1
|
Huska B, Ulanova M. Inflammatory Responses to Non-Typeable Haemophilus influenzae Clinical Isolates from Invasive and Non-Invasive Infections. Pathogens 2025; 14:210. [PMID: 40137696 PMCID: PMC11945879 DOI: 10.3390/pathogens14030210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
Non-typeable Haemophilus influenzae (NTHi) is often asymptomatically carried in the upper airways but can cause a wide spectrum of disease conditions, from local respiratory tract infections to invasive disease such as sepsis or meningitis. The factors driving NTHi's transition from benign carriage to severe systemic disease remain poorly understood. It is unknown whether NTHi strains associated with invasive or non-invasive disease differ in their capacity to trigger inflammatory responses in innate immune cells. To address this question, we have used an in vitro infection model of human THP-1 cells differentiated to macrophages. To evaluate inflammatory responses, we studied the expression of 3 prototypic pro-inflammatory molecules, ICAM-1, TNF-α, and IL-1β. The role of lipooligosaccharide in triggering inflammatory responses was assessed using inhibition of Toll-like receptor 4 signaling. Our experiments demonstrated that NTHi strains isolated from cases of invasive and non-invasive infections were similarly able to induce strong activations of macrophage pro-inflammatory responses. Our findings support the hypothesis that the development of invasive versus non-invasive NTHi disease may be more significantly influenced by the adaptive immune response than the innate immune response.
Collapse
Affiliation(s)
| | - Marina Ulanova
- Medical Sciences Division, Northern Ontario School of Medicine University, Thunder Bay, ON P7B 5E1, Canada;
| |
Collapse
|
2
|
Brusletto BS, Hellerud BC, Øvstebø R, Brandtzaeg P. Neisseria meningitidis accumulate in large organs during meningococcal sepsis. Front Cell Infect Microbiol 2023; 13:1298360. [PMID: 38089821 PMCID: PMC10713808 DOI: 10.3389/fcimb.2023.1298360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Background Neisseria meningitidis (Nm) is the cause of epidemic meningitis and fulminant meningococcal septicemia. The clinical presentations and outcome of meningococcal septic shock is closely related to the circulating levels of lipopolysaccharides (LPS) and of Neisseria meningitidis DNA (Nm DNA). We have previously explored the distribution of Nm DNA in tissues from large organs of patients dying of meningococcal septic shock and in a porcine meningococcal septic shock model. Objective 1) To explore the feasibility of measuring LPS levels in tissues from the large organs in patients with meningococcal septic shock and in a porcine meningococcal septic shock model. 2) To evaluate the extent of contamination of non-specific LPS during the preparation of tissue samples. Patients and methods Plasma, serum, and fresh frozen (FF) tissue samples from the large organs of three patients with lethal meningococcal septic shock and two patients with lethal pneumococcal disease. Samples from a porcine meningococcal septic shock model were included. Frozen tissue samples were thawed, homogenized, and prepared for quantification of LPS by Pyrochrome® Limulus Amoebocyte Lysate (LAL) assay. Results N. meningitidis DNA and LPS was detected in FF tissue samples from large organs in all patients with meningococcal septic shock. The lungs are the organs with the highest LPS and Nm DNA concentration followed by the heart in two of the three meningococcal shock patients. Nm DNA was not detected in any plasma or tissue sample from patients with lethal pneumococcal infection. LPS was detected at a low level in all FF tissues from the two patients with lethal pneumococcal disease. The experimental porcine meningococcal septic shock model indicates that also in porcinis the highest LPS and Nm DNA concentration are detected in lungs tissue samples. The quantification analysis showed that the highest concentration of both Nm DNA and LPS are in the organs and not in the circulation of patients with lethal meningococcal septic shock. This was also shown in the experimental porcine meningococcal septic shock model. Conclusion Our results suggest that LPS can be quantified in mammalian tissues by using the LAL assay.
Collapse
Affiliation(s)
| | | | - Reidun Øvstebø
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Petter Brandtzaeg
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Pediatrics, Oslo University Hospital, Nydalen, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Mikucki A, McCluskey NR, Kahler CM. The Host-Pathogen Interactions and Epicellular Lifestyle of Neisseria meningitidis. Front Cell Infect Microbiol 2022; 12:862935. [PMID: 35531336 PMCID: PMC9072670 DOI: 10.3389/fcimb.2022.862935] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/28/2022] [Indexed: 01/17/2023] Open
Abstract
Neisseria meningitidis is a gram-negative diplococcus and a transient commensal of the human nasopharynx. It shares and competes for this niche with a number of other Neisseria species including N. lactamica, N. cinerea and N. mucosa. Unlike these other members of the genus, N. meningitidis may become invasive, crossing the epithelium of the nasopharynx and entering the bloodstream, where it rapidly proliferates causing a syndrome known as Invasive Meningococcal Disease (IMD). IMD progresses rapidly to cause septic shock and meningitis and is often fatal despite aggressive antibiotic therapy. While many of the ways in which meningococci survive in the host environment have been well studied, recent insights into the interactions between N. meningitidis and the epithelial, serum, and endothelial environments have expanded our understanding of how IMD develops. This review seeks to incorporate recent work into the established model of pathogenesis. In particular, we focus on the competition that N. meningitidis faces in the nasopharynx from other Neisseria species, and how the genetic diversity of the meningococcus contributes to the wide range of inflammatory and pathogenic potentials observed among different lineages.
Collapse
Affiliation(s)
- August Mikucki
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Nicolie R. McCluskey
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- College of Science, Health, Engineering and Education, Telethon Kids Institute, Murdoch University, Perth, WA, Australia
| | - Charlene M. Kahler
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- *Correspondence: Charlene M. Kahler,
| |
Collapse
|
4
|
Layunta E, Buey B, Mesonero JE, Latorre E. Crosstalk Between Intestinal Serotonergic System and Pattern Recognition Receptors on the Microbiota-Gut-Brain Axis. Front Endocrinol (Lausanne) 2021; 12:748254. [PMID: 34819919 PMCID: PMC8607755 DOI: 10.3389/fendo.2021.748254] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Disruption of the microbiota-gut-brain axis results in a wide range of pathologies that are affected, from the brain to the intestine. Gut hormones released by enteroendocrine cells to the gastrointestinal (GI) tract are important signaling molecules within this axis. In the search for the language that allows microbiota to communicate with the gut and the brain, serotonin seems to be the most important mediator. In recent years, serotonin has emerged as a key neurotransmitter in the gut-brain axis because it largely contributes to both GI and brain physiology. In addition, intestinal microbiota are crucial in serotonin signaling, which gives more relevance to the role of the serotonin as an important mediator in microbiota-host interactions. Despite the numerous investigations focused on the gut-brain axis and the pathologies associated, little is known regarding how serotonin can mediate in the microbiota-gut-brain axis. In this review, we will mainly discuss serotonergic system modulation by microbiota as a pathway of communication between intestinal microbes and the body on the microbiota-gut-brain axis, and we explore novel therapeutic approaches for GI diseases and mental disorders.
Collapse
Affiliation(s)
- Elena Layunta
- Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| | - Berta Buey
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Universidad de Zaragoza, Zaragoza, Spain
| | - Jose Emilio Mesonero
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón—IA2 (Universidad de Zaragoza–CITA), Zaragoza, Spain
| | - Eva Latorre
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
- Instituto Agroalimentario de Aragón—IA2 (Universidad de Zaragoza–CITA), Zaragoza, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
5
|
Müller A, Schramm DB, Kleynhans J, de Gouveia L, Meiring S, Ramette A, von Gottberg A, Hathaway LJ. Cytokine response in cerebrospinal fluid of meningitis patients and outcome associated with pneumococcal serotype. Sci Rep 2021; 11:19920. [PMID: 34620928 PMCID: PMC8497479 DOI: 10.1038/s41598-021-99190-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/16/2021] [Indexed: 11/09/2022] Open
Abstract
Streptococcus pneumoniae causes life-threatening meningitis. Its capsular polysaccharide determines the serotype and influences disease severity but the mechanism is largely unknown. Due to evidence of elevated cytokines levels in the meningeal inflammatory response, we measured 41 cytokines/chemokines and growth factors in cerebrospinal fluid (CSF) samples from 57 South African meningitis patients (collected in the period 2018–2019), with confirmed S. pneumoniae serotypes, using a multiplexed bead-based immunoassay. Based on multivariable Bayesian regression, using serotype 10A as a reference and after adjusting for HIV and age, we found IL-6 concentrations significantly lower in patients infected with serotypes 6D (undetectable) and 23A (1601 pg/ml), IL-8 concentrations significantly higher in those infected with 22A (40,459 pg/ml), 7F (32,400 pg/ml) and 15B/C (6845 pg/ml), and TNFα concentration significantly higher in those infected with serotype 18A (33,097 pg/ml). Although a relatively small number of clinical samples were available for this study and 28% of samples could not be assigned to a definitive serotype, our data suggests 15B/C worthy of monitoring during surveillance as it is associated with in-hospital case fatality and not included in the 13-valent polysaccharide conjugate vaccine, PCV13. Our data provides average CSF concentrations of a range of cytokines and growth factors for 18 different serotypes (14, 19F, 3, 6A, 7F, 19A, 8, 9N, 10A, 12F, 15B/C, 22F, 16F, 23A, 31, 18A, 6D, 22A) to serve as a basis for future studies investigating host–pathogen interaction during pneumococcal meningitis. We note that differences in induction of IL-8 between serotypes may be particularly worthy of future study.
Collapse
Affiliation(s)
- Annelies Müller
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Diana B Schramm
- National Institute for Communicable Diseases, Centre for HIV and STI's, Johannesburg, South Africa.,School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jackie Kleynhans
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Linda de Gouveia
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Susan Meiring
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Division of Public Health Surveillance and Response, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Alban Ramette
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Anne von Gottberg
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Lucy Jane Hathaway
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|
6
|
Farmen K, Tofiño-Vian M, Iovino F. Neuronal Damage and Neuroinflammation, a Bridge Between Bacterial Meningitis and Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:680858. [PMID: 34149363 PMCID: PMC8209290 DOI: 10.3389/fncel.2021.680858] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
Bacterial meningitis is an inflammation of the meninges which covers and protects the brain and the spinal cord. Such inflammation is mostly caused by blood-borne bacteria that cross the blood-brain barrier (BBB) and finally invade the brain parenchyma. Pathogens such as Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae are the main etiological causes of bacterial meningitis. After trafficking across the BBB, bacterial pathogens in the brain interact with neurons, the fundamental units of Central Nervous System, and other types of glial cells. Although the specific molecular mechanism behind the interaction between such pathogens with neurons is still under investigation, it is clear that bacterial interaction with neurons and neuroinflammatory responses within the brain leads to neuronal cell death. Furthermore, clinical studies have shown indications of meningitis-caused dementia; and a variety of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease are characterized by the loss of neurons, which, unlike many other eukaryotic cells, once dead or damaged, they are seldom replaced. The aim of this review article is to provide an overview of the knowledge on how bacterial pathogens in the brain damage neurons through direct and indirect interactions, and how the neuronal damage caused by bacterial pathogen can, in the long-term, influence the onset of neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | - Federico Iovino
- Department of Neuroscience, Karolinska Institutet Biomedicum, Stockholm, Sweden
| |
Collapse
|
7
|
Domon H, Terao Y. The Role of Neutrophils and Neutrophil Elastase in Pneumococcal Pneumonia. Front Cell Infect Microbiol 2021; 11:615959. [PMID: 33796475 PMCID: PMC8008068 DOI: 10.3389/fcimb.2021.615959] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
Streptococcus pneumoniae, also known as pneumococcus, is a Gram-positive diplococcus and a major human pathogen. This bacterium is a leading cause of bacterial pneumonia, otitis media, meningitis, and septicemia, and is a major cause of morbidity and mortality worldwide. To date, studies on S. pneumoniae have mainly focused on the role of its virulence factors including toxins, cell surface proteins, and capsules. However, accumulating evidence indicates that in addition to these studies, knowledge of host factors and host-pathogen interactions is essential for understanding the pathogenesis of pneumococcal diseases. Recent studies have demonstrated that neutrophil accumulation, which is generally considered to play a critical role in host defense during bacterial infections, can significantly contribute to lung injury and immune subversion, leading to pneumococcal invasion of the bloodstream. Here, we review bacterial and host factors, focusing on the role of neutrophils and their elastase, which contribute to the progression of pneumococcal pneumonia.
Collapse
Affiliation(s)
- Hisanori Domon
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Research Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
8
|
Schwager MJ, Song Y, Laing IA, Saiganesh A, Guo J, Le Souëf PN, Zhang G. Increased nasal Streptococcus pneumoniae presence in Western environment associated with allergic conditions in Chinese immigrants. Int J Hyg Environ Health 2021; 234:113735. [PMID: 33725492 DOI: 10.1016/j.ijheh.2021.113735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/15/2021] [Accepted: 03/04/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Chinese immigrants living in Australia experience increased allergic conditions: asthma, eczema, hay fever and wheeze. Recently we reported diminished innate cytokine responses in long-term immigrants, potentially increasing their pathogenic viral load and microbial carriage. We hypothesise that a Western environment changes the nasal microbiome profile, and this altered profile may be associated with the development of allergic conditions. In this cross-sectional study, we aimed to examine the loading of viral and microbial respiratory pathogens in the upper airway. METHODS Adult Chinese immigrants were grouped depending on time spent in Australia: short-term (<6 years) or long-term (≥6 years). First, age- and gender-matched immigrants were selected for an initial screen using quantitative polymerase chain reaction (qPCR) micro-array panels. Then based on initial results the viruses, human parainfluenza 3 and rhinovirus, and the bacteria, Burkholderia spp., Staphylococcus aureus and Streptococcus pneumoniae, were validated using qPCR in the population. Associations for bacterial prevalence with atopic phenotypes were investigated. RESULTS Pooling the initial screen and validation subjects, S. aureus and S. pneumoniae had higher prevalence in long-term compared with short-term subjects (25.0% vs 8.1%, P = 0.012; and 76.8% vs 48.4%, P = 0.002). Those immigrants with nasal S. pneumoniae presence resided longer (average time 90.4 months) in Australia than immigrants without S. pneumoniae (52.7 months; P = 0.001). After adjusting for confounders, Chinese immigrants with S. pneumoniae carriage have a five-fold increased risk of doctor-diagnosed eczema (odds ratio, OR 5.36, 95% CI: 1.10-26.14; P = 0.038) compared to immigrants without S. pneumoniae carriage. There was a trend of S. pneumoniae abundance correlating with reduced host Toll-like receptor gene expression. CONCLUSION Our findings suggest that nasal S. pneumoniae may play a role in the development of allergic conditions in Chinese immigrants in a Western environment.
Collapse
Affiliation(s)
- Michelle J Schwager
- School of Public Health, Curtin University, GPO Box U1987, Perth, Western Australia, 6845, Australia; Centre for Genetic Origins of Health and Disease, Curtin University and the University of Western Australia (M409), Perth, Western Australia, 6009, Australia; Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, Western Australia, 6845, Australia; Telethon Kids Institute, The University of Western Australia, PO Box 855, West Perth, Western Australia, 6872, Australia.
| | - Yong Song
- School of Public Health, Curtin University, GPO Box U1987, Perth, Western Australia, 6845, Australia; Centre for Genetic Origins of Health and Disease, Curtin University and the University of Western Australia (M409), Perth, Western Australia, 6009, Australia.
| | - Ingrid A Laing
- Telethon Kids Institute, The University of Western Australia, PO Box 855, West Perth, Western Australia, 6872, Australia; Division of Cardiovascular and Respiratory Sciences, The University of Western Australia (M560), 35 Stirling Highway, Perth, Western Australia, 6009, Australia.
| | - Aarti Saiganesh
- Telethon Kids Institute, The University of Western Australia, PO Box 855, West Perth, Western Australia, 6872, Australia.
| | - Jing Guo
- School of Public Health, Curtin University, GPO Box U1987, Perth, Western Australia, 6845, Australia; Centre for Genetic Origins of Health and Disease, Curtin University and the University of Western Australia (M409), Perth, Western Australia, 6009, Australia.
| | - Peter N Le Souëf
- Telethon Kids Institute, The University of Western Australia, PO Box 855, West Perth, Western Australia, 6872, Australia; Division of Paediatrics, School of Medicine, The University of Western Australia (M561), 35 Stirling Highway, Perth, Western Australia, 6009, Australia.
| | - Guicheng Zhang
- School of Public Health, Curtin University, GPO Box U1987, Perth, Western Australia, 6845, Australia; Centre for Genetic Origins of Health and Disease, Curtin University and the University of Western Australia (M409), Perth, Western Australia, 6009, Australia; Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, Western Australia, 6845, Australia; Telethon Kids Institute, The University of Western Australia, PO Box 855, West Perth, Western Australia, 6872, Australia.
| |
Collapse
|
9
|
Interactions with Commensal and Pathogenic Bacteria Induce HIV-1 Latency in Macrophages through Altered Transcription Factor Recruitment to the LTR. J Virol 2021; 95:JVI.02141-20. [PMID: 33472928 PMCID: PMC8092691 DOI: 10.1128/jvi.02141-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Macrophages are infected by HIV-1 in vivo and contribute to both viral spread and pathogenesis. Recent human and animal studies suggest that HIV-1-infected macrophages serve as a reservoir that contributes to HIV-1 persistence during anti-retroviral therapy. The ability of macrophages to serve as persistent viral reservoirs is likely influenced by the local tissue microenvironment, including interactions with pathogenic and commensal microbes. Here we show that the sexually transmitted pathogen Neisseria gonorrhoeae (GC) and the gut-associated microbe Escherichia coli (E. coli), which encode ligands for both Toll-like receptor 2 (TLR2) and TLR4, repressed HIV-1 replication in macrophages and thereby induced a state reminiscent of viral latency. This repression was mediated by signaling through TLR4 and the adaptor protein TRIF and was associated with increased production of type I interferons. Inhibiting TLR4 signaling, blocking type 1 interferon, or knocking-down TRIF reversed LPS- and GC-mediated repression of HIV-1. Finally, the repression of HIV-1 in macrophages was associated with the recruitment of interferon regulatory factor 8 (IRF8) to the interferon stimulated response element (ISRE) downstream of the 5' HIV-1 long terminal repeat (LTR). Our data indicate that IRF8 is responsible for repression of HIV-1 replication in macrophages in response to TRIF-dependent signaling during GC and E. coli co-infection. These findings highlight the potential role of macrophages as HIV-1 reservoirs as well as the role of the tissue microenvironment and co-infections as modulators of HIV-1 persistence.IMPORTANCE The major barrier toward the eradication of HIV-1 infection is the presence of a small reservoir of latently infected cells, which include CD4+ T cells and macrophages that escape immune-mediated clearance and the effects of anti-retroviral therapy. There remain crucial gaps in our understanding of the molecular mechanisms that lead to transcriptionally silent or latent HIV-1 infection of macrophages. The significance of our research is in identifying microenvironmental factors, such as commensal and pathogenic microbes, that can contribute to the establishment and maintenance of latent HIV-1 infection in macrophages. It is hoped that identifying key processes contributing to HIV-1 persistence in macrophages may ultimately lead to novel therapeutics to eliminate latent HIV-1 reservoirs in vivo.
Collapse
|
10
|
Root-Bernstein R. Innate Receptor Activation Patterns Involving TLR and NLR Synergisms in COVID-19, ALI/ARDS and Sepsis Cytokine Storms: A Review and Model Making Novel Predictions and Therapeutic Suggestions. Int J Mol Sci 2021; 22:ijms22042108. [PMID: 33672738 PMCID: PMC7924650 DOI: 10.3390/ijms22042108] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 01/08/2023] Open
Abstract
Severe COVID-19 is characterized by a “cytokine storm”, the mechanism of which is not yet understood. I propose that cytokine storms result from synergistic interactions among Toll-like receptors (TLR) and nucleotide-binding oligomerization domain-like receptors (NLR) due to combined infections of SARS-CoV-2 with other microbes, mainly bacterial and fungal. This proposition is based on eight linked types of evidence and their logical connections. (1) Severe cases of COVID-19 differ from healthy controls and mild COVID-19 patients in exhibiting increased TLR4, TLR7, TLR9 and NLRP3 activity. (2) SARS-CoV-2 and related coronaviruses activate TLR3, TLR7, RIG1 and NLRP3. (3) SARS-CoV-2 cannot, therefore, account for the innate receptor activation pattern (IRAP) found in severe COVID-19 patients. (4) Severe COVID-19 also differs from its mild form in being characterized by bacterial and fungal infections. (5) Respiratory bacterial and fungal infections activate TLR2, TLR4, TLR9 and NLRP3. (6) A combination of SARS-CoV-2 with bacterial/fungal coinfections accounts for the IRAP found in severe COVID-19 and why it differs from mild cases. (7) Notably, TLR7 (viral) and TLR4 (bacterial/fungal) synergize, TLR9 and TLR4 (both bacterial/fungal) synergize and TLR2 and TLR4 (both bacterial/fungal) synergize with NLRP3 (viral and bacterial). (8) Thus, a SARS-CoV-2-bacterium/fungus coinfection produces synergistic innate activation, resulting in the hyperinflammation characteristic of a cytokine storm. Unique clinical, experimental and therapeutic predictions (such as why melatonin is effective in treating COVID-19) are discussed, and broader implications are outlined for understanding why other syndromes such as acute lung injury, acute respiratory distress syndrome and sepsis display varied cytokine storm symptoms.
Collapse
|
11
|
Spina G, Elena B, Rita C, Eva PM, Mascolo C, Roversi M, Alberto V. Follow-up evaluation of the immunological status of children admitted for acute cerebral nervous system infections: a retrospective study. Ital J Pediatr 2021; 47:22. [PMID: 33531057 PMCID: PMC7851811 DOI: 10.1186/s13052-021-00973-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/21/2021] [Indexed: 12/18/2022] Open
Abstract
Background Acute Cerebral Nervous System Infections (ACNS) may cause death or severe complications even to promptly treated children. The role of the immune system in influencing the course and the outcome of meningitis has been studied but it is not yet completely understood. The aim of the research is to ascertain whether children who experienced ACNS infection had a normal immune system. Methods Patients under 18 years of age admitted at Bambino Gesù Children from January 2006 till June 2016 for meningitis were asked to participate to the follow-up study. The immune status was evaluated both clinically and by laboratory investigations. Results Most of the patients over 3 years at follow up had at least one immunological alteration at follow-up evaluation (74%). Considering ACNS infection etiology, certain pathogens were almost exclusive of patients affected by some immunological alteration, regardless of their age. Discussion Our preliminary results indicate that sub-clinical immunological defects may be associated to ACNS pediatric infections. Moreover, to the best of our knowledges, this is the first study correlating pathogens to immune evaluation in ACNS infections. It is, however, important to underline the high frequency of persistent immunological alterations in the analyzed patients. Further studies are needed to confirm our conclusions. Conclusions We recommend an immunological assessment at follow up evaluation in children who experienced an ACNS infection.
Collapse
Affiliation(s)
- Giulia Spina
- University/Hospital Department of Pediatrics, Pediatric and Infectious Diseases Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Bozzola Elena
- University/Hospital Department of Pediatrics, Pediatric and Infectious Diseases Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Carsetti Rita
- B cell Physiopathology Unit, Immunology Research Area, Bambino Gesù Children Hospital, Rome, Italy
| | - Piano Mortari Eva
- B cell Physiopathology Unit, Immunology Research Area, Bambino Gesù Children Hospital, Rome, Italy
| | - Cristina Mascolo
- University/Hospital Department of Pediatrics, Pediatric and Infectious Diseases Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marco Roversi
- University/Hospital Department of Pediatrics, Pediatric and Infectious Diseases Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Villani Alberto
- University/Hospital Department of Pediatrics, Pediatric and Infectious Diseases Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
12
|
Gene Polymorphisms of TLR4 and TLR9 and Haemophilus influenzae Meningitis in Angolan Children. Genes (Basel) 2020; 11:genes11091099. [PMID: 32967147 PMCID: PMC7564843 DOI: 10.3390/genes11091099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/26/2022] Open
Abstract
Bacterial meningitis (BM) is a severe disease caused by various bacterial pathogens. Toll-like receptors (TLRs) protect humans from invading pathogens. In this study, we determined whether single nucleotide polymorphisms (SNPs) of TLR4 and TLR9 are associated with susceptibility to and outcome of BM in Angolan children. Samples were taken from 241 patients and 265 age-matched ethnic controls. The SNPs TLR4 rs4986790 (896A > G) and TLR9 rs187084 (−1486T > C) were determined by high-resolution melting analysis (HRMA). The frequency of variant genotypes in TLR4 was significantly higher in patients with Haemophilus influenzae meningitis than controls (odds ratio (OR), 2.5; 95% confidence interval (CI), 1.2–5.4; p = 0.021), whereas the frequency of variant genotypes in TLR9 was significantly lower in patients with H. influenzae meningitis than controls (OR, 0.4; 95% CI, 0.2–0.9; p = 0.036). No such differences were found with other causative pathogens, such as Streptococcus pneumoniae and Neisseria meningitidis. At the time of discharge, patients with meningitis caused by Gram-negative bacteria who were carriers of variant TLR4 genotypes had a higher risk of ataxia (OR, 12.91; 95% CI, 1.52–109.80; p = 0.019) and other neurological sequelae (OR, 11.85; 95% CI, 1.07–131.49; p = 0.044) than those with the wild-type TLR4 genotype. Our study suggests an association between H. influenzae meningitis and genetic variation between TLR4 and TLR9 in Angolan children.
Collapse
|
13
|
Bhagwani A, Thompson AAR, Farkas L. When Innate Immunity Meets Angiogenesis-The Role of Toll-Like Receptors in Endothelial Cells and Pulmonary Hypertension. Front Med (Lausanne) 2020; 7:352. [PMID: 32850883 PMCID: PMC7410919 DOI: 10.3389/fmed.2020.00352] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/12/2020] [Indexed: 01/16/2023] Open
Abstract
Toll-like receptors serve a central role in innate immunity, but they can also modulate cell function in various non-immune cell types including endothelial cells. Endothelial cells are necessary for the organized function of the vascular system, and part of their fundamental role is also the regulation of immune function and inflammation. In this review, we summarize the current knowledge of how Toll-like receptors contribute to the immune and non-immune functions of the endothelial cells.
Collapse
Affiliation(s)
- Aneel Bhagwani
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, United States
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, United States
| | - A. A. Roger Thompson
- Department of Infection, Immunity & Cardiovascular Disease, Faculty of Medicine, Dentistry & Health, University of Sheffield, Sheffield, United Kingdom
| | - Laszlo Farkas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
14
|
Tukhvatulin AI, Dzharullaeva AS, Erokhova AS, Scheblyakov DV, Naroditsky BS, Gintsburg AL, Logunov DY. NOD1/2 and the C-Type Lectin Receptors Dectin-1 and Mincle Synergistically Enhance Proinflammatory Reactions Both In Vitro and In Vivo. J Inflamm Res 2020; 13:357-368. [PMID: 32801829 PMCID: PMC7383029 DOI: 10.2147/jir.s245638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 06/20/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose Pathogens consist of a wide variety of evolutionarily conserved molecular structures that are recognized by pattern recognition receptors (PRRs) of innate immunity. Reasonably assuming that no single PRR is ever likely to be the sole trigger of the immune response during infection, a great deal remains unknown about collaborative mechanisms and consequential crosstalk effects between multiple PRRs belonging to different families. Here, we aimed to investigate inflammatory response to combined stimulation of cytosolic nucleotide-binding oligomerization domain (NOD) receptors: NOD1, NOD2 and membrane-bound C-type lectin receptors (CLRs): Mincle and Dectin-1 in comparison to individual stimulation both in vitro and in vivo. Materials and Methods For in vitro studies, we used human monocytic THP-1 cells endogenously expressing NOD1,2, as well as Mincle and Dectin-1 receptors. Using reporter gene and immunoassay approaches, we measured activity of key proinflammatory transcription factors (NF-κB and AP-1) and cytokine production after addition of specific PRR agonists or their pairwise combinations. In vivo NF-κB activity (bioluminescent detection in NF-κB-Luc transgenic mice), as well as cytokine levels in mouse blood serum, was measured 3 hours after intramuscular injection of PRR agonists. Results We detected that combined stimulation of NOD1/2 and C-type lectin receptors (Dectin-1, Mincle) strongly potentiates NF-κB and AP-1 transcription factor activity in human monocytic THP-1 cells, as well as resulting in enhanced levels of IL-8 cytokine production. We demonstrated that RIP2- and Syk-dependent signaling pathways downstream of NOD1/2 and Dectin-1/Mincle, respectively, are essential for the potentiated proinflammatory cell response. Lastly, we confirmed that synergy between NOD and C-type lectin receptors resulting in potentiated levels of NF-κB activation and cytokine (IL-6, KC) production also occurs in vivo. Conclusion These findings originally indicate cooperation between NODs and CLRs, leading to potentiated levels of proinflammatory immune response both in vitro and in vivo.
Collapse
Affiliation(s)
- Amir I Tukhvatulin
- N. F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow, Russia
| | - Alina S Dzharullaeva
- N. F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow, Russia
| | - Alina S Erokhova
- N. F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow, Russia
| | - Dmitry V Scheblyakov
- N. F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow, Russia
| | - Boris S Naroditsky
- N. F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow, Russia
| | - Alexander L Gintsburg
- N. F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow, Russia
| | - Denis Y Logunov
- N. F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow, Russia
| |
Collapse
|
15
|
Fukuda D, Nishimoto S, Aini K, Tanaka A, Nishiguchi T, Kim-Kaneyama JR, Lei XF, Masuda K, Naruto T, Tanaka K, Higashikuni Y, Hirata Y, Yagi S, Kusunose K, Yamada H, Soeki T, Imoto I, Akasaka T, Shimabukuro M, Sata M. Toll-Like Receptor 9 Plays a Pivotal Role in Angiotensin II-Induced Atherosclerosis. J Am Heart Assoc 2020; 8:e010860. [PMID: 30905257 PMCID: PMC6509720 DOI: 10.1161/jaha.118.010860] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background Toll-like receptor ( TLR ) 9 recognizes bacterial DNA , activating innate immunity, whereas it also provokes inflammation in response to fragmented DNA released from mammalian cells. We investigated whether TLR 9 contributes to the development of vascular inflammation and atherogenesis using apolipoprotein E-deficient ( Apoe -/-) mice. Methods and Results Tlr9-deficient Apoe -/- ( Tlr9 -/- Apoe -/-) mice and Apoe -/- mice on a Western-type diet received subcutaneous angiotensin II infusion (1000 ng/kg per minute) for 28 days. Angiotensin II increased the plasma level of double-stranded DNA, an endogenous ligand of TLR 9, in these mice. Genetic deletion or pharmacologic blockade of TLR 9 in angiotensin II-infused Apoe -/- mice attenuated atherogenesis in the aortic arch ( P<0.05), reduced the accumulation of lipid and macrophages in atherosclerotic plaques, and decreased RNA expression of inflammatory molecules in the aorta with no alteration of metabolic parameters. On the other hand, restoration of TLR 9 in bone marrow in Tlr9 -/- Apoe -/- mice promoted atherogenesis in the aortic arch ( P<0.05). A TLR 9 agonist markedly promoted proinflammatory activation of Apoe -/- macrophages, partially through p38 mitogen-activated protein kinase signaling. In addition, genomic DNA extracted from macrophages promoted inflammatory molecule expression more effectively in Apoe -/- macrophages than in Tlr9 -/- Apoe -/- macrophages. Furthermore, in humans, circulating double-stranded DNA in the coronary artery positively correlated with inflammatory features of coronary plaques determined by optical coherence tomography in patients with acute myocardial infarction ( P<0.05). Conclusions TLR 9 plays a pivotal role in the development of vascular inflammation and atherogenesis through proinflammatory activation of macrophages. TLR 9 may serve as a potential therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Daiju Fukuda
- 1 Department of Cardiovascular Medicine Tokushima University Graduate School of Biomedical Sciences Tokushima Japan.,2 Department of Cardio-Diabetes Medicine Tokushima University Graduate School of Biomedical Sciences Tokushima Japan
| | - Sachiko Nishimoto
- 1 Department of Cardiovascular Medicine Tokushima University Graduate School of Biomedical Sciences Tokushima Japan
| | - Kunduziayi Aini
- 1 Department of Cardiovascular Medicine Tokushima University Graduate School of Biomedical Sciences Tokushima Japan
| | - Atsushi Tanaka
- 3 Department of Cardiovascular Medicine Wakayama Medical University Wakayama Japan
| | - Tsuyoshi Nishiguchi
- 3 Department of Cardiovascular Medicine Wakayama Medical University Wakayama Japan
| | - Joo-Ri Kim-Kaneyama
- 4 Department of Biochemistry Showa University School of Medicine Tokyo Japan
| | - Xiao-Feng Lei
- 4 Department of Biochemistry Showa University School of Medicine Tokyo Japan
| | - Kiyoshi Masuda
- 5 Department of Human Genetics Tokushima University Graduate School of Biomedical Sciences Tokushima Japan
| | - Takuya Naruto
- 5 Department of Human Genetics Tokushima University Graduate School of Biomedical Sciences Tokushima Japan
| | - Kimie Tanaka
- 6 Division for Health Service Promotion The University of Tokyo Japan
| | | | - Yoichiro Hirata
- 8 Department of Pediatrics The University of Tokyo Hospital Tokyo Japan
| | - Shusuke Yagi
- 1 Department of Cardiovascular Medicine Tokushima University Graduate School of Biomedical Sciences Tokushima Japan
| | - Kenya Kusunose
- 1 Department of Cardiovascular Medicine Tokushima University Graduate School of Biomedical Sciences Tokushima Japan
| | - Hirotsugu Yamada
- 9 Department of Community Medicine for Cardiology Tokushima University Graduate School of Biomedical Sciences Tokushima Japan
| | - Takeshi Soeki
- 1 Department of Cardiovascular Medicine Tokushima University Graduate School of Biomedical Sciences Tokushima Japan
| | - Issei Imoto
- 5 Department of Human Genetics Tokushima University Graduate School of Biomedical Sciences Tokushima Japan
| | - Takashi Akasaka
- 3 Department of Cardiovascular Medicine Wakayama Medical University Wakayama Japan
| | - Michio Shimabukuro
- 2 Department of Cardio-Diabetes Medicine Tokushima University Graduate School of Biomedical Sciences Tokushima Japan.,10 Department of Diabetes, Endocrinology and Metabolism School of Medicine Fukushima Medical University Fukushima Japan
| | - Masataka Sata
- 1 Department of Cardiovascular Medicine Tokushima University Graduate School of Biomedical Sciences Tokushima Japan
| |
Collapse
|
16
|
Ahmed I, Witbooi P, Christoffels A. Prediction of human-Bacillus anthracis protein-protein interactions using multi-layer neural network. Bioinformatics 2019; 34:4159-4164. [PMID: 29945178 PMCID: PMC6289132 DOI: 10.1093/bioinformatics/bty504] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 06/24/2018] [Indexed: 12/22/2022] Open
Abstract
Motivation Triplet amino acids have successfully been included in feature selection to predict human-HPV protein-protein interactions (PPI). The utility of supervised learning methods is curtailed due to experimental data not being available in sufficient quantities. Improvements in machine learning techniques and features selection will enhance the study of PPI between host and pathogen. Results We present a comparison of a neural network model versus SVM for prediction of host-pathogen PPI based on a combination of features including: amino acid quadruplets, pairwise sequence similarity, and human interactome properties. The neural network and SVM were implemented using Python Sklearn library. The neural network model using quadruplet features and other network features outperformance the SVM model. The models are tested against published predictors and then applied to the human-B.anthracis case. Gene ontology term enrichment analysis identifies immunology response and regulation as functions of interacting proteins. For prediction of Human-viral PPI, our model (neural network) is a significant improvement in overall performance compared to a predictor using the triplets feature and achieves a good accuracy in predicting human-B.anthracis PPI. Availability and implementation All code can be downloaded from ftp://ftp.sanbi.ac.za/machine_learning/. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ibrahim Ahmed
- South African National Bioinformatics Institute, South African MRC Bioinformatics Unit
| | - Peter Witbooi
- Department of Mathematics and Applied Mathematics, University of the Western Cape, Bellville, South Africa
| | - Alan Christoffels
- South African National Bioinformatics Institute, South African MRC Bioinformatics Unit
| |
Collapse
|
17
|
Fei N, Bernabé BP, Lie L, Baghdan D, Bedu-Addo K, Plange-Rhule J, Forrester TE, Lambert EV, Bovet P, Gottel N, Riesen W, Korte W, Luke A, Kliethermes SA, Layden BT, Gilbert JA, Dugas LR. The human microbiota is associated with cardiometabolic risk across the epidemiologic transition. PLoS One 2019; 14:e0215262. [PMID: 31339887 PMCID: PMC6656343 DOI: 10.1371/journal.pone.0215262] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023] Open
Abstract
Oral and fecal microbial biomarkers have previously been associated with cardiometabolic (CM) risk, however, no comprehensive attempt has been made to explore this association in minority populations or across different geographic regions. We characterized gut- and oral-associated microbiota and CM risk in 655 participants of African-origin, aged 25-45, from Ghana, South Africa, Jamaica, and the United States (US). CM risk was classified using the CM risk cut-points for elevated waist circumference, elevated blood pressure and elevated fasted blood glucose, low high-density lipoprotein (HDL), and elevated triglycerides. Gut-associated bacterial alpha diversity negatively correlated with elevated blood pressure and elevated fasted blood glucose. Similarly, gut bacterial beta diversity was also significantly differentiated by waist circumference, blood pressure, triglyceridemia and HDL-cholesterolemia. Notably, differences in inter- and intra-personal gut microbial diversity were geographic-region specific. Participants meeting the cut-points for 3 out of the 5 CM risk factors were significantly more enriched with Lachnospiraceae, and were significantly depleted of Clostridiaceae, Peptostreptococcaceae, and Prevotella. The predicted relative proportions of the genes involved in the pathways for lipopolysaccharides (LPS) and butyrate synthesis were also significantly differentiated by the CM risk phenotype, whereby genes involved in the butyrate synthesis via lysine, glutarate and 4-aminobutyrate/succinate pathways and LPS synthesis pathway were enriched in participants with greater CM risk. Furthermore, inter-individual oral microbiota diversity was also significantly associated with the CM risk factors, and oral-associated Streptococcus, Prevotella, and Veillonella were enriched in participants with 3 out of the 5 CM risk factors. We demonstrate that in a diverse cohort of African-origin adults, CM risk is significantly associated with reduced microbial diversity, and the enrichment of specific bacterial taxa and predicted functional traits in both gut and oral environments. As well as providing new insights into the associations between the gut and oral microbiota and CM risk, this study also highlights the potential for novel therapeutic discoveries which target the oral and gut microbiota in CM risk.
Collapse
Affiliation(s)
- Na Fei
- Microbiome Center, Department of Surgery, University of Chicago, Chicago, IL, United States of America
| | - Beatriz Peñalver Bernabé
- Microbiome Center, Department of Surgery, University of Chicago, Chicago, IL, United States of America
| | - Louise Lie
- Public Health Sciences, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States of America
| | - Danny Baghdan
- Public Health Sciences, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States of America
| | - Kweku Bedu-Addo
- Department of Physiology, SMS, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Jacob Plange-Rhule
- Department of Physiology, SMS, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Terrence E. Forrester
- Solutions for Developing Countries, University of the West Indies, Mona, Kingston, Jamaica
| | - Estelle V. Lambert
- Research Unit for Exercise Science and Sports Medicine, University of Cape Town, Cape Town, South Africa
| | - Pascal Bovet
- Institute of Social & Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland
- Ministry of Health, Mahé, Victoria, Republic of Seychelles
| | - Neil Gottel
- Microbiome Center, Department of Surgery, University of Chicago, Chicago, IL, United States of America
| | - Walter Riesen
- Center for Laboratory Medicine, Canton Hospital, St. Gallen, Switzerland
| | - Wolfgang Korte
- Center for Laboratory Medicine, Canton Hospital, St. Gallen, Switzerland
| | - Amy Luke
- Public Health Sciences, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States of America
| | - Stephanie A. Kliethermes
- Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Brian T. Layden
- Division of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL, United States of America
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, United States of America
| | - Jack A. Gilbert
- Microbiome Center, Department of Surgery, University of Chicago, Chicago, IL, United States of America
| | - Lara R. Dugas
- Public Health Sciences, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States of America
| |
Collapse
|
18
|
Kim JY, Seo SM, Lee HK, Kim HW, Choi YK. Comparison of the virulence of Streptococcus pneumoniae in ICR mouse stocks of three different origins. Lab Anim Res 2019; 35:5. [PMID: 31463224 PMCID: PMC6707427 DOI: 10.1186/s42826-019-0002-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/11/2019] [Indexed: 01/13/2023] Open
Abstract
Streptococcus pneumoniae causes many people to suffer from pneumonia, septicemia, and other diseases worldwide. To identify the difference in susceptibility of and treatment efficacy against S. pneumoniae in three ICR mouse stocks (Korl:ICR, A:ICR, and B:ICR) with different origins, mice were infected with 2 × 106, 2 × 107, and 2 × 108 CFU of S. pneumoniae D39 intratracheally. The survival of mice was observed until three weeks after the infection. The three stocks of mice showed no significant survival rate difference at 2 × 106 and 2 × 107 CFU. However, the lung and spleen weight in the A:ICR stock was significantly different from that in the other two stocks, whereas the liver weight in B:ICR stock was significantly lower than that in the other two stocks. Interestingly, no significant CFU difference in the organs was observed between the ICR stocks. The level of interferon gamma inducible protein 10 in Korl:ICR was significantly lower than that in the other two stocks. The level of granulocyte colony stimulating factor in B:ICR was significantly lower than in the other two stocks. However, tumor-necrosis factor-alpha and interleukin-6 levels showed no significant difference between the ICR stocks. In the vancomycin efficacy test after the S. pneumoniae infection, both the single-dose and double-dose vancomycin-treated groups showed a significantly better survival rate than the control group. There was no significant survival difference between the three stocks. These data showed that Korl:ICR, A:ICR, and B:ICR have no susceptibility difference to the S. pneumoniae D39 serotype 2.
Collapse
Affiliation(s)
- Jun-Young Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029 Republic of Korea
| | - Sun-Min Seo
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029 Republic of Korea
| | - Han-Kyul Lee
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029 Republic of Korea
| | - Han-Woong Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029 Republic of Korea
| | - Yang-Kyu Choi
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029 Republic of Korea
| |
Collapse
|
19
|
Borghini L, Png E, Binder A, Wright VJ, Pinnock E, de Groot R, Hazelzet J, Emonts M, Van der Flier M, Schlapbach LJ, Anderson S, Secka F, Salas A, Fink C, Carrol ED, Pollard AJ, Coin LJ, Kuijpers TW, Martinon-Torres F, Zenz W, Levin M, Hibberd ML, Davila S. Identification of regulatory variants associated with genetic susceptibility to meningococcal disease. Sci Rep 2019; 9:6966. [PMID: 31061469 PMCID: PMC6502852 DOI: 10.1038/s41598-019-43292-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 04/17/2019] [Indexed: 12/30/2022] Open
Abstract
Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA – a NF-kB subunit, master regulator of the response to infection – under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes.
Collapse
Affiliation(s)
- Lisa Borghini
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore. .,Infectious diseases, Genome Institute of Singapore, Singapore, Singapore.
| | - Eileen Png
- Infectious diseases, Genome Institute of Singapore, Singapore, Singapore
| | - Alexander Binder
- Department of General Pediatrics, Medical University of Graz, Graz, Austria
| | - Victoria J Wright
- Section for Paediatrics, Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Ellie Pinnock
- Micropathology Ltd, University of Warwick, Warwick, UK
| | - Ronald de Groot
- Department of Pediatrics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan Hazelzet
- Department of Pediatrics, Erasmus Medical Center-Sophia Children's hospital, University Medical Center, Rotterdam, The Netherlands
| | - Marieke Emonts
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.,Paediatric Infectious Diseases and Immunology Department, Newcastle upon Tyne Hospitals Foundation Trust, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| | - Michiel Van der Flier
- Department of Pediatrics and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Luregn J Schlapbach
- Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Paediatric Critical Care Research Group, Mater Research Institute, University of Queensland, Brisbane, Australia.,Paediatric Intensive Care Unit, Lady Cilento Children's Hospital, Brisbane, Australia.,Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Fatou Secka
- Medical Research Council Unit Gambia, Banjul, The Gambia
| | - Antonio Salas
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago, Galicia, Spain
| | - Colin Fink
- Micropathology Ltd, University of Warwick, Warwick, UK
| | - Enitan D Carrol
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Lachlan J Coin
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Taco W Kuijpers
- Division of Pediatric Hematology, Immunology and Infectious diseases, Emma Children's Hospital Academic Medical Center, Amsterdam, The Netherlands
| | - Federico Martinon-Torres
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain.,GENVIP Research Group (www.genvip.org), Instituto de Investigación Sanitaria de Santiago, Galicia, Spain
| | - Werner Zenz
- Department of General Pediatrics, Medical University of Graz, Graz, Austria
| | - Michael Levin
- Section for Paediatrics, Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Martin L Hibberd
- Infectious diseases, Genome Institute of Singapore, Singapore, Singapore.,Infectious and Tropical Disease, London School of Hygiene & Tropical Medicine, London, UK
| | - Sonia Davila
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore. .,SingHealth Duke-NUS Institute of Precision Medicine (PRISM), Singapore, Singapore. .,Duke-NUS Medical School, Singapore, Singapore.
| | | |
Collapse
|
20
|
Applications of Immunomodulatory Immune Synergies to Adjuvant Discovery and Vaccine Development. Trends Biotechnol 2018; 37:373-388. [PMID: 30470547 DOI: 10.1016/j.tibtech.2018.10.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 01/01/2023]
Abstract
Pathogens comprise a diverse set of immunostimulatory molecules that activate the innate immune system during infection. The immune system recognizes distinct combinations of pathogenic molecules leading to multiple immune activation events that cooperate to produce enhanced immune responses, known as 'immune synergies'. Effective immune synergies are essential for the clearance of pathogens, thus inspiring novel adjuvant design to improve vaccines. We highlight current vaccine adjuvants and the importance of immune synergies to adjuvant and vaccine design. The focus is on new technologies used to study and apply immune synergies to adjuvant and vaccine development. Finally, we discuss how recent findings can be applied to the future design and characterization of synergistic adjuvants and vaccines.
Collapse
|
21
|
Blood‒Brain Barrier Pathology and CNS Outcomes in Streptococcus pneumoniae Meningitis. Int J Mol Sci 2018; 19:ijms19113555. [PMID: 30423890 PMCID: PMC6275034 DOI: 10.3390/ijms19113555] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae is a major meningitis-causing pathogen globally, bringing about significant morbidity and mortality, as well as long-term neurological sequelae in almost half of the survivors. Subsequent to nasopharyngeal colonisation and systemic invasion, translocation across the blood‒brain barrier (BBB) by S. pneumoniae is a crucial early step in the pathogenesis of meningitis. The BBB, which normally protects the central nervous system (CNS) from deleterious molecules within the circulation, becomes dysfunctional in S. pneumoniae invasion due to the effects of pneumococcal toxins and a heightened host inflammatory environment of cytokines, chemokines and reactive oxygen species intracranially. The bacteria‒host interplay within the CNS likely determines not only the degree of BBB pathological changes, but also host survival and the extent of neurological damage. This review explores the relationship between S. pneumoniae bacteria and the host inflammatory response, with an emphasis on the BBB and its roles in CNS protection, as well as both the acute and long-term pathogenesis of meningitis.
Collapse
|
22
|
Atalan N, Acar L, Yapici N, Kudsioglu T, Ergen A, Yilmaz SG, Isbir T. The Relationship Between Sepsis-induced Immunosuppression and Serum Toll-like Receptor 9 Level. In Vivo 2018; 32:1653-1658. [PMID: 30348730 PMCID: PMC6365731 DOI: 10.21873/invivo.11428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/25/2018] [Accepted: 08/01/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIM Our aim was to determine serum TLR-9 levels in sepsis and evaluate the relationship between sepsis and serum TLR-9 levels. MATERIALS AND METHODS The study group consisted of 80 consecutive patients with sepsis and 100 healthy individuals. The demographic characteristics, co-morbidities and hemodynamic data of all patients were recorded. RESULTS TLR-9 serum levels in sepsis were statistically significantly lower compared to the control group. It was also seen that when the lactate level was >5 mmol/l in patients in the sepsis group, the serum TLR-9 levels were substantially higher. CONCLUSION There is a relationship between sepsis-induced immunosuppression and serum TLR-9 levels. The host immunity system can be activated by means of TLR-9-related systems, while hyperlactatemia may play a stimulating role in the re-activation of the immune system.
Collapse
Affiliation(s)
- Nazan Atalan
- Department of Anesthesiology, Marmara University Vocational School of Health Services, Istanbul, Turkey
| | - Leyla Acar
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Nihan Yapici
- Department of Anesthesiology, Dr Siyami Ersek Thoracic and Cardiovascular Training and Research Hospital, Istanbul, Turkey
| | - Turkan Kudsioglu
- Department of Anesthesiology, Dr Siyami Ersek Thoracic and Cardiovascular Training and Research Hospital, Istanbul, Turkey
| | - Arzu Ergen
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Seda Gulec Yilmaz
- Department of Molecular Medicine, Health Science Institute, Yeditepe University, Istanbul, Turkey
| | - Turgay Isbir
- Department of Molecular Medicine, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
23
|
Induction of Trained Innate Immunity in Human Monocytes by Bovine Milk and Milk-Derived Immunoglobulin G. Nutrients 2018; 10:nu10101378. [PMID: 30262772 PMCID: PMC6213000 DOI: 10.3390/nu10101378] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/12/2018] [Accepted: 09/21/2018] [Indexed: 12/11/2022] Open
Abstract
Innate immune memory, also termed “trained immunity” in vertebrates, has been recently described in a large variety of plants and animals. In most cases, trained innate immunity is induced by pathogens or pathogen-associated molecular patterns (PAMPs), and is associated with long-term epigenetic, metabolic, and functional reprogramming. Interestingly, recent findings indicate that food components can mimic PAMPs effects and induce trained immunity. The aim of this study was to investigate whether bovine milk or its components can induce trained immunity in human monocytes. To this aim, monocytes were exposed for 24 h to β-glucan, Toll-like receptor (TLR)-ligands, bovine milk, milk fractions, bovine lactoferrin (bLF), and bovine Immunoglobulin G (bIgG). After washing away the stimulus and a resting period of five days, the cells were re-stimulated with TLR ligands and Tumor necrosis factor (TNF-) and interleukin (IL)-6 production was measured. Training with β-glucan resulted in higher cytokine production after TLR1/2, TLR4, and TLR7/8 stimulation. When monocytes trained with raw milk were re-stimulated with TLR1/2 ligand Pam3CSK4, trained cells produced more IL-6 compared to non-trained cells. Training with bIgG resulted in higher cytokine production after TLR4 and TLR7/8 stimulation. These results show that bovine milk and bIgG can induce trained immunity in human monocytes. This confirms the hypothesis that diet components can influence the long-term responsiveness of the innate immune system.
Collapse
|
24
|
Genes and their single nucleotide polymorphism involved in innate immune response in central nervous system in bacterial meningitis: review of literature data. Inflamm Res 2018; 67:655-661. [PMID: 29754263 PMCID: PMC6028835 DOI: 10.1007/s00011-018-1158-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 11/05/2022] Open
Abstract
Background There are many studies analysing the effect of SNPs in genes coding proteins which are involved in innate immune response on susceptibility to invasive bacterial disease. Many of them gave inconclusive results. Regarding the complexity of immune response and cooperation between particular elements, number of SNPs may have a cumulative effect on the susceptibility to bacterial meningitis. Findings In most studies cooccurrence of several SNPs was not analysed. These studies were performed on small groups of patients and usually only few SNPs were checked simultaneously. Additionally, comparison of the results across the studies is hard to conduct. We hypothesise that the number of variants of genes involved in innate immune response plays a role in susceptibility to bacterial meningitis. However, the role of toll-like receptors and other part of innate immune response in the eradication of bacteria, and initiation of the inflammatory response in CNS need further studies. Conclusion Large multicentre studies assessing multiple SNPs in patients with microbiologically proven pneumococcal or meningococcal meningitis are needed to find real genetic risk factors for developing bacterial meningitis. This is necessary to design more effective treatment and prevention strategies for severe infections.
Collapse
|
25
|
DNA-release by Streptococcus pneumoniae autolysin LytA induced Krueppel-like factor 4 expression in macrophages. Sci Rep 2018; 8:5723. [PMID: 29636524 PMCID: PMC5893607 DOI: 10.1038/s41598-018-24152-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 03/20/2018] [Indexed: 12/22/2022] Open
Abstract
The recruitment of myeloid cells to the lung is of utmost importance for the elimination of invading pathogens. We investigated the Streptococcus pneumoniae-dependent induction mechanism of KLF4 in macrophages as a potential regulator of the macrophage immune response. We demonstrated that only viable pneumococci, which have direct contact to the host cells and release LytA-dependent DNA, induced KLF4. Exogenous supplementation of pneumococcal, other bacterial, eukaryotic foreign (human) or self (mouse) DNA to autolysis-deficient pneumococci restored (at least in part) pneumococci-related KLF4 induction. Experiments using TLR9, TRIF and MyD88 knockout macrophages revealed that TLR9, TRIF and MyD88 were partly involved in the S. pneumoniae-induced KLF4 expression. BMMs missing important DNA receptor related molecules (ASC−/−, STING−/−) showed no differences in pneumococci-related KLF4 expression. Similar results were observed with IFNAR−/− BMMs and Type I IFN stimulated cells. LyzMcre mediated knockdown of KLF4 in BMMs resulted in a decreased secretion of proinflammatory cytokines and enhanced IL-10 release. In summary, we showed that pneumococci-related KLF4 induction in macrophages is mediated via a PAMP-DAMP induction mechanism involving a hitherto unknown host cell DNA sensor leading to a more proinflammatory macrophage phenotype.
Collapse
|
26
|
Gowin E, Świątek-Kościelna B, Kałużna E, Strauss E, Wysocki J, Nowak J, Michalak M, Januszkiewicz-Lewandowska D. How many single-nucleotide polymorphisms (SNPs) must be tested in order to prove susceptibility to bacterial meningitis in children? Analysis of 11 SNPs in seven genes involved in the immune response and their effect on the susceptibility to bacterial meningitis in children. Innate Immun 2018. [PMID: 29534633 PMCID: PMC6852385 DOI: 10.1177/1753425918762038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The aim of this study is to describe the prevalence of single single-nucleotide
polymorphisms (SNPs) as well as their combinations in genes encoding proteins
involved in the immune response in children with bacterial meningitis. The
prospective study group consisted of 39 children with bacterial meningitis and
49 family members surveyed between 2012 and 2016. Eleven SNPs in seven genes
involved in immune response were analysed. The mean number of minor frequency
alleles (MAF) of studied SNPs was lowest in the control group and highest in
patients with pneumococcal meningitis. We found that carrying ≥6 MAF of studied
SNPs was associated with an increased risk of pneumococcal meningitis. The
prevalence of risky variants was noted to be higher in patients with
pneumococcal meningitis as compared to the control group. In conclusion, genetic
factors are a relevant factor in determining the susceptibility to bacterial
meningitis. A statistically significant cumulative effect of mutated variants on
increasing the risk of bacterial meningitis was detected. Combining all three
SNPs in MBL2 improves the prediction of susceptibility to
pneumococcal meningitis. Analysis of risky alleles can help indicate people
prone to the disease who are ‘gene-immunocompromised’.
Collapse
Affiliation(s)
- Ewelina Gowin
- 1 Department of Family Medicine, Poznan University of Medical Sciences, Poland
| | | | - Ewelina Kałużna
- 2 Institute of Human Genetics, Polish Academy of Sciences, Poznan Poland
| | - Ewa Strauss
- 2 Institute of Human Genetics, Polish Academy of Sciences, Poznan Poland
| | - Jacek Wysocki
- 3 Department of Health Promotion, Poznan University of Medical Sciences, Poland
| | - Jerzy Nowak
- 2 Institute of Human Genetics, Polish Academy of Sciences, Poznan Poland
| | - Michał Michalak
- 4 Department of Biostatistics, Poznan University of Medical Sciences, Poland
| | - Danuta Januszkiewicz-Lewandowska
- 2 Institute of Human Genetics, Polish Academy of Sciences, Poznan Poland.,5 Department of Oncology, Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, Poland
| |
Collapse
|
27
|
Silver AC. Pathogen-associated molecular patterns alter molecular clock gene expression in mouse splenocytes. PLoS One 2017; 12:e0189949. [PMID: 29253904 PMCID: PMC5734770 DOI: 10.1371/journal.pone.0189949] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/05/2017] [Indexed: 01/01/2023] Open
Abstract
Circadian rhythms are endogenous 24-h oscillations that influence a multitude of physiological processes. The pathogen-associated molecular pattern (PAMP), lipopolysaccharide, has been shown to modify the circadian molecular clock. The aim of this study was to determine if other PAMPs alter clock gene expression. Therefore, mRNA levels of clock genes (Per2, Bmal1, Rev-erbα, and Dbp) were measured after an ex vivo challenge with several PAMPs and to further test the relevance of PAMP alteration of the molecular clock, an in vivo poly(I:C) challenge was performed. This study revealed that several other PAMPs are also capable of altering clock gene expression.
Collapse
Affiliation(s)
- Adam C. Silver
- Department of Biology, University of Hartford, West Hartford, CT, United States
- * E-mail:
| |
Collapse
|
28
|
Maier E, Anderson RC, Altermann E, Roy NC. Live Faecalibacterium prausnitzii induces greater TLR2 and TLR2/6 activation than the dead bacterium in an apical anaerobic co-culture system. Cell Microbiol 2017; 20. [PMID: 29112296 DOI: 10.1111/cmi.12805] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 12/25/2022]
Abstract
Inappropriate activation of intestinal innate immune receptors, such as toll-like receptors (TLRs), by pathogenic bacteria is linked to chronic inflammation. In contrast, a "tonic" level of TLR activation by commensal bacteria is required for intestinal homeostasis. A technical challenge when studying this activation in vitro is the co-culturing of oxygen-requiring mammalian cells with obligate anaerobic commensal bacteria. To overcome this, we used a novel apical anaerobic co-culture system to successfully adapt a TLR activation assay to be conducted in conditions optimised for both cell types. Live Faecalibacterium prausnitzii, an abundant obligate anaerobe of the colonic microbiota, induced higher TLR2 and TLR2/6 activation than the dead bacterium. This enhanced TLR induction by live F. prausnitzii, which until now has not previously been described, may contribute to maintenance of gastrointestinal homeostasis. This highlights the importance of using physiologically relevant co-culture systems to decipher the mechanisms of action of live obligate anaerobes.
Collapse
Affiliation(s)
- Eva Maier
- Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch Grasslands, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Rachel C Anderson
- Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch Grasslands, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Eric Altermann
- Riddet Institute, Massey University, Palmerston North, New Zealand.,Rumen Microbiology Team, Animal Science Group, AgResearch Grasslands, Palmerston North, New Zealand
| | - Nicole C Roy
- Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch Grasslands, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| |
Collapse
|
29
|
Banerjee R, Patel B, Basu M, Lenka SS, Paicha M, Samanta M, Das S. Molecular cloning, characterization and expression of immunoglobulin D on pathogen challenge and pathogen associated molecular patterns stimulation in freshwater carp, Catla catla. Microbiol Immunol 2017; 61:452-458. [DOI: 10.1111/1348-0421.12534] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/31/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Rajanya Banerjee
- Laboratory of Environmental Microbiology and Ecology; Department of Life; Science; National Institute of Technology; Rourkela 769008
| | - Bhakti Patel
- Laboratory of Environmental Microbiology and Ecology; Department of Life; Science; National Institute of Technology; Rourkela 769008
| | - Madhubanti Basu
- Fish Health Management Division; Central Institute of Freshwater Aquaculture; Kausalyaganga, Bhubaneswar 751002 Odisha India
| | - Saswati S. Lenka
- Fish Health Management Division; Central Institute of Freshwater Aquaculture; Kausalyaganga, Bhubaneswar 751002 Odisha India
| | - Mahismita Paicha
- Fish Health Management Division; Central Institute of Freshwater Aquaculture; Kausalyaganga, Bhubaneswar 751002 Odisha India
| | - Mrinal Samanta
- Fish Health Management Division; Central Institute of Freshwater Aquaculture; Kausalyaganga, Bhubaneswar 751002 Odisha India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology; Department of Life; Science; National Institute of Technology; Rourkela 769008
| |
Collapse
|
30
|
Eriksson K, Svensson A, Hait AS, Schlüter K, Tunbäck P, Nordström I, Padyukov L, Liljeqvist JÅ, Mogensen TH, Paludan SR. Cutting Edge: Genetic Association between IFI16 Single Nucleotide Polymorphisms and Resistance to Genital Herpes Correlates with IFI16 Expression Levels and HSV-2-Induced IFN-β Expression. THE JOURNAL OF IMMUNOLOGY 2017; 199:2613-2617. [PMID: 28893956 DOI: 10.4049/jimmunol.1700385] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/15/2017] [Indexed: 12/18/2022]
Abstract
IFN-γ-inducible protein 16 (IFI16) is an immunological DNA sensor proposed to act in the cyclic GMP-AMP synthase-stimulator of IFN genes pathway. Because mice do not have a clear ortholog of IFI16, this system is not suitable for genetic studies of IFI16. In this study, we have compared the dependency on IFI16, cyclic GMP-AMP synthase, and stimulator of IFN genes for type I IFN induction by a panel of pathogenic bacteria and DNA viruses. The IFN response induced by HSV-2 was particularly dependent on IFI16. In a cohort of patients with genital herpes and healthy controls, the minor G allele of the IFI16 single nucleotide polymorphism rs2276404 was associated with resistance to infection. Furthermore, the combination of this allele with the C allele of rs1417806 was significantly overrepresented in uninfected individuals. Cells from individuals with the protective GC haplotype expressed higher levels of IFI16 and induced more IFN-β upon HSV-2 infection. These data provide genetic evidence for a role for IFI16 in protection against genital herpes.
Collapse
Affiliation(s)
- Kristina Eriksson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Alexandra Svensson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Alon S Hait
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Kerstin Schlüter
- Department of Rheumatology and Inflammation Research, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Petra Tunbäck
- Department of Dermatovenereology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Inger Nordström
- Department of Rheumatology and Inflammation Research, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Leonid Padyukov
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital, Solna, 17176 Stockholm, Sweden
| | - Jan-Åke Liljeqvist
- Department of Infectious Diseases, University of Gothenburg, 41346 Gothenborg, Sweden; and
| | - Trine H Mogensen
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark.,Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
31
|
Effects of coconut oil on glycemia, inflammation, and urogenital microbial parameters in female Ossabaw mini-pigs. PLoS One 2017; 12:e0179542. [PMID: 28704429 PMCID: PMC5509134 DOI: 10.1371/journal.pone.0179542] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/31/2017] [Indexed: 02/07/2023] Open
Abstract
Forty percent of American women are obese and at risk for type II diabetes, impaired immune function, and altered microbiome diversity, thus impacting overall health. We investigated whether obesity induced by an excess calorie, high fat diet containing hydrogenated fats, fructose, and coconut oil (HFD) altered glucose homeostasis, peripheral immunity, and urogenital microbial dynamics. We hypothesized that HFD would cause hyperglycemia, increase peripheral inflammation, and alter urogenital microbiota to favor bacterial taxonomy associated with inflammation. We utilized female Ossabaw mini-pigs to model a ‘thrifty’ metabolic phenotype associated with increased white adipose tissue mass. Pigs were fed HFD (~4570 kcal/pig/day) or lean (~2000 kcal/pig/day) diet for a total of 9 estrous cycles (~6 months). To determine the effect of cycle stage on cytokines and the microbiome, animals had samples collected during cycles 7 and 9 on certain days of the cycle: D1, 4, 8, 12, 16, 18. Vaginal swabs or cervical flushes assessed urogenital microbiota. Systemic fatty acids, insulin, glucose, and cytokines were analyzed. Pig weights and morphometric measurements were taken weekly. Obese pigs had increased body weight, length, heart and belly girth but similar glucose concentrations. Obese pigs had decreased cytokine levels (IL-1β, TNF-α, IL-4, IL-10), arachidonic acid and plasma insulin, but increased levels of vaccenic acid. Obese pigs had greater urogenital bacterial diversity, including several taxa known for anti-inflammatory properties. Overall, induction of obesity did not induce inflammation but shifted the microbial communities within the urogenital tract to an anti-inflammatory phenotype. We postulate that the coconut oil in the HFD oil may have supported normal glucose homeostasis and modulated the immune response, possibly through regulation of microbial community dynamics and fatty acid metabolism. This animal model holds promise for the study of how different types of obesity and high fat diets may affect metabolism, immune phenotype, and microbial dynamics.
Collapse
|
32
|
Analysis of TLR2, TLR4, and TLR9 single nucleotide polymorphisms in children with bacterial meningitis and their healthy family members. Int J Infect Dis 2017; 60:23-28. [PMID: 28487240 DOI: 10.1016/j.ijid.2017.04.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/20/2017] [Accepted: 04/30/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The aim was to analyse TLR2 rs5743708, TLR2 rs4696480, TLR4 rs4986790, TLR9 rs5743836, and TLR9 rs352140 single nucleotide polymorphisms (SNPs) in children with pneumococcal and meningococcal meningitis and their family members. METHODS The study group consisted of 39 children with bacterial meningitis (25 with meningococcal meningitis and 14 with pneumococcal meningitis) and 49 family members. Laboratory test results and the course of the diseases were analyzed. Genomic DNA was extracted from 1.2ml of peripheral blood in order to analyze the five SNPs. RESULTS Patients with pneumococcal and meningococcal meningitis showed a similar male/female ratio, mean age, and duration of symptoms. There were no statistically significant differences in biochemical markers between the two groups. All patients possessed at least one polymorphic variant of the analyzed SNPs. The most common SNP was TLR9 rs352140, detected in 89.7% of patients. No significant differences in SNP frequency were found between patients, family members, and the general population. CONCLUSIONS The allele frequencies in the population studied are in accordance with the literature data. The study did not find an association between the analyzed SNPs and susceptibility to bacterial meningitis. The role of SNPs in genes coding toll-like receptors and the interactions between them in controlling inflammation in the central nervous system needs further evaluation.
Collapse
|
33
|
Johswich K. Innate immune recognition and inflammation in Neisseria meningitidis infection. Pathog Dis 2017; 75:3059204. [PMID: 28334203 DOI: 10.1093/femspd/ftx022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/23/2017] [Indexed: 01/01/2023] Open
Abstract
Neisseria meningitidis (Nme) can cause meningitis and sepsis, diseases which are characterised by an overwhelming inflammatory response. Inflammation is triggered by host pattern recognition receptors (PRRs) which are activated by pathogen-associated molecular patterns (PAMPs). Nme contains multiple PAMPs including lipooligosaccharide, peptidoglycan, proteins and metabolites. Various classes of PRRs including Toll-like receptors, NOD-like receptors, C-type lectins, scavenger receptors, pentraxins and others are expressed by the host to respond to any given microbe. While Toll-like receptors and NOD-like receptors are pivotal in triggering inflammation, other PRRs act as modulators of inflammation or aid in functional antimicrobial responses such as phagocytosis or complement activation. This review aims to give an overview of the various Nme PAMPs reported to date, the PRRs they activate and their implications during the inflammatory response to infection.
Collapse
|
34
|
van der Maten E, de Bont CM, de Groot R, de Jonge MI, Langereis JD, van der Flier M. Alternative pathway regulation by factor H modulates Streptococcus pneumoniae induced proinflammatory cytokine responses by decreasing C5a receptor crosstalk. Cytokine 2016; 88:281-286. [PMID: 27721145 DOI: 10.1016/j.cyto.2016.09.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 01/24/2023]
Abstract
Bacterial pathogens not only stimulate innate immune receptors, but also activate the complement system. Crosstalk between complement C5a receptor (C5aR) and other innate immune receptors is known to enhance the proinflammatory cytokine response. An important determinant of the magnitude of complement activation is the activity of the alternative pathway, which serves as an amplification mechanism for complement activation. Both alternative pathway activity as well as plasma levels of factor H, a key inhibitor of the alternative pathway, show large variation within the human population. Here, we studied the effect of factor H-mediated regulation of the alternative pathway on bacterial-induced proinflammatory cytokine responses. We used the human pathogen Streptococcus pneumoniae as a model stimulus to induce proinflammatory cytokine responses in human peripheral blood mononuclear cells. Serum containing active complement enhanced pneumococcal induced proinflammatory cytokine production through C5a release and C5aR crosstalk. We found that inhibition of the alternative pathway by factor H, with a concentration equivalent to a high physiological level, strongly reduced C5a levels and decreased proinflammatory cytokine production in human peripheral blood mononuclear cells. This suggests that variation in alternative pathway activity due to variation in factor H plasma levels affects individual cytokine responses during infection.
Collapse
Affiliation(s)
- Erika van der Maten
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Cynthia M de Bont
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Ronald de Groot
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Marien I de Jonge
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Jeroen D Langereis
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Michiel van der Flier
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, The Netherlands; Pediatric Infectious Diseases and Immunology, Department of Pediatrics, Radboudumc, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
35
|
Zahlten J, Herta T, Kabus C, Steinfeldt M, Kershaw O, García P, Hocke AC, Gruber AD, Hübner RH, Steinicke R, Doehn JM, Suttorp N, Hippenstiel S. Role of Pneumococcal Autolysin for KLF4 Expression and Chemokine Secretion in Lung Epithelium. Am J Respir Cell Mol Biol 2015; 53:544-54. [PMID: 25756955 DOI: 10.1165/rcmb.2014-0024oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In severe pneumococcal pneumonia, the delicate balance between a robust inflammatory response necessary to kill bacteria and the loss of organ function determines the outcome of disease. In this study, we tested the hypothesis that Krueppel-like factor (KLF) 4 may counter-regulate Streptococcus pneumoniae-related human lung epithelial cell activation using the potent proinflammatory chemokine IL-8 as a model molecule. Pneumococci induced KLF4 expression in human lung, in primary human bronchial epithelial cells, and in the lung epithelial cell line BEAS-2B. Whereas proinflammatory cell activation depends mainly on the classical Toll-like receptor 2-mitogen-activated protein kinase or phosphatidylinositide 3-kinase and NF-κB pathways, the induction of KLF4 occurred independently of these molecules but relied, in general, on tyrosine kinase activation and, in part, on the src kinase family member yamaguchi sarcoma viral oncogene homolog (yes) 1. The up-regulation of KLF4 depended on the activity of the main pneumococcal autolysin LytA. KLF4 overexpression suppressed S. pneumoniae-induced NF-κB and IL-8 reporter gene activation and release, whereas small interfering RNA-mediated silencing of KLF4 or yes1 kinase led to an increase in IL-8 release. The KLF4-dependent down-regulation of NF-κB luciferase activity could be rescued by the overexpression of the histone acetylase p300/cAMP response element-binding protein-associated factor. In conclusion, KLF4 acts as a counter-regulatory transcription factor in pneumococci-related proinflammatory activation of lung epithelial cells, thereby potentially preventing lung hyperinflammation and subsequent organ failure.
Collapse
Affiliation(s)
- Janine Zahlten
- 1 Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Toni Herta
- 1 Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christin Kabus
- 1 Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Magdalena Steinfeldt
- 1 Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Olivia Kershaw
- 2 Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Pedro García
- 3 Departamento de Microbiología Molecular, Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain; and.,4 CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Andreas C Hocke
- 1 Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Achim D Gruber
- 2 Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Ralf-Harto Hübner
- 1 Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Robert Steinicke
- 1 Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jan-Moritz Doehn
- 1 Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Norbert Suttorp
- 1 Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Hippenstiel
- 1 Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
36
|
Immune ageing and susceptibility to Streptococcus pneumoniae. Biogerontology 2015; 17:449-65. [DOI: 10.1007/s10522-015-9614-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 10/05/2015] [Indexed: 12/16/2022]
|
37
|
Fontes FL, de Araújo LF, Coutinho LG, Leib SL, Agnez-Lima LF. Genetic polymorphisms associated with the inflammatory response in bacterial meningitis. BMC MEDICAL GENETICS 2015; 16:70. [PMID: 26316174 PMCID: PMC4593216 DOI: 10.1186/s12881-015-0218-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 08/18/2015] [Indexed: 11/28/2022]
Abstract
Background Bacterial meningitis (BM) is an infectious disease that results in high mortality and morbidity. Despite efficacious antibiotic therapy, neurological sequelae are often observed in patients after disease. Currently, the main challenge in BM treatment is to develop adjuvant therapies that reduce the occurrence of sequelae. In recent papers published by our group, we described the associations between the single nucleotide polymorphisms (SNPs) AADAT +401C > T, APEX1 Asn148Glu, OGG1 Ser326Cys and PARP1 Val762Ala and BM. In this study, we analyzed the associations between the SNPs TNF -308G > A, TNF -857C > T, IL-8 -251A > T and BM and investigated gene-gene interactions, including the SNPs that we published previously. Methods The study was conducted with 54 BM patients and 110 healthy volunteers (as the control group). The genotypes were investigated via primer-introduced restriction analysis-polymerase chain reaction (PIRA-PCR) or polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) analysis. Allelic and genotypic frequencies were also associated with cytokine and chemokine levels, as measured with the x-MAP method, and cell counts. We analyzed gene-gene interactions among SNPs using the generalized multifactor dimensionality reduction (GMDR) method. Results We did not find significant association between the SNPs TNF -857C > T and IL-8 -251A > T and the disease. However, a higher frequency of the variant allele TNF -308A was observed in the control group, associated with changes in cytokine levels compared to individuals with wild type genotypes, suggesting a possible protective role. In addition, combined inter-gene interaction analysis indicated a significant association between certain genotypes and BM, mainly involving the alleles APEX1 148Glu, IL8 -251 T and AADAT +401 T. These genotypic combinations were shown to affect cyto/chemokine levels and cell counts in CSF samples from BM patients. Conclusions In conclusion, this study revealed a significant association between genetic variability and altered inflammatory responses, involving important pathways that are activated during BM. This knowledge may be useful for a better understanding of BM pathogenesis and the development of new therapeutic approaches. Electronic supplementary material The online version of this article (doi:10.1186/s12881-015-0218-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fabrícia Lima Fontes
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil.
| | - Luíza Ferreira de Araújo
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil.
| | - Leonam Gomes Coutinho
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil.
| | - Stephen L Leib
- Institute for Infectious Diseases, University of Bern, Friedbuehlstrasse 51, CH-3010, Bern, Switzerland.
| | - Lucymara Fassarella Agnez-Lima
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil. .,Departamento de Biologia Celular e Genética, Centro de Biociências - UFRN, Campus Universitário, Lagoa Nova, Natal, RN, 59078-970, Brazil.
| |
Collapse
|
38
|
Jacobsen MC, Dusart PJ, Kotowicz K, Bajaj-Elliott M, Hart SL, Klein NJ, Dixon GL. A critical role for ATF2 transcription factor in the regulation of E-selectin expression in response to non-endotoxin components of Neisseria meningitidis. Cell Microbiol 2015; 18:66-79. [PMID: 26153406 PMCID: PMC4973847 DOI: 10.1111/cmi.12483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/26/2015] [Accepted: 07/05/2015] [Indexed: 01/15/2023]
Abstract
Vascular injury is a serious complication of sepsis due to the gram‐negative bacterium Neisseria meningitidis. One of the critical early steps in initiating this injury is via the interaction of leucocytes, particularly neutrophils, with adhesion molecules expressed on inflamed endothelium. We have previously demonstrated that both lipopolysaccharide (LPS) and non‐LPS components of meningococci can induce very high levels of expression of the vascular endothelial cell adhesion molecule E‐selectin, which is critical for early tethering and capture of neutrophils onto endothelium under flow. Using an LPS‐deficient strain of meningococcus, we showed that very high levels of expression can be induced in primary endothelial cells, even in the context of weak activation of the major host signal transduction factor [nuclear factor‐κB (NF‐κB)]. In this study, we show that the particular propensity for N. meningitidis to induce high levels of expression is regulated at a transcriptional level, and demonstrate a significant role for phosphorylation of the ATF2 transcription factor, likely via mitogen‐activated protein (MAP) kinases, on the activity of the E‐selectin promoter. Furthermore, inhibition of E‐selectin expression in response to the lpxA− strain by a p38 inhibitor indicates a significant role of a p38‐dependent MAPK signalling pathway in ATF2 activation. Collectively, these data highlight the role that LPS and other bacterial components have in modulating endothelial function and their involvement in the pathogenesis of meningococcal sepsis. Better understanding of these multiple mechanisms induced by complex stimuli such as bacteria, and the specific inflammatory pathways they activate, may lead to improved, focused interventions in both meningococcal and potentially bacterial sepsis more generally.
Collapse
Affiliation(s)
- M C Jacobsen
- Infection, Inflammation and Rheumatology Section, Institute of Child Health, University College London, London, UK.,Department of Biology, Faculty of Science, University of Regina, Regina, SK, Canada
| | - P J Dusart
- Infection, Inflammation and Rheumatology Section, Institute of Child Health, University College London, London, UK.,Science for Life Laboratory, Clinical Applied Proteomics, School of Biotechnology, Royal Institute of Technology (KTH), Solna, Sweden
| | - K Kotowicz
- Infection, Inflammation and Rheumatology Section, Institute of Child Health, University College London, London, UK
| | - M Bajaj-Elliott
- Infection, Inflammation and Rheumatology Section, Institute of Child Health, University College London, London, UK
| | - S L Hart
- Experimental and Personalised Medicine Section, Institute of Child Health, University College London, London, UK
| | - N J Klein
- Infection, Inflammation and Rheumatology Section, Institute of Child Health, University College London, London, UK
| | - G L Dixon
- Infection, Inflammation and Rheumatology Section, Institute of Child Health, University College London, London, UK.,Department of Microbiology, Great Ormond Street Hospital, London, UK
| |
Collapse
|
39
|
The polysaccharide capsule of Streptococcus pneumonia partially impedes MyD88-mediated immunity during pneumonia in mice. PLoS One 2015; 10:e0118181. [PMID: 25700108 PMCID: PMC4336322 DOI: 10.1371/journal.pone.0118181] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 01/06/2015] [Indexed: 12/11/2022] Open
Abstract
Toll-like receptors (TLR) and the downstream adaptor protein MyD88 are considered crucial for protective immunity during bacterial infections. Streptococcus (S.) pneumoniae is a human respiratory pathogen and a large majority of clinical pneumococcal isolates expresses an external polysaccharide capsule. We here sought to determine the role of pneumococcal capsule in MyD88-mediated antibacterial defense during S. pneumonia pneumonia. Wild type (WT) and Myd88-/- mice were inoculated intranasally with serotype 2 S. pneumoniae D39 or with an isogenic capsule locus deletion mutant (D39∆cps), and analysed for bacterial outgrowth and inflammatory responses in the lung. As compared to WT mice, Myd88-/- mice infected with D39 demonstrated a modestly impaired bacterial clearance accompanied by decreased inflammatory responses in the lung. Strikingly, while WT mice rapidly cleared D39∆cps, Myd88-/- mice showed 105-fold higher bacterial burdens in their lungs and dissemination to blood 24 hours after infection. These data suggest that the pneumococcal capsule impairs recognition of TLR ligands expressed by S. pneumoniae and thereby partially impedes MyD88-mediated antibacterial defense.
Collapse
|
40
|
Panzer R, Blobel C, Fölster-Holst R, Proksch E. TLR2 and TLR4 expression in atopic dermatitis, contact dermatitis and psoriasis. Exp Dermatol 2014; 23:364-6. [PMID: 24661005 DOI: 10.1111/exd.12383] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2014] [Indexed: 01/05/2023]
Abstract
The aim of the study was to investigate the expression of Toll-like receptors (TLRs) 2 and 4 on keratinocytes in atopic dermatitis, contact dermatitis, and psoriasis by PCR and by immunohistochemistry including confocal microscopy. Confocal microscopy revealed a granular intra-cellular expression pattern for TLR 2 and a homogenous intra-cellular expression pattern for TLR 4 in normal and diseased skin. TLR 2 was constitutively expressed in the suprabasal layers in normal skin, but limited to the basal epidermis in diseased skin. TLR 4 expression was concentrated to the basal layers in normal skin, whereas it was pronounced in upper layers in diseased skin. The shift in the TLR expression may be related to the disturbed skin barrier and a need for enhanced immune surveillance because of invading microbes. Also, there must be a balance between sufficient immune response and overstimulation.
Collapse
Affiliation(s)
- Rüdiger Panzer
- Department of Dermatology, University of Kiel, Kiel, Germany
| | | | | | | |
Collapse
|
41
|
Liu X, Han Q, Leng J. Analysis of nucleotide-binding oligomerization domain proteins in a murine model of pneumococcal meningitis. BMC Infect Dis 2014; 14:648. [PMID: 25443778 PMCID: PMC4256814 DOI: 10.1186/s12879-014-0648-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 11/21/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The innate immune system recognizes pathogens via its pattern recognition receptors. The objective of this study was to investigate the role of the nucleotide-binding oligomerization domain (NOD) proteins, a family of the novel bacterial pattern recognition receptors, in host responses to the gram-positive bacteria Streptococcus pneumoniae. METHODS Sprague-Dawley rats were infected via intracisternal injections of viable S. pneumoniae, and rats in the control group were injected with sterile saline. After infection, real-time PCR was performed to determine the presence of mRNAs encoding NOD1 and NOD2. Quantitative analyses of the NOD1, NOD2 and NF-kB proteins were also performed western blotting following challenge infections with viable S. pneumoniae. The TNF-α and IL-6 levels in brain homogenates were evaluated using enzyme-linked immunosorbent assays (ELISAs). RESULTS The results revealed up-regulations of the mRNA and protein levels of NOD2 within the CNS of rats with S. pneumoniae meningitis. Moreover, the activation of NF-κB in the brain tissues following infection with live S. pneumoniae was also significantly increased, which indicates that NOD2 mediated NF-κB activation in experimental pneumococcal meningitis. Similarly, TNF-α and IL-6 levels were increased in the brain following in vivo S. pneumoniae administration. CONCLUSIONS These results suggest that NOD2 is involved in the host response to the gram-positive bacteria S. pneumoniae in the CNS and that NOD2 might play an important role in the initiation and/or progression of CNS inflammation associated with pneumococcal meningitis.
Collapse
Affiliation(s)
- Xinjie Liu
- Department of Pediatrics, Qilu Hospital, Shandong University, No. 107 Wen Hua Xi Road, Jinan, People's Republic of China. .,Brain Science Research Institute, Shandong University, No. 107 Wen Hua Xi Road, Jinan, People's Republic of China.
| | - Qizheng Han
- Department of Respiratory Medicine, Provincial Hospital Affiliated to Shandong University, No. 4 Duan Xing Xi Road, Jinan, People's Republic of China.
| | - Junhong Leng
- Department of Ultrasonic Diagnosis, Jinan Maternity and Children Care Hospital, Jian Guo Xiao Jing San Road, Jinan, People's Republic of China.
| |
Collapse
|
42
|
Borkowski J, Li L, Steinmann U, Quednau N, Stump-Guthier C, Weiss C, Findeisen P, Gretz N, Ishikawa H, Tenenbaum T, Schroten H, Schwerk C. Neisseria meningitidis elicits a pro-inflammatory response involving IκBζ in a human blood-cerebrospinal fluid barrier model. J Neuroinflammation 2014; 11:163. [PMID: 25347003 PMCID: PMC4172843 DOI: 10.1186/s12974-014-0163-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 08/29/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The human-specific, Gram-negative bacterium Neisseria meningitidis (Nm) is a leading cause of bacterial meningitis worldwide. The blood-cerebrospinal fluid barrier (BCSFB), which is constituted by the epithelial cells of the choroid plexus (CP), has been suggested as one of the potential entry sites of Nm into the CSF and can contribute to the inflammatory response during infectious diseases of the brain. Toll-like receptors (TLRs) are involved in mediating signal transduction caused by the pathogens. METHODS Using a recently established in vitro model of the human BCSFB based on human malignant CP papilloma (HIBCPP) cells we investigated the cellular response of HIBCPP cells challenged with the meningitis-causing Nm strain, MC58, employing transcriptome and RT-PCR analysis, cytokine bead array, and enzyme-linked immunosorbent assay (ELISA). In comparison, we analyzed the answer to the closely related unencapsulated carrier isolate Nm α14. The presence of TLRs in HIBCPP and their role during signal transduction caused by Nm was studied by RT-PCR and the use of specific agonists and mutant bacteria. RESULTS We observed a stronger transcriptional response after infection with strain MC58, in particular with its capsule-deficient mutant MC58siaD-, which correlated with bacterial invasion levels. Expression evaluation and Gene Set Enrichment Analysis pointed to a NFκB-mediated pro-inflammatory immune response involving up-regulation of the transcription factor IκBζ. Infected cells secreted significant levels of pro-inflammatory chemokines and cytokines, including, among others, IL8, CXCL1-3, and the IκBζ target gene product IL6. The expression profile of pattern recognition receptors in HIBCPP cells and the response to specific agonists indicates that TLR2/TLR6, rather than TLR4 or TLR2/TLR1, is involved in the cellular reaction following Nm infection. CONCLUSIONS Our data show that Nm can initiate a pro-inflammatory response in human CP epithelial cells probably involving TLR2/TLR6 signaling and the transcriptional regulator IκBζ.
Collapse
|
43
|
Recognition of Streptococcus pneumoniae and muramyl dipeptide by NOD2 results in potent induction of MMP-9, which can be controlled by lipopolysaccharide stimulation. Infect Immun 2014; 82:4952-8. [PMID: 25183734 DOI: 10.1128/iai.02150-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Matrix metallopeptidase 9 (MMP-9) is a protease involved in the degradation of extracellular matrix collagen. Evidence suggests that MMP-9 is involved in pathogenesis during Streptococcus pneumoniae infection. However, not much is known about the induction of MMP-9 and the regulatory processes involved. We show here that the Gram-positive bacteria used in this study induced large amounts of MMP-9, in contrast to the Gram-negative bacteria that were used. An important pathogen-associated molecular pattern (PAMP) for Gram-positive bacteria is muramyl dipeptide (MDP). MDP is a very potent inducer of MMP-9 and showed a dose-dependent MMP-9 induction. Experiments using peripheral blood mononuclear cells (PBMCs) from Crohn's disease patients with nonfunctional NOD2 showed that MMP-9 induction by Streptococcus pneumoniae and MDP is NOD2 dependent. Increasing amounts of lipopolysaccharide (LPS), an important PAMP for Gram-negative bacteria, resulted in decreasing amounts of MMP-9. Moreover, the induction of MMP-9 by MDP could be counteracted by simultaneously adding LPS. The inhibition of MMP-9 expression by LPS was found to be regulated posttranscriptionally, independently of tissue inhibitor of metalloproteinase 1 (TIMP-1), an endogenous inhibitor of MMP-9. Collectively, these data show that Streptococcus pneumoniae is able to induce large amounts of MMP-9. These high MMP-9 levels are potentially involved in Streptococcus pneumoniae pathogenesis.
Collapse
|
44
|
Tomlinson G, Chimalapati S, Pollard T, Lapp T, Cohen J, Camberlein E, Stafford S, Periselneris J, Aldridge C, Vollmer W, Picard C, Casanova JL, Noursadeghi M, Brown J. TLR-mediated inflammatory responses to Streptococcus pneumoniae are highly dependent on surface expression of bacterial lipoproteins. THE JOURNAL OF IMMUNOLOGY 2014; 193:3736-45. [PMID: 25172490 PMCID: PMC4170674 DOI: 10.4049/jimmunol.1401413] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Streptococcus pneumoniae infections induce inflammatory responses that contribute toward both disease pathogenesis and immunity, but the host–pathogen interactions that mediate these effects are poorly defined. We used the surface lipoprotein-deficient ∆lgt pneumococcal mutant strain to test the hypothesis that lipoproteins are key determinants of TLR-mediated immune responses to S. pneumoniae. We show using reporter assays that TLR2 signaling is dependent on pneumococcal lipoproteins, and that macrophage NF-κB activation and TNF-α release were reduced in response to the ∆lgt strain. Differences in TNF-α responses between Δlgt and wild-type bacteria were abrogated for macrophages from TLR2- but not TLR4-deficient mice. Transcriptional profiling of human macrophages revealed attenuated TLR2-associated responses to ∆lgt S. pneumoniae, comprising many NF-κB–regulated proinflammatory cytokine and chemokine genes. Importantly, non-TLR2–associated responses were preserved. Experiments using leukocytes from IL-1R–associated kinase-4–deficient patients and a mouse pneumonia model confirmed that proinflammatory responses were lipoprotein dependent. Our data suggest that leukocyte responses to bacterial lipoproteins are required for TLR2- and IL-1R–associated kinase-4–mediated inflammatory responses to S. pneumoniae.
Collapse
Affiliation(s)
- Gillian Tomlinson
- Division of Infection and Immunity, University College London, London WC1E 6BT, United Kingdom
| | - Suneeta Chimalapati
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College Medical School, Rayne Institute, London WC1E 6JF, United Kingdom
| | - Tracey Pollard
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College Medical School, Rayne Institute, London WC1E 6JF, United Kingdom
| | - Thabo Lapp
- Division of Infection and Immunity, University College London, London WC1E 6BT, United Kingdom
| | - Jonathan Cohen
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College Medical School, Rayne Institute, London WC1E 6JF, United Kingdom; Infectious Diseases and Microbiology Unit, University College London Institute of Child Health, London WC1N 1Eh, United Kingdom
| | - Emilie Camberlein
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College Medical School, Rayne Institute, London WC1E 6JF, United Kingdom
| | - Sian Stafford
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College Medical School, Rayne Institute, London WC1E 6JF, United Kingdom
| | - Jimstan Periselneris
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College Medical School, Rayne Institute, London WC1E 6JF, United Kingdom
| | - Christine Aldridge
- Centre for Bacterial Cell Biology, Newcastle University Medical School, Newcastle upon Tyne NE2 4AX, United Kingdom
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Newcastle University Medical School, Newcastle upon Tyne NE2 4AX, United Kingdom
| | - Capucine Picard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U980, Necker Medical School, University Paris Descartes, Sorbonne Paris Cité, Paris 75015, France; Study Center for Primary Immunodeficiencies, Public Assistance-Paris Hospitals, Necker Enfants Malades Hospital, Paris 75743, France; and
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U980, Necker Medical School, University Paris Descartes, Sorbonne Paris Cité, Paris 75015, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London WC1E 6BT, United Kingdom
| | - Jeremy Brown
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College Medical School, Rayne Institute, London WC1E 6JF, United Kingdom;
| |
Collapse
|
45
|
Blok DC, van Lieshout MHP, Hoogendijk AJ, Florquin S, de Boer OJ, Garlanda C, Mantovani A, van't Veer C, de Vos AF, van der Poll T. Single immunoglobulin interleukin-1 receptor-related molecule impairs host defense during pneumonia and sepsis caused by Streptococcus pneumoniae. J Innate Immun 2014; 6:542-52. [PMID: 24556793 DOI: 10.1159/000358239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 12/28/2013] [Indexed: 12/13/2022] Open
Abstract
Streptococcus pneumoniae is a common cause of pneumonia and sepsis. Toll-like receptors (TLRs) play a pivotal role in the host defense against infection. In this study, we sought to determine the role of single immunoglobulin interleukin-1 receptor-related molecule (SIGIRR a.k.a. TIR8), a negative regulator of TLR signaling, in pneumococcal pneumonia and sepsis. Wild-type and SIGIRR-deficient (sigirr-/-) mice were infected intranasally (to induce pneumonia) or intravenously (to induce primary sepsis) with S. pneumoniae and euthanized after 6, 24, or 48 h for analyses. Additionally, survival studies were performed. sigirr-/- mice showed delayed mortality during lethal pneumococcal pneumonia. Accordingly, sigirr-/- mice displayed lower bacterial loads in lungs and less dissemination of the infection 24 h after the induction of pneumonia. SIGIRR deficiency was associated with increased interstitial and perivascular inflammation in lung tissue early after infection, with no impact on neutrophil recruitment or cytokine production. sigirr-/- mice also demonstrated reduced bacterial burdens at multiple body sites during S. pneumoniae sepsis. sigirr-/- alveolar macrophages and neutrophils exhibited an increased capacity to phagocytose viable pneumococci. These results suggest that SIGIRR impairs the antibacterial host defense during pneumonia and sepsis caused by S. pneumoniae.
Collapse
Affiliation(s)
- Dana C Blok
- Center of Experimental and Molecular Medicine, Center of Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Shin SG, Koh SH, Lim JH. Thein vivoandin vitroRoles of Epithelial Pattern Recognition Receptors in Pneumococcal Infections. ACTA ACUST UNITED AC 2014. [DOI: 10.4167/jbv.2014.44.2.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Seul Gi Shin
- Department of Microbiology, Ewha Womans University School of Medicine, Seoul, Korea
| | - Seo Hyun Koh
- Department of Microbiology, Ewha Womans University School of Medicine, Seoul, Korea
| | - Jae Hyang Lim
- Department of Microbiology, Ewha Womans University School of Medicine, Seoul, Korea
| |
Collapse
|
47
|
Kirkham LAS, Corscadden KJ, Wiertsema SP, Currie AJ, Richmond PC. A practical method for preparation of pneumococcal and nontypeable Haemophilus influenzae inocula that preserves viability and immunostimulatory activity. BMC Res Notes 2013; 6:522. [PMID: 24321049 PMCID: PMC3867214 DOI: 10.1186/1756-0500-6-522] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 12/04/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Convenience is a major reason for using killed preparations of bacteria to investigate host-pathogen interactions, however, host responses to such preparations can result in different outcomes when compared to live bacterial stimulation. We investigated whether cryopreservation of Streptococcus pneumoniae and nontypeable Haemophilus influenzae (NTHi) permitted investigation of host responses to infection without the complications of working with freshly prepared live bacteria on the day of experimental challenge. FINDINGS S. pneumoniae and NTHi retained >90% viability following cryopreservation in fetal calf serum for at least 8 weeks. Host responses to live, cryopreserved (1 week and 4 weeks), heat-killed or ethanol-killed S. pneumoniae and NTHi were assessed by measuring cytokine release from stimulated peripheral blood mononuclear cells (PBMCs). We found that cryopreserved bacteria, in contrast to heat-killed and ethanol-killed preparations, resulted in comparable levels of inflammatory cytokine release from PBMCs when compared with fresh live bacterial cultures. CONCLUSION Cryopreservation of S. pneumoniae and NTHi does not alter the immunostimulatory properties of these species thereby enabling reproducible and biologically relevant analysis of host responses to infection. This method also facilitates the analysis of multiple strains on the same day and allows predetermination of culture purity and challenge dose.
Collapse
Affiliation(s)
- Lea-Ann S Kirkham
- School of Paediatrics and Child Health, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia.
| | | | | | | | | |
Collapse
|
48
|
Kashiwagi Y, Miyata A, Kumagai T, Maehara K, Suzuki E, Nagai T, Ozaki T, Nishimura N, Okada K, Kawashima H, Nakayama T. Production of inflammatory cytokines in response to diphtheria-pertussis-tetanus (DPT), haemophilus influenzae type b (Hib), and 7-valent pneumococcal (PCV7) vaccines. Hum Vaccin Immunother 2013; 10:677-85. [PMID: 24589970 PMCID: PMC4130255 DOI: 10.4161/hv.27264] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Haemophilus influenzae type b (Hib) and 7-valent pneumococcal (PCV7) vaccines both became recommended in Japan in 2010. In this study, cytokine production was investigated in peripheral blood mononuclear cells (PBMCs) cultures stimulated with diphtheria and tetanus toxoids combined with acellular pertussis vaccine (DPT), Hib, and PCV7 separately or concurrent different combinations, all as final off-the-shelf vaccines without the individual vaccine components as controls. Higher IL-1β levels were produced when cultures were stimulated with PCV than with DPT or Hib, and the concurrent stimulation including PCV7 enhanced the production of IL-1β. Although Hib induced higher levels of IL-6, no significant difference was observed in IL-6 production with the concurrent stimulation. The concurrent stimulation with Hib/PCV7 and DPT/Hib/PCV7 produced higher levels of TNF-α and human G-CSF. Cytokine profiles were examined in serum samples obtained from 61 vaccine recipients with febrile reactions and 18 recipients without febrile illness within 24 h of vaccination. No significant difference was observed in cytokine levels of IL-1β, IL-4, IL-6, IL-10, IL-12, IFN-γ, MIP-1, TNF-α, and prostaglandin E2 (PGE2) in sera between the two groups. However, significantly higher levels of human G-CSF were observed in recipients with febrile illness than in those without febrile reactions. Further investigations of the significance of elevated serum G-CSF levels are required in vaccine recipients with febrile illness.
Collapse
Affiliation(s)
- Yasuyo Kashiwagi
- Laboratory of Viral Infection I; Kitasato Institute for Life Sciences; Tokyo, Japan; Department of Pediatrics; Tokyo Medical University; Tokyo, Japan
| | - Akiko Miyata
- Miyata Pediatric Clinic; Tachikawa; Tokyo, Japan
| | | | | | - Eitarou Suzuki
- Suzuki Pediatric Clinic; Ube, Yamaguchi Prefecture, Japan
| | - Takao Nagai
- Nagai Pediatric Clinic; Takamatsu, Kagawa Prefecture, Japan
| | - Takao Ozaki
- Department of Pediatrics; Konan Kosei Hospital; Konan; Aichi Prefecture, Japan
| | - Naoko Nishimura
- Department of Pediatrics; Konan Kosei Hospital; Konan; Aichi Prefecture, Japan
| | - Kenji Okada
- Department of Pediatrics; National Fukuoka Hospital; Fukuoka, Japan
| | | | - Tetsuo Nakayama
- Laboratory of Viral Infection I; Kitasato Institute for Life Sciences; Tokyo, Japan
| |
Collapse
|
49
|
Clarke ET, Williams NA, Findlow J, Borrow R, Heyderman RS, Finn A. Polysaccharide-specific memory B cells generated by conjugate vaccines in humans conform to the CD27+IgG+ isotype-switched memory B Cell phenotype and require contact-dependent signals from bystander T cells activated by bacterial proteins to differentiate into plasma cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:6071-83. [PMID: 24227777 DOI: 10.4049/jimmunol.1203254] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The polysaccharides (PS) surrounding encapsulated bacteria are generally unable to activate T cells and hence do not induce B cell memory (BMEM). PS conjugate vaccines recruit CD4(+) T cells via a carrier protein, such as tetanus toxoid (TT), resulting in the induction of PS-specific BMEM. However, the requirement for T cells in the subsequent activation of the BMEM at the time of bacterial encounter is poorly understood, despite having critical implications for protection. We demonstrate that the PS-specific BMEM induced in humans by a meningococcal serogroup C PS (Men C)-TT conjugate vaccine conform to the isotype-switched (IgG(+)CD27(+)) rather than the IgM memory (IgM(+)CD27(+)) phenotype. Both Men C and TT-specific BMEM require CD4(+) T cells to differentiate into plasma cells. However, noncognate bystander T cells provide such signals to PS-specific BMEM with comparable effect to the cognate T cells available to TT-specific BMEM. The interaction between the two populations is contact-dependent and is mediated in part through CD40. Meningococci drive the differentiation of the Men C-specific BMEM through the activation of bystander T cells by bacterial proteins, although these signals are enhanced by T cell-independent innate signals. An effect of the TT-specific T cells activated by the vaccine on unrelated BMEM in vivo is also demonstrated. These data highlight that any protection conferred by PS-specific BMEM at the time of bacterial encounter will depend on the effectiveness with which bacterial proteins are able to activate bystander T cells. Priming for T cell memory against bacterial proteins through their inclusion in vaccine preparations must continue to be pursued.
Collapse
Affiliation(s)
- Edward T Clarke
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | | | | | | | | | |
Collapse
|
50
|
Combined stimulation of Toll-like receptor 5 and NOD1 strongly potentiates activity of NF-κB, resulting in enhanced innate immune reactions and resistance to Salmonella enterica serovar Typhimurium infection. Infect Immun 2013; 81:3855-64. [PMID: 23897616 DOI: 10.1128/iai.00525-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pathogen recognition receptors (PRRs) are essential components of host innate immune systems that detect specific conserved pathogen-associated molecular patterns (PAMPs) presented by microorganisms. Members of two families of PRRs, transmembrane Toll-like receptors (TLRs 1, 2, 4, 5, and 6) and cytosolic NOD receptors (NOD1 and NOD2), are stimulated upon recognition of various bacterial PAMPs. Such stimulation leads to induction of a number of immune defense reactions, mainly triggered via activation of the transcription factor NF-κB. While coordination of responses initiated via different PRRs sensing multiple PAMPS present during an infection makes clear biological sense for the host, such interactions have not been fully characterized. Here, we demonstrate that combined stimulation of NOD1 and TLR5 (as well as other NOD and TLR family members) strongly potentiates activity of NF-κB and induces enhanced levels of innate immune reactions (e.g., cytokine production) both in vitro and in vivo. Moreover, we show that an increased level of NF-κB activity plays a critical role in formation of downstream responses. In live mice, synergy between these receptors resulting in potentiation of NF-κB activity was organ specific, being most prominent in the gastrointestinal tract. Coordinated activity of NOD1 and TLR5 significantly increased protection of mice against enteroinvasive Salmonella infection. Obtained results suggest that cooperation of NOD and TLR receptors is important for effective responses to microbial infection in vivo.
Collapse
|