1
|
Kalashnyk O, Lykhmus O, Sullivan R, Komisarenko S, Skok M. Agonists or positive allosteric modulators of α7 nicotinic acetylcholine receptor prevent interaction of SARS-Cov-2 receptor-binding domain with astrocytoma cells. Biochem Biophys Res Commun 2024; 709:149825. [PMID: 38537599 DOI: 10.1016/j.bbrc.2024.149825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
SARS-Cov-2, the virus causing COVID-19, penetrates host target cells via the receptor of angiotensin-converting enzyme 2 (ACE2). Disrupting the virus interaction with ACE2 affords a plausible mechanism for prevention of cell penetration and inhibiting dissemination of the virus. Our studies demonstrate that ACE2 interaction with the receptor binding domain of SARS-Cov-2 spike protein (RBD) can be impaired by modulating the α7 nicotinic acetylcholine receptor (α7 nAChR) contiguous with ACE2. U373 cells of human astrocytoma origin were shown to bind both ACE2-specific antibody and recombinant RBD in Cell-ELISA. ACE2 was found to interact with α7 nAChR in U373 cell lysates studied by Sandwich ELISA. Our studies demonstrate that inhibition of RBD binding to ACE2-expressing U373 cells were defined with α7 nAChR agonists choline and PNU282987, but not a competitive antagonist methyllicaconitine (MLA). Additionally, the type 2 positive allosteric modulator (PAM2) PNU120596 and hydroxyurea (HU) also inhibited the binding. Our studies demonstrate that activation of α7 AChRs has efficacy in inhibiting the SARS-Cov-2 interaction with the ACE2 receptor and in such a way can prevent virus target cell penetration. These studies also help to clarify the consistent efficacy and positive outcomes for utilizing HU in treating COVID-19.
Collapse
Affiliation(s)
- Olena Kalashnyk
- Palladin Institute of Biochemistry, NAS of Ukraine, 9, Leontovycha Str., 01054, Kyiv, Ukraine.
| | - Olena Lykhmus
- Palladin Institute of Biochemistry, NAS of Ukraine, 9, Leontovycha Str., 01054, Kyiv, Ukraine.
| | | | - Serhiy Komisarenko
- Palladin Institute of Biochemistry, NAS of Ukraine, 9, Leontovycha Str., 01054, Kyiv, Ukraine.
| | - Maryna Skok
- Palladin Institute of Biochemistry, NAS of Ukraine, 9, Leontovycha Str., 01054, Kyiv, Ukraine.
| |
Collapse
|
2
|
Severi I, Perugini J, Ruocco C, Coppi L, Pedretti S, Di Mercurio E, Senzacqua M, Ragni M, Imperato G, Valerio A, Mitro N, Crestani M, Nisoli E, Giordano A. Activation of a non-neuronal cholinergic system in visceral white adipose tissue of obese mice and humans. Mol Metab 2024; 79:101862. [PMID: 38141849 PMCID: PMC10792749 DOI: 10.1016/j.molmet.2023.101862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Since white adipose tissue (WAT) lacks parasympathetic cholinergic innervation, the source of the acetylcholine (ACh) acting on white adipocyte cholinergic receptors is unknown. This study was designed to identify ACh-producing cells in mouse and human visceral WAT and to determine whether a non-neuronal cholinergic system becomes activated in obese inflamed WAT. METHODS Mouse epididymal WAT (eWAT) and human omental fat were studied in normal and obese subjects. The expression of the key molecules involved in cholinergic signaling was evaluated by qRT-PCR and western blotting whereas their tissue distribution and cellular localization were investigated by immunohistochemistry, confocal microscopy and in situ hybridization. ACh levels were measured by liquid chromatography/tandem mass spectrometry. The cellular effects of ACh were assessed in cultured human multipotent adipose-derived stem cell (hMADS) adipocytes. RESULTS In mouse eWAT, diet-induced obesity modulated the expression of key cholinergic molecular components and, especially, raised the expression of choline acetyltransferase (ChAT), the ACh-synthesizing enzyme, which was chiefly detected in interstitial macrophages, in macrophages forming crown-like structures (CLSs), and in multinucleated giant cells (MGCs). The stromal vascular fraction of obese mouse eWAT contained significantly higher ACh and choline levels than that of control mice. ChAT was undetectable in omental fat from healthy subjects, whereas it was expressed in a number of interstitial macrophages, CLSs, and MGCs from some obese individuals. In hMADS adipocytes stressed with tumor necrosis factor α, ACh, alone or combined with rivastigmine, significantly blunted monocyte chemoattractant protein 1 and interleukin 6 expression, it partially but significantly, restored adiponectin and GLUT4 expression, and promoted glucose uptake. CONCLUSIONS In mouse and human visceral WAT, obesity induces activation of a macrophage-dependent non-neuronal cholinergic system that is capable of exerting anti-inflammatory and insulin-sensitizing effects on white adipocytes.
Collapse
Affiliation(s)
- Ilenia Severi
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, 60126 Ancona, Italy
| | - Jessica Perugini
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, 60126 Ancona, Italy
| | - Chiara Ruocco
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milano, Italy
| | - Lara Coppi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20122 Milano, Italy
| | - Silvia Pedretti
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20122 Milano, Italy
| | - Eleonora Di Mercurio
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, 60126 Ancona, Italy
| | - Martina Senzacqua
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, 60126 Ancona, Italy
| | - Maurizio Ragni
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milano, Italy
| | - Gabriele Imperato
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20122 Milano, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20122 Milano, Italy; Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Maurizio Crestani
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20122 Milano, Italy
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milano, Italy
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, 60126 Ancona, Italy; Center of Obesity, Marche Polytechnic University-United Hospitals, Ancona, Italy.
| |
Collapse
|
3
|
Richter K, Grau V. Signaling of nicotinic acetylcholine receptors in mononuclear phagocytes. Pharmacol Res 2023; 191:106727. [PMID: 36966897 DOI: 10.1016/j.phrs.2023.106727] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/28/2023]
Abstract
Nicotinic acetylcholine receptors are not only expressed by the nervous system and at the neuro-muscular junction but also by mononuclear phagocytes, which belong to the innate immune system. Mononuclear phagocyte is an umbrella term for monocytes, macrophages, and dendritic cells. These cells play pivotal roles in host defense against infection but also in numerous often debilitating diseases that are characterized by exuberant inflammation. Nicotinic acetylcholine receptors of the neuronal type dominate in these cells, and their stimulation is mainly associated with anti-inflammatory effects. Although the cholinergic modulation of mononuclear phagocytes is of eminent clinical relevance for the prevention and treatment of inflammatory diseases and neuropathic pain, we are only beginning to understand the underlying mechanisms on the molecular level. The purpose of this review is to report and critically discuss the current knowledge on signal transduction mechanisms elicited by nicotinic acetylcholine receptors in mononuclear phagocytes.
Collapse
Affiliation(s)
- Katrin Richter
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, Germany
| | - Veronika Grau
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, Germany; German Centre for Lung Research (DZL), Giessen, Germany; Cardiopulmonary Institute (CPI), Giessen, Germany.
| |
Collapse
|
4
|
Rahman MS, Jun H. The Adipose Tissue Macrophages Central to Adaptive Thermoregulation. Front Immunol 2022; 13:884126. [PMID: 35493493 PMCID: PMC9039244 DOI: 10.3389/fimmu.2022.884126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
White fat stores excess energy, and thus its excessive expansion causes obesity. However, brown and beige fat, known as adaptive thermogenic fat, dissipates energy in the form of heat and offers a therapeutic potential to counteract obesity and metabolic disorders. The fat type-specific biological function is directed by its unique tissue microenvironment composed of immune cells, endothelial cells, pericytes and neuronal cells. Macrophages are major immune cells resident in adipose tissues and gained particular attention due to their accumulation in obesity as the primary source of inflammation. However, recent studies identified macrophages’ unique role and regulation in thermogenic adipose tissues to regulate energy expenditure and systemic energy homeostasis. This review presents the current understanding of macrophages in thermogenic fat niches with an emphasis on discrete macrophage subpopulations central to adaptive thermoregulation.
Collapse
Affiliation(s)
- Md Shamim Rahman
- Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX, United States
| | - Heejin Jun
- Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
5
|
Richter K, Papke RL, Stokes C, Roy DC, Espinosa ES, Wolf PMK, Hecker A, Liese J, Singh VK, Padberg W, Schlüter KD, Rohde M, McIntosh JM, Morley BJ, Horenstein NA, Grau V, Simard AR. Comparison of the Anti-inflammatory Properties of Two Nicotinic Acetylcholine Receptor Ligands, Phosphocholine and pCF3-diEPP. Front Cell Neurosci 2022; 16:779081. [PMID: 35431807 PMCID: PMC9008208 DOI: 10.3389/fncel.2022.779081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/10/2022] [Indexed: 12/14/2022] Open
Abstract
Activation of nicotinic acetylcholine receptors (nAChRs) expressed by innate immune cells can attenuate pro-inflammatory responses. Silent nAChR agonists, which down-modulate inflammation but have little or no ionotropic activity, are of outstanding clinical interest for the prevention and therapy of numerous inflammatory diseases. Here, we compare two silent nAChR agonists, phosphocholine, which is known to interact with nAChR subunits α7, α9, and α10, and pCF3-N,N-diethyl-N′-phenyl-piperazine (pCF3-diEPP), a previously identified α7 nAChR silent agonist, regarding their anti-inflammatory properties and their effects on ionotropic nAChR functions. The lipopolysaccharide (LPS)-induced release of interleukin (IL)-6 by primary murine macrophages was inhibited by pCF3-diEPP, while phosphocholine was ineffective presumably because of instability. In human whole blood cultures pCF3-diEPP inhibited the LPS-induced secretion of IL-6, TNF-α and IL-1β. The ATP-mediated release of IL-1β by LPS-primed human peripheral blood mononuclear leukocytes, monocytic THP-1 cells and THP-1-derived M1-like macrophages was reduced by both phosphocholine and femtomolar concentrations of pCF3-diEPP. These effects were sensitive to mecamylamine and to conopeptides RgIA4 and [V11L; V16D]ArIB, suggesting the involvement of nAChR subunits α7, α9 and/or α10. In two-electrode voltage-clamp measurements pCF3-diEPP functioned as a partial agonist and a strong desensitizer of classical human α9 and α9α10 nAChRs. Interestingly, pCF3-diEPP was more effective as an ionotropic agonist at these nAChRs than at α7 nAChR. In conclusion, phosphocholine and pCF3-diEPP are potent agonists at unconventional nAChRs expressed by monocytic and macrophage-like cells. pCF3-diEPP inhibits the LPS-induced release of pro-inflammatory cytokines, while phosphocholine is ineffective. However, both agonists signal via nAChR subunits α7, α9 and/or α10 to efficiently down-modulate the ATP-induced release of IL-1β. Compared to phosphocholine, pCF3-diEPP is expected to have better pharmacological properties. Thus, low concentrations of pCF3-diEPP may be a therapeutic option for the treatment of inflammatory diseases including trauma-induced sterile inflammation.
Collapse
Affiliation(s)
- Katrin Richter
- Department of General and Thoracic Surgery, Laboratory of Experimental Surgery, Justus-Liebig-University, German Center for Lung Research, Giessen, Germany
- *Correspondence: Katrin Richter,
| | - Roger L. Papke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
| | - Clare Stokes
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States
| | - Danika C. Roy
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
| | | | - Philipp M. K. Wolf
- Department of General and Thoracic Surgery, Laboratory of Experimental Surgery, Justus-Liebig-University, German Center for Lung Research, Giessen, Germany
| | - Andreas Hecker
- Department of General and Thoracic Surgery, Laboratory of Experimental Surgery, Justus-Liebig-University, German Center for Lung Research, Giessen, Germany
| | - Juliane Liese
- Department of General and Thoracic Surgery, Laboratory of Experimental Surgery, Justus-Liebig-University, German Center for Lung Research, Giessen, Germany
| | - Vijay K. Singh
- Department of Pediatric Hematology and Oncology, Justus-Liebig-University, Giessen, Germany
| | - Winfried Padberg
- Department of General and Thoracic Surgery, Laboratory of Experimental Surgery, Justus-Liebig-University, German Center for Lung Research, Giessen, Germany
| | | | - Marius Rohde
- Department of Pediatric Hematology and Oncology, Justus-Liebig-University, Giessen, Germany
| | - J. Michael McIntosh
- Department of Biology, University of Utah, Salt Lake City, UT, United States
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, United States
- Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
| | - Barbara J. Morley
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| | | | - Veronika Grau
- Department of General and Thoracic Surgery, Laboratory of Experimental Surgery, Justus-Liebig-University, German Center for Lung Research, Giessen, Germany
| | - Alain R. Simard
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
- Department of Biology, Laurentian University, Sudbury, ON, Canada
- Northern Ontario School of Medicine, Sudbury, ON, Canada
| |
Collapse
|
6
|
Mohammadi N, Asle-Rousta M, Rahnema M, Amini R. Morin attenuates memory deficits in a rat model of Alzheimer's disease by ameliorating oxidative stress and neuroinflammation. Eur J Pharmacol 2021; 910:174506. [PMID: 34534533 DOI: 10.1016/j.ejphar.2021.174506] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/25/2021] [Accepted: 09/13/2021] [Indexed: 01/21/2023]
Abstract
This study aimed to investigate the effect of flavonoid morin on oxidative/nitrosative stress, neuroinflammation, and histological, molecular, and behavioral changes caused by amyloid-beta (Aβ)1-42 in male Wistar rats (Alzheimer's disease model). Rats received morin (20 mg/kg, oral gavage) for 14 consecutive days after intrahippocampal injection of Aβ1-42. Morin decreased the levels of malondialdehyde and nitric oxide, increased glutathione content, and enhanced catalase activity in the hippocampus of animals receiving Aβ1-42. It also reduced the expression of tumor necrosis factor-α, interleukin-1β, interleukin-6, nuclear factor-kappa B, and N-methyl-D-aspartate receptor subunits 2A and 2B and increased the expression of brain-derived neurotrophic factor and α7 nicotinic acetylcholine receptor in the hippocampus of Aβ1-42-injected rats. Besides, morin modified neuronal loss and histological changes in the CA1 region of the hippocampus. Morin allowed Aβ1-42-infused rats to swim more time in the target quadrant in the Morris water maze test. It is concluded that morin may be suitable for the prevention and treatment of Alzheimer's disease by strengthening the antioxidant system, inhibiting neuroinflammation, preventing neuronal death, and enhancing memory function.
Collapse
Affiliation(s)
- Negin Mohammadi
- Department of Physiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | | | - Mehdi Rahnema
- Department of Physiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Rahim Amini
- Department of Biology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| |
Collapse
|
7
|
Tofighi N, Asle-Rousta M, Rahnema M, Amini R. Protective effect of alpha-linoleic acid on Aβ-induced oxidative stress, neuroinflammation, and memory impairment by alteration of α7 nAChR and NMDAR gene expression in the hippocampus of rats. Neurotoxicology 2021; 85:245-253. [PMID: 34111468 DOI: 10.1016/j.neuro.2021.06.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/23/2021] [Accepted: 06/04/2021] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects many older people around the world. Numerous studies are underway to evaluate the protective effects of natural products in AD. Alpha-linoleic acid (ALA) is an essential unsaturated fatty acid that exhibits neuroprotective outcomes in rat models of ischemic stroke and Parkinson's disease. This research aimed to investigate the effect of ALA on oxidative stress, neuroinflammation, neuronal death, and memory deficit induced by amyloid-beta (Aβ) peptide. After intrahippocampal injection of Aβ1-42, rats received ALA (150 μg/kg, subcutaneously) for 14 consecutive days. ALA decreased the levels of malondialdehyde and nitric oxide, enhanced glutathione content, and increased the activity of catalase in the hippocampus of the rat model of AD. It also reduced the expression of tumor necrosis factor-α, interleukin-1β, interleukin-6, nuclear factor-kappa B, and N-methyl-d-aspartate receptor subunits NR2A and NR2B mRNAs in the hippocampus, prevented the neuronal loss in the CA1 region, and enhanced the expression of α7 nicotinic acetylcholine receptor. In addition, ALA allowed Aβ1-42-injected rats to spend less time and distance to reach the hidden platform in the Morris water maze test and to swim longer in the target quadrant. We concluded that ALA reduces the biochemical, molecular, histological, and behavioral changes caused by Aβ1-42 and it may be an effective option for treating AD.
Collapse
Affiliation(s)
- Nahaleh Tofighi
- Department of Physiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | | | - Mehdi Rahnema
- Department of Physiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Rahim Amini
- Department of Biology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| |
Collapse
|
8
|
Kakinuma Y. Characteristic Effects of the Cardiac Non-Neuronal Acetylcholine System Augmentation on Brain Functions. Int J Mol Sci 2021; 22:ijms22020545. [PMID: 33430415 PMCID: PMC7826949 DOI: 10.3390/ijms22020545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Since the discovery of non-neuronal acetylcholine in the heart, this specific system has drawn scientific interest from many research fields, including cardiology, immunology, and pharmacology. This system, acquired by cardiomyocytes independent of the parasympathetic nervous system of the autonomic nervous system, helps us to understand unsolved issues in cardiac physiology and to realize that the system may be more pivotal for cardiac homeostasis than expected. However, it has been shown that the effects of this system may not be restricted to the heart, but rather extended to cover extra-cardiac organs. To this end, this system intriguingly influences brain function, specifically potentiating blood brain barrier function. Although the results reported appear to be unusual, this novel characteristic can provide us with another research interest and therapeutic application mode for central nervous system diseases. In this review, we discuss our recent studies and raise the possibility of application of this system as an adjunctive therapeutic modality.
Collapse
Affiliation(s)
- Yoshihiko Kakinuma
- Department of Bioregulatory Science, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan
| |
Collapse
|
9
|
Wu YJ, Wang L, Ji CF, Gu SF, Yin Q, Zuo J. The Role of α7nAChR-Mediated Cholinergic Anti-inflammatory Pathway in Immune Cells. Inflammation 2021; 44:821-834. [PMID: 33405021 DOI: 10.1007/s10753-020-01396-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/05/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
Abstract
Alpha 7 nicotinic acetylcholine receptor (α7nAChR) is widely distributed in the nervous and non-cholinergic immune systems. It is necessary for the cholinergic transmitter to participate in the regulation of inflammatory response and is the key element of cholinergic anti-inflammatory pathway (CAP). Because of the profound impact of CAP on the immune system, α7nAChR is considered as a potential therapeutic target for the treatment of inflammatory diseases. Available evidences confirmed that manipulation of CAP by activating α7nAChR with either endogenous acetylcholine (ACh) or cholinergic agonists can substantially alleviate inflammatory responses both in vivo and in vitro. However, the mechanism through which CAP curbs the excessive pro-inflammatory responses and maintains immune homeostasis is not fully understood. Obtained clues suggest that the crosstalk between CAP and classical inflammatory pathways is the key to elucidate the anti-inflammatory mechanism, and the impacts of CAP activation in α7nAChR-expressing immune cells are the foundation of the immunoregulatory property. In this article, we review and update the knowledge concerning the progresses of α7nAChR-based CAP, including α7nAChR properties, signal transductions, interactions with classic immune pathways, and immunoregulatory functions in different immune cells. Certain critical issues to be addressed are also highlighted. By providing a panoramic view of α7nAChR, the summarized evidences will pave the way for the development of novel anti-inflammatory reagents and strategy and inspire further researches.
Collapse
Affiliation(s)
- Yi-Jin Wu
- The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
- School of Pharmacy, Wannan Medical College, Wuhu, 241000, China
| | - Li Wang
- Department of Pharmacy, Wuhu Medicine and Health School, Wuhu, 241000, China
| | - Chao-Fan Ji
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China
| | - Shao-Fei Gu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China
| | - Qin Yin
- The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China.
- School of Pharmacy, Wannan Medical College, Wuhu, 241000, China.
| | - Jian Zuo
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China.
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, 241000, China.
- Research Center of Integrated Traditional and Western Medicine, Wannan Medical College, 241000, Wuhu, China.
| |
Collapse
|
10
|
Safronova VG, Vulfius CA, Astashev ME, Tikhonova IV, Serov DA, Jirova EA, Pershina EV, Senko DA, Zhmak MN, Kasheverov IE, Tsetlin VI. α9α10 nicotinic acetylcholine receptors regulate murine bone marrow granulocyte functions. Immunobiology 2020; 226:152047. [PMID: 33340828 DOI: 10.1016/j.imbio.2020.152047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/16/2020] [Accepted: 11/29/2020] [Indexed: 02/06/2023]
Abstract
Polymorphonuclear neutrophilic granulocytes (PMNs) are extremely important in defense of the organism against infections and in inflammatory processes including neuroinflammation and pain sensation. Different subtypes of nicotinic acetylcholine receptors (nAChRs) are involved in modulation of PMN activities. Earlier we determined expression of α2-7, α9, β3, β4 subunits and regulatory role of α7 and α3β2 nAChR subtypes in functions of inflammatory PMNs. Other authors detected mRNA of α9 subunit in bone marrow neutrophils (BM-PMNs). Murine BM-PMNs coming out from the bone marrow, where they develop, to blood were characterized as mature. There was no data for α10 and for the presence of functionally active α9α10 nAChRs in BM-PMNs. Here we detected for the first time mRNA expression of the α10 nAChR subunit in BM-PMNs and confirmed the expression of mRNA for α9 nAChR. With the help of α-conotoxins RgIA and Vc1.1, highly selective antagonists of α9α10 nAChRs, we have revealed participation of α9 and/or α9α10 nAChRs in regulation of cytosolic Ca2+ concentration, cell adhesion, and in generation of reactive oxygen species (ROS). Nicotine, choline, RgIA, and Vc1.1 induced Ca2+ transients in BM-PMNs, enhanced cell adhesiveness and decreased production of ROS indicating involvement of α9, possibly co-assembled with α10, nAChRs in the BM-PMN activity for recruitment and cytotoxicity.
Collapse
Affiliation(s)
- Valentina G Safronova
- Institute of Cell Biophysics, Russian Academy of Sciences, Institutskaya St., 3, 142290 Pushchino, Russia.
| | - Catherine A Vulfius
- Institute of Cell Biophysics, Russian Academy of Sciences, Institutskaya St., 3, 142290 Pushchino, Russia.
| | - Maxim E Astashev
- Institute of Cell Biophysics, Russian Academy of Sciences, Institutskaya St., 3, 142290 Pushchino, Russia.
| | - Irina V Tikhonova
- Institute of Cell Biophysics, Russian Academy of Sciences, Institutskaya St., 3, 142290 Pushchino, Russia.
| | - Dmitriy A Serov
- Institute of Cell Biophysics, Russian Academy of Sciences, Institutskaya St., 3, 142290 Pushchino, Russia.
| | - Elina A Jirova
- Institute of Cell Biophysics, Russian Academy of Sciences, Institutskaya St., 3, 142290 Pushchino, Russia.
| | - Ekaterina V Pershina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya St., 3, 142290 Pushchino, Russia.
| | - Dmitry A Senko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, 117997 Moscow, Russia; Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Maxim N Zhmak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, 117997 Moscow, Russia.
| | - Igor E Kasheverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, 117997 Moscow, Russia.
| | - Victor I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, 117997 Moscow, Russia.
| |
Collapse
|
11
|
Amyloid Beta Peptide (Aβ 1-42) Reverses the Cholinergic Control of Monocytic IL-1β Release. J Clin Med 2020; 9:jcm9092887. [PMID: 32906646 PMCID: PMC7564705 DOI: 10.3390/jcm9092887] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022] Open
Abstract
Amyloid-β peptide (Aβ1-42), the cleavage product of the evolutionary highly conserved amyloid precursor protein, presumably plays a pathogenic role in Alzheimer's disease. Aβ1-42 can induce the secretion of the pro-inflammatory cytokine intereukin-1β (IL-1β) in immune cells within and out of the nervous system. Known interaction partners of Aβ1-42 are α7 nicotinic acetylcholine receptors (nAChRs). The physiological functions of Aβ1-42 are, however, not fully understood. Recently, we identified a cholinergic mechanism that controls monocytic release of IL-1β by canonical and non-canonical agonists of nAChRs containing subunits α7, α9, and/or α10. Here, we tested the hypothesis that Aβ1-42 modulates this inhibitory cholinergic mechanism. Lipopolysaccharide-primed monocytic U937 cells and human mononuclear leukocytes were stimulated with the P2X7 receptor agonist 2'(3')-O-(4-benzoylbenzoyl)adenosine-5'-triphosphate triethylammonium salt (BzATP) in the presence or absence of nAChR agonists and Aβ1-42. IL-1β concentrations were measured in the supernatant. Aβ1-42 dose-dependently (IC50 = 2.54 µM) reversed the inhibitory effect of canonical and non-canonical nicotinic agonists on BzATP-mediated IL-1β-release by monocytic cells, whereas reverse Aβ42-1 was ineffective. In conclusion, we discovered a novel pro-inflammatory Aβ1-42 function that enables monocytic IL-1β release in the presence of nAChR agonists. These findings provide evidence for a novel physiological function of Aβ1-42 in the context of sterile systemic inflammation.
Collapse
|
12
|
Tarasenko O, Voytenko S, Koval L, Lykhmus O, Kalashnyk O, Skok M. Unusual properties of α7 nicotinic acetylcholine receptor ion channels in B lymphocyte-derived SP-2/0 cells. Int Immunopharmacol 2020; 82:106373. [PMID: 32163855 DOI: 10.1016/j.intimp.2020.106373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 12/30/2022]
Abstract
This study demonstrates the presence of α7 nicotinic acetylcholine receptors (nAChR) in B lymphocyte-derived SP-2/0 cells by means of flow cytometry and immunocytochemistry. According to lectin and sandwich ELISA, the α7 subunits expressed in SP-2/0 cells are more glycosylated compared to those expressed in the brain or normal B lymphocytes and are combined with β2 subunits. At zero and negative pipette potentials, either acetylcholine or α7-specific agonist PNU282987 stimulated the ion channel activity in SP-2/0 cells revealed by single channel patch-clamp recordings. The conductivity was within the range of 19 to 39 pS and reversal potential was between -17 mV and +28 mV, the currents were potentiated by α7-specific positive allosteric modulator PNU120596 and were partially blocked by α7-specific antagonist methyllicaconitine (MLA). However, they were oriented downwards suggesting that the channels mediated the cation outflux rather than influx. As shown by Ca2+ imaging studies, PNU282987 did not stimulate immediate Ca2+ influx into SP-2/0 cells. Instead, Ca2+ influx through Ca-release-activated channels (CRACs) was observed within minutes after either PNU282987 or MLA application. It is concluded that SP-2/0 express α7β2 nAChRs, which mediate the cation outflux under negative pipette potentials applied, possibly, due to depolarized membrane or negative surface charge formed by carbohydrate residues. In addition, α7β2 nAChRs may influence CRACs in ion-independent way.
Collapse
Affiliation(s)
| | - Sergiy Voytenko
- Bogomoletz Institute of Physiology, 4, Bogomoletz Str, 01024 Kyiv, Ukraine
| | - Lyudmyla Koval
- Palladin Institute of Biochemistry, 9, Leontovycha Str., 01030 Kyiv, Ukraine.
| | - Olena Lykhmus
- Palladin Institute of Biochemistry, 9, Leontovycha Str., 01030 Kyiv, Ukraine
| | - Olena Kalashnyk
- Palladin Institute of Biochemistry, 9, Leontovycha Str., 01030 Kyiv, Ukraine
| | - Maryna Skok
- Palladin Institute of Biochemistry, 9, Leontovycha Str., 01030 Kyiv, Ukraine.
| |
Collapse
|
13
|
Eduardo CRC, Alejandra TIG, Guadalupe DRKJ, Herminia VRG, Lenin P, Enrique BV, Evandro BM, Oscar B, Iván GPM. Modulation of the extraneuronal cholinergic system on main innate response leukocytes. J Neuroimmunol 2019; 327:22-35. [PMID: 30683425 DOI: 10.1016/j.jneuroim.2019.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 12/17/2022]
Abstract
The expression of elements of the cholinergic system has been demonstrated in non-neuronal cells, such as immune cells, where acetylcholine modulates innate and adaptive responses. However, the study of the non-neuronal cholinergic system has focused on lymphocyte cholinergic mechanisms, with less attention to its role of innate cells. Considering this background, the aims of this review are 1) to review information regarding the cholinergic components of innate immune system cells; 2) to discuss the effect of cholinergic stimuli on cell functions; 3) and to describe the importance of cholinergic stimuli on host immunocompetence, in order to set the base for the design of intervention strategies in the biomedical field.
Collapse
Affiliation(s)
- Covantes-Rosales Carlos Eduardo
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico
| | - Toledo-Ibarra Gladys Alejandra
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico; Centro Nayarita de Innovación y Transferencia de Tecnología A.C. Laboratorio Nacional para la Investigación en Inocuidad Alimentaria-Unidad Nayarit, Calle Tres s/n. Cd Industrial, Tepic, Nayarit, Mexico
| | - Díaz-Resendiz Karina Janice Guadalupe
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico
| | - Ventura-Ramón Guadalupe Herminia
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico; Centro Nayarita de Innovación y Transferencia de Tecnología A.C. Laboratorio Nacional para la Investigación en Inocuidad Alimentaria-Unidad Nayarit, Calle Tres s/n. Cd Industrial, Tepic, Nayarit, Mexico
| | - Pavón Lenin
- Instituto Nacional de Psiquiatría "Ramón de la Fuente", Laboratorio de Psicoinmunología, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370 México City, DF, Mexico
| | - Becerril-Villanueva Enrique
- Instituto Nacional de Psiquiatría "Ramón de la Fuente", Laboratorio de Psicoinmunología, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370 México City, DF, Mexico
| | - Bauer Moisés Evandro
- Pontifícia Universidade Católica do Rio Grande do Sul, Instituto de Pesquisas Biomédicas, Laboratório de Imunologia do Envelhecimento, 90610-000 Porto Alegre, RS, Brazil
| | - Bottaso Oscar
- Universidad Nacional de Rosario-Consejo Nacional de Investigaciones Científicas y Técnicas (UNR-CONICET), Instituto de Inmunología Clínica y Experimental de Rosario, Rosario, Argentina
| | - Girón-Pérez Manuel Iván
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico; Centro Nayarita de Innovación y Transferencia de Tecnología A.C. Laboratorio Nacional para la Investigación en Inocuidad Alimentaria-Unidad Nayarit, Calle Tres s/n. Cd Industrial, Tepic, Nayarit, Mexico.
| |
Collapse
|
14
|
Grau V, Richter K, Hone AJ, McIntosh JM. Conopeptides [V11L;V16D]ArIB and RgIA4: Powerful Tools for the Identification of Novel Nicotinic Acetylcholine Receptors in Monocytes. Front Pharmacol 2019; 9:1499. [PMID: 30687084 PMCID: PMC6338043 DOI: 10.3389/fphar.2018.01499] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/07/2018] [Indexed: 12/27/2022] Open
Abstract
Venomous marine snails of the genus Conus employ small peptides to capture prey, mainly osteichthyes, mollusks, and worms. A subset of these peptides known as α-conotoxins, are antagonists of nicotinic acetylcholine receptors (nAChRs). These disulfide-rich peptides provide a large number of evolutionarily refined templates that can be used to develop conopeptides that are highly selective for the various nAChR subtypes. Two such conopeptides, namely [V11L;V16D]ArIB and RgIA4, have been engineered to selectively target mammalian α7∗ and α9∗ nAChRs, respectively, and have been used to study the functional roles of these subtypes in immune cells. Unlike in neurons and cochlear hair cells, where α7∗ and α9∗ nAChRs, respectively, function as ligand-gated ion channels, in immune cells ligand-evoked ion currents have not been demonstrated. Instead, different metabotropic functions of α7∗ and α9∗ nAChRs have been described in monocytic cells including the inhibition of ATP-induced ion currents, inflammasome activation, and interleukin-1β (IL-1β) release. In addition to conventional nAChR agonists, diverse compounds containing a phosphocholine group inhibit monocytic IL-1β release and include dipalmitoyl phosphatidylcholine, palmitoyl lysophosphatidylcholine, glycerophosphocholine, phosphocholine, phosphocholine-decorated lipooligosaccharides from Haemophilus influenzae, synthetic phosphocholine-modified bovine serum albumin, and the phosphocholine-binding C-reactive protein. In monocytic cells, the effects of [V11L;V16D]ArIB and RgIA4 suggested that activation of nAChRs containing α9, α7, and/or α10 subunits inhibits ATP-induced IL-1β release. These results have been corroborated utilizing gene-deficient mice and small interfering RNA. Targeted re-engineering of native α-conotoxins has resulted in excellent tools for nAChR research as well as potential therapeutics. ∗indicates possible presence of additional subunits.
Collapse
Affiliation(s)
- Veronika Grau
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Centre for Lung Research (DZL), Giessen University, Giessen, Germany
| | - Katrin Richter
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Centre for Lung Research (DZL), Giessen University, Giessen, Germany
| | - Arik J Hone
- Department of Biology, University of Utah, Salt Lake City, UT, United States
| | - J Michael McIntosh
- Department of Biology, University of Utah, Salt Lake City, UT, United States.,George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, United States.,Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
15
|
Du X, Fan G, Jiao Y, Zhang H, Guo X, Huang R, Zheng Z, Bian C, Deng Y, Wang Q, Wang Z, Liang X, Liang H, Shi C, Zhao X, Sun F, Hao R, Bai J, Liu J, Chen W, Liang J, Liu W, Xu Z, Shi Q, Xu X, Zhang G, Liu X. The pearl oyster Pinctada fucata martensii genome and multi-omic analyses provide insights into biomineralization. Gigascience 2018; 6:1-12. [PMID: 28873964 PMCID: PMC5597905 DOI: 10.1093/gigascience/gix059] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 07/09/2017] [Indexed: 11/14/2022] Open
Abstract
Nacre, the iridescent material found in pearls and shells of molluscs, is formed through an extraordinary process of matrix-assisted biomineralization. Despite recent advances, many aspects of the biomineralization process and its evolutionary origin remain unknown. The pearl oyster Pinctada fucata martensii is a well-known master of biomineralization, but the molecular mechanisms that underlie its production of shells and pearls are not fully understood. We sequenced the highly polymorphic genome of the pearl oyster and conducted multi-omic and biochemical studies to probe nacre formation. We identified a large set of novel proteins participating in matrix-framework formation, many in expanded families, including components similar to that found in vertebrate bones such as collagen-related VWA-containing proteins, chondroitin sulfotransferases, and regulatory elements. Considering that there are only collagen-based matrices in vertebrate bones and chitin-based matrices in most invertebrate skeletons, the presence of both chitin and elements of collagen-based matrices in nacre suggests that elements of chitin- and collagen-based matrices have deep roots and might be part of an ancient biomineralizing matrix. Our results expand the current shell matrix-framework model and provide new insights into the evolution of diverse biomineralization systems.
Collapse
Affiliation(s)
- Xiaodong Du
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Guangyi Fan
- BGI-Qingdao, Qingdao 266555, China.,BGI-Shenzhen, Shenzhen, 518083 China
| | - Yu Jiao
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - He Zhang
- BGI-Shenzhen, Shenzhen, 518083 China
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, Port Norris, NJ 08349, USA
| | - Ronglian Huang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Zhe Zheng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Chao Bian
- BGI-Shenzhen, Shenzhen, 518083 China
| | - Yuewen Deng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Qingheng Wang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Zhongduo Wang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | | | - Haiying Liang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | | | - Xiaoxia Zhao
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | | | - Ruijuan Hao
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Jie Bai
- BGI-Shenzhen, Shenzhen, 518083 China
| | - Jialiang Liu
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | | | - Jinlian Liang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | | | - Zhe Xu
- Atlantic Cape Community College, Mays Landing, NJ 08330, USA
| | - Qiong Shi
- BGI-Shenzhen, Shenzhen, 518083 China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, 518083 China
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Xin Liu
- BGI-Shenzhen, Shenzhen, 518083 China
| |
Collapse
|
16
|
Siebers K, Fink B, Zakrzewicz A, Agné A, Richter K, Konzok S, Hecker A, Zukunft S, Küllmar M, Klein J, McIntosh JM, Timm T, Sewald K, Padberg W, Aggarwal N, Chamulitrat W, Santoso S, Xia W, Janciauskiene S, Grau V. Alpha-1 Antitrypsin Inhibits ATP-Mediated Release of Interleukin-1β via CD36 and Nicotinic Acetylcholine Receptors. Front Immunol 2018; 9:877. [PMID: 29922281 PMCID: PMC5996888 DOI: 10.3389/fimmu.2018.00877] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/09/2018] [Indexed: 12/30/2022] Open
Abstract
While interleukin (IL)-1β is a potent pro-inflammatory cytokine involved in host defense, high levels can cause life-threatening sterile inflammation including systemic inflammatory response syndrome. Hence, the control of IL-1β secretion is of outstanding biomedical importance. In response to a first inflammatory stimulus such as lipopolysaccharide, pro-IL-1β is synthesized as a cytoplasmic inactive pro-form. Extracellular ATP originating from injured cells is a prototypical second signal for inflammasome-dependent maturation and release of IL-1β. The human anti-protease alpha-1 antitrypsin (AAT) and IL-1β regulate each other via mechanisms that are only partially understood. Here, we demonstrate that physiological concentrations of AAT efficiently inhibit ATP-induced release of IL-1β from primary human blood mononuclear cells, monocytic U937 cells, and rat lung tissue, whereas ATP-independent IL-1β release is not impaired. Both, native and oxidized AAT are active, suggesting that the inhibition of IL-1β release is independent of the anti-elastase activity of AAT. Signaling of AAT in monocytic cells involves the lipid scavenger receptor CD36, calcium-independent phospholipase A2β, and the release of a small soluble mediator. This mediator leads to the activation of nicotinic acetylcholine receptors, which efficiently inhibit ATP-induced P2X7 receptor activation and inflammasome assembly. We suggest that AAT controls ATP-induced IL-1β release from human mononuclear blood cells by a novel triple-membrane-passing signaling pathway. This pathway may have clinical implications for the prevention of sterile pulmonary and systemic inflammation.
Collapse
Affiliation(s)
- Kathrin Siebers
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus Liebig University Giessen, German Centre for Lung Research, Giessen, Germany
| | - Bijan Fink
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus Liebig University Giessen, German Centre for Lung Research, Giessen, Germany
| | - Anna Zakrzewicz
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus Liebig University Giessen, German Centre for Lung Research, Giessen, Germany
| | - Alisa Agné
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus Liebig University Giessen, German Centre for Lung Research, Giessen, Germany
| | - Katrin Richter
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus Liebig University Giessen, German Centre for Lung Research, Giessen, Germany
| | - Sebastian Konzok
- Fraunhofer Institute for Toxicology and Experimental Medicine, German Centre for Lung Research, Hannover, Germany
| | - Andreas Hecker
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus Liebig University Giessen, German Centre for Lung Research, Giessen, Germany
| | - Sven Zukunft
- Institute of Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt, Germany
| | - Mira Küllmar
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus Liebig University Giessen, German Centre for Lung Research, Giessen, Germany
| | - Jochen Klein
- Department of Pharmacology, Goethe University College of Pharmacy, Frankfurt, Germany
| | - J Michael McIntosh
- Department of Biology, University of Utah, Salt Lake City, UT, United States.,George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, United States.,Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
| | - Thomas Timm
- Protein Analytics, Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine, German Centre for Lung Research, Hannover, Germany
| | - Winfried Padberg
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus Liebig University Giessen, German Centre for Lung Research, Giessen, Germany
| | - Nupur Aggarwal
- Department of Respiratory Medicine, Hannover Medical School, German Centre for Lung Research, Hannover, Germany
| | - Walee Chamulitrat
- Department of Internal Medicine IV, University Heidelberg Hospital, Heidelberg, Germany
| | - Sentot Santoso
- Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Wendy Xia
- Institute of Blood Transfusion, Guangzhou Blood Centre, Guangzhou, China
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, Hannover Medical School, German Centre for Lung Research, Hannover, Germany
| | - Veronika Grau
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus Liebig University Giessen, German Centre for Lung Research, Giessen, Germany
| |
Collapse
|
17
|
β-Nicotinamide Adenine Dinucleotide (β-NAD) Inhibits ATP-Dependent IL-1β Release from Human Monocytic Cells. Int J Mol Sci 2018; 19:ijms19041126. [PMID: 29642561 PMCID: PMC5979475 DOI: 10.3390/ijms19041126] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/29/2018] [Accepted: 04/05/2018] [Indexed: 01/05/2023] Open
Abstract
While interleukin-1β (IL-1β) is a potent pro-inflammatory cytokine essential for host defense, high systemic levels cause life-threatening inflammatory syndromes. ATP, a stimulus of IL-1β maturation, is released from damaged cells along with β-nicotinamide adenine dinucleotide (β-NAD). Here, we tested the hypothesis that β-NAD controls ATP-signaling and, hence, IL-1β release. Lipopolysaccharide-primed monocytic U937 cells and primary human mononuclear leukocytes were stimulated with 2'(3')-O-(4-benzoyl-benzoyl)ATP trieethylammonium salt (BzATP), a P2X7 receptor agonist, in the presence or absence of β-NAD. IL-1β was measured in cell culture supernatants. The roles of P2Y receptors, nicotinic acetylcholine receptors (nAChRs), and Ca2+-independent phospholipase A2 (iPLA2β, PLA2G6) were investigated using specific inhibitors and gene-silencing. Exogenous β-NAD signaled via P2Y receptors and dose-dependently (IC50 = 15 µM) suppressed the BzATP-induced IL-1β release. Signaling involved iPLA2β, release of a soluble mediator, and nAChR subunit α9. Patch-clamp experiments revealed that β-NAD inhibited BzATP-induced ion currents. In conclusion, we describe a novel triple membrane-passing signaling cascade triggered by extracellular β-NAD that suppresses ATP-induced release of IL-1β by monocytic cells. This cascade links activation of P2Y receptors to non-canonical metabotropic functions of nAChRs that inhibit P2X7 receptor function. The biomedical relevance of this mechanism might be the control of trauma-associated systemic inflammation.
Collapse
|
18
|
Lykhmus O, Voytenko LP, Lips KS, Bergen I, Krasteva-Christ G, Vetter DE, Kummer W, Skok M. Nicotinic Acetylcholine Receptor α9 and α10 Subunits Are Expressed in the Brain of Mice. Front Cell Neurosci 2017; 11:282. [PMID: 28955208 PMCID: PMC5601054 DOI: 10.3389/fncel.2017.00282] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/30/2017] [Indexed: 01/24/2023] Open
Abstract
The α9 and α10 nicotinic acetylcholine receptor (nAChR) subunits are likely to be the evolutionary precursors to the entire cys-loop superfamily of ligand-gated ion channels, which includes acetylcholine, GABA, glycine and serotonin ionotropic receptors. nAChRs containing α9 and α10 subunits are found in the inner ear, dorsal root ganglia and many non-excitable tissues, but their expression in the central nervous system has not been definitely demonstrated. Here we show the presence of both α9 and α10 nAChR subunits in the mouse brain by RT-PCR and immunochemical approaches with a range of nAChR subunit-selective antibodies, which selectivity was demonstrated in the brain preparations of α7−/−, α9−/− and α10−/− mice. The α9 and α10 RNA transcripts were found in medulla oblongata (MO), cerebellum, midbrain (MB), thalamus and putamen (TP), somatosensory cortex (SC), frontal cortex (FC) and hippocampus. High α9-selective signal in ELISA was observed in the FC, SC, MO, TP and hippocampus and α10-selective signal was the highest in MO and FC. The α9 and α10 proteins were found in the brain mitochondria, while their presence on the plasma membrane has not been definitely confirmed The α7-, α9- and α10-selective antibodies stained mainly neurons and hypertrophied astrocytes, but not microglia. The α9- and α10-positive cells formed ordered structures or zones in cerebellum and superior olive (SO) and were randomly distributed among α7-positive cells in the FC; they were found in CA1, CA3 and CA4, but not in CA2 region of the hippocampus. The α9 and α10 subunits were up-regulated in α7−/− mice and both α7 and α9 subunits were down-regulated in α10−/− mice. We conclude that α9 and α10 nAChR subunits are expressed in distinct neurons of the mouse brain and in the brain mitochondria and are compensatory up-regulated in the absence of α7 subunits.
Collapse
Affiliation(s)
- Olena Lykhmus
- Laboratory of Cell Receptors Immunology, Palladin Institute of Biochemistry (NAS Ukraine)Kiev, Ukraine
| | - Larysa P Voytenko
- Laboratory of Cell Receptors Immunology, Palladin Institute of Biochemistry (NAS Ukraine)Kiev, Ukraine
| | - Katrin S Lips
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University GiessenGiessen, Germany
| | - Ivonne Bergen
- Laboratory of Experimental Trauma Surgery, Justus-Liebig University GiessenGiessen, Germany
| | | | - Douglas E Vetter
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical CenterJackson, MS, United States
| | - Wolfgang Kummer
- Institute for Anatomy and Cell Biology, Justus-Liebig University GiessenGiessen, Germany.,German Center for Lung Research (DZL)Giessen, Germany
| | - Maryna Skok
- Laboratory of Cell Receptors Immunology, Palladin Institute of Biochemistry (NAS Ukraine)Kiev, Ukraine
| |
Collapse
|
19
|
Fujii T, Mashimo M, Moriwaki Y, Misawa H, Ono S, Horiguchi K, Kawashima K. Expression and Function of the Cholinergic System in Immune Cells. Front Immunol 2017; 8:1085. [PMID: 28932225 PMCID: PMC5592202 DOI: 10.3389/fimmu.2017.01085] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/21/2017] [Indexed: 12/29/2022] Open
Abstract
T and B cells express most cholinergic system components—e.g., acetylcholine (ACh), choline acetyltransferase (ChAT), acetylcholinesterase, and both muscarinic and nicotinic ACh receptors (mAChRs and nAChRs, respectively). Using ChATBAC-eGFP transgenic mice, ChAT expression has been confirmed in T and B cells, dendritic cells, and macrophages. Moreover, T cell activation via T-cell receptor/CD3-mediated pathways upregulates ChAT mRNA expression and ACh synthesis, suggesting that this lymphocytic cholinergic system contributes to the regulation of immune function. Immune cells express all five mAChRs (M1–M5). Combined M1/M5 mAChR-deficient (M1/M5-KO) mice produce less antigen-specific antibody than wild-type (WT) mice. Furthermore, spleen cells in M1/M5-KO mice produce less tumor necrosis factor (TNF)-α and interleukin (IL)-6, suggesting M1/M5 mAChRs are involved in regulating pro-inflammatory cytokine and antibody production. Immune cells also frequently express the α2, α5, α6, α7, α9, and α10 nAChR subunits. α7 nAChR-deficient (α7-KO) mice produce more antigen-specific antibody than WT mice, and spleen cells from α7-KO mice produce more TNF-α and IL-6 than WT cells. This suggests that α7 nAChRs are involved in regulating cytokine production and thus modulate antibody production. Evidence also indicates that nicotine modulates immune responses by altering cytokine production and that α7 nAChR signaling contributes to immunomodulation through modification of T cell differentiation. Together, these findings suggest the involvement of both mAChRs and nAChRs in the regulation of immune function. The observation that vagus nerve stimulation protects mice from lethal endotoxin shock led to the notion of a cholinergic anti-inflammatory reflex pathway, and the spleen is an essential component of this anti-inflammatory reflex. Because the spleen lacks direct vagus innervation, it has been postulated that ACh synthesized by a subset of CD4+ T cells relays vagal nerve signals to α7 nAChRs on splenic macrophages, which downregulates TNF-α synthesis and release, thereby modulating inflammatory responses. However, because the spleen is innervated solely by the noradrenergic splenic nerve, confirmation of an anti-inflammatory reflex pathway involving the spleen requires several more hypotheses to be addressed. We will review and discuss these issues in the context of the cholinergic system in immune cells.
Collapse
Affiliation(s)
- Takeshi Fujii
- Faculty of Pharmaceutical Sciences, Department of Pharmacology, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Masato Mashimo
- Faculty of Pharmaceutical Sciences, Department of Pharmacology, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Yasuhiro Moriwaki
- Faculty of Pharmacy, Department of Pharmacology, Keio University, Tokyo, Japan
| | - Hidemi Misawa
- Faculty of Pharmacy, Department of Pharmacology, Keio University, Tokyo, Japan
| | - Shiro Ono
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Kazuhide Horiguchi
- Department of Anatomy, Division of Medicine, University of Fukui Faculty of Medical Sciences, Fukui, Japan
| | - Koichiro Kawashima
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, Japan
| |
Collapse
|
20
|
Zakrzewicz A, Richter K, Agné A, Wilker S, Siebers K, Fink B, Krasteva-Christ G, Althaus M, Padberg W, Hone AJ, McIntosh JM, Grau V. Canonical and Novel Non-Canonical Cholinergic Agonists Inhibit ATP-Induced Release of Monocytic Interleukin-1β via Different Combinations of Nicotinic Acetylcholine Receptor Subunits α7, α9 and α10. Front Cell Neurosci 2017; 11:189. [PMID: 28725182 PMCID: PMC5496965 DOI: 10.3389/fncel.2017.00189] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/20/2017] [Indexed: 12/22/2022] Open
Abstract
Recently, we discovered a cholinergic mechanism that inhibits the adenosine triphosphate (ATP)-dependent release of interleukin-1β (IL-1β) by human monocytes via nicotinic acetylcholine receptors (nAChRs) composed of α7, α9 and/or α10 subunits. Furthermore, we identified phosphocholine (PC) and dipalmitoylphosphatidylcholine (DPPC) as novel nicotinic agonists that elicit metabotropic activity at monocytic nAChR. Interestingly, PC does not provoke ion channel responses at conventional nAChRs composed of subunits α9 and α10. The purpose of this study is to determine the composition of nAChRs necessary for nicotinic signaling in monocytic cells and to test the hypothesis that common metabolites of phosphatidylcholines, lysophosphatidylcholine (LPC) and glycerophosphocholine (G-PC), function as nAChR agonists. In peripheral blood mononuclear cells from nAChR gene-deficient mice, we demonstrated that inhibition of ATP-dependent release of IL-1β by acetylcholine (ACh), nicotine and PC depends on subunits α7, α9 and α10. Using a panel of nAChR antagonists and siRNA technology, we confirmed the involvement of these subunits in the control of IL-1β release in the human monocytic cell line U937. Furthermore, we showed that LPC (C16:0) and G-PC efficiently inhibit ATP-dependent release of IL-1β. Of note, the inhibitory effects mediated by LPC and G-PC depend on nAChR subunits α9 and α10, but only to a small degree on α7. In Xenopuslaevis oocytes heterologously expressing different combinations of human α7, α9 or α10 subunits, ACh induced canonical ion channel activity, whereas LPC, G-PC and PC did not. In conclusion, we demonstrate that canonical nicotinic agonists and PC elicit metabotropic nAChR activity in monocytes via interaction of nAChR subunits α7, α9 and α10. For the metabotropic signaling of LPC and G-PC, nAChR subunits α9 and α10 are needed, whereas α7 is virtually dispensable. Furthermore, molecules bearing a PC group in general seem to regulate immune functions without perturbing canonical ion channel functions of nAChR.
Collapse
Affiliation(s)
- Anna Zakrzewicz
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University GiessenGiessen, Germany
| | - Katrin Richter
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University GiessenGiessen, Germany
| | - Alisa Agné
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University GiessenGiessen, Germany
| | - Sigrid Wilker
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University GiessenGiessen, Germany
| | - Kathrin Siebers
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University GiessenGiessen, Germany
| | - Bijan Fink
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University GiessenGiessen, Germany
| | - Gabriela Krasteva-Christ
- Institute of Anatomy and Cell Biology, Justus-Liebig-University GiessenGiessen, Germany.,Institute of Anatomy and Cell Biology, Saarland UniversityHomburg, Germany.,Member of the German Centre for Lung ResearchGiessen, Germany
| | - Mike Althaus
- Institute of Animal Physiology, Justus-Liebig-University GiessenGiessen, Germany.,School of Biology, Newcastle UniversityNewcastle upon Tyne, United Kingdom
| | - Winfried Padberg
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University GiessenGiessen, Germany
| | - Arik J Hone
- Department of Biology, University of UtahSalt Lake City, UT, United States
| | - J Michael McIntosh
- Department of Biology, University of UtahSalt Lake City, UT, United States.,George E. Wahlen Veterans Affairs Medical CenterSalt Lake City, UT, United States.,Department of Psychiatry, University of UtahSalt Lake City, UT, United States
| | - Veronika Grau
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University GiessenGiessen, Germany.,Member of the German Centre for Lung ResearchGiessen, Germany
| |
Collapse
|
21
|
Backhaus S, Zakrzewicz A, Richter K, Damm J, Wilker S, Fuchs-Moll G, Küllmar M, Hecker A, Manzini I, Ruppert C, McIntosh JM, Padberg W, Grau V. Surfactant inhibits ATP-induced release of interleukin-1β via nicotinic acetylcholine receptors. J Lipid Res 2017; 58:1055-1066. [PMID: 28404637 PMCID: PMC5454502 DOI: 10.1194/jlr.m071506] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 03/22/2017] [Indexed: 01/04/2023] Open
Abstract
Interleukin (IL)-1β is a potent pro-inflammatory cytokine of innate immunity involved in host defense. High systemic IL-1β levels, however, cause life-threatening inflammatory diseases, including systemic inflammatory response syndrome. In response to various danger signals, the pro-form of IL-1β is synthesized and stays in the cytoplasm unless a second signal, such as extracellular ATP, activates the inflammasome, which enables processing and release of mature IL-1β. As pulmonary surfactant is known for its anti-inflammatory properties, we hypothesize that surfactant inhibits ATP-induced release of IL-1β. Lipopolysaccharide-primed monocytic U937 cells were stimulated with an ATP analog in the presence of natural or synthetic surfactant composed of recombinant surfactant protein (rSP)-C, palmitoylphosphatidylglycerol, and dipalmitoylphosphatidylcholine (DPPC). Both surfactant preparations dose-dependently inhibited IL-1β release from U937 cells. DPPC was the active constituent of surfactant, whereas rSP-C and palmitoylphosphatidylglycerol were inactive. DPPC was also effective in primary mononuclear leukocytes isolated from human blood. Experiments with nicotinic antagonists, siRNA technology, and patch-clamp experiments suggested that stimulation of nicotinic acetylcholine receptors (nAChRs) containing subunit α9 results in a complete inhibition of the ion channel function of ATP receptor, P2X7. In conclusion, the surfactant constituent, DPPC, efficiently inhibits ATP-induced inflammasome activation and maturation of IL-1β in human monocytes by a mechanism involving nAChRs.
Collapse
Affiliation(s)
- Sören Backhaus
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery Justus-Liebig-University Giessen, Giessen, Germany
| | - Anna Zakrzewicz
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery Justus-Liebig-University Giessen, Giessen, Germany
| | - Katrin Richter
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery Justus-Liebig-University Giessen, Giessen, Germany
| | - Jelena Damm
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery Justus-Liebig-University Giessen, Giessen, Germany
| | - Sigrid Wilker
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery Justus-Liebig-University Giessen, Giessen, Germany
| | - Gabriele Fuchs-Moll
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery Justus-Liebig-University Giessen, Giessen, Germany
| | - Mira Küllmar
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery Justus-Liebig-University Giessen, Giessen, Germany
| | - Andreas Hecker
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery Justus-Liebig-University Giessen, Giessen, Germany
| | - Ivan Manzini
- Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Clemens Ruppert
- Medical Clinic II, Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - J Michael McIntosh
- Departments of Biology and Psychiatry, University of Utah and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT
| | - Winfried Padberg
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery Justus-Liebig-University Giessen, Giessen, Germany
| | - Veronika Grau
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
22
|
Fujii T, Mashimo M, Moriwaki Y, Misawa H, Ono S, Horiguchi K, Kawashima K. Physiological functions of the cholinergic system in immune cells. J Pharmacol Sci 2017; 134:1-21. [DOI: 10.1016/j.jphs.2017.05.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 04/30/2017] [Accepted: 05/08/2017] [Indexed: 02/07/2023] Open
|
23
|
Richter K, Mathes V, Fronius M, Althaus M, Hecker A, Krasteva-Christ G, Padberg W, Hone AJ, McIntosh JM, Zakrzewicz A, Grau V. Phosphocholine - an agonist of metabotropic but not of ionotropic functions of α9-containing nicotinic acetylcholine receptors. Sci Rep 2016; 6:28660. [PMID: 27349288 PMCID: PMC4923896 DOI: 10.1038/srep28660] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/06/2016] [Indexed: 11/09/2022] Open
Abstract
We demonstrated previously that phosphocholine and phosphocholine-modified macromolecules efficiently inhibit ATP-dependent release of interleukin-1β from human and murine monocytes by a mechanism involving nicotinic acetylcholine receptors (nAChR). Interleukin-1β is a potent pro-inflammatory cytokine of innate immunity that plays pivotal roles in host defence. Control of interleukin-1β release is vital as excessively high systemic levels cause life threatening inflammatory diseases. In spite of its structural similarity to acetylcholine, there are no other reports on interactions of phosphocholine with nAChR. In this study, we demonstrate that phosphocholine inhibits ion-channel function of ATP receptor P2X7 in monocytic cells via nAChR containing α9 and α10 subunits. In stark contrast to choline, phosphocholine does not evoke ion current responses in Xenopus laevis oocytes, which heterologously express functional homomeric nAChR composed of α9 subunits or heteromeric receptors containing α9 and α10 subunits. Preincubation of these oocytes with phosphocholine, however, attenuated choline-induced ion current changes, suggesting that phosphocholine may act as a silent agonist. We conclude that phophocholine activates immuno-modulatory nAChR expressed by monocytes but does not stimulate canonical ionotropic receptor functions.
Collapse
Affiliation(s)
- K. Richter
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Centre for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - V. Mathes
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Centre for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - M. Fronius
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | - M. Althaus
- Institute for Animal Physiology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - A. Hecker
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Centre for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - G. Krasteva-Christ
- Intitute for Anatomy and Cell Biology, Julius-Maximilians-University of Wuerzburg, Wuerzburg, Germany
| | - W. Padberg
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Centre for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - A. J. Hone
- Department of Biology, University of Utah, Salt Lake City, Utah, USA
| | - J. M. McIntosh
- Department of Biology, University of Utah, Salt Lake City, Utah, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah, USA
- Department of Psychiatry, University of Utah, Salt Lake City, Utah, USA
| | - A. Zakrzewicz
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Centre for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - V. Grau
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Centre for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
24
|
Hecker A, Küllmar M, Wilker S, Richter K, Zakrzewicz A, Atanasova S, Mathes V, Timm T, Lerner S, Klein J, Kaufmann A, Bauer S, Padberg W, Kummer W, Janciauskiene S, Fronius M, Schweda EKH, Lochnit G, Grau V. Phosphocholine-Modified Macromolecules and Canonical Nicotinic Agonists Inhibit ATP-Induced IL-1β Release. THE JOURNAL OF IMMUNOLOGY 2015. [PMID: 26202987 DOI: 10.4049/jimmunol.1400974] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-1β is a potent proinflammatory cytokine of the innate immune system that is involved in host defense against infection. However, increased production of IL-1β plays a pathogenic role in various inflammatory diseases, such as rheumatoid arthritis, gout, sepsis, stroke, and transplant rejection. To prevent detrimental collateral damage, IL-1β release is tightly controlled and typically requires two consecutive danger signals. LPS from Gram-negative bacteria is a prototypical first signal inducing pro-IL-1β synthesis, whereas extracellular ATP is a typical second signal sensed by the ATP receptor P2X7 that triggers activation of the NLRP3-containing inflammasome, proteolytic cleavage of pro-IL-1β by caspase-1, and release of mature IL-1β. Mechanisms controlling IL-1β release, even in the presence of both danger signals, are needed to protect from collateral damage and are of therapeutic interest. In this article, we show that acetylcholine, choline, phosphocholine, phosphocholine-modified LPS from Haemophilus influenzae, and phosphocholine-modified protein efficiently inhibit ATP-mediated IL-1β release in human and rat monocytes via nicotinic acetylcholine receptors containing subunits α7, α9, and/or α10. Of note, we identify receptors for phosphocholine-modified macromolecules that are synthesized by microbes and eukaryotic parasites and are well-known modulators of the immune system. Our data suggest that an endogenous anti-inflammatory cholinergic control mechanism effectively controls ATP-mediated release of IL-1β and that the same mechanism is used by symbionts and misused by parasites to evade innate immune responses of the host.
Collapse
Affiliation(s)
- Andreas Hecker
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, D-35385 Giessen, Germany
| | - Mira Küllmar
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, D-35385 Giessen, Germany
| | - Sigrid Wilker
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, D-35385 Giessen, Germany
| | - Katrin Richter
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, D-35385 Giessen, Germany; Institute of Animal Physiology, Justus-Liebig-University Giessen, D-35392 Giessen, Germany
| | - Anna Zakrzewicz
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, D-35385 Giessen, Germany
| | - Srebrena Atanasova
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, D-35385 Giessen, Germany
| | - Verena Mathes
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, D-35385 Giessen, Germany
| | - Thomas Timm
- Protein Analytics, Institute of Biochemistry, Justus-Liebig-University Giessen, D-35392 Giessen, Germany
| | - Sabrina Lerner
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, D-35385 Giessen, Germany
| | - Jochen Klein
- Department of Pharmacology, Goethe University College of Pharmacy, D-60438 Frankfurt, Germany
| | - Andreas Kaufmann
- Institute for Immunology, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Stefan Bauer
- Institute for Immunology, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Winfried Padberg
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, D-35385 Giessen, Germany
| | - Wolfgang Kummer
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, D-35392 Giessen, Germany
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, Hannover Medical School, D-30625 Hannover, Germany
| | - Martin Fronius
- Institute of Animal Physiology, Justus-Liebig-University Giessen, D-35392 Giessen, Germany; Department of Physiology, University of Otago, Dunedin 9054, New Zealand; and
| | - Elke K H Schweda
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, S-58183 Linköping, Sweden
| | - Günter Lochnit
- Protein Analytics, Institute of Biochemistry, Justus-Liebig-University Giessen, D-35392 Giessen, Germany
| | - Veronika Grau
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, D-35385 Giessen, Germany;
| |
Collapse
|
25
|
Bader S, Diener M. Novel aspects of cholinergic regulation of colonic ion transport. Pharmacol Res Perspect 2015; 3:e00139. [PMID: 26236483 PMCID: PMC4492755 DOI: 10.1002/prp2.139] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/24/2015] [Accepted: 03/01/2015] [Indexed: 12/17/2022] Open
Abstract
Nicotinic receptors are not only expressed by excitable tissues, but have been identified in various epithelia. One aim of this study was to investigate the expression of nicotinic receptors and their involvement in the regulation of ion transport across colonic epithelium. Ussing chamber experiments with putative nicotinic agonists and antagonists were performed at rat colon combined with reverse transcription polymerase chain reaction (RT-PCR) detection of nicotinic receptor subunits within the epithelium. Dimethylphenylpiperazinium (DMPP) and nicotine induced a tetrodotoxin-resistant anion secretion leading to an increase in short-circuit current (I sc) across colonic mucosa. The response was suppressed by the nicotinic receptor antagonist hexamethonium. RT-PCR experiments revealed the expression of α2, α4, α5, α6, α7, α10, and β4 nicotinic receptor subunits in colonic epithelium. Choline, the product of acetylcholine hydrolysis, is known for its affinity to several nicotinic receptor subtypes. As a strong acetylcholinesterase activity was found in colonic epithelium, the effect of choline on I sc was examined. Choline induced a concentration-dependent, tetrodotoxin-resistant chloride secretion which was, however, resistant against hexamethonium, but was inhibited by atropine. Experiments with inhibitors of muscarinic M1 and M3 receptors revealed that choline-evoked secretion was mainly due to a stimulation of epithelial M3 receptors. Although choline proved to be only a partial agonist, it concentration-dependently desensitized the response to acetylcholine, suggesting that it might act as a modulator of cholinergically induced anion secretion. Thus the cholinergic regulation of colonic ion transport - up to now solely explained by cholinergic submucosal neurons stimulating epithelial muscarinic receptors - is more complex than previously assumed.
Collapse
Affiliation(s)
- Sandra Bader
- Institute of Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen Giessen, Germany
| | - Martin Diener
- Institute of Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen Giessen, Germany
| |
Collapse
|
26
|
Kalashnyk O, Lykhmus O, Oliinyk O, Komisarenko S, Skok M. α7 Nicotinic acetylcholine receptor-specific antibody stimulates interleukin-6 production in human astrocytes through p38-dependent pathway. Int Immunopharmacol 2014; 23:475-9. [PMID: 25281899 DOI: 10.1016/j.intimp.2014.09.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/12/2014] [Accepted: 09/18/2014] [Indexed: 01/02/2023]
Abstract
α7 Nicotinic acetylcholine receptors (α7 nAChRs) are involved in regulating inflammatory cytokine production in macrophages and astrocytes. In the present paper, it is shown that α7-specific agonists PNU282987 (130nM) or choline (1.6mM) attenuated the interleukin-6 (IL-6) production stimulated by bacterial lipopolysaccharide in monocyte-derived U937 and astrocyte-derived U373 cell lines. In contrast, α7(179-190)-specific antibody, which bound to and was internalized by U373 cells, stimulated IL-6 production in p38 kinase-dependent manner in the absence of lipopolysaccharide. The antibody effect was not due to its Fc-fragment because similar capacity was found for recombinant single-chain (scFv) α7(179-190)-specific antibody selected from the gene library of healthy human subject. The data obtained allow suggesting that α7-specific antibody can provoke neuroinflammation within the brain by inducing IL-6 production in astrocytes.
Collapse
Affiliation(s)
| | | | | | | | - Maryna Skok
- Palladin Institute of Biochemistry, Kyiv, Ukraine.
| |
Collapse
|
27
|
Expression of acetylcholine receptors by experimental rat renal allografts. BIOMED RESEARCH INTERNATIONAL 2014; 2014:289656. [PMID: 25121092 PMCID: PMC4119892 DOI: 10.1155/2014/289656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/06/2014] [Indexed: 12/13/2022]
Abstract
Chronic allograft injury (CAI) is a major cause for renal allograft dysfunction and characterized by vasculopathies, tubular atrophy, and fibrosis. We demonstrated that numerous leukocytes interact with vascular endothelial cells of allografts and produce acetylcholine, which contributes to vascular remodeling. The cholinergic system might be a promising target for the development of novel therapies. However, neither the cellular mechanisms nor the acetylcholine receptors involved in CAI are known. Kidney transplantation was performed in the Lewis to Lewis and in the Fischer-334 to Lewis rat strain combination, which is an established experimental model for CAI. Expression of nicotinic and muscarinic acetylcholine receptors mRNA was quantified in renal tissue by real-time RT-PCR on days 9 and 42 after surgery. We detected CHRNA2-7, CHRNA10, CHRNB2, CHRNB4, and CHRM1-3 mRNA in normal kidneys and in renal transplants. In contrast, CHRNA9, CHRM4, and CHRM5 mRNA remained below the threshold of detection. In renal allografts, CHRNA3 and CHRNB4 mRNA expression were dramatically reduced compared to isografts. In conclusion, we demonstrated that most acetylcholine receptor subtypes are expressed by normal and transplanted kidneys. Allograft rejection downmodulates CHRNA3 and CHRNB4 mRNA. The role of different acetylcholine receptor subtypes in the development of CAI remains to be established.
Collapse
|
28
|
Lv Y, Hu S, Lu J, Dong N, Liu Q, Du M, Zhang H. Upregulating nonneuronal cholinergic activity decreases TNF release from lipopolysaccharide-stimulated RAW264.7 cells. Mediators Inflamm 2014; 2014:873728. [PMID: 24733966 PMCID: PMC3964895 DOI: 10.1155/2014/873728] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 01/03/2014] [Accepted: 01/16/2014] [Indexed: 11/18/2022] Open
Abstract
Nonneuronal cholinergic system plays a primary role in maintaining homeostasis. It has been proved that endogenous neuronal acetylcholine (ACh) could play an anti-inflammatory role, and exogenous cholinergic agonists could weaken macrophages inflammatory response to lipopolysaccharide (LPS) stimulation through activation of α7 subunit-containing nicotinic acetylcholine receptor (α7nAChR). We assumed that nonneuronal cholinergic system existing in macrophages could modulate inflammation through autocrine ACh and expressed α7nAChR on the cells. Therefore, we explored whether LPS continuous stimulation could upregulate the nonneuronal cholinergic activity in macrophages and whether increasing autocrine ACh could decrease TNF release from the macrophages. The results showed that, in RAW264.7 cells incubated with LPS for 20 hours, the secretion of ACh was significantly decreased at 4 h and then gradually increased, accompanied with the enhancement of α7nAChR expression level. The release of TNF was greatly increased from RAW264.7 cells at 4 h and 8 h exposure to LPS; however, it was suppressed at 20 h. Upregulating choline acetyltransferase (ChAT) expression through ChAT gene transfection could enhance ACh secretion and reduce TNF release from the infected RAW264. 7cells. The results indicated that LPS stimulation could modulate the activity of nonneuronal cholinergic system of RAW264.7 cells. Enhancing autocrine ACh production could attenuate TNF release from RAW264.7 cells.
Collapse
Affiliation(s)
- Yi Lv
- Laboratory of Shock and Multiple Organ Dysfunction, Burns Institute, First Hospital Affiliated to the People's Liberation Army General Hospital, 51 Fu Cheng Road, Beijing 100048, China
| | - Sen Hu
- Laboratory of Shock and Multiple Organ Dysfunction, Burns Institute, First Hospital Affiliated to the People's Liberation Army General Hospital, 51 Fu Cheng Road, Beijing 100048, China
| | - Jiangyang Lu
- Department of Pathology, First Hospital Affiliated to the People's Liberation Army General Hospital, 51 Fu Cheng Road, Beijing 100048, China
| | - Ning Dong
- Laboratory of Shock and Multiple Organ Dysfunction, Burns Institute, First Hospital Affiliated to the People's Liberation Army General Hospital, 51 Fu Cheng Road, Beijing 100048, China
| | - Qian Liu
- Department of Pathology, First Hospital Affiliated to the People's Liberation Army General Hospital, 51 Fu Cheng Road, Beijing 100048, China
| | - Minghua Du
- Laboratory of Shock and Multiple Organ Dysfunction, Burns Institute, First Hospital Affiliated to the People's Liberation Army General Hospital, 51 Fu Cheng Road, Beijing 100048, China
| | - Huiping Zhang
- Laboratory of Shock and Multiple Organ Dysfunction, Burns Institute, First Hospital Affiliated to the People's Liberation Army General Hospital, 51 Fu Cheng Road, Beijing 100048, China
| |
Collapse
|
29
|
Fujii T, Horiguchi K, Sunaga H, Moriwaki Y, Misawa H, Kasahara T, Tsuji S, Kawashima K. SLURP-1, an endogenous α7 nicotinic acetylcholine receptor allosteric ligand, is expressed in CD205+ dendritic cells in human tonsils and potentiates lymphocytic cholinergic activity. J Neuroimmunol 2014; 267:43-9. [DOI: 10.1016/j.jneuroim.2013.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/01/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022]
|
30
|
Gergalova G, Lykhmus O, Komisarenko S, Skok M. α7 nicotinic acetylcholine receptors control cytochrome c release from isolated mitochondria through kinase-mediated pathways. Int J Biochem Cell Biol 2014; 49:26-31. [PMID: 24412630 DOI: 10.1016/j.biocel.2014.01.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/11/2013] [Accepted: 01/02/2014] [Indexed: 10/25/2022]
Abstract
Nicotinic acetylcholine receptors are ligand-gated ion channels found in the plasma membrane of both excitable and non-excitable cells. Previously we reported that nicotinic receptors containing α7 subunits were present in the outer membranes of mitochondria to regulate the early apoptotic events like cytochrome c release. Here we show that signaling of mitochondrial α7 nicotinic receptors affects intramitochondrial protein kinases. Agonist of α7 nicotinic receptors PNU 282987 (30 nM) prevented the effect of phosphatidyl inositol-3-kinase inhibitor wortmannin, which stimulated cytochrome c release in isolated mouse liver mitochondria, and restored the Akt (Ser 473) phosphorylation state decreased by either 90 μM Ca(2+) or wortmannin. The effect of PNU 282987 was similar to inhibition of calcium-calmodulin-dependent kinase II (upon 90 μM Ca(2+)) or of Src kinase(s) (upon 0.5mM H2O2) and of protein kinase C. Cytochrome c release from mitochondria could be also attenuated by α7 nicotinic receptor antagonist methyllicaconitine or α7-specific antibodies. Allosteric modulator PNU 120526 (1 μM) did not improve the effect of agonist PNU 282987. Acetylcholine (1 μM) and methyllicaconitine (10nM) inhibited superoxide release from mitochondria measured according to alkalization of Ca(2+)-containing medium. It is concluded that α7 nicotinic receptors regulate mitochondrial permeability transition pore formation through ion-independent mechanism involving activation of intramitochondrial PI3K/Akt pathway and inhibition of calcium-calmodulin-dependent or Src-kinase-dependent signaling pathways.
Collapse
Affiliation(s)
- Galyna Gergalova
- Palladin Institute of Biochemistry, 9, Leontovicha Str., Kyiv 01601, Ukraine
| | - Olena Lykhmus
- Palladin Institute of Biochemistry, 9, Leontovicha Str., Kyiv 01601, Ukraine
| | - Sergiy Komisarenko
- Palladin Institute of Biochemistry, 9, Leontovicha Str., Kyiv 01601, Ukraine
| | - Maryna Skok
- Palladin Institute of Biochemistry, 9, Leontovicha Str., Kyiv 01601, Ukraine.
| |
Collapse
|
31
|
Lee RH, Vazquez G. Evidence for a prosurvival role of alpha-7 nicotinic acetylcholine receptor in alternatively (M2)-activated macrophages. Physiol Rep 2013; 1:e00189. [PMID: 24744866 PMCID: PMC3970735 DOI: 10.1002/phy2.189] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 11/26/2013] [Indexed: 12/25/2022] Open
Abstract
Recent observations in endothelial cells and macrophages indicate that nicotinic acetylcholine receptors (nAChRs) are potential novel players in mechanisms linked to atherogenesis. In macrophages, α7nAChR mediates anti‐inflammatory actions and contributes to regulation of cholesterol flux and phagocytosis. Considering that macrophage apoptosis is a key process throughout all stages of atherosclerotic lesion development, in the present study, we examined for the first time the impact of α7nAChR expression and function in macrophage survival and apoptosis using in vitro polarized (M1 and M2) bone marrow‐derived macrophages (BMDMs) from wild‐type and α7nAChR knockout mice. Our findings show that stimulation of α7nAChR results in activation of the STAT3 prosurvival pathway and protection of macrophages from endoplasmic reticulum (ER) stress‐induced apoptosis. These actions are rather selective for M2 BMDMs and are associated to activation of the JAK2/STAT3 axis. Remarkably, these effects are completely lost in M2 macrophages lacking α7nAChR. Macrophage apoptosis is a key process throughout all stages of inflammatory vascular disease. Our studies examine for the first time the impact of α7nAChR expression and function in macrophage survival and apoptosis using in vitro polarized (M1 and M2) bone marrow‐derived macrophages (BMDMs) from wild‐type and α7nAChR knockout mice. We show that stimulation of α7nAChR activates the STAT3 prosurvival pathway and protects macrophages from endoplasmic reticulum stress‐induced apoptosis, an effect rather selective for M2 macrophages and completely lost in M2 macrophages lacking α7nAChR.
Collapse
Affiliation(s)
- Robert H Lee
- Department of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, University of Toledo College of Medicine, Health Science Campus, 3000 Arlington Av, Toledo, 43614, Ohio, USA
| | - Guillermo Vazquez
- Department of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, University of Toledo College of Medicine, Health Science Campus, 3000 Arlington Av, Toledo, 43614, Ohio, USA
| |
Collapse
|
32
|
Monocytes in sterile inflammation: recruitment and functional consequences. Arch Immunol Ther Exp (Warsz) 2013; 62:187-94. [PMID: 24310705 DOI: 10.1007/s00005-013-0267-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 11/14/2013] [Indexed: 12/21/2022]
Abstract
Monocytes play an important role in initiating innate immune responses. Three subsets of these cells have been defined in mice including classical, nonclassical and intermediate monocytes. Each of these cell types has been extensively studied for their role in infectious diseases. However, their role in sterile injury as occurs during ischemia-reperfusion injury, atherosclerosis, and trauma has only recently been the focus of investigations. Here, we review mechanisms of monocyte recruitment to sites of sterile injury, their modes of action, and their effect on disease outcome in murine models with some references to human studies. Therapeutic strategies to target these cells must be developed with caution since each monocyte subset is capable of mediating either anti- or pro-inflammatory effects depending on the setting.
Collapse
|
33
|
Uropathogenic E. coli induce different immune response in testicular and peritoneal macrophages: implications for testicular immune privilege. PLoS One 2011; 6:e28452. [PMID: 22164293 PMCID: PMC3229579 DOI: 10.1371/journal.pone.0028452] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 11/08/2011] [Indexed: 01/13/2023] Open
Abstract
Infertility affects one in seven couples and ascending bacterial infections of the male genitourinary tract by Escherichia coli are an important cause of male factor infertility. Thus understanding mechanisms by which immunocompetent cells such as testicular macrophages (TM) respond to infection and how bacterial pathogens manipulate defense pathways is of importance. Whole genome expression profiling of TM and peritoneal macrophages (PM) infected with uropathogenic E. coli (UPEC) revealed major differences in regulated genes. However, a multitude of genes implicated in calcium signaling pathways was a common feature which indicated a role of calcium-dependent nuclear factor of activated T cells (NFAT) signaling. UPEC-dependent NFAT activation was confirmed in both cultured TM and in TM in an in vivo UPEC infectious rat orchitis model. Elevated expression of NFATC2-regulated anti-inflammatory cytokines was found in TM (IL-4, IL-13) and PM (IL-3, IL-4, IL-13). NFATC2 is activated by rapid influx of calcium, an activity delineated to the pore forming toxin alpha-hemolysin by bacterial mutant analysis. Alpha-hemolysin suppressed IL-6 and TNF-α cytokine release from PM and caused differential activation of MAP kinase and AP-1 signaling pathways in TM and PM leading to reciprocal expression of key pro-inflammatory cytokines in PM (IL-1α, IL-1β, IL-6 downregulated) and TM (IL-1β, IL-6 upregulated). In addition, unlike PM, LPS-treated TM were refractory to NFκB activation shown by the absence of degradation of IκBα and lack of pro-inflammatory cytokine secretion (IL-6, TNF-α). Taken together, these results suggest a mechanism to the conundrum by which TM initiate immune responses to bacteria, while maintaining testicular immune privilege with its ability to tolerate neo-autoantigens expressed on developing spermatogenic cells.
Collapse
|
34
|
Schirmer SU, Eckhardt I, Lau H, Klein J, DeGraaf YC, Lips KS, Pineau C, Gibbins IL, Kummer W, Meinhardt A, Haberberger RV. The cholinergic system in rat testis is of non-neuronal origin. Reproduction 2011; 142:157-66. [DOI: 10.1530/rep-10-0302] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The cholinergic system consists of acetylcholine (ACh), its synthesising enzyme, choline acetyltransferase (CHAT), transporters such as the high-affinity choline transporter (SLC5A7; also known as ChT1), vesicular ACh transporter (SLC18A3; also known as VAChT), organic cation transporters (SLC22s; also known as OCTs), the nicotinic ACh receptors (CHRN; also known as nAChR) and muscarinic ACh receptors. The cholinergic system is not restricted to neurons but plays an important role in the structure and function of non-neuronal tissues such as epithelia and the immune system. Using molecular and immunohistochemical techniques, we show in this study that non-neuronal cells in the parenchyma of rat testis express mRNAs forChat,Slc18a3,Slc5a7andSlc22a2as well as for the CHRN subunits in locations completely lacking any form of innervation, as demonstrated by the absence of protein gene product 9.5 labelling. We found differentially expressed mRNAs for eight α and three β subunits of CHRN in testis. Expression of the α7-subunit of CHRN was widespread in spermatogonia, spermatocytes within seminiferous tubules as well as within Sertoli cells. Spermatogonia and spermatocytes also expressed the α4-subunit of CHRN. The presence of ACh in testicular parenchyma (TP), capsule and isolated germ cells could be demonstrated by HPLC. Taken together, our results reveal the presence of a non-neuronal cholinergic system in rat TP suggesting a potentially important role for non-neuronal ACh and its receptors in germ cell differentiation.
Collapse
|
35
|
|
36
|
Cui WY, Li MD. Nicotinic modulation of innate immune pathways via α7 nicotinic acetylcholine receptor. J Neuroimmune Pharmacol 2010; 5:479-88. [PMID: 20387124 DOI: 10.1007/s11481-010-9210-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 03/10/2010] [Indexed: 10/19/2022]
Abstract
The major addictive component of tobacco, nicotine, exerts anti-inflammatory effects in multiple cell types and may benefit neurons in various degenerative disorders, such as Alzheimer's and Parkinson's disease, in which an inflammation-related mechanism is implicated. Among the various nicotinic acetylcholine receptors, α7, which has been identified in both neurons and immune cells and has high permeability to calcium, is believed to contribute significantly to nicotinic anti-inflammatory and neuron-protective effects. Although nicotine has been used in clinical trials for the treatment of some inflammatory diseases such as ulcerative colitis, the molecular mechanisms of its actions are largely unknown. In this review, we provide current evidence for nicotine's modulation of multiple immune pathways via α7 nAChRs in both neurons and immune cells. Understanding the mechanism of the nicotinic anti-inflammatory effect and neuron-protective function may guide the development of novel medicines for infectious and neuron-degenerative diseases.
Collapse
Affiliation(s)
- Wen-Yan Cui
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA 22911, USA
| | | |
Collapse
|
37
|
Nicotinic receptors on rat alveolar macrophages dampen ATP-induced increase in cytosolic calcium concentration. Respir Res 2010; 11:133. [PMID: 20920278 PMCID: PMC2955664 DOI: 10.1186/1465-9921-11-133] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 09/29/2010] [Indexed: 01/28/2023] Open
Abstract
Background Nicotinic acetylcholine receptors (nAChR) have been identified on a variety of cells of the immune system and are generally considered to trigger anti-inflammatory events. In the present study, we determine the nAChR inventory of rat alveolar macrophages (AM), and investigate the cellular events evoked by stimulation with nicotine. Methods Rat AM were isolated freshly by bronchoalveolar lavage. The expression of nAChR subunits was analyzed by RT-PCR, immunohistochemistry, and Western blotting. To evaluate function of nAChR subunits, electrophysiological recordings and measurements of intracellular calcium concentration ([Ca2+]i) were conducted. Results Positive RT-PCR results were obtained for nAChR subunits α3, α5, α9, α10, β1, and β2, with most stable expression being noted for subunits α9, α10, β1, and β2. Notably, mRNA coding for subunit α7 which is proposed to convey the nicotinic anti-inflammatory response of macrophages from other sources than the lung was not detected. RT-PCR data were supported by immunohistochemistry on AM isolated by lavage, as well as in lung tissue sections and by Western blotting. Neither whole-cell patch clamp recordings nor measurements of [Ca2+]i revealed changes in membrane current in response to ACh and in [Ca2+]i in response to nicotine, respectively. However, nicotine (100 μM), given 2 min prior to ATP, significantly reduced the ATP-induced rise in [Ca2+]i by 30%. This effect was blocked by α-bungarotoxin and did not depend on the presence of extracellular calcium. Conclusions Rat AM are equipped with modulatory nAChR with properties distinct from ionotropic nAChR mediating synaptic transmission in the nervous system. Their stimulation with nicotine dampens ATP-induced Ca2+-release from intracellular stores. Thus, the present study identifies the first acute receptor-mediated nicotinic effect on AM with anti-inflammatory potential.
Collapse
|
38
|
Lykhmus O, Koval L, Pavlovych S, Zouridakis M, Zisimopoulou P, Tzartos S, Tsetlin V, Volpina O, Cloëz-Tayarani I, Komisarenko S, Skok M. Functional effects of antibodies against non-neuronal nicotinic acetylcholine receptors. Immunol Lett 2010; 128:68-73. [DOI: 10.1016/j.imlet.2009.11.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 11/05/2009] [Accepted: 11/13/2009] [Indexed: 01/20/2023]
|
39
|
Skok MV. Editorial: To channel or not to channel? Functioning of nicotinic acetylcholine receptors in leukocytes. J Leukoc Biol 2009; 86:1-3. [PMID: 19567410 DOI: 10.1189/jlb.0209106] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|