1
|
Sorvina A, Martini C, Prabhakaran S, Logan JM, S-Y Ung B, Moore C, Johnson IRD, Lazniewska J, Tewari P, Malone V, Brooks RD, Hickey SM, Caruso MC, Klebe S, Karageorgos L, O'Leary JJ, Delahunt B, Samaratunga H, Brooks DA. Appl1, Sortilin and Syndecan-1 immunohistochemistry on intraductal carcinoma of the prostate provides evidence of retrograde spread. Pathology 2023; 55:792-799. [PMID: 37422404 DOI: 10.1016/j.pathol.2023.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/30/2023] [Accepted: 05/02/2023] [Indexed: 07/10/2023]
Abstract
The presence of intraductal carcinoma of the prostate (IDCP) correlates with late-stage disease and poor outcomes for patients with prostatic adenocarcinoma, but the accurate and reliable staging of disease severity remains challenging. Immunohistochemistry (IHC) has been utilised to overcome problems in assessing IDCP morphology, but the current markers have only demonstrated limited utility in characterising the complex biology of this lesion. In a retrospective study of a cohort of patients who had been diagnosed with IDCP, we utilised IHC on radical prostatectomy sections with a biomarker panel of Appl1, Sortilin and Syndecan-1, to interpret different architectural patterns and to explore the theory that IDCP occurs from retrograde spread of high-grade invasive prostatic adenocarcinoma. Cribriform IDCP displayed strong Appl1, Sortilin and Syndecan-1 labelling patterns, while solid IDCP architecture had high intensity Appl1 and Syndecan-1 labelling, but minimal Sortilin labelling. Notably, the expression pattern of the biomarker panel in regions of IDCP was similar to that of adjacent invasive prostatic adenocarcinoma, and also comparable to prostate cancer showing perineural and vascular invasion. The Appl1, Sortilin, and Syndecan-1 biomarker panel in IDCP provides evidence for the model of retrograde spread of invasive prostatic carcinoma into ducts/acini, and supports the inclusion of IDCP into the five-tier Gleason grading system.
Collapse
Affiliation(s)
- Alexandra Sorvina
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Carmela Martini
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia.
| | - Sarita Prabhakaran
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia; Department of Anatomical Pathology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Jessica M Logan
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Benjamin S-Y Ung
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Courtney Moore
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Ian R D Johnson
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Joanna Lazniewska
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Prerna Tewari
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
| | - Victoria Malone
- Department of Pathology, The Coombe Women and Infants University Hospital, Dublin, Ireland
| | - Robert D Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Shane M Hickey
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Maria C Caruso
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Sonja Klebe
- Department of Anatomical Pathology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia; Department of Surgical Pathology, SA Pathology at Flinders Medical Centre, Adelaide, SA, Australia
| | - Litsa Karageorgos
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - John J O'Leary
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
| | - Brett Delahunt
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Hemamali Samaratunga
- Aquesta Uropathology, Brisbane, Qld, Australia; University of Queensland, Brisbane, Qld, Australia
| | - Doug A Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
2
|
Xu Z, Chen Y, Wang Y, Han W, Xu W, Liao X, Zhang T, Wang G. Matrix stiffness, endothelial dysfunction and atherosclerosis. Mol Biol Rep 2023; 50:7027-7041. [PMID: 37382775 DOI: 10.1007/s11033-023-08502-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/28/2023] [Indexed: 06/30/2023]
Abstract
Atherosclerosis (AS) is the leading cause of the human cardiovascular diseases (CVDs). Endothelial dysfunction promotes the monocytes infiltration and inflammation that participate fundamentally in atherogenesis. Endothelial cells (EC) have been recognized as mechanosensitive cells and have different responses to distinct mechanical stimuli. Emerging evidence shows matrix stiffness-mediated EC dysfunction plays a vital role in vascular disease, but the underlying mechanisms are not yet completely understood. This article aims to summarize the effect of matrix stiffness on the pro-atherosclerotic characteristics of EC including morphology, rigidity, biological behavior and function as well as the related mechanical signal. The review also discusses and compares the contribution of matrix stiffness-mediated phagocytosis of macrophages and EC to AS progression. These advances in our understanding of the relationship between matrix stiffness and EC dysfunction open the avenues to improve the prevention and treatment of now-ubiquitous atherosclerotic diseases.
Collapse
Affiliation(s)
- Zichen Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yi Chen
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Yi Wang
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Wenbo Han
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Wenfeng Xu
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Xiaoling Liao
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Tao Zhang
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
- Bioengineering College of Chongqing University, NO.174, Shazheng Street, Shapingba District, Chongqing, 400030, PR China.
| |
Collapse
|
3
|
Wang Q, Chi L. The Alterations and Roles of Glycosaminoglycans in Human Diseases. Polymers (Basel) 2022; 14:polym14225014. [PMID: 36433141 PMCID: PMC9694910 DOI: 10.3390/polym14225014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Glycosaminoglycans (GAGs) are a heterogeneous family of linear polysaccharides which are composed of a repeating disaccharide unit. They are also linked to core proteins to form proteoglycans (PGs). GAGs/PGs are major components of the cell surface and the extracellular matrix (ECM), and they display critical roles in development, normal function, and damage response in the body. Some properties (such as expression quantity, molecular weight, and sulfation pattern) of GAGs may be altered under pathological conditions. Due to the close connection between these properties and the function of GAGs/PGs, the alterations are often associated with enormous changes in the physiological/pathological status of cells and organs. Therefore, these GAGs/PGs may serve as marker molecules of disease. This review aimed to investigate the structural alterations and roles of GAGs/PGs in a range of diseases, such as atherosclerosis, cancer, diabetes, neurodegenerative disease, and virus infection. It is hoped to provide a reference for disease diagnosis, monitoring, prognosis, and drug development.
Collapse
|
4
|
Prieto-Fernández E, Egia-Mendikute L, Vila-Vecilla L, Bosch A, Barreira-Manrique A, Lee SY, García-Del Río A, Antoñana-Vildosola A, Jiménez-Lasheras B, Moreno-Cugnon L, Jiménez-Barbero J, Berra E, Ereño-Orbea J, Palazon A. Hypoxia reduces cell attachment of SARS-CoV-2 spike protein by modulating the expression of ACE2, neuropilin-1, syndecan-1 and cellular heparan sulfate. Emerg Microbes Infect 2021; 10:1065-1076. [PMID: 34013835 PMCID: PMC8183554 DOI: 10.1080/22221751.2021.1932607] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A main clinical parameter of COVID-19 pathophysiology is hypoxia. Here we show that hypoxia decreases the attachment of the receptor-binding domain (RBD) and the S1 subunit (S1) of the spike protein of SARS-CoV-2 to epithelial cells. In Vero E6 cells, hypoxia reduces the protein levels of ACE2 and neuropilin-1 (NRP1), which might in part explain the observed reduction of the infection rate. In addition, hypoxia inhibits the binding of the spike to NCI-H460 human lung epithelial cells by decreasing the cell surface levels of heparan sulfate (HS), a known attachment receptor of SARS-CoV-2. This interaction is also reduced by lactoferrin, a glycoprotein that blocks HS moieties on the cell surface. The expression of syndecan-1, an HS-containing proteoglycan expressed in lung, is inhibited by hypoxia on a HIF-1α-dependent manner. Hypoxia or deletion of syndecan-1 results in reduced binding of the RBD to host cells. Our study indicates that hypoxia acts to prevent SARS-CoV-2 infection, suggesting that the hypoxia signalling pathway might offer therapeutic opportunities for the treatment of COVID-19.
Collapse
Affiliation(s)
- Endika Prieto-Fernández
- Cancer Immunology and Immunotherapy Lab, Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, Derio, Spain
| | - Leire Egia-Mendikute
- Cancer Immunology and Immunotherapy Lab, Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, Derio, Spain
| | - Laura Vila-Vecilla
- Cancer Immunology and Immunotherapy Lab, Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, Derio, Spain
| | - Alexandre Bosch
- Cancer Immunology and Immunotherapy Lab, Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, Derio, Spain
| | - Adrián Barreira-Manrique
- Cancer Immunology and Immunotherapy Lab, Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, Derio, Spain
| | - So Young Lee
- Cancer Immunology and Immunotherapy Lab, Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, Derio, Spain
| | - Ana García-Del Río
- Cancer Immunology and Immunotherapy Lab, Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, Derio, Spain
| | - Asier Antoñana-Vildosola
- Cancer Immunology and Immunotherapy Lab, Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, Derio, Spain
| | - Borja Jiménez-Lasheras
- Cancer Immunology and Immunotherapy Lab, Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, Derio, Spain
| | - Leire Moreno-Cugnon
- Cancer Cell Signaling and Metabolism Lab, Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, Derio, Spain
| | - Jesús Jiménez-Barbero
- Chemical Glycobiology Lab, Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, Derio, Spain.,Department of Organic Chemistry II, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Edurne Berra
- Cancer Cell Signaling and Metabolism Lab, Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, Derio, Spain.,CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Madrid, Spain
| | - June Ereño-Orbea
- Chemical Glycobiology Lab, Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, Derio, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Asis Palazon
- Cancer Immunology and Immunotherapy Lab, Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, Derio, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
5
|
Macrophages bind LDL using heparan sulfate and the perlecan protein core. J Biol Chem 2021; 296:100520. [PMID: 33684447 PMCID: PMC8027565 DOI: 10.1016/j.jbc.2021.100520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/25/2022] Open
Abstract
The retention of low-density lipoprotein (LDL) is a key process in the pathogenesis of atherosclerosis and largely mediated via smooth-muscle cell-derived extracellular proteoglycans including the glycosaminoglycan chains. Macrophages can also internalize lipids via complexes with proteoglycans. However, the role of polarized macrophage-derived proteoglycans in binding LDL is unknown and important to advance our understanding of the pathogenesis of atherosclerosis. We therefore examined the identity of proteoglycans, including the pendent glycosaminoglycans, produced by polarized macrophages to gain insight into the molecular basis for LDL binding. Using the quartz crystal microbalance with dissipation monitoring technique, we established that classically activated macrophage (M1)- and alternatively activated macrophage (M2)-derived proteoglycans bind LDL via both the protein core and heparan sulfate (HS) in vitro. Among the proteoglycans secreted by macrophages, we found perlecan was the major protein core that bound LDL. In addition, we identified perlecan in the necrotic core as well as the fibrous cap of advanced human atherosclerotic lesions in the same regions as HS and colocalized with M2 macrophages, suggesting a functional role in lipid retention in vivo. These findings suggest that macrophages may contribute to LDL retention in the plaque by the production of proteoglycans; however, their contribution likely depends on both their phenotype within the plaque and the presence of enzymes, such as heparanase, that alter the secreted protein structure.
Collapse
|
6
|
Wight TN, Kang I, Evanko SP, Harten IA, Chang MY, Pearce OMT, Allen CE, Frevert CW. Versican-A Critical Extracellular Matrix Regulator of Immunity and Inflammation. Front Immunol 2020; 11:512. [PMID: 32265939 PMCID: PMC7105702 DOI: 10.3389/fimmu.2020.00512] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
The extracellular matrix (ECM) proteoglycan, versican increases along with other ECM versican binding molecules such as hyaluronan, tumor necrosis factor stimulated gene-6 (TSG-6), and inter alpha trypsin inhibitor (IαI) during inflammation in a number of different diseases such as cardiovascular and lung disease, autoimmune diseases, and several different cancers. These interactions form stable scaffolds which can act as "landing strips" for inflammatory cells as they invade tissue from the circulation. The increase in versican is often coincident with the invasion of leukocytes early in the inflammatory process. Versican interacts with inflammatory cells either indirectly via hyaluronan or directly via receptors such as CD44, P-selectin glycoprotein ligand-1 (PSGL-1), and toll-like receptors (TLRs) present on the surface of immune and non-immune cells. These interactions activate signaling pathways that promote the synthesis and secretion of inflammatory cytokines such as TNFα, IL-6, and NFκB. Versican also influences inflammation by interacting with a variety of growth factors and cytokines involved in regulating inflammation thereby influencing their bioavailability and bioactivity. Versican is produced by multiple cell types involved in the inflammatory process. Conditional total knockout of versican in a mouse model of lung inflammation demonstrated significant reduction in leukocyte invasion into the lung and reduced inflammatory cytokine expression. While versican produced by stromal cells tends to be pro-inflammatory, versican expressed by myeloid cells can create anti-inflammatory and immunosuppressive microenvironments. Inflammation in the tumor microenvironment often contains elevated levels of versican. Perturbing the accumulation of versican in tumors can inhibit inflammation and tumor progression in some cancers. Thus versican, as a component of the ECM impacts immunity and inflammation through regulating immune cell trafficking and activation. Versican is emerging as a potential target in the control of inflammation in a number of different diseases.
Collapse
Affiliation(s)
- Thomas N. Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Inkyung Kang
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Stephen P. Evanko
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Ingrid A. Harten
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Mary Y. Chang
- Division of Pulmonary/Critical Care Medicine, Center for Lung Biology, University of Washington School of Medicine, Seattle, WA, United States
| | - Oliver M. T. Pearce
- Centre for the Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Carys E. Allen
- Centre for the Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Charles W. Frevert
- Division of Pulmonary/Critical Care Medicine, Center for Lung Biology, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
7
|
The Challenge of Modulating Heparan Sulfate Turnover by Multitarget Heparin Derivatives. Molecules 2020; 25:molecules25020390. [PMID: 31963505 PMCID: PMC7024324 DOI: 10.3390/molecules25020390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
This review comes as a part of the special issue "Emerging frontiers in GAGs and mimetics". Our interest is in the manipulation of heparan sulfate (HS) turnover by employing HS mimetics/heparin derivatives that exert pleiotropic effects and are interesting for interfering at multiple levels with pathways in which HS is implicated. Due to the important role of heparanase in HS post-biosynthetic modification and catabolism, we focus on the possibility to target heparanase, at both extracellular and intracellular levels, a strategy that can be applied to many conditions, from inflammation to cancer and neurodegeneration.
Collapse
|
8
|
Groux-Degroote S, Cavdarli S, Uchimura K, Allain F, Delannoy P. Glycosylation changes in inflammatory diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 119:111-156. [PMID: 31997767 DOI: 10.1016/bs.apcsb.2019.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glycosylation is one of the most important modifications of proteins and lipids, and cell surface glycoconjugates are thought to play important roles in a variety of biological functions including cell-cell and cell-substrate interactions, bacterial adhesion, cell immunogenicity and cell signaling. Alterations of glycosylation are observed in a number of inflammatory diseases. Pro-inflammatory cytokines have been shown to modulate cell surface glycosylation by regulating the expression of glycosyltransferases and sulfotransferases involved in the biosynthesis of glycan chains, inducing the expression of specific carbohydrate antigens at the cell surface that can be recognized by different types of lectins or by bacterial adhesins, contributing to the development of diseases. Glycosylation can also regulate biological functions of immune cells by recruiting leukocytes to inflammation sites with pro- or anti-inflammatory effects. Cell surface proteoglycans provide a large panel of binding sites for many mediators of inflammation, and regulate their bio-availability and functions. In this review, we summarize the current knowledge of the glycosylation changes occurring in mucin type O-linked glycans, glycosaminoglycans, as well as in glycosphingolipids, with a particular focus on cystic fibrosis and neurodegenerative diseases, and their consequences on cell interactions and disease progression.
Collapse
Affiliation(s)
- Sophie Groux-Degroote
- University Lille, CNRS, UMR 8576 - UGSF - Unite de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Sumeyye Cavdarli
- University Lille, CNRS, UMR 8576 - UGSF - Unite de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Kenji Uchimura
- University Lille, CNRS, UMR 8576 - UGSF - Unite de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Fabrice Allain
- University Lille, CNRS, UMR 8576 - UGSF - Unite de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Philippe Delannoy
- University Lille, CNRS, UMR 8576 - UGSF - Unite de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| |
Collapse
|
9
|
Collins LE, Troeberg L. Heparan sulfate as a regulator of inflammation and immunity. J Leukoc Biol 2018; 105:81-92. [PMID: 30376187 DOI: 10.1002/jlb.3ru0618-246r] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 12/19/2022] Open
Abstract
Heparan sulfate is found on the surface of most cell types, as well as in basement membranes and extracellular matrices. Its strong anionic properties and highly variable structure enable this glycosaminoglycan to provide binding sites for numerous protein ligands, including many soluble mediators of the immune system, and may promote or inhibit their activity. The formation of ligand binding sites on heparan sulfate (HS) occurs in a tissue- and context-specific fashion through the action of several families of enzymes, most of which have multiple isoforms with subtly different specificities. Changes in the expression levels of these biosynthetic enzymes occur in response to inflammatory stimuli, resulting in structurally different HS and acquisition or loss of binding sites for immune mediators. In this review, we discuss the multiple roles for HS in regulating immune responses, and the evidence for inflammation-associated changes to HS structure.
Collapse
Affiliation(s)
- Laura E Collins
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Linda Troeberg
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Kang I, Chang MY, Wight TN, Frevert CW. Proteoglycans as Immunomodulators of the Innate Immune Response to Lung Infection. J Histochem Cytochem 2018; 66:241-259. [PMID: 29328866 DOI: 10.1369/0022155417751880] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Proteoglycans (PGs) are complex, multifaceted molecules that participate in diverse interactions vital for physiological and pathological processes. As structural components, they provide a scaffold for cells and structural organization that helps define tissue architecture. Through interactions with water, PGs enable molecular and cellular movement through tissues. Through selective ionic interactions with growth factors, chemokines, cytokines, and proteases, PGs facilitate the ability of these soluble ligands to regulate intracellular signaling events and to influence the inflammatory response. In addition, recent findings now demonstrate that PGs can activate danger-associated molecular patterns (DAMPs) and other signaling pathways to influence production of many of these soluble ligands, indicating a more direct role for PGs in influencing the immune response and tissue inflammation. This review will focus on PGs that are selectively expressed during lung inflammation and will examine the novel emerging concept of PGs as immunomodulatory regulators of the innate immune responses in lungs.
Collapse
Affiliation(s)
- Inkyung Kang
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Mary Y Chang
- Comparative Pathology Program, Department of Comparative Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Charles W Frevert
- Center for Lung Biology, Division of Pulmonary/Critical Care Medicine, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
11
|
Ou L, Li X, Chen B, Ge Z, Zhang J, Zhang Y, Cai G, Li Z, Wang P, Dong W. Recombinant Human Cytoglobin Prevents Atherosclerosis by Regulating Lipid Metabolism and Oxidative Stress. J Cardiovasc Pharmacol Ther 2017; 23:162-173. [PMID: 28954528 DOI: 10.1177/1074248417724870] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Lingling Ou
- The First Affiliated Hospital of Jinan University, Guangzhou, China
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Xin Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Department of Medical Research, General Hospital of Guangzhou Military Command of PLA, Guangzhou, China
| | - Baihong Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Zhenhuang Ge
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Junyi Zhang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Ye Zhang
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Gaotai Cai
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Zhen Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Ping Wang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Wenqi Dong
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Leonova EI, Sadovnikova ES, Shaykhutdinova ER, Galzitskaya OV, Murashev AN, Solonin AS. Hepatic and Aortic Arch Expression and Serum Levels of Syndecan-1 in ApoE -/- Mice. Open Biochem J 2017; 11:77-93. [PMID: 29151984 PMCID: PMC5676011 DOI: 10.2174/1874091x01711010077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/03/2017] [Accepted: 06/09/2017] [Indexed: 12/17/2022] Open
Abstract
Background: Heparan sulfate proteoglycan (HSPG) syndecan-1 (Sdc1) acts as a receptor for triglyceride-rich lipoproteins (TRLs), growth factors, chemokines and enzymes. Due to the disordered structure, its function is as diverse as its ligands. In this paper, we have analyzed hepatic and aortic arch expression of Sdc1 in ApoE-/- mice and examined their association with biochemical changes in plasma during the atheroma formation. Methods: ApoE knockout (ApoE-/-) mice as a model of atherosclerosis were used. Plasma chemistry parameters were estimated by automatic biochemical analyzer. The ELISA test was used to detect soluble Sdc1. The mRNA level of syndecan-1 in liver cells and aortic arch was determined by real time PCR. Results: The Sdc1 mRNA level in liver cells was 1.5-2.5 times higher in ApoE-/- mice compared to the wild-type species and increased with age, whereas it remained at the same level in wild-type mice upon aging. Furthermore, the plasma cholesterol level was 4-6 times higher in ApoE-/- mice compared to the wild type; in contrast, triglyceride (TG) remained at the same level. Simultaneously, the expression of Sdc1 in the aortic arch of ApoE-/- mice decreases with age; however, it increases in wild-type mice of the same age. We determined that the Sdc1 mRNA expression in liver cells is significantly higher compared to the cells of aortic arch. In addition, our research demonstrated that the level of soluble Sdc1 slightly increased with age and did not depend on mouse genotype; yet, the total amount of soluble Sdc1 was higher in ApoE-/- mice. Conclusion: Our data suggest that the level of soluble Sdc1 in serum of mice can be associated with chronic inflammation. In addition, we hypothesized that a compensatory increase in the Sdc1 expression in ApoE-/- mice may prevent accumulation of triglycerides in serum, yet having no effect on cholesterol accumulation.
Collapse
Affiliation(s)
- Elena I Leonova
- Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Moscow Region, Pushchino, 142290, Russia
| | - Elena S Sadovnikova
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Elvira R Shaykhutdinova
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Oxana V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Moscow Region, Pushchino, Russia
| | - Arkady N Murashev
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Alexandr S Solonin
- Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Moscow Region, Pushchino, 142290, Russia
| |
Collapse
|
13
|
Möllerherm H, Branitzki-Heinemann K, Brogden G, Elamin AA, Oehlmann W, Fuhrmann H, Singh M, Naim HY, von Köckritz-Blickwede M. Hypoxia Modulates the Response of Mast Cells to Staphylococcus aureus Infection. Front Immunol 2017; 8:541. [PMID: 28553287 PMCID: PMC5425595 DOI: 10.3389/fimmu.2017.00541] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/24/2017] [Indexed: 12/23/2022] Open
Abstract
To study the antimicrobial function of immune cells ex vivo, cells are commonly cultivated under atmospheric oxygen concentrations (20–21%; normoxia), although the physiological oxygen conditions in vivo are significantly lower in most tissues. Especially during an acute infection, oxygen concentration locally decreases to hypoxic levels around or below 1%. The goal of this study was to investigate the effect of hypoxia on the activity of mast cells (MCs). MCs were cultivated for 3 or 24 h at 1% O2 in a hypoxia glove box and co-incubated with heat-inactivated Staphylococcus aureus. When incubating the cells for 24 h under hypoxia, the transcriptional regulator hypoxia-inducible factor 1α (HIF-1α) was stabilized and resulted in increased extracellular trap formation and decreased phagocytosis. Interestingly, while phagocytosis of fluorescent S. aureus bioparticles as well as the release of extracellular traps remained unaffected at 3 h hypoxia, the secretion of the prestored mediator histamine was increased under hypoxia alone. In contrast, the release of TNF-α was generally reduced at 3 h hypoxia. Microarray transcriptome analysis revealed 13 genes that were significantly downregulated in MCs comparing 3 h hypoxia versus normoxia. One interesting candidate is sec24, a member of the pre-budding complex of coat protein complex II (COPII), which is responsible for the anterograde transport of proteins from the ER to the Golgi apparatus. These data lead to the suggestion that de novo synthesized proteins including crucial factors, which are involved in the response to an acute infection like TNF-α, may eventually be retained in the ER under hypoxia. Importantly, the expression of HIF-1α was not altered at 3 h. Thus, our data exhibit a HIF-1α-independent reaction of MCs to short-term hypoxia. We hypothesize that MCs respond to short-term low oxygen levels in a HIF-1α-independent manner by downregulating the release of proinflammatory cytokines like TNF-α, thereby avoiding uncontrolled degranulation, which could lead to excessive inflammation and severe tissue damage.
Collapse
Affiliation(s)
- Helene Möllerherm
- Department of Physiological Chemistry, University for Veterinary Medicine Hannover, Hanover, Germany
| | - Katja Branitzki-Heinemann
- Department of Physiological Chemistry, University for Veterinary Medicine Hannover, Hanover, Germany
| | - Graham Brogden
- Department of Physiological Chemistry, University for Veterinary Medicine Hannover, Hanover, Germany
| | | | - Wulf Oehlmann
- LIONEX Diagnostics & Therapeutics, Braunschweig, Germany
| | - Herbert Fuhrmann
- Faculty of Veterinary Medicine, Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Mahavir Singh
- LIONEX Diagnostics & Therapeutics, Braunschweig, Germany
| | - Hassan Y Naim
- Department of Physiological Chemistry, University for Veterinary Medicine Hannover, Hanover, Germany
| | - Maren von Köckritz-Blickwede
- Department of Physiological Chemistry, University for Veterinary Medicine Hannover, Hanover, Germany.,Research Center for Emerging Infections and Zoonoses (RIZ), University for Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
14
|
Abstract
The anoxemia theory proposes that an imbalance between the demand for and supply of oxygen in the arterial wall is a key factor in the development of atherosclerosis. There is now substantial evidence that there are regions within the atherosclerotic plaque in which profound hypoxia exists; this may fundamentally change the function, metabolism, and responses of many of the cell types found within the developing plaque and whether the plaque will evolve into a stable or unstable phenotype. Hypoxia is characterized in molecular terms by the stabilization of hypoxia-inducible factor (HIF) 1α, a subunit of the heterodimeric nuclear transcriptional factor HIF-1 and a master regulator of oxygen homeostasis. The expression of HIF-1 is localized to perivascular tissues, inflammatory macrophages, and smooth muscle cells adjacent to the necrotic core of atherosclerotic lesions and regulates several genes that are important to vascular function including vascular endothelial growth factor, nitric oxide synthase, endothelin-1, and erythropoietin. This review summarizes the effects of hypoxia on the functions of cells involved in atherogenesis and the evidence for its potential importance from experimental models and clinical studies.
Collapse
Affiliation(s)
- Gordon A A Ferns
- 1 Department of Medical Education, Brighton & Sussex Medical School, Brighton, United Kingdom
| | - Lamia Heikal
- 1 Department of Medical Education, Brighton & Sussex Medical School, Brighton, United Kingdom
| |
Collapse
|
15
|
Aarup A, Pedersen TX, Junker N, Christoffersen C, Bartels ED, Madsen M, Nielsen CH, Nielsen LB. Hypoxia-Inducible Factor-1α Expression in Macrophages Promotes Development of Atherosclerosis. Arterioscler Thromb Vasc Biol 2016; 36:1782-90. [PMID: 27444197 DOI: 10.1161/atvbaha.116.307830] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/04/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Atherosclerotic lesions contain hypoxic areas, but the pathophysiological importance of hypoxia is unknown. Hypoxia-inducible factor-1α (HIF-1α) is a key transcription factor in cellular responses to hypoxia. We investigated the hypothesis that HIF-1α has effects on macrophage biology that promotes atherogenesis in mice. APPROACH AND RESULTS Studies with molecular probes, immunostaining, and laser microdissection of aortas revealed abundant hypoxic, HIF-1α-expressing macrophages in murine atherosclerotic lesions. To investigate the significance of macrophage HIF-1α, Ldlr(-/-) mice were transplanted with bone marrow from mice with HIF-1α deficiency in the myeloid cells or control bone marrow. The HIF-1α deficiency in myeloid cells reduced atherosclerosis in aorta of the Ldlr(-/-) recipient mice by ≈72% (P=0.006).In vitro, HIF-1α-deficient macrophages displayed decreased differentiation to proinflammatory M1 macrophages and reduced expression of inflammatory genes. HIF-1α deficiency also affected glucose uptake, apoptosis, and migratory abilities of the macrophages. CONCLUSIONS HIF-1α expression in macrophages affects their intrinsic inflammatory profile and promotes development of atherosclerosis.
Collapse
Affiliation(s)
- Annemarie Aarup
- From the Department of Biomedical Sciences (A.A., T.X.P., N.J., C.C., M.M., C.H.N., L.B.N.) and Department of Clinical Medicine (L.B.N.), University of Copenhagen, Denmark; and Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Denmark (C.C., E.D.B., L.B.N.)
| | - Tanja X Pedersen
- From the Department of Biomedical Sciences (A.A., T.X.P., N.J., C.C., M.M., C.H.N., L.B.N.) and Department of Clinical Medicine (L.B.N.), University of Copenhagen, Denmark; and Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Denmark (C.C., E.D.B., L.B.N.)
| | - Nanna Junker
- From the Department of Biomedical Sciences (A.A., T.X.P., N.J., C.C., M.M., C.H.N., L.B.N.) and Department of Clinical Medicine (L.B.N.), University of Copenhagen, Denmark; and Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Denmark (C.C., E.D.B., L.B.N.)
| | - Christina Christoffersen
- From the Department of Biomedical Sciences (A.A., T.X.P., N.J., C.C., M.M., C.H.N., L.B.N.) and Department of Clinical Medicine (L.B.N.), University of Copenhagen, Denmark; and Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Denmark (C.C., E.D.B., L.B.N.)
| | - Emil D Bartels
- From the Department of Biomedical Sciences (A.A., T.X.P., N.J., C.C., M.M., C.H.N., L.B.N.) and Department of Clinical Medicine (L.B.N.), University of Copenhagen, Denmark; and Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Denmark (C.C., E.D.B., L.B.N.)
| | - Marie Madsen
- From the Department of Biomedical Sciences (A.A., T.X.P., N.J., C.C., M.M., C.H.N., L.B.N.) and Department of Clinical Medicine (L.B.N.), University of Copenhagen, Denmark; and Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Denmark (C.C., E.D.B., L.B.N.)
| | - Carsten H Nielsen
- From the Department of Biomedical Sciences (A.A., T.X.P., N.J., C.C., M.M., C.H.N., L.B.N.) and Department of Clinical Medicine (L.B.N.), University of Copenhagen, Denmark; and Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Denmark (C.C., E.D.B., L.B.N.)
| | - Lars B Nielsen
- From the Department of Biomedical Sciences (A.A., T.X.P., N.J., C.C., M.M., C.H.N., L.B.N.) and Department of Clinical Medicine (L.B.N.), University of Copenhagen, Denmark; and Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Denmark (C.C., E.D.B., L.B.N.).
| |
Collapse
|
16
|
Akl MR, Nagpal P, Ayoub NM, Prabhu SA, Gliksman M, Tai B, Hatipoglu A, Goy A, Suh KS. Molecular and clinical profiles of syndecan-1 in solid and hematological cancer for prognosis and precision medicine. Oncotarget 2015; 6:28693-715. [PMID: 26293675 PMCID: PMC4745686 DOI: 10.18632/oncotarget.4981] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/11/2015] [Indexed: 12/18/2022] Open
Abstract
Syndecan-1 (SDC1, CD138) is a key cell surface adhesion molecule essential for maintaining cell morphology and interaction with the surrounding microenvironment. Deregulation of SDC1 contributes to cancer progression by promoting cell proliferation, metastasis, invasion and angiogenesis, and is associated with relapse through chemoresistance. SDC1 expression level is also associated with responses to chemotherapy and with prognosis in multiple solid and hematological cancers, including multiple myeloma and Hodgkin lymphoma. At the tissue level, the expression levels of SDC1 and the released extracellular domain of SDC1 correlate with tumor malignancy, phenotype, and metastatic potential for both solid and hematological tumors in a tissue-specific manner. The SDC1 expression profile varies among cancer types, but the differential expression signatures between normal and cancer cells in epithelial and stromal compartments are directly associated with aggressiveness of tumors and patient's clinical outcome and survival. Therefore, relevant biomarkers of SDC signaling may be useful for selecting patients that would most likely respond to a particular therapy at the time of diagnosis or perhaps for predicting relapse. In addition, the reciprocal expression signature of SDC between tumor epithelial and stromal compartments may have synergistic value for patient selection and the prediction of clinical outcome.
Collapse
Affiliation(s)
- Mohamed R. Akl
- Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Poonam Nagpal
- Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Nehad M. Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Sathyen A. Prabhu
- Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Matthew Gliksman
- Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Betty Tai
- Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Ahmet Hatipoglu
- Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Andre Goy
- Lymphoma Division, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - K. Stephen Suh
- Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| |
Collapse
|
17
|
Leonova EI, Galzitskaya OV. Role of Syndecans in Lipid Metabolism and Human Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 855:241-58. [PMID: 26149933 DOI: 10.1007/978-3-319-17344-3_10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Syndecans are transmembrane heparan sulfate proteoglycans involved in the regulation of cell growth, differentiation, adhesion, neuronal development, and lipid metabolism. Syndecans are expressed in a tissue-specific manner to facilitate diverse cellular processes. As receptors and co-receptors, syndecans provide promising therapeutic targets that bind to a variety of physiologically important ligands. Negatively charged glycosaminoglycan chains of syndecans, located in the extracellular compartment, are critical for such binding. Functions of syndecans are as diverse as their ligands. For example, hepatic syndecan-1 mediates clearance of triglyceride-rich lipoproteins. Syndecan-2 promotes localization of Alzheimer's amyloid Aβ peptide to the cell surface, which is proposed to contribute to amyloid plaque formation. Syndecan-3 helps co-localize the appetite-regulating melanocortin-4 receptor with its agonist, leading to an increased appetite. Finally, syndecan-4 initiates the capture of modified low-density lipoproteins by macrophages and thereby promotes the atheroma formation. We hypothesize that syndecan modifications such as desulfation of glycosaminoglycan chains may contribute to a wide range of diseases, from atherosclerosis to type 2 diabetes. At the same time, desulfated syndecans may have beneficial effects, as they can inhibit amyloid plaque formation or decrease the appetite. Despite considerable progress in understanding diverse functions of syndecans, the complex physiological roles of this intriguing family of proteoglycans are far from clear. Additional studies of syndecans may potentially help develop novel therapeutic approaches and diagnostic tools to alleviate complex human diseases such as cardiovascular and Alzheimer's diseases.
Collapse
Affiliation(s)
- Elena I Leonova
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia,
| | | |
Collapse
|
18
|
Towards understanding the roles of heparan sulfate proteoglycans in Alzheimer's disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:516028. [PMID: 25157361 PMCID: PMC4135094 DOI: 10.1155/2014/516028] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 07/12/2014] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, characterized by progressive loss of memory and cognitive dysfunctions. A central pathological event of AD is accumulation and deposition of cytotoxic amyloid-β peptide (Aβ) in the brain parenchyma. Heparan sulfate proteoglycans (HSPGs) and the side chains heparan sulfate (HS) are found associated with Aβ deposits in the brains of AD patients and transgenic animal models of AD. A growing body of evidence from in vitro and in vivo studies suggests functional roles of HSPG/HS in Aβ pathogenesis. Although the question of "how and why HSPG/HS is codeposited with Aβ?" still remains, it is within reach to understand the mechanisms of the events. Recent progress by immunohistochemical examination with advanced antibodies shed light on molecular structures of HS codeposited with Aβ. Several recent reports have provided important new insights into the roles of HSPG in Aβ pathogenesis. Particularly, experiments on mouse models revealed indispensible functions of HSPG in modulating Aβ-associated neuroinflammation and clearance of Aβ from the brain. Application of molecules to interfere with the interaction between HS and Aβ peptides has demonstrated beneficial effects on AD mouse models. Elucidating the functions of HSPG/HS in Aβ deposition and toxicity is leading to further understanding of the complex pathology of AD. The progress is encouraging development of new treatments for AD by targeting HS-Aβ interactions.
Collapse
|
19
|
Leonova EI, Galzitskaya OV. Cell communication using intrinsically disordered proteins: what can syndecans say? J Biomol Struct Dyn 2014; 33:1037-50. [PMID: 24956062 DOI: 10.1080/07391102.2014.926256] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Because intrinsically disordered proteins are incapable of forming unique tertiary structures in isolation, their interaction with partner structures enables them to play important roles in many different biological functions. Therefore, such proteins are usually multifunctional, and their ability to perform their major function, as well as accessory functions, depends on the characteristics of a given interaction. The present paper demonstrates, using predictions from two programs, that the transmembrane proteoglycans syndecans are natively disordered because of their diverse functions and large number of interaction partners. Syndecans perform multiple functions during development, damage repair, tumor growth, angiogenesis, and neurogenesis. By mediating the binding of a large number of extracellular ligands to their receptors, these proteoglycans trigger a cascade of reactions that subsequently regulate various cell processes: cytoskeleton formation, proliferation, differentiation, adhesion, and migration. The occurrences of 20 amino acids in syndecans 1-4 from 25 animals were compared with those in 17 animal proteomes. Gly + Ala, Thr, Glu, and Pro were observed to predominate in the syndecans, contributing to the lack of an ordered structure. In contrast, there were many fewer amino acids in syndecans that promote an ordered structure, such as Cys, Trp, Asn, and His. In addition, a region rich in Asp has been identified between two heparan sulfate-binding sites in the ectodomains, and a region rich in Lys has been identified in the conserved C1 site of the cytoplasmic domain. These particular regions play an essential role in the various functions of syndecans due to their lack of structure.
Collapse
Affiliation(s)
- Elena I Leonova
- a Institute of Protein Research, Russian Academy of Sciences , Moscow Region, Pushchino 142290 , Russia
| | | |
Collapse
|
20
|
Chang JM, Hwang DY, Chen SC, Kuo MC, Hung CC, Hwang SJ, Tsai JC, Chen HC. B7-1 expression regulates the hypoxia-driven cytoskeleton rearrangement in glomerular podocytes. Am J Physiol Renal Physiol 2012; 304:F127-36. [PMID: 23019228 DOI: 10.1152/ajprenal.00108.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic hypoxia has been recognized as a common mechanism driving the progression of many glomerular diseases. Glomerular cells, although susceptible to hypoxic injuries, are less studied to unravel the hypoxia-related influences. In the present study, we showed that both lipopolysaccharide (LPS) and hypoxia induced B7-1 and hypoxia-inducible factor (HIF)-1α expression in podocytes. B7-1, an essential player in the regulation of podocyte stress fibers, interacted directly with the NH(2)-terminal oxygenation domain of HIF-1α protein and, therefore, might interfere with the HIF-related oxidative events. The suggestion was supported by the changes in the expression of inducible nitric oxide synthase and nitric oxide. The orderly arranged stress fibers in differentiated podocytes were disrupted by either LPS or hypoxic stimulation, and the disruption could be rescued if they were brought back to normal oxygen tension. Cell motility increased with the stimulation by LPS and hypoxia, most probably mediated by the induction of B7-1 and HIF-1α, respectively. We generated a B7-1 knockdown podocyte cell line using the lentiviral small interfering RNA system. The LPS- and hypoxia-induced stress fiber disruption was largely prevented in the B7-1 knockdown podocytes. The increased cell motility by LPS and hypoxia stimulations was also ameliorated in the B7-knockdown podocytes. In summary, we found that both B7-1 and HIF were upregulated by LPS and hypoxic stimulations in podocytes and they interacted with each other. Hypoxia disrupted the abundant stress fibers and increased cell motility. These hypoxia-induced changes were prevented in B7-knockdown podocytes, and they highlighted the importance of B7-1 expression in the hypoxia-related podocyte injuries.
Collapse
Affiliation(s)
- Jer-Ming Chang
- Department of Internal Medicine, Kaohsiung Municipal Hsiao-Kango Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Grillon C, Matejuk A, Nadim M, Lamerant-Fayel N, Kieda C. News on microenvironmental physioxia to revisit skin cell targeting approaches. Exp Dermatol 2012; 21:723-8. [PMID: 22882247 DOI: 10.1111/j.1600-0625.2012.01551.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2012] [Indexed: 12/11/2022]
Abstract
The skin is a multifunctional organ and a first line of defense actively protecting from environmental stress caused by injury, microbial treat, UV irradiation and environmental toxins. Diverse cutaneous cell types together with extracellular matrix elements and factors create a dynamic scene for cellular communication crucial in vital processes such as wound healing, inflammation, angiogenesis, immune response. Direct functional success of skin equilibrium depends on its microenvironment settings and particularly the local oxygen tension. Indeed, skin entire milieu is characterized by and highly dependent on its low oxygen tension called physioxia as emphasized in this review. In the context of skin physioxia, we review and propose here new approaches to minimize age-related changes in skin state and function. We particularly emphasize carbohydrate-mediated interactions and new 3D models of engineered skin substitutes. We highlight newly emerged tools and targets including stem cells, miRNAs, matrix metalloproteinases, mitochondria and natural antioxidants that are promising in prevention of skin ageing and disease restraint. In the era of advanced dermatology, new attempts are bringing us closer to 'well being' perception.
Collapse
|
22
|
Fangradt M, Hahne M, Gaber T, Strehl C, Rauch R, Hoff P, Löhning M, Burmester GR, Buttgereit F. Human monocytes and macrophages differ in their mechanisms of adaptation to hypoxia. Arthritis Res Ther 2012; 14:R181. [PMID: 22870988 PMCID: PMC3580576 DOI: 10.1186/ar4011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 08/07/2012] [Indexed: 12/23/2022] Open
Abstract
Introduction Inflammatory arthritis is a progressive disease with chronic inflammation of joints, which is mainly characterized by the infiltration of immune cells and synovial hyperproliferation. Monocytes migrate towards inflamed areas and differentiate into macrophages. In inflamed tissues, much lower oxygen levels (hypoxia) are present in comparison to the peripheral blood. Hence, a metabolic adaptation process must take place. Other studies suggest that Hypoxia Inducible Factor 1-alpha (HIF-1α) may regulate this process, but the mechanism involved for human monocytes is not yet clear. To address this issue, we analyzed the expression and function of HIF-1α in monocytes and macrophages, but also considered alternative pathways involving nuclear factor of kappa light polypeptide gene enhancer in B-cells (NFκB). Methods Isolated human CD14+ monocytes were incubated under normoxia and hypoxia conditions with or without phorbol 12-myristate 13-acetate (PMA) stimulation, respectively. Nuclear and cytosolic fractions were prepared in order to detect HIF-1α and NFκB by immunoblot. For the experiments with macrophages, primary human monocytes were differentiated into human monocyte derived macrophages (hMDM) using human macrophage colony-stimulating factor (hM-CSF). The effects of normoxia and hypoxia on gene expression were compared between monocytes and hMDMs using quantitative PCR (quantitative polymerase chain reaction). Results We demonstrate, using primary human monocytes and hMDM, that the localization of transcription factor HIF-1α during the differentiation process is shifted from the cytosol (in monocytes) into the nucleus (in macrophages), apparently as an adaptation to a low oxygen environment. For this localization change, protein kinase C alpha/beta 1 (PKC-α/β1 ) plays an important role. In monocytes, it is NFκB1, and not HIF-1α, which is of central importance for the expression of hypoxia-adjusted genes. Conclusions These data demonstrate that during differentiation of monocytes into macrophages, crucial cellular adaptation mechanisms are decisively changed.
Collapse
|
23
|
Wang J, Markova D, Anderson DG, Zheng Z, Shapiro IM, Risbud MV. TNF-α and IL-1β promote a disintegrin-like and metalloprotease with thrombospondin type I motif-5-mediated aggrecan degradation through syndecan-4 in intervertebral disc. J Biol Chem 2011; 286:39738-49. [PMID: 21949132 DOI: 10.1074/jbc.m111.264549] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Elevated levels of TNF-α, IL-1β and a resultant increase in ADAMTS (a disintegrin-like and metalloprotease with thrombospondin type I motifs) expression is seen during disc degeneration. However, if these pro-inflammatory cytokines control ADAMTS activity is not definitively known. The goal of the investigation was to study if TNF-α and IL-1β regulate syndecan-4 (SDC4) expression, and if SDC4 was responsible for promoting aggrecan degradation through controlling ADAMTS activity in nucleus pulposus cells of the intervertebral disc. Cytokine treatment increased SDC4 expression and promoter activity. Use of inhibitor, SM7368 and co-transfections with IκBα, RelA/p50 showed that NF-κΒ regulated both basal and cytokine-dependent SDC4 transcription. SDC4 promoter harboring RelA binding site mutation was unresponsive to the cytokines. Moreover, cytokines failed to increase SDC4 promoter activity in RelA-null cells. Cytokines increased ADAMTS-4/5 expression and aggrecan degradation and promoted SDC4 interaction with ADAMTS-5. Treatment with heparinase-III and p-nitrophenyl-β-D-xylopyranoside (PNPX), an inhibitor of heparan sulfate synthesis and transfection with SDC4-shRNA partially blocked cytokine mediated aggrecan degradation. Analysis of human tissues showed increased aggrecan degradation with a concomitant increase in SDC4 and ADAMTS-5 protein expression with severity of disc disease. Likewise, SDC4, TNF-α, IL-1β, ADAMTS-4, and ADAMTS-5 mRNA expression increased in degenerate tissues. We conclude that in nucleus pulposus, TNF-α and IL-1β regulate SDC4 expression, which plays a key role in pathogenesis of degenerative disc disease by promoting aggrecan degradation by ADAMTS-5.
Collapse
Affiliation(s)
- Jianru Wang
- Department of Orthopaedic Surgery and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | |
Collapse
|
24
|
Prakash GJ, Suman P, Gupta SK. Relevance of syndecan-1 in the trophoblastic BeWo cell syncytialization. Am J Reprod Immunol 2011; 66:385-93. [PMID: 21623993 DOI: 10.1111/j.1600-0897.2011.01017.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PROBLEM To investigate the role of syndecan-1 in the differentiation of the BeWo cells into syncytiotrophoblast. METHOD OF STUDY BeWo cells were stimulated with forskolin to form syncytia, and the expression of syndecan-1, desmoplakin I+II, human chorionic gonadotrophin (hCG) and angiogenesis-associated factors was analyzed. Syndecan-1 was silenced by siRNA to evaluate its involvement in the forskolin-mediated syncytia formation. RESULTS Treatment of the BeWo cells with forskolin led to a significant increase in the syncytia formation. It was associated with an increase in the expression of syndecan-1 with a concomitant decrease in the expression of desmoplakin I+II. Forskolin treatment of the BeWo cells also led to an increase in the secretion of soluble endoglin, whereas no change was observed in the soluble fms-like tyrosine kinase-1. Silencing of the syndecan-1 expression in BeWo cells led to a significant decrease in cell fusion both in the presence and in the absence of forskolin. It was associated with a significant decrease in hCG level in the conditioned medium. CONCLUSION Syndecan-1 is up-regulated in BeWo cells during differentiation and its silencing inhibits syncytialization and thus could be a useful biomarker for syncytiotrophoblast formation.
Collapse
Affiliation(s)
- Golla Jaya Prakash
- Reproductive Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | | | |
Collapse
|
25
|
Asplund A, Fridén V, Stillemark-Billton P, Camejo G, Bondjers G. Macrophages exposed to hypoxia secrete proteoglycans for which LDL has higher affinity. Atherosclerosis 2011; 215:77-81. [DOI: 10.1016/j.atherosclerosis.2010.12.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 11/29/2010] [Accepted: 12/14/2010] [Indexed: 01/13/2023]
|
26
|
Asplund A, Stillemark-Billton P, Larsson E, Rydberg EK, Moses J, Hultén LM, Fagerberg B, Camejo G, Bondjers G. Hypoxic regulation of secreted proteoglycans in macrophages. Glycobiology 2009; 20:33-40. [DOI: 10.1093/glycob/cwp139] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|