/itaconate pathway in DC for the development of type 2 airway inflammation and suggest a possible therapeutic target in modulating allergic asthma.
Collapse
Affiliation(s)
- Anil Kumar Jaiswal
- grid.252546.20000 0001 2297 8753From the Laboratory of Lung Inflammation, Auburn University, Auburn, AL USA ,grid.252546.20000 0001 2297 8753Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL USA
| | - Jyoti Yadav
- grid.252546.20000 0001 2297 8753From the Laboratory of Lung Inflammation, Auburn University, Auburn, AL USA ,grid.252546.20000 0001 2297 8753Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL USA
| | - Sangeet Makhija
- grid.252546.20000 0001 2297 8753From the Laboratory of Lung Inflammation, Auburn University, Auburn, AL USA ,grid.252546.20000 0001 2297 8753Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL USA
| | - Suman Mazumder
- grid.252546.20000 0001 2297 8753Department of Drug Discovery and Development, Auburn University, Auburn, AL USA ,grid.252546.20000 0001 2297 8753Center for Pharmacogenomics and Single-Cell Omics, Harrison School of Pharmacy, Auburn University, Auburn, AL USA
| | - Amit Kumar Mitra
- grid.252546.20000 0001 2297 8753Department of Drug Discovery and Development, Auburn University, Auburn, AL USA ,grid.252546.20000 0001 2297 8753Center for Pharmacogenomics and Single-Cell Omics, Harrison School of Pharmacy, Auburn University, Auburn, AL USA
| | - Amol Suryawanshi
- grid.252546.20000 0001 2297 8753Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL USA
| | - Maninder Sandey
- grid.252546.20000 0001 2297 8753Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL USA
| | - Amarjit Mishra
- grid.252546.20000 0001 2297 8753From the Laboratory of Lung Inflammation, Auburn University, Auburn, AL USA ,grid.252546.20000 0001 2297 8753Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL USA
| |
Collapse
|
16
|
Abstract
Mitochondria are considered to be the powerhouse of the cell. Normal functioning of the mitochondria is not only essential for cellular energy production but also for several immunomodulatory processes. Macrophages operate in metabolic niches and rely on rapid adaptation to specific metabolic conditions such as hypoxia, nutrient limitations, or reactive oxygen species to neutralize pathogens. In this regard, the fast reprogramming of mitochondrial metabolism is indispensable to provide the cells with the necessary energy and intermediates to efficiently mount the inflammatory response. Moreover, mitochondria act as a physical scaffold for several proteins involved in immune signaling cascades and their dysfunction is immediately associated with a dampened immune response. In this review, we put special focus on mitochondrial function in macrophages and highlight how mitochondrial metabolism is involved in macrophage activation.
Collapse
Affiliation(s)
- Mohamed Zakaria Nassef
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Brunswick, Germany
| | - Jasmin E Hanke
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Brunswick, Germany
| | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Brunswick, Germany
| |
Collapse
|
17
|
Liu X, Shi B, Suo R, Xiong S, Wang X, Liang X, Li X, Li G. Itaconate regulates macrophage function through stressful iron-sulfur cluster disrupting and iron metabolism rebalancing. FASEB J 2021; 35:e21936. [PMID: 34547129 DOI: 10.1096/fj.202100726rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 11/11/2022]
Abstract
Lipopolysaccharide (LPS)-stimulated macrophages express an aconitate decarboxylase (IRG1, also called ACOD1), leading to accumulation of the endogenous metabolite itaconate. However, the precise mechanisms by which elevated itaconate levels alter macrophage function are not clear. Our hypothesis is itaconate affects macrophage function through some uncertain mechanism. Based on this, we established a transcriptional and proteomic signature of macrophages stimulated by itaconate and identified the pathways of IL-1β secretion and altered iron metabolism. Consistently, the effect of IRG1 deficiency on IL-1β secretion and iron metabolism was confirmed in IRG1 knockout THP-1 cell lines. Several common inhibitors and other compounds were used to examine the molecular mechanisms involved. Only cysteine and antioxidants (catechin hydrate) could inhibit caspase-1 activation and IL-1β secretion in itaconate-stimulated macrophages. We further found that aconitase activity was decreased by itaconate stimulation. Our results demonstrate the counteracting effects of overexpression of mitochondrial aconitase (ACO2, a tricarboxylic acid cycle enzyme) or cytosolic aconitase (ACO1, an iron regulatory protein) on IL-1β secretion and altered iron metabolism. Both enzyme activities were inhibited by itaconate because of iron-sulfur (Fe-S) cluster destruction. Our findings indicate that the immunoregulatory functions of IRG1 and itaconate in macrophages are stressful Fe-S cluster of aconitases disrupting and iron metabolism rebalancing.
Collapse
Affiliation(s)
- Xing Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Bingshuo Shi
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Rong Suo
- Department of Cardiology, Tianjin Hospital, Tianjin, China
| | - Shenglin Xiong
- Department of Cardiology, You Country People's Hospital, Zhuzhou, China
| | - Xuewen Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xue Liang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xinjian Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
18
|
Singh S, Singh PK, Jha A, Naik P, Joseph J, Giri S, Kumar A. Integrative metabolomics and transcriptomics identifies itaconate as an adjunct therapy to treat ocular bacterial infection. Cell Rep Med 2021; 2:100277. [PMID: 34095879 PMCID: PMC8149370 DOI: 10.1016/j.xcrm.2021.100277] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/13/2020] [Accepted: 04/19/2021] [Indexed: 12/20/2022]
Abstract
The eye is highly susceptible to inflammation-mediated tissue damage evoked during bacterial infection. However, mechanisms regulating inflammation to protect the eye remain elusive. Here, we used integrated metabolomics and transcriptomics to show that the immunomodulatory metabolite itaconate and immune-responsive gene 1 (Irg1) are induced in bacterial (Staphylococcus aureus)-infected mouse eyes, bone-marrow-derived macrophages (BMDMs), and Müller glia. Itaconate levels are also elevated in the vitreous of patients with bacterial endophthalmitis. Irg1 deficiency in mice led to increased ocular pathology. Conversely, intraocular administration of itaconate protects both Irg1-/- and wild-type mice from bacterial endophthalmitis by reducing inflammation, bacterial burden, and preserving retinal architecture and visual function. Notably, itaconate exerts synergistic effects with antibiotics. The protective, anti-inflammatory effects of itaconate are mediated via activation of NRF2/HO-1 signaling and inhibition of NLRP3 inflammasome. Collectively, our study demonstrates the Irg1/itaconate axis is a regulator of intraocular inflammation and provides evidence for using itaconate, along with antibiotics, to treat bacterial infections.
Collapse
Affiliation(s)
- Sukhvinder Singh
- Department of Ophthalmology, Visual and Anatomical Sciences, Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Pawan Kumar Singh
- Department of Ophthalmology, Visual and Anatomical Sciences, Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Alokkumar Jha
- Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University, CA, USA
| | | | | | - Shailendra Giri
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences, Kresge Eye Institute, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
19
|
Kieler M, Hofmann M, Schabbauer G. More than just protein building blocks: how amino acids and related metabolic pathways fuel macrophage polarization. FEBS J 2021; 288:3694-3714. [PMID: 33460504 PMCID: PMC8359336 DOI: 10.1111/febs.15715] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 12/17/2022]
Abstract
Macrophages represent the first line of defence in innate immune responses and additionally serve important functions for the regulation of host inflammation and tissue homeostasis. The M1/M2 model describes the two extremes of macrophage polarization states, which can be induced by multiple stimuli, most notably by LPS/IFN‐γ and IL‐4/IL‐13. Historically, the expression of two genes encoding for enzymes, which use the same amino acid as their substrate, iNOS and ARG1, has been used to define classically activated M1 (iNOS) and alternatively activated M2 (ARG1) macrophages. This ‘arginine dichotomy’ has recently become a matter of debate; however, in parallel with the emerging field of immunometabolism there is accumulating evidence that these two enzymes and their related metabolites are fundamentally involved in the intrinsic regulation of macrophage polarization and function. The aim of this review is to highlight recent advances in macrophage biology and immunometabolism with a specific focus on amino acid metabolism and their related metabolic pathways: iNOS/ARG1 (arginine), TCA cycle and OXPHOS (glutamine) as well as the one‐carbon metabolism (serine, glycine).
Collapse
Affiliation(s)
- Markus Kieler
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria.,Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Melanie Hofmann
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria.,Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Gernot Schabbauer
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria.,Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| |
Collapse
|
20
|
Blay-Cadanet J, Pedersen A, Holm CK. Cellular Metabolites Regulate Central Nucleic Acid Sensing Pathways. Front Immunol 2021; 12:635738. [PMID: 33679790 PMCID: PMC7933466 DOI: 10.3389/fimmu.2021.635738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/02/2021] [Indexed: 11/13/2022] Open
Abstract
Detection of pathogen-derived DNA or RNA species by cellular nucleic acid sensors prompts release of anti-microbial interferons and cytokines. In contrast to their protective anti-microbial functions, inappropriate or excessive activation of nucleic acid sensors can cause inflammatory diseases. Nucleic acid sensing is therefore tightly controlled by regulatory factors acting through both transcriptional and post-transcriptional mechanisms. Recently, it has become clearer that metabolic pathways-previously thought to be unconnected with immune responses-can influence nucleic acid sensing. This regulation can be observed when immune system cells undergo metabolic reprogramming in response to stimulation with pathogen-associated molecular patterns such as lipopolysaccharide from gram negative bacteria. Metabolic reprogramming leads to accumulation and secretion of metabolites, which have been mostly viewed as end-products of processes providing cellular energy and building blocks. However, metabolites have now been identified as important regulators of nucleic acid sensing. This mini-review aims to outline current knowledge on regulation of central nucleic acid sensing pathways by metabolites during metabolic reprogramming.
Collapse
Affiliation(s)
| | - Alice Pedersen
- Department of Biomedicin, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
21
|
Gobert AP, Finley JL, Latour YL, Asim M, Smith TM, Verriere TG, Barry DP, Allaman MM, Delagado AG, Rose KL, Calcutt MW, Schey KL, Sierra JC, Piazuelo MB, Mirmira RG, Wilson KT. Hypusination Orchestrates the Antimicrobial Response of Macrophages. Cell Rep 2020; 33:108510. [PMID: 33326776 PMCID: PMC7812972 DOI: 10.1016/j.celrep.2020.108510] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 10/28/2020] [Accepted: 11/18/2020] [Indexed: 12/21/2022] Open
Abstract
Innate responses of myeloid cells defend against pathogenic bacteria via inducible effectors. Deoxyhypusine synthase (DHPS) catalyzes the transfer of the N-moiety of spermidine to the lysine-50 residue of eukaryotic translation initiation factor 5A (EIF5A) to form the amino acid hypusine. Hypusinated EIF5A (EIF5AHyp) transports specific mRNAs to ribosomes for translation. We show that DHPS is induced in macrophages by two gastrointestinal pathogens, Helicobacter pylori and Citrobacter rodentium, resulting in enhanced hypusination of EIF5A. EIF5AHyp was also increased in gastric macrophages from patients with H. pylori gastritis. Furthermore, we identify the bacteria-induced immune effectors regulated by hypusination. This set of proteins includes essential constituents of antimicrobial response and autophagy. Mice with myeloid cell-specific deletion of Dhps exhibit reduced EIF5AHyp in macrophages and increased bacterial burden and inflammation. Thus, regulation of translation through hypusination is a critical hallmark of the defense of eukaryotic hosts against pathogenic bacteria.
Collapse
Affiliation(s)
- Alain P Gobert
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Jordan L Finley
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yvonne L Latour
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Mohammad Asim
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Thaddeus M Smith
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Thomas G Verriere
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Daniel P Barry
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Margaret M Allaman
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alberto G Delagado
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kristie L Rose
- Department of Biochemistry, Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - M Wade Calcutt
- Department of Biochemistry, Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kevin L Schey
- Department of Biochemistry, Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Johanna C Sierra
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - M Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Raghavendra G Mirmira
- Translational Research Center, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37232, USA.
| |
Collapse
|
22
|
The crystal structure of mouse IRG1 suggests that cis-aconitate decarboxylase has an open and closed conformation. PLoS One 2020; 15:e0242383. [PMID: 33259501 PMCID: PMC7707506 DOI: 10.1371/journal.pone.0242383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/01/2020] [Indexed: 11/23/2022] Open
Abstract
Itaconate, produced as an offshoot of the TCA cycle, is a multifunctional immunometabolite possessing antibacterial, antiviral, immune regulation, and tumor progression activities. The production of itaconate in biological systems is catalyzed by cis-aconitate decarboxylase (CAD, also known as immune responsive gene 1 (IRG1) in mammals). In this study, we solved the structure of IRG1 from Mus musculus (mouse IRG1). Structural comparison analysis revealed that IRG1 can exist in either an open or closed conformation and that this is controlled by the A1 loop located proximal to the active site. Our closed form structure was maintained by an unidentified molecule in the active site, which might mimic its substrate.
Collapse
|
23
|
Ogger PP, Albers GJ, Hewitt RJ, O'Sullivan BJ, Powell JE, Calamita E, Ghai P, Walker SA, McErlean P, Saunders P, Kingston S, Molyneaux PL, Halket JM, Gray R, Chambers DC, Maher TM, Lloyd CM, Byrne AJ. Itaconate controls the severity of pulmonary fibrosis. Sci Immunol 2020; 5:5/52/eabc1884. [PMID: 33097591 DOI: 10.1126/sciimmunol.abc1884] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease in which airway macrophages (AMs) play a key role. Itaconate has emerged as a mediator of macrophage function, but its role during fibrosis is unknown. Here, we reveal that itaconate is an endogenous antifibrotic factor in the lung. Itaconate levels are reduced in bronchoalveolar lavage, and itaconate-synthesizing cis-aconitate decarboxylase expression (ACOD1) is reduced in AMs from patients with IPF compared with controls. In the murine bleomycin model of pulmonary fibrosis, Acod1-/- mice develop persistent fibrosis, unlike wild-type (WT) littermates. Profibrotic gene expression is increased in Acod1-/- tissue-resident AMs compared with WT, and adoptive transfer of WT monocyte-recruited AMs rescued mice from disease phenotype. Culture of lung fibroblasts with itaconate decreased proliferation and wound healing capacity, and inhaled itaconate was protective in mice in vivo. Collectively, these data identify itaconate as critical for controlling the severity of lung fibrosis, and targeting this pathway may be a viable therapeutic strategy.
Collapse
Affiliation(s)
- Patricia P Ogger
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Gesa J Albers
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK.,Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Richard J Hewitt
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK.,Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
| | - Brendan J O'Sullivan
- Queensland Lung Transplant Service, Prince Charles Hospital, Brisbane, Queensland, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia.,Cellular Genomics Futures Institute, University of New South Wales, Kensington, Sydney, Australia
| | - Emily Calamita
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Poonam Ghai
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Simone A Walker
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Peter McErlean
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Peter Saunders
- Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
| | - Shaun Kingston
- Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
| | - Philip L Molyneaux
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK.,Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
| | - John M Halket
- Mass Spectrometry Facility King's College London, London SE1 9NH, UK
| | - Robert Gray
- Mass Spectrometry Facility King's College London, London SE1 9NH, UK
| | - Daniel C Chambers
- Queensland Lung Transplant Service, Prince Charles Hospital, Brisbane, Queensland, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Toby M Maher
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK.,Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK.,Hastings Centre for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Clare M Lloyd
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK.,Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Adam J Byrne
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK. .,Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| |
Collapse
|
24
|
Yi Z, Deng M, Scott MJ, Fu G, Loughran PA, Lei Z, Li S, Sun P, Yang C, Li W, Xu H, Huang F, Billiar TR. Immune-Responsive Gene 1/Itaconate Activates Nuclear Factor Erythroid 2-Related Factor 2 in Hepatocytes to Protect Against Liver Ischemia-Reperfusion Injury. Hepatology 2020; 72:1394-1411. [PMID: 31997373 PMCID: PMC7702080 DOI: 10.1002/hep.31147] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Itaconate, a metabolite of the tricarboxylic acid cycle, plays anti-inflammatory roles in macrophages during endotoxemia. The mechanisms underlying its anti-inflammatory roles have been shown to be mediated by the modulation of oxidative stress, an important mechanism of hepatic ischemia-reperfusion (I/R) injury. However, the role of itaconate in liver I/R injury is unknown. APPROACH AND RESULTS We found that deletion of immune-responsive gene 1 (IRG1), encoding for the enzyme producing itaconate, exacerbated liver injury and systemic inflammation. Furthermore, bone marrow adoptive transfer experiments indicated that deletion of IRG1 in both hematopoietic and nonhematopoietic compartments contributes to the protection mediated by IRG1 after I/R. Interestingly, the expression of IRG1 was up-regulated in hepatocytes after I/R and hypoxia/reoxygenation-induced oxidative stress. Modulation of the IRG1 expression levels in hepatocytes regulated hepatocyte cell death. Importantly, addition of 4-octyl itaconate significantly improved liver injury and hepatocyte cell death after I/R. Furthermore, our data indicated that nuclear factor erythroid 2-related factor 2 (Nrf2) is required for the protective effect of IRG1 on mouse and human hepatocytes against oxidative stress-induced injury. Our studies document the important role of IRG1 in the acute setting of sterile injury induced by I/R. Specifically, we provide evidence that the IRG1/itaconate pathway activates Nrf2-mediated antioxidative response in hepatocytes to protect liver from I/R injury. CONCLUSIONS Our data expand on the importance of IRG1/itaconate in nonimmune cells and identify itaconate as a potential therapeutic strategy for this unfavorable postsurgical complication.
Collapse
Affiliation(s)
- Zhongjie Yi
- Department of Hepatobiliary SurgeryThe Third Xiangya HospitalCentral South UniversityChangshaChina,Department of SurgeryUniversity of PittsburghPittsburghPA
| | - Meihong Deng
- Department of SurgeryUniversity of PittsburghPittsburghPA
| | - Melanie J. Scott
- Department of SurgeryUniversity of PittsburghPittsburghPA,Pittsburgh Liver Research CenterUniversity of PittsburghPittsburghPA
| | - Guang Fu
- Department of Hepatobiliary SurgeryThe Third Xiangya HospitalCentral South UniversityChangshaChina,Department of SurgeryUniversity of PittsburghPittsburghPA
| | - Patricia A. Loughran
- Department of SurgeryUniversity of PittsburghPittsburghPA,Center for Biological ImagingUniversity of PittsburghPittsburghPA
| | - Zhao Lei
- Department of Hepatobiliary SurgeryThe Third Xiangya HospitalCentral South UniversityChangshaChina,Department of SurgeryUniversity of PittsburghPittsburghPA
| | - Shilai Li
- Department of SurgeryUniversity of PittsburghPittsburghPA,Department of EmergencyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Ping Sun
- Department of SurgeryUniversity of PittsburghPittsburghPA,Department of Hepatobiliary SurgeryUnion HospitalHuazhong University of Science and TechnologyWuhanChina
| | - Chenxuan Yang
- Department of SurgeryUniversity of PittsburghPittsburghPA,School of MedicineStudent at Tsinghua UniversityBeijingChina
| | - Wenbo Li
- Department of Hepatobiliary SurgeryThe Third Xiangya HospitalCentral South UniversityChangshaChina,Department of SurgeryUniversity of PittsburghPittsburghPA
| | - Hongbo Xu
- Department of SurgeryUniversity of PittsburghPittsburghPA
| | - Feizhou Huang
- Department of Hepatobiliary SurgeryThe Third Xiangya HospitalCentral South UniversityChangshaChina
| | | |
Collapse
|
25
|
Chun HL, Lee SY, Lee SH, Lee CS, Park HH. Enzymatic reaction mechanism of cis-aconitate decarboxylase based on the crystal structure of IRG1 from Bacillus subtilis. Sci Rep 2020; 10:11305. [PMID: 32647315 PMCID: PMC7347537 DOI: 10.1038/s41598-020-68419-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/22/2020] [Indexed: 11/22/2022] Open
Abstract
Itaconate, which is formed by decarboxylation of cis-aconitate—an intermediate metabolite in the tricarboxylic acid cycle—has been used as a building block in polymer synthesis and is an important chemical in several biomedical and industrial applications. Itaconate is an immunometabolite with antibacterial, antiviral, immunoregulatory, and tumor-promoting activities. Recent focus has been on the role of itaconate in the field of immunology, with immune-responsive gene 1 (IRG1) being identified as the cis-aconitate decarboxylase responsible for itaconate production. We solved the structure of IRG1 from Bacillus subtilis (bsIRG1) and showed that IRG1 adopts either a closed or an open conformation; bsIRG1 was in the open form. A1 and A2 loops around the active site are flexible and can control the formation of the open and closed forms of IRG1. An in silico docking simulation showed that only the open form of IRG1 can accommodate the substrate. The most energetically favorable position of cis-aconitate in the active site of bsIRG1 involved the localization of C2 and C5 of cis-aconitate into the H102 region and H151 region of bsIRG1, respectively. Based on the structural study of bsIRG1, compared with IDS epimerase, and in silico docking simulation, we proposed two tentative enzymatic reaction mechanisms of IRG1, a two-base model and a one-base model.
Collapse
Affiliation(s)
- Hye Lin Chun
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - So Yeon Lee
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Chang Sup Lee
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
26
|
Wu R, Chen F, Wang N, Tang D, Kang R. ACOD1 in immunometabolism and disease. Cell Mol Immunol 2020; 17:822-833. [PMID: 32601305 DOI: 10.1038/s41423-020-0489-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022] Open
Abstract
Immunometabolism plays a fundamental role in health and diseases and involves multiple genes and signals. Aconitate decarboxylase 1 (ACOD1; also known as IRG1) is emerging as a regulator of immunometabolism in inflammation and infection. Upregulation of ACOD1 expression occurs in activated immune cells (e.g., macrophages and monocytes) in response to pathogen infection (e.g., bacteria and viruses), pathogen-associated molecular pattern molecules (e.g., LPS), cytokines (e.g., TNF and IFNs), and damage-associated molecular patterns (e.g., monosodium urate). Mechanistically, several immune receptors (e.g., TLRs and IFNAR), adapter proteins (e.g., MYD88), ubiquitin ligases (e.g., A20), and transcription factors (e.g., NF-κB, IRFs, and STATs) form complex signal transduction networks to control ACOD1 expression in a context-dependent manner. Functionally, ACOD1 mediates itaconate production, oxidative stress, and antigen processing and plays dual roles in immunity and diseases. On the one hand, activation of the ACOD1 pathway may limit pathogen infection and promote embryo implantation. On the other hand, abnormal ACOD1 expression can lead to tumor progression, neurodegenerative disease, and immune paralysis. Further understanding of the function and regulation of ACOD1 is important for the application of ACOD1-based therapeutic strategies in disease.
Collapse
Affiliation(s)
- Runliu Wu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Feng Chen
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Nian Wang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
27
|
Lim R, Lappas M. Role of IRG1 in Regulating Pro-inflammatory and Pro-labor Mediators in Human Myometrium. Reprod Sci 2020; 27:61-74. [PMID: 32046417 DOI: 10.1007/s43032-019-00133-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/20/2019] [Indexed: 10/25/2022]
Abstract
Preterm birth is a major contributor to neonatal deaths and associated long-term morbidities for the survivors, yet therapies remain elusive, given our incomplete understanding of the mechanisms driving human labor and delivery. Human labor is an inflammatory process, and we investigated whether IRG1 (immunoresponsive gene-1) plays a role in these processes. We demonstrate that IRG1 mRNA and protein expression is significantly increased in myometrium with human term labor, compared to no labor samples, and with preterm (LPS) labor in a mouse model. Pro-labor mediators such as pro-inflammatory cytokines TNF and IL1B, and TLR ligands fsl-1, flagellin, LPS, and poly(I:C) also increased IRG1 mRNA expression in myometrial explants. IRG1 silencing, using siRNA in primary myometrial cells, displayed a decrease in the expression of inflammation-induced pro-inflammatory cytokines (IL1A, IL6), chemokines (CCL2, CXCL1, CXCL8), adhesion molecules (ICAM1, VCAM1), and contractility (PTGFR mRNA expression, prostaglandin F2α release, and in situ gel contraction assay). Our results suggest that IRG1 is involved when pro-labor mediators activate the inflammatory processes of human labor, warranting further investigation.
Collapse
Affiliation(s)
- Ratana Lim
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, 3010, Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia
| | - Martha Lappas
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, 3010, Australia. .,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia.
| |
Collapse
|
28
|
Biochemical and Metabolic Implications of Tricarboxylic Acids and their Transporters. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.2.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
29
|
Yu XH, Zhang DW, Zheng XL, Tang CK. Itaconate: an emerging determinant of inflammation in activated macrophages. Immunol Cell Biol 2018; 97:134-141. [PMID: 30428148 DOI: 10.1111/imcb.12218] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/26/2022]
Abstract
Macrophages play a central role in innate immunity as the first line of defense against pathogen infection. Upon exposure to inflammatory stimuli, macrophages rapidly respond and subsequently undergo metabolic reprogramming to substantially produce cellular metabolites such as itaconate. As a derivate of the tricarboxylic acid cycle, itaconate is derived from the decarboxylation of cis-aconitate mediated by immunoresponsive gene 1 in the mitochondrial matrix. It is well known that itaconate has a direct antimicrobial effect by inhibiting isocitrate lyase. Strikingly, two recent studies published in Nature showed that itaconate markedly decreases the production of proinflammatory mediators in lipopolysaccharide-treated macrophages and ameliorates sepsis and psoriasis in animal models, revealing a novel biological action of itaconate beyond its regular roles in antimicrobial defense. The mechanism for this anti-inflammatory effect has been proposed to involve the inhibition of succinate dehydrogenase, blockade of IκBζ translation and activation of Nrf2. These intriguing discoveries provide a new explanation for how macrophages are switched from a pro- to an anti-inflammatory state to limit the damage and facilitate tissue repair under proinflammatory conditions. Thus, the emerging effect of itaconate as a crucial determinant of macrophage inflammation has important implications in further understanding cellular immunometabolism and developing future therapeutics for the treatment of inflammatory diseases. In this review, we focus on the roles of itaconate in controlling the inflammatory response during macrophage activation, providing a rationale for future investigation and therapeutic intervention.
Collapse
Affiliation(s)
- Xiao-Hua Yu
- Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, 421001, China
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
| | - Chao-Ke Tang
- Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
30
|
Nguyen TV, Alfaro AC, Merien F, Young T, Grandiosa R. Metabolic and immunological responses of male and female new Zealand Greenshell™ mussels (Perna canaliculus) infected with Vibrio sp. J Invertebr Pathol 2018; 157:80-89. [PMID: 30110610 DOI: 10.1016/j.jip.2018.08.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/09/2018] [Accepted: 08/12/2018] [Indexed: 12/20/2022]
Abstract
Massive mortalities due to pathogens are routinely reported in bivalve cultivation that have significant economic consequences for the global aquaculture industry. However, host-pathogen interactions and infection mechanisms that mediate these interactions are poorly understood. In addition, gender-specific immunological responses have been reported for some species, but the reasons for such differences have not been elucidated. In this study, we used a GC/MS-based metabolomics platform and flow cytometry approach to characterize metabolic and immunological responses in haemolymph of male and female mussels (Perna canaliculus) experimentally infected with Vibrio sp. Sex-based differences in immunological responses were identified, with male mussels displaying higher mortality, oxidative stress and apoptosis after pathogen exposure. However, central metabolic processes appeared to be similar between sexes at 24 h post injection with Vibrio sp. DO1. Significant alterations in relative levels of 37 metabolites were detected between infected and uninfected mussels. These metabolites are involved in major perturbations on the host's innate immune system. In addition, there were alterations of seven metabolites in profiles of mussels sampled on the second day and mussels that survived six days after exposure. These metabolites include itaconic acid, isoleucine, phenylalanine, creatinine, malonic acid, glutaric acid and hydroxyproline. Among these, itaconic acid has the potential to be an important biomarker for Vibrio sp. DO1 infection. These findings provide new insights on the mechanistic relationship between a bivalve host and a pathogenic bacterium and highlight the need to consider host sex as a biological variable in future immunological studies.
Collapse
Affiliation(s)
- Thao V Nguyen
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand.
| | - Fabrice Merien
- AUT-Roche Diagnostics Laboratory, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Tim Young
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Roffi Grandiosa
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| |
Collapse
|
31
|
Van Quickelberghe E, Martens A, Goeminne LJE, Clement L, van Loo G, Gevaert K. Identification of Immune-Responsive Gene 1 (IRG1) as a Target of A20. J Proteome Res 2018; 17:2182-2191. [DOI: 10.1021/acs.jproteome.8b00139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Arne Martens
- VIB-UGent Center
for Inflammation Research, B-9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | | | | | - Geert van Loo
- VIB-UGent Center
for Inflammation Research, B-9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Kris Gevaert
- VIB-UGent Center
for Medical Biotechnology, B-9000 Ghent, Belgium
| |
Collapse
|
32
|
Stocks CJ, Schembri MA, Sweet MJ, Kapetanovic R. For when bacterial infections persist: Toll-like receptor-inducible direct antimicrobial pathways in macrophages. J Leukoc Biol 2018; 103:35-51. [PMID: 29345056 DOI: 10.1002/jlb.4ri0917-358r] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 12/18/2022] Open
Abstract
Macrophages are linchpins of innate immunity, responding to invading microorganisms by initiating coordinated inflammatory and antimicrobial programs. Immediate antimicrobial responses, such as NADPH-dependent reactive oxygen species (ROS), are triggered upon phagocytic receptor engagement. Macrophages also detect and respond to microbial products through pattern recognition receptors (PRRs), such as TLRs. TLR signaling influences multiple biological processes including antigen presentation, cell survival, inflammation, and direct antimicrobial responses. The latter enables macrophages to combat infectious agents that persist within the intracellular environment. In this review, we summarize our current understanding of TLR-inducible direct antimicrobial responses that macrophages employ against bacterial pathogens, with a focus on emerging evidence linking TLR signaling to reprogramming of mitochondrial functions to enable the production of direct antimicrobial agents such as ROS and itaconic acid. In addition, we describe other TLR-inducible antimicrobial pathways, including autophagy/mitophagy, modulation of nutrient availability, metal ion toxicity, reactive nitrogen species, immune GTPases (immunity-related GTPases and guanylate-binding proteins), and antimicrobial peptides. We also describe examples of mechanisms of evasion of such pathways by professional intramacrophage pathogens, with a focus on Salmonella, Mycobacteria, and Listeria. An understanding of how TLR-inducible direct antimicrobial responses are regulated, as well as how bacterial pathogens subvert such pathways, may provide new opportunities for manipulating host defence to combat infectious diseases.
Collapse
Affiliation(s)
- Claudia J Stocks
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Mark A Schembri
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Ronan Kapetanovic
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
33
|
Ganta VC, Choi MH, Kutateladze A, Fox TE, Farber CR, Annex BH. A MicroRNA93-Interferon Regulatory Factor-9-Immunoresponsive Gene-1-Itaconic Acid Pathway Modulates M2-Like Macrophage Polarization to Revascularize Ischemic Muscle. Circulation 2017; 135:2403-2425. [PMID: 28356443 PMCID: PMC5503157 DOI: 10.1161/circulationaha.116.025490] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/22/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Currently, no therapies exist for treating and improving outcomes in patients with severe peripheral artery disease (PAD). MicroRNA93 (miR93) has been shown to favorably modulate angiogenesis and to reduce tissue loss in genetic PAD models. However, the cell-specific function, downstream mechanisms, or signaling involved in miR93-mediated ischemic muscle neovascularization is not clear. Macrophages were best known to modulate arteriogenic response in PAD, and the extent of arteriogenic response induced by macrophages is dependent on greater M2 to M1 activation/polarization state. In the present study, we identified a novel mechanism by which miR93 regulates macrophage polarization to promote angiogenesis and arteriogenesis to revascularize ischemic muscle in experimental PAD. METHODS In vitro (macrophages, endothelial cells, skeletal muscle cells under normal and hypoxia serum starvation conditions) and in vivo experiments in preclinical PAD models (unilateral femoral artery ligation and resection) were conducted to examine the role of miR93-interferon regulatory factor-9-immunoresponsive gene-1 (IRG1)-itaconic acid pathway in macrophage polarization, angiogenesis, arteriogenesis, and perfusion recovery. RESULTS In vivo, compared with wild-type controls, miR106b-93-25 cluster-deficient mice (miR106b-93-25-/-) showed decreased angiogenesis and arteriogenesis correlating with increased M1-like macrophages after experimental PAD. Intramuscular delivery of miR93 in miR106b-93-25-/- PAD mice increased angiogenesis, arteriogenesis, and the extent of perfusion, which correlated with more M2-like macrophages in the proximal and distal hind-limb muscles. In vitro, miR93 promotes and sustains M2-like polarization even under M1-like polarizing conditions (hypoxia serum starvation). Delivery of bone marrow-derived macrophages from miR106b-93-25-/- to wild-type ischemic muscle decreased angiogenesis, arteriogenesis, and perfusion, whereas transfer of wild-type macrophages to miR106b-93-25-/- had the opposite effect. Systematic analysis of top differentially upregulated genes from RNA sequencing between miR106b-93-25-/- and wild-type ischemic muscle showed that miR93 regulates IRG1 function to modulate itaconic acid production and macrophage polarization. The 3' untranslated region luciferase assays performed to determine whether IRG1 is a direct target of miR93 revealed that IRG1 is not an miR93 target but that interferon regulatory factor-9, which can regulate IRG1 expression, is an miR93 target. In vitro, increased expression of interferon regulatory factor-9 and IRG1 and itaconic acid treatment significantly decreased endothelial angiogenic potential. CONCLUSIONS miR93 inhibits interferon regulatory factor-9 to decrease IRG1-itaconic acid production to induce M2-like polarization in ischemic muscle to enhance angiogenesis, arteriogenesis, and perfusion recovery in experimental PAD.
Collapse
Affiliation(s)
- Vijay Chaitanya Ganta
- From Cardiovascular Research Center (V.C.G., M.H.C., B.H.A.), Department of Biology (A.K.), Department of Pharmacology (T.E.F.), Department of Public Health Sciences (C.R.F.), and Department of Cardiology (B.H.A.), University of Virginia, Charlottesville
| | - Min Hyub Choi
- From Cardiovascular Research Center (V.C.G., M.H.C., B.H.A.), Department of Biology (A.K.), Department of Pharmacology (T.E.F.), Department of Public Health Sciences (C.R.F.), and Department of Cardiology (B.H.A.), University of Virginia, Charlottesville
| | - Anna Kutateladze
- From Cardiovascular Research Center (V.C.G., M.H.C., B.H.A.), Department of Biology (A.K.), Department of Pharmacology (T.E.F.), Department of Public Health Sciences (C.R.F.), and Department of Cardiology (B.H.A.), University of Virginia, Charlottesville
| | - Todd E Fox
- From Cardiovascular Research Center (V.C.G., M.H.C., B.H.A.), Department of Biology (A.K.), Department of Pharmacology (T.E.F.), Department of Public Health Sciences (C.R.F.), and Department of Cardiology (B.H.A.), University of Virginia, Charlottesville
| | - Charles R Farber
- From Cardiovascular Research Center (V.C.G., M.H.C., B.H.A.), Department of Biology (A.K.), Department of Pharmacology (T.E.F.), Department of Public Health Sciences (C.R.F.), and Department of Cardiology (B.H.A.), University of Virginia, Charlottesville
| | - Brian H Annex
- From Cardiovascular Research Center (V.C.G., M.H.C., B.H.A.), Department of Biology (A.K.), Department of Pharmacology (T.E.F.), Department of Public Health Sciences (C.R.F.), and Department of Cardiology (B.H.A.), University of Virginia, Charlottesville.
| |
Collapse
|
34
|
Liu X, Wu XP, Zhu XL, Li T, Liu Y. IRG1 increases MHC class I level in macrophages through STAT-TAP1 axis depending on NADPH oxidase mediated reactive oxygen species. Int Immunopharmacol 2017; 48:76-83. [PMID: 28477473 DOI: 10.1016/j.intimp.2017.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 03/29/2017] [Accepted: 04/12/2017] [Indexed: 12/11/2022]
Abstract
The major histocompatibility complex (MHC) is the connection between innate immunity and acquired immune system. Recently, many studies reported that the immunoresponsive gene 1 (IRG1) play an important role on innate immunity including reactive oxygen species (ROS), antiviral effect and expression of inflammatory factors. However, the function of IRG1 in antigen presenting remains unclear. In this study, we found that overexpressed-IRG1 promoted MHC I level instead of MHC II in macrophages membrane. Besides, IRG1 increased expression of some transporter proteins associated with antigen processing involving TAP1, PSMB9 depending on ROS. By detecting the activation of glucose-6-phosphate dehydrogenase (G6PD), we confirmed that IRG1 could increase ROS level by promoting pentose phosphate pathway (PPP). DPI, an inhibitor of NADPH oxidase (NOX), also significant attenuated TAP1 and MHC I level in IRG1-overexpressed macrophages. Finally, results showed that phosphorylation of STAT1/3 involved in IRG1-mediated TAP1 and MHC I expression. In conclusion, IRG1 increased MHC class I level in macrophages through STAT1/3-TAP1 axis depending on PPP and NOX mediated ROS.
Collapse
Affiliation(s)
- Xing Liu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiao-Pan Wu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xi-Lin Zhu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Tao Li
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Ying Liu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.
| |
Collapse
|
35
|
Liu X, Zhang L, Wu XP, Zhu XL, Pan LP, Li T, Yan BY, Xu AQ, Li H, Liu Y. Polymorphisms in IRG1 gene associated with immune responses to hepatitis B vaccination in a Chinese Han population and function to restrain the HBV life cycle. J Med Virol 2017; 89:1215-1223. [PMID: 28004399 DOI: 10.1002/jmv.24756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 12/30/2022]
Abstract
Vaccination against the hepatitis B virus (HBV) is extensively used as an effective method to prevent HBV infection. However, nearly 10% of healthy adults fail to produce a protective level of antibodies against the hepatitis B vaccine, and multiple genetic variants are known to affect the immune response to the hepatitis B vaccine. The aim of the present study was to investigate the association between polymorphisms in immunoresponsive gene 1 (IRG1) gene and the immune response to hepatitis B vaccination in a Chinese Han population. Four single nucleotide polymorphisms (SNPs) located in the IRG1 gene were genotyped in 1230 high-responders and 451 non-responders to hepatitis B vaccination. The SNPs rs17470171 and rs17385627 were associated with the immune response to hepatitis B vaccination (P = 0.014 and 0.029, respectively). In addition, the haplotypes G-A-A-A (rs614171-rs17470171-rs9530614-rs17385627, P = 0.0042, OR = 0.68) and A-A (rs17470171-rs17385627, P = 0.0065, OR = 0.72) exerted a protective role in the immune response to hepatitis B vaccination. Allele 'A' of rs17470171 and allele 'A' of rs17385627 show higher levels of expression for the IRG1 gene compared with allele 'C' of rs17470171 and allele 'T' of rs17385627 as demonstrated by luciferase reporter and overexpression assays. In addition, we observed that IRG1 inhibited the HBV life cycle and that IRG1 rs17385627 allele 'A' was more effective than rs17385627 allele 'T' at eliminating HBV in HepG2.2.15 cells. These findings suggest that polymorphisms in the IRG1 gene are associated with the immune response to hepatitis B vaccination. The antiviral effect of IRG1 was confirmed using HBV infection cell models.
Collapse
Affiliation(s)
- Xing Liu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Li Zhang
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Xiao-Pan Wu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xi-Lin Zhu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Li-Ping Pan
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Tao Li
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Bing-Yu Yan
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Ai-Qiang Xu
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Hui Li
- Department of Epidemiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Ying Liu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
36
|
Metabolic reprogramming & inflammation: Fuelling the host response to pathogens. Semin Immunol 2016; 28:450-468. [PMID: 27780657 DOI: 10.1016/j.smim.2016.10.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/14/2016] [Accepted: 10/17/2016] [Indexed: 12/24/2022]
Abstract
Successful immune responses to pathogens rely on efficient host innate processes to contain and limit bacterial growth, induce inflammatory response and promote antigen presentation for the development of adaptive immunity. This energy intensive process is regulated through multiple mechanisms including receptor-mediated signaling, control of phago-lysomal fusion events and promotion of bactericidal activities. Inherent macrophage activities therefore are dynamic and are modulated by signals and changes in the environment during infection. So too does the way these cells obtain their energy to adapt to altered homeostasis. It has emerged recently that the pathways employed by immune cells to derive energy from available or preferred nutrients underline the dynamic changes associated with immune activation. In particular, key breakpoints have been identified in the metabolism of glucose and lipids which direct not just how cells derive energy in the form of ATP, but also cellular phenotype and activation status. Much of this comes about through altered flux and accumulation of intermediate metabolites. How these changes in metabolism directly impact on the key processes required for anti-microbial immunity however, is less obvious. Here, we examine the 2 key nutrient utilization pathways employed by innate cells to fuel central energy metabolism and examine how these are altered in response to activation during infection, emphasising how certain metabolic switches or 'reprogramming' impacts anti-microbial processes. By examining carbohydrate and lipid pathways and how the flux of key intermediates intersects with innate immune signaling and the induction of bactericidal activities, we hope to illustrate the importance of these metabolic switches for protective immunity and provide a potential mechanism for how altered metabolic conditions in humans such as diabetes and hyperlipidemia alter the host response to infection.
Collapse
|
37
|
Suppression of IRG-1 Reduces Inflammatory Cell Infiltration and Lung Injury in Respiratory Syncytial Virus Infection by Reducing Production of Reactive Oxygen Species. J Virol 2016; 90:7313-7322. [PMID: 27252532 DOI: 10.1128/jvi.00563-16] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 05/25/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Respiratory syncytial virus (RSV) infection is a common cause of lower respiratory tract illness in infants and children. RSV is a negative-sense, single-strand RNA (ssRNA) virus that mainly infects airway epithelial cells. Accumulating evidence indicates that reactive oxygen species (ROS) production is a major factor for pulmonary inflammation and tissue damage of RSV disease. We investigated immune-responsive gene-1 (IRG1) expression during RSV infection, since IRG1 has been shown to mediate innate immune response to intracellular bacterial pathogens by modulating ROS and itaconic acid production. We found that RSV infection induced IRG1 expression in human A549 cells and in the lung tissues of RSV-infected mice. RSV infection or IRG1 overexpression promoted ROS production. Accordingly, knockdown of IRG1 induction blocked RSV-induced ROS production and proinflammatory cytokine gene expression. Finally, we showed that suppression of IRG1 induction reduced immune cell infiltration and prevented lung injury in RSV-infected mice. These results therefore link IRG1 induction to ROS production and immune lung injury after RSV infection. IMPORTANCE RSV infection is among the most common causes of childhood diseases. Recent studies identify ROS production as a factor contributing to RSV disease. We investigated the cause of ROS production and identified IRG1 as a critical factor linking ROS production to immune lung injury after RSV infection. We found that IRG1 was induced in A549 alveolar epithelial cells and in mouse lungs after RSV infection. Importantly, suppression of IRG1 induction reduced inflammatory cell infiltration and lung injury in mice. This study links IRG1 induction to oxidative damage and RSV disease. It also uncovers a potential therapeutic target in reducing RSV-caused lung injury.
Collapse
|
38
|
Tallam A, Perumal TM, Antony PM, Jäger C, Fritz JV, Vallar L, Balling R, del Sol A, Michelucci A. Gene Regulatory Network Inference of Immunoresponsive Gene 1 (IRG1) Identifies Interferon Regulatory Factor 1 (IRF1) as Its Transcriptional Regulator in Mammalian Macrophages. PLoS One 2016; 11:e0149050. [PMID: 26872335 PMCID: PMC4752512 DOI: 10.1371/journal.pone.0149050] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/25/2016] [Indexed: 01/28/2023] Open
Abstract
Immunoresponsive gene 1 (IRG1) is one of the highest induced genes in macrophages under pro-inflammatory conditions. Its function has been recently described: it codes for immune-responsive gene 1 protein/cis-aconitic acid decarboxylase (IRG1/CAD), an enzyme catalysing the production of itaconic acid from cis-aconitic acid, a tricarboxylic acid (TCA) cycle intermediate. Itaconic acid possesses specific antimicrobial properties inhibiting isocitrate lyase, the first enzyme of the glyoxylate shunt, an anaplerotic pathway that bypasses the TCA cycle and enables bacteria to survive on limited carbon conditions. To elucidate the mechanisms underlying itaconic acid production through IRG1 induction in macrophages, we examined the transcriptional regulation of IRG1. To this end, we studied IRG1 expression in human immune cells under different inflammatory stimuli, such as TNFα and IFNγ, in addition to lipopolysaccharides. Under these conditions, as previously shown in mouse macrophages, IRG1/CAD accumulates in mitochondria. Furthermore, using literature information and transcription factor prediction models, we re-constructed raw gene regulatory networks (GRNs) for IRG1 in mouse and human macrophages. We further implemented a contextualization algorithm that relies on genome-wide gene expression data to infer putative cell type-specific gene regulatory interactions in mouse and human macrophages, which allowed us to predict potential transcriptional regulators of IRG1. Among the computationally identified regulators, siRNA-mediated gene silencing of interferon regulatory factor 1 (IRF1) in macrophages significantly decreased the expression of IRG1/CAD at the gene and protein level, which correlated with a reduced production of itaconic acid. Using a synergistic approach of both computational and experimental methods, we here shed more light on the transcriptional machinery of IRG1 expression and could pave the way to therapeutic approaches targeting itaconic acid levels.
Collapse
Affiliation(s)
- Aravind Tallam
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Thaneer M. Perumal
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Paul M. Antony
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Christian Jäger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Joëlle V. Fritz
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Laurent Vallar
- Genomics Research Laboratory, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Rudi Balling
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Antonio del Sol
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alessandro Michelucci
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- NORLUX Neuro-Oncology Laboratory, Luxembourg Institute of Health, Luxembourg, Luxembourg
| |
Collapse
|
39
|
Meiser J, Krämer L, Sapcariu SC, Battello N, Ghelfi J, D'Herouel AF, Skupin A, Hiller K. Pro-inflammatory Macrophages Sustain Pyruvate Oxidation through Pyruvate Dehydrogenase for the Synthesis of Itaconate and to Enable Cytokine Expression. J Biol Chem 2015; 291:3932-46. [PMID: 26679997 PMCID: PMC4759172 DOI: 10.1074/jbc.m115.676817] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Indexed: 01/10/2023] Open
Abstract
Upon stimulation with Th1 cytokines or bacterial lipopolysaccharides, resting macrophages shift their phenotype toward a pro-inflammatory state as part of the innate immune response. LPS-activated macrophages undergo profound metabolic changes to adapt to these new physiological requirements. One key step to mediate this metabolic adaptation is the stabilization of HIF1α, which leads to increased glycolysis and lactate release, as well as decreased oxygen consumption. HIF1 abundance can result in the induction of the gene encoding pyruvate dehydrogenase kinase 1 (PDK1), which inhibits pyruvate dehydrogenase (PDH) via phosphorylation. Therefore, it has been speculated that pyruvate oxidation through PDH is decreased in pro-inflammatory macrophages. However, to answer this open question, an in-depth analysis of this metabolic branching point was so far lacking. In this work, we applied stable isotope-assisted metabolomics techniques and demonstrate that pyruvate oxidation is maintained in mature pro-inflammatory macrophages. Glucose-derived pyruvate is oxidized via PDH to generate citrate in the mitochondria. Citrate is used for the synthesis of the antimicrobial metabolite itaconate and for lipogenesis. An increased demand for these metabolites decreases citrate oxidation through the tricarboxylic acid cycle, whereas increased glutamine uptake serves to replenish the TCA cycle. Furthermore, we found that the PDH flux is maintained by unchanged PDK1 abundance, despite the presence of HIF1. By pharmacological intervention, we demonstrate that the PDH flux is an important node for M(LPS) macrophage activation. Therefore, PDH represents a metabolic intervention point that might become a research target for translational medicine to treat chronic inflammatory diseases.
Collapse
Affiliation(s)
- Johannes Meiser
- From the Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue de Swing, L-4367 Belvaux, Luxembourg
| | - Lisa Krämer
- From the Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue de Swing, L-4367 Belvaux, Luxembourg
| | - Sean C Sapcariu
- From the Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue de Swing, L-4367 Belvaux, Luxembourg
| | - Nadia Battello
- From the Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue de Swing, L-4367 Belvaux, Luxembourg
| | - Jenny Ghelfi
- From the Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue de Swing, L-4367 Belvaux, Luxembourg
| | - Aymeric Fouquier D'Herouel
- From the Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue de Swing, L-4367 Belvaux, Luxembourg
| | - Alexander Skupin
- From the Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue de Swing, L-4367 Belvaux, Luxembourg
| | - Karsten Hiller
- From the Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 Avenue de Swing, L-4367 Belvaux, Luxembourg
| |
Collapse
|
40
|
Elsheimer-Matulova M, Varmuzova K, Kyrova K, Havlickova H, Sisak F, Rahman M, Rychlik I. phoP, SPI1, SPI2 and aroA mutants of Salmonella Enteritidis induce a different immune response in chickens. Vet Res 2015; 46:96. [PMID: 26380970 PMCID: PMC4574724 DOI: 10.1186/s13567-015-0224-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/20/2015] [Indexed: 01/07/2023] Open
Abstract
Poultry is the most frequent reservoir of non-typhoid Salmonella enterica for humans. Understanding the interactions between chickens and S. enterica is therefore important for vaccine design and subsequent decrease in the incidence of human salmonellosis. In this study we therefore characterized the interactions between chickens and phoP, aroA, SPI1 and SPI2 mutants of S. Enteritidis. First we tested the response of HD11 chicken macrophage-like cell line to S. Enteritidis infection monitoring the transcription of 36 genes related to immune response. All the mutants and the wild type strain induced inflammatory signaling in the HD11 cell line though the response to SPI1 mutant infection was different from the rest of the mutants. When newly hatched chickens were inoculated, the phoP as well as the SPI1 mutant did not induce an expression of any of the tested genes in the cecum. Despite this, such chickens were protected against challenge with wild-type S. Enteritidis. On the other hand, inoculation of chickens with the aroA or SPI2 mutant induced expression of 27 and 18 genes, respectively, including genes encoding immunoglobulins. Challenge of chickens inoculated with these two mutants resulted in repeated induction of 11 and 13 tested genes, respectively, including the genes encoding immunoglobulins. In conclusion, SPI1 and phoP mutants induced protective immunity without inducing an inflammatory response and antibody production. Inoculation of chickens with the SPI2 and aroA mutants also led to protective immunity but was associated with inflammation and antibody production. The differences in interaction between the mutants and chicken host can be used for a more detailed understanding of the chicken immune system.
Collapse
Affiliation(s)
| | - Karolina Varmuzova
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic.
| | - Kamila Kyrova
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic.
| | - Hana Havlickova
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic.
| | - Frantisek Sisak
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic.
| | - Masudur Rahman
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic.
| | - Ivan Rychlik
- Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic.
| |
Collapse
|
41
|
Cordes T, Michelucci A, Hiller K. Itaconic Acid: The Surprising Role of an Industrial Compound as a Mammalian Antimicrobial Metabolite. Annu Rev Nutr 2015; 35:451-73. [PMID: 25974697 DOI: 10.1146/annurev-nutr-071714-034243] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Itaconic acid is well known as a precursor for polymer synthesis and has been involved in industrial processes for decades. In a recent surprising discovery, itaconic acid was found to play a role as an immune-supportive metabolite in mammalian immune cells, where it is synthesized as an antimicrobial compound from the citric acid cycle intermediate cis-aconitic acid. Although the immune-responsive gene 1 protein (IRG1) has been associated to immune response without a mechanistic function, the critical link to itaconic acid production through an enzymatic function of this protein was only recently revealed. In this review, we highlight the history of itaconic acid as an industrial and antimicrobial compound, starting with its biotechnological synthesis and ending with its antimicrobial function in mammalian immune cells.
Collapse
Affiliation(s)
- Thekla Cordes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-Belval, Luxembourg; ,
| | | | | |
Collapse
|
42
|
MacMicking JD. Cell-autonomous effector mechanisms against mycobacterium tuberculosis. Cold Spring Harb Perspect Med 2014; 4:cshperspect.a018507. [PMID: 25081628 DOI: 10.1101/cshperspect.a018507] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Few pathogens run the gauntlet of sterilizing immunity like Mycobacterium tuberculosis (Mtb). This organism infects mononuclear phagocytes and is also ingested by neutrophils, both of which possess an arsenal of cell-intrinsic effector mechanisms capable of eliminating it. Here Mtb encounters acid, oxidants, nitrosylating agents, and redox congeners, often exuberantly delivered under low oxygen tension. Further pressure is applied by withholding divalent Fe²⁺, Mn²⁺, Cu²⁺, and Zn²⁺, as well as by metabolic privation in the form of carbon needed for anaplerosis and aromatic amino acids for growth. Finally, host E3 ligases ubiquinate, cationic peptides disrupt, and lysosomal enzymes digest Mtb as part of the autophagic response to this particular pathogen. It is a testament to the evolutionary fitness of Mtb that sterilization is rarely complete, although sufficient to ensure most people infected with this airborne bacterium remain disease-free.
Collapse
Affiliation(s)
- John D MacMicking
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06510
| |
Collapse
|
43
|
Li Y, Zhang P, Wang C, Han C, Meng J, Liu X, Xu S, Li N, Wang Q, Shi X, Cao X. Immune responsive gene 1 (IRG1) promotes endotoxin tolerance by increasing A20 expression in macrophages through reactive oxygen species. J Biol Chem 2013; 288:16225-16234. [PMID: 23609450 DOI: 10.1074/jbc.m113.454538] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Sepsis-associated immunosuppression (SAIS) is regarded as one of main causes for the death of septic patients at the late stage because of the decreased innate immunity with a more opportunistic infection. LPS-tolerized macrophages, which are re-challenged by LPS after prior exposure to LPS, are regarded as the common model of hypo-responsiveness for SAIS. However, the molecular mechanisms of endotoxin tolerance and SAIS remain to be fully elucidated. In addition, negative regulation of the Toll-like receptor (TLR)-triggered innate inflammatory response needs further investigation. Here we show that expression of immune responsive gene 1 (IRG1) was highly up-regulated in the peripheral blood mononuclear cells of septic patients and in LPS-tolerized mouse macrophages. IRG1 significantly suppressed TLR-triggered production of proinflammatory cytokines TNF-α, IL-6, and IFN-β in LPS-tolerized macrophages, with the elevated expression of reactive oxygen species (ROS) and A20. Moreover, ROS enhanced A20 expression by increasing the H3K4me3 modification of histone on the A20 promoter domain, and supplement of the ROS abrogated the IRG1 knockdown function in breaking endotoxin tolerance by increasing A20 expression. Our results demonstrate that inducible IRG1 promotes endotoxin tolerance by increasing A20 expression through ROS, indicating a new molecular mechanism regulating hypoinflammation of sepsis and endotoxin tolerance.
Collapse
Affiliation(s)
- Yingke Li
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433; Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003
| | - Peng Zhang
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433
| | - Chengcai Wang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003
| | - Chaofeng Han
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433
| | - Jun Meng
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058
| | - Xingguang Liu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433
| | - Sheng Xu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433
| | - Nan Li
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058
| | - Xueyin Shi
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003.
| | - Xuetao Cao
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058; National Key Laboratory of Medical Molecular Biology and Department of Immunology, Chinese Academy of Medical Sciences, Beijing 100021, China.
| |
Collapse
|
44
|
Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc Natl Acad Sci U S A 2013; 110:7820-5. [PMID: 23610393 DOI: 10.1073/pnas.1218599110] [Citation(s) in RCA: 768] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Immunoresponsive gene 1 (Irg1) is highly expressed in mammalian macrophages during inflammation, but its biological function has not yet been elucidated. Here, we identify Irg1 as the gene coding for an enzyme producing itaconic acid (also known as methylenesuccinic acid) through the decarboxylation of cis-aconitate, a tricarboxylic acid cycle intermediate. Using a gain-and-loss-of-function approach in both mouse and human immune cells, we found Irg1 expression levels correlating with the amounts of itaconic acid, a metabolite previously proposed to have an antimicrobial effect. We purified IRG1 protein and identified its cis-aconitate decarboxylating activity in an enzymatic assay. Itaconic acid is an organic compound that inhibits isocitrate lyase, the key enzyme of the glyoxylate shunt, a pathway essential for bacterial growth under specific conditions. Here we show that itaconic acid inhibits the growth of bacteria expressing isocitrate lyase, such as Salmonella enterica and Mycobacterium tuberculosis. Furthermore, Irg1 gene silencing in macrophages resulted in significantly decreased intracellular itaconic acid levels as well as significantly reduced antimicrobial activity during bacterial infections. Taken together, our results demonstrate that IRG1 links cellular metabolism with immune defense by catalyzing itaconic acid production.
Collapse
|
45
|
Matulova M, Rajova J, Vlasatikova L, Volf J, Stepanova H, Havlickova H, Sisak F, Rychlik I. Characterization of chicken spleen transcriptome after infection with Salmonella enterica serovar Enteritidis. PLoS One 2012; 7:e48101. [PMID: 23094107 PMCID: PMC3477135 DOI: 10.1371/journal.pone.0048101] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/20/2012] [Indexed: 01/23/2023] Open
Abstract
In this study we were interested in identification of new markers of chicken response to Salmonella Enteritidis infection. To reach this aim, gene expression in the spleens of naive chickens and those intravenously infected with S. Enteritidis with or without previous oral vaccination was determined by 454 pyrosequencing of splenic mRNA/cDNA. Forty genes with increased expression at the level of transcription were identified. The most inducible genes encoded avidin (AVD), extracellular fatty acid binding protein (EXFABP), immune responsive gene 1 (IRG1), chemokine ah221 (AH221), trappin-6-like protein (TRAP6) and serum amyloid A (SAA). Using cDNA from sorted splenic B-lymphocytes, macrophages, CD4, CD8 and γδ T-lymphocytes, we found that the above mentioned genes were preferentially expressed in macrophages. AVD, EXFABP, IRG1, AH221, TRAP6 and SAA were induced also in the cecum of chickens orally infected with S. Enteritidis on day 1 of life or day 42 of life. Unusual results were obtained for the immunoglobulin encoding transcripts. Prior to the infection, transcripts coding for the constant parts of IgM, IgY, IgA and Ig light chain were detected in B-lymphocytes. However, after the infection, immunoglobulin encoding transcripts were expressed also by T-lymphocytes and macrophages. Expression of AVD, EXFABP, IRG1, AH221, TRAP6, SAA and all immunoglobulin genes can be therefore used for the characterization of the course of S. Enteritidis infection in chickens.
Collapse
Affiliation(s)
| | - Jana Rajova
- Veterinary Research Institute, Brno, Czech Republic
| | | | - Jiri Volf
- Veterinary Research Institute, Brno, Czech Republic
| | | | | | | | - Ivan Rychlik
- Veterinary Research Institute, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
46
|
Kumar S, Kunec D, Buza JJ, Chiang HI, Zhou H, Subramaniam S, Pendarvis K, Cheng HH, Burgess SC. Nuclear Factor kappa B is central to Marek's disease herpesvirus induced neoplastic transformation of CD30 expressing lymphocytes in-vivo. BMC SYSTEMS BIOLOGY 2012; 6:123. [PMID: 22979947 PMCID: PMC3472249 DOI: 10.1186/1752-0509-6-123] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 09/04/2012] [Indexed: 12/15/2022]
Abstract
Background Marek’s Disease (MD) is a hyperproliferative, lymphomatous, neoplastic disease of chickens caused by the oncogenic Gallid herpesvirus type 2 (GaHV-2; MDV). Like several human lymphomas the neoplastic MD lymphoma cells overexpress the CD30 antigen (CD30hi) and are in minority, while the non-neoplastic cells (CD30lo) form the majority of population. MD is a unique natural in-vivo model of human CD30hi lymphomas with both natural CD30hi lymphomagenesis and spontaneous regression. The exact mechanism of neoplastic transformation from CD30lo expressing phenotype to CD30hi expressing neoplastic phenotype is unknown. Here, using microarray, proteomics and Systems Biology modeling; we compare the global gene expression of CD30lo and CD30hi cells to identify key pathways of neoplastic transformation. We propose and test a specific mechanism of neoplastic transformation, and genetic resistance, involving the MDV oncogene Meq, host gene products of the Nuclear Factor Kappa B (NF-κB) family and CD30; we also identify a novel Meq protein interactome. Results Our results show that a) CD30lo lymphocytes are pre-neoplastic precursors and not merely reactive lymphocytes; b) multiple transformation mechanisms exist and are potentially controlled by Meq; c) Meq can drive a feed-forward cycle that induces CD30 transcription, increases CD30 signaling which activates NF-κB, and, in turn, increases Meq transcription; d) Meq transcriptional repression or activation of the CD30 promoter generally correlates with polymorphisms in the CD30 promoter distinguishing MD-lymphoma resistant and susceptible chicken genotypes e) MDV oncoprotein Meq interacts with proteins involved in physiological processes central to lymphomagenesis. Conclusions In the context of the MD lymphoma microenvironment (and potentially in other CD30hi lymphomas as well), our results show that the neoplastic transformation is a continuum and the non-neoplastic cells are actually pre-neoplastic precursor cells and not merely immune bystanders. We also show that NF-κB is a central player in MDV induced neoplastic transformation of CD30-expressing lymphocytes in vivo. Our results provide insights into molecular mechanisms of neoplastic transformation in MD specifically and also herpesvirus induced lymphoma in general.
Collapse
Affiliation(s)
- Shyamesh Kumar
- Department of Pathobiology and Population Medicine, Mississippi State University, MS 39762, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Sandford AJ, Malhotra D, Boezen HM, Siedlinski M, Postma DS, Wong V, Akhabir L, He JQ, Connett JE, Anthonisen NR, Paré PD, Biswal S. NFE2L2 pathway polymorphisms and lung function decline in chronic obstructive pulmonary disease. Physiol Genomics 2012; 44:754-63. [PMID: 22693272 DOI: 10.1152/physiolgenomics.00027.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
An oxidant-antioxidant imbalance in the lung contributes to the development of chronic obstructive pulmonary disease (COPD) that is caused by a complex interaction of genetic and environmental risk factors. Nuclear erythroid 2-related factor 2 (NFE2L2 or NRF2) is a critical molecule in the lung's defense mechanism against oxidants. We investigated whether polymorphisms in the NFE2L2 pathway affected the rate of decline of lung function in smokers from the Lung Health Study (LHS)(n = 547) and in a replication set, the Vlagtwedde-Vlaardingen cohort (n = 533). We selected polymorphisms in NFE2L2 in genes that positively or negatively regulate NFE2L2 transcriptional activity and in genes that are regulated by NFE2L2. Polymorphisms in 11 genes were significantly associated with rate of lung function decline in the LHS. One of these polymorphisms, rs11085735 in the KEAP1 gene, was previously shown to be associated with the level of lung function in the Vlagtwedde-Vlaardingen cohort but not with decline of lung function. Of the 23 associated polymorphisms in the LHS, only rs634534 in the FOSL1 gene showed a significant association in the Vlagtwedde-Vlaardingen cohort with rate of lung function decline, but the direction of the association was not consistent with that in the LHS. In summary, despite finding several nominally significant polymorphisms in the LHS, none of these associations were replicated in the Vlagtwedde-Vlaardingen cohort, indicating lack of effect of polymorphisms in the NFE2L2 pathway on the rate of decline of lung function.
Collapse
Affiliation(s)
- Andrew J Sandford
- UBC James Hogg Research Centre, Providence Heart + Lung Institute, St. Paul's Hospital, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Identification and expression of immune genes in the flat oyster Ostrea edulis in response to bonamiosis. Gene 2012; 492:81-93. [DOI: 10.1016/j.gene.2011.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 10/25/2011] [Accepted: 11/01/2011] [Indexed: 12/26/2022]
|
49
|
van Soest JJ, Stockhammer OW, Ordas A, Bloemberg GV, Spaink HP, Meijer AH. Comparison of static immersion and intravenous injection systems for exposure of zebrafish embryos to the natural pathogen Edwardsiella tarda. BMC Immunol 2011; 12:58. [PMID: 22003892 PMCID: PMC3206475 DOI: 10.1186/1471-2172-12-58] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 10/17/2011] [Indexed: 11/25/2022] Open
Abstract
Background The zebrafish embryo is an important in vivo model to study the host innate immune response towards microbial infection. In most zebrafish infectious disease models, infection is achieved by micro-injection of bacteria into the embryo. Alternatively, Edwardsiella tarda, a natural fish pathogen, has been used to treat embryos by static immersion. In this study we used transcriptome profiling and quantitative RT-PCR to analyze the immune response induced by E. tarda immersion and injection. Results Mortality rates after static immersion of embryos in E. tarda suspension varied between 25-75%, while intravenous injection of bacteria resulted in 100% mortality. Quantitative RT-PCR analysis on the level of single embryos showed that expression of the proinflammatory marker genes il1b and mmp9 was induced only in some embryos that were exposed to E. tarda in the immersion system, whereas intravenous injection of E. tarda led to il1b and mmp9 induction in all embryos. In addition, microarray expression profiles of embryos subjected to immersion or injection showed little overlap. E. tarda-injected embryos displayed strong induction of inflammatory and defense genes and of regulatory genes of the immune response. E. tarda-immersed embryos showed transient induction of the cytochrome P450 gene cyp1a. This gene was also induced after immersion in Escherichia coli and Pseudomonas aeruginosa suspensions, but, in contrast, was not induced upon intravenous E. tarda injection. One of the rare common responses in the immersion and injection systems was induction of irg1l, a homolog of a murine immunoresponsive gene of unknown function. Conclusions Based on the differences in mortality rates between experiments and gene expression profiles of individual embryos we conclude that zebrafish embryos cannot be reproducibly infected by exposure to E. tarda in the immersion system. Induction of il1b and mmp9 was consistently observed in embryos that had been systemically infected by intravenous injection, while the early transcriptional induction of cyp1a and irg1l in the immersion system may reflect an epithelial or other tissue response towards cell membrane or other molecules that are shed or released by bacteria. Our microarray expression data provide a useful reference for future analysis of signal transduction pathways underlying the systemic innate immune response versus those underlying responses to external bacteria and secreted virulence factors and toxins.
Collapse
Affiliation(s)
- Joost J van Soest
- Institute of Biology, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
50
|
Interleukin-10 alters effector functions of multiple genes induced by Borrelia burgdorferi in macrophages to regulate Lyme disease inflammation. Infect Immun 2011; 79:4876-92. [PMID: 21947773 DOI: 10.1128/iai.05451-11] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interleukin-10 (IL-10) modulates inflammatory responses elicited in vitro and in vivo by Borrelia burgdorferi, the Lyme disease spirochete. How IL-10 modulates these inflammatory responses still remains elusive. We hypothesize that IL-10 inhibits effector functions of multiple genes induced by B. burgdorferi in macrophages to control concomitantly elicited inflammation. Because macrophages are essential in the initiation of inflammation, we used mouse J774 macrophages and live B. burgdorferi spirochetes as the model target cell and stimulant, respectively. First, we employed transcriptome profiling to identify genes that were induced by stimulation of cells with live spirochetes and that were perturbed by addition of IL-10 to spirochete cultures. Spirochetes significantly induced upregulation of 347 genes at both the 4-h and 24-h time points. IL-10 inhibited the expression levels, respectively, of 53 and 65 of the 4-h and 24-h genes, and potentiated, respectively, at 4 h and 24 h, 65 and 50 genes. Prominent among the novel identified IL-10-inhibited genes also validated by quantitative real-time PCR (qRT-PCR) were Toll-like receptor 1 (TLR1), TLR2, IRAK3, TRAF1, IRG1, PTGS2, MMP9, IFI44, IFIT1, and CD40. Proteome analysis using a multiplex enzyme-linked immunosorbent assay (ELISA) revealed the IL-10 modulation/and or potentiation of RANTES/CCL5, macrophage inflammatory protein 2 (MIP-2)/CXCL2, IP-10/CXCL10, MIP-1α/CCL3, granulocyte colony-stimulating factor (G-CSF)/CSF3, CXCL1, CXCL5, CCL2, CCL4, IL-6, tumor necrosis factor alpha (TNF-α), IL-1α, IL-1β, gamma interferon (IFN-γ), and IL-9. Similar results were obtained using sonicated spirochetes or lipoprotein as stimulants. Our data show that IL-10 alters effectors induced by B. burgdorferi in macrophages to control concomitantly elicited inflammatory responses. Moreover, for the first time, this study provides global insight into potential mechanisms used by IL-10 to control Lyme disease inflammation.
Collapse
|