1
|
Zheng X, Yang L, Shen X, Pan J, Chen Y, Chen J, Wang H, Meng J, Chen Z, Xie S, Li Y, Zhu B, Zhu W, Qin L, Lu L. Targeting Gsk3a reverses immune evasion to enhance immunotherapy in hepatocellular carcinoma. J Immunother Cancer 2024; 12:e009642. [PMID: 39174053 PMCID: PMC11340705 DOI: 10.1136/jitc-2024-009642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Immune escape is an important feature of hepatocellular carcinoma (HCC). The overall response rate of immune checkpoint inhibitors (ICIs) in HCC is still limited. Revealing the immune regulation mechanisms and finding new immune targets are expected to further improve the efficacy of immunotherapy. Our study aims to use CRISPR screening mice models to identify potential targets that play a critical role in HCC immune evasion and further explore their value in improving immunotherapy. METHODS We performed CRISPR screening in two mice models with different immune backgrounds (C57BL/6 and NPG mice) and identified the immunosuppressive gene Gsk3a as a candidate for further investigation. Flow cytometry was used to analyze the impact of Gsk3a on immune cell infiltration and T-cell function. RNA sequencing was used to identify the changes in neutrophil gene expression induced by Gsk3a and alterations in downstream molecules. The therapeutic value of the combination of Gsk3a inhibitors and anti-programmed cell death protein-1 (PD-1) antibody was also explored. RESULTS Gsk3a, as an immune inhibitory target, significantly promoted tumor growth in immunocompetent mice rather than immune-deficient mice. Gsk3a inhibited cytotoxic T lymphocytes (CTLs) function by inducing neutrophil chemotaxis. Gsk3a promoted self-chemotaxis of neutrophil expression profiles and neutrophil extracellular traps (NETs) formation to block T-cell activity through leucine-rich α-2-glycoprotein 1 (LRG1). A significant synergistic effect was observed when Gsk3a inhibitor was in combination with anti-PD-1 antibody. CONCLUSIONS We identified a potential HCC immune evasion target, Gsk3a, through CRISPR screening. Gsk3a induces neutrophil recruitment and NETs formation through the intermediate molecule LRG1, leading to the inhibition of CTLs function. Targeting Gsk3a can enhance CTLs function and improve the efficacy of ICIs.
Collapse
Affiliation(s)
- Xin Zheng
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Luyu Yang
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xiaotian Shen
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Junjie Pan
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Yiran Chen
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Jixuan Chen
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Hao Wang
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Jiaqi Meng
- Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zhenchao Chen
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Sunzhe Xie
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Yitong Li
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Bolun Zhu
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Wenwei Zhu
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Lunxiu Qin
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Lu Lu
- Department of General Surgery, Hepatobiliary Surgery Center, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Dritsoula A, Camilli C, Moss SE, Greenwood J. The disruptive role of LRG1 on the vasculature and perivascular microenvironment. Front Cardiovasc Med 2024; 11:1386177. [PMID: 38745756 PMCID: PMC11091338 DOI: 10.3389/fcvm.2024.1386177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024] Open
Abstract
The establishment of new blood vessels, and their subsequent stabilization, is a critical process that facilitates tissue growth and organ development. Once established, vessels need to diversify to meet the specific needs of the local tissue and to maintain homeostasis. These processes are tightly regulated and fundamental to normal vessel and tissue function. The mechanisms that orchestrate angiogenesis and vessel maturation have been widely studied, with signaling crosstalk between endothelium and perivascular cells being identified as an essential component. In disease, however, new vessels develop abnormally, and existing vessels lose their specialization and function, which invariably contributes to disease progression. Despite considerable research into the vasculopathic mechanisms in disease, our knowledge remains incomplete. Accordingly, the identification of angiocrine and angiopathic molecules secreted by cells within the vascular microenvironment, and their effect on vessel behaviour, remains a major research objective. Over the last decade the secreted glycoprotein leucine-rich α-2 glycoprotein 1 (LRG1), has emerged as a significant vasculopathic molecule, stimulating defective angiogenesis, and destabilizing the existing vasculature mainly, but not uniquely, by altering both canonical and non-canonical TGF-β signaling in a highly cell and context dependent manner. Whilst LRG1 does not possess any overt homeostatic role in vessel development and maintenance, growing evidence provides a compelling case for LRG1 playing a pleiotropic role in disrupting the vasculature in many disease settings. Thus, LRG1 has now been reported to damage vessels in various disorders including cancer, diabetes, chronic kidney disease, ocular disease, and lung disease and the signaling processes that drive this dysfunction are being defined. Moreover, therapeutic targeting of LRG1 has been widely proposed to re-establish a quiescent endothelium and normalized vasculature. In this review, we consider the current status of our understanding of the role of LRG1 in vascular pathology, and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Athina Dritsoula
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | | | | | | |
Collapse
|
3
|
Chen J, Zhang Z, Feng L, Liu W, Wang X, Chen H, Zou H. Lrg1 silencing attenuates ischemia-reperfusion renal injury by regulating autophagy and apoptosis through the TGFβ1- Smad1/5 signaling pathway. Arch Biochem Biophys 2024; 753:109892. [PMID: 38246328 DOI: 10.1016/j.abb.2024.109892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND Dysfunction in the processes of autophagy and apoptosis within renal tubular epithelial cells (RTEc) contributes to renal ischemia-reperfusion injury (IRI). However, the factors influencing this dysfunction remain unclear. Leucine-rich alpha-2-glycoprotein 1 (Lrg1) plays a role in the progression of diabetic nephropathy and kidney fibrosis by modulating the activin receptor-like kinase 1 (ALK1)-Smad1/5/8 and TGF-β1/Smad3 pathways, respectively. Therefore, we aimed to investigate whether Lrg1 is involved in the pathological mechanisms of renal IRI and whether its effects are related to the dysregulation of autophagy and apoptosis in RTEc. METHODS We conducted in vitro and in vivo experiments using CoCl2-induced hypoxic human kidney-2 (HK-2) cells and mice with renal IRI, respectively. Lrg1 was silenced using siRNA and lentiviral vectors in HK-2 cells and mouse kidneys. Rapamycin (Rapa) and methyladenine were applied to regulate autophagy in renal IRI models. RESULTS Increased Lrg1 expression was observed in hypoxic HK-2 cells and in the kidneys of mice with renal IRI. Silencing of Lrg1 through siRNA and lentiviral approaches restored autophagy and suppressed apoptosis in CoCl2-induced hypoxic HK-2 cells and renal IRI models. Additionally, reduced Lrg1 expression alleviated kidney damage caused by renal IRI. The downregulation of Lrg1 expression restrained the TGFβ-Smad1/5 signaling pathway in hypoxic-induced HK-2 cells and renal IRI by reducing ALK1 expression. Lastly, the enhancement of autophagy, achieved through Rapa treatment, provided protection against renal IRI in mice. CONCLUSIONS Our findings suggest that Lrg1 silencing can be applied as a potential therapeutic target to inhibit the TGFβ1-Smad1/5 pathway, thereby enhancing autophagy and decreasing apoptosis in patients with acute kidney injury.
Collapse
Affiliation(s)
- Jianhui Chen
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
| | - Zuoman Zhang
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ling Feng
- Department of Nephrology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Weihua Liu
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
| | - Xin Wang
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
| | - Haishan Chen
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
| | - Hequn Zou
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China; School of Medicine, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
4
|
Ding H, Zhu G, Lin H, Chu J, Yuan D, Yao Y, Gao Y, Chen F, Liu X. Screening of Potential Circulating Diagnostic Biomarkers and Molecular Mechanisms of Systemic Lupus Erythematosus-Related Myocardial Infarction by Integrative Analysis. J Inflamm Res 2023; 16:3119-3134. [PMID: 37520666 PMCID: PMC10378693 DOI: 10.2147/jir.s404066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Background The risk of acute myocardial infarction (AMI) is elevated in patients with systemic lupus erythematosus (SLE), and it is of great clinical value to identify potential molecular mechanisms and diagnostic markers of AMI associated with SLE by analyzing public database data and transcriptome sequencing data. Methods AMI and SLE-related sequencing datasets GSE62646, GSE60993, GSE50772 and GSE81622 were downloaded from the Gene Expression Omnibus (GEO) database and divided into prediction and validation cohorts. To identify the key genes associated with AMI related to SLE, WGCNA and DEGs analysis were performed for the prediction and validation cohorts, respectively. The related signaling pathways were identified by GO/KEGG enrichment analysis. Peripheral blood mononuclear cells (PBMCs) from patients with AMI were collected for transcriptome sequencing to validate the expression of key genes in patients with AMI. Least absolute shrinkage and selection operator (LASSO) regression analysis was applied to screen diagnostic biomarkers. The diagnostic efficacy of biomarkers was validated by ROC analysis, and the CIBERSORTx platform was used to analyze the composition of immune cells in AMI and SLE. Results A total of 108 genes closely related to AMI and SLE were identified in the prediction cohort, and GO/KEGG analysis showed significantly enriched signaling pathways. The results of differential analysis in validation cohort were consistent with them. By transcriptional sequencing of PBMCs from peripheral blood of AMI patients, combined with the results of prediction and validation cohort analysis, seven genes were finally screened out. LASSO analysis finally identifies DYSF, LRG1 and CSF3R as diagnostic biomarkers of SLE-related-AMI. CIBERSORTx analysis revealed that the biomarkers were highly correlated with neutrophils. Conclusion Neutrophil degranulation and NETs formation play important roles in SLE-related AMI, and DYSF, LRG1 and CSF3R were identified as important diagnostic markers for the development and progression of SLE-related AMI.
Collapse
Affiliation(s)
- Haoran Ding
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Guoqi Zhu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Hao Lin
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Jiapeng Chu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Deqiang Yuan
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Yi’an Yao
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Yanhua Gao
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Fei Chen
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Xuebo Liu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
5
|
Frudd K, Sivaprasad S, Raman R, Krishnakumar S, Revathy YR, Turowski P. Diagnostic circulating biomarkers to detect vision-threatening diabetic retinopathy: Potential screening tool of the future? Acta Ophthalmol 2022; 100:e648-e668. [PMID: 34269526 DOI: 10.1111/aos.14954] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
With the increasing prevalence of diabetes in developing and developed countries, the socio-economic burden of diabetic retinopathy (DR), the leading complication of diabetes, is growing. Diabetic retinopathy (DR) is currently one of the leading causes of blindness in working-age adults worldwide. Robust methodologies exist to detect and monitor DR; however, these rely on specialist imaging techniques and qualified practitioners. This makes detecting and monitoring DR expensive and time-consuming, which is particularly problematic in developing countries where many patients will be remote and have little contact with specialist medical centres. Diabetic retinopathy (DR) is largely asymptomatic until late in the pathology. Therefore, early identification and stratification of vision-threatening DR (VTDR) is highly desirable and will ameliorate the global impact of this disease. A simple, reliable and more cost-effective test would greatly assist in decreasing the burden of DR around the world. Here, we evaluate and review data on circulating protein biomarkers, which have been verified in the context of DR. We also discuss the challenges and developments necessary to translate these promising data into clinically useful assays, to detect VTDR, and their potential integration into simple point-of-care testing devices.
Collapse
Affiliation(s)
- Karen Frudd
- Institute of Ophthalmology University College London London UK
| | - Sobha Sivaprasad
- Institute of Ophthalmology University College London London UK
- NIHR Moorfields Biomedical Research Centre Moorfields Eye Hospital London UK
| | - Rajiv Raman
- Vision Research Foundation Sankara Nethralaya Chennai Tamil Nadu India
| | | | | | - Patric Turowski
- Institute of Ophthalmology University College London London UK
| |
Collapse
|
6
|
De Rossi G, Da Vitoria Lobo ME, Greenwood J, Moss SE. LRG1 as a novel therapeutic target in eye disease. Eye (Lond) 2022; 36:328-340. [PMID: 34987199 PMCID: PMC8807626 DOI: 10.1038/s41433-021-01807-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 02/08/2023] Open
Abstract
Retinal and choroidal diseases are major causes of blindness and visual impairment in the developed world and on the rise due to an ageing population and diabetes epidemic. Standard of care is centred around blockade of vascular endothelial growth factor (VEGF), but despite having halved the number of patients losing sight, a high rate of patient non-response and loss of efficacy over time are key challenges. Dysregulation of vascular homoeostasis, coupled with fibrosis and inflammation, are major culprits driving sight-threatening eye diseases. Improving our knowledge of these pathological processes should inform the development of new drugs to address the current clinical challenges for patients. Leucine-rich α-2 glycoprotein 1 (LRG1) is an emerging key player in vascular dysfunction, inflammation and fibrosis. Under physiological conditions, LRG1 is constitutively expressed by the liver and granulocytes, but little is known about its normal biological function. In pathological scenarios, such as diabetic retinopathy (DR) and neovascular age-related macular degeneration (nvAMD), its expression is ectopically upregulated and it acquires a much better understood pathogenic role. Context-dependent modulation of the transforming growth-factor β (TGFβ) pathway is one of the main activities of LRG1, but additional roles have recently been emerging. This review aims to highlight the clinical and pre-clinical evidence for the pathogenic contribution of LRG1 to vascular retinopathies, as well as extrapolate from other diseases, functions which may be relevant to eye disease. Finally, we will provide a current update on the development of anti-LRG1 therapies for the treatment of nvAMD.
Collapse
Affiliation(s)
- Giulia De Rossi
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| | | | - John Greenwood
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Stephen E Moss
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| |
Collapse
|
7
|
Camilli C, Hoeh AE, De Rossi G, Moss SE, Greenwood J. LRG1: an emerging player in disease pathogenesis. J Biomed Sci 2022; 29:6. [PMID: 35062948 PMCID: PMC8781713 DOI: 10.1186/s12929-022-00790-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/11/2022] [Indexed: 12/15/2022] Open
Abstract
The secreted glycoprotein leucine-rich α-2 glycoprotein 1 (LRG1) was first described as a key player in pathogenic ocular neovascularization almost a decade ago. Since then, an increasing number of publications have reported the involvement of LRG1 in multiple human conditions including cancer, diabetes, cardiovascular disease, neurological disease, and inflammatory disorders. The purpose of this review is to provide, for the first time, a comprehensive overview of the LRG1 literature considering its role in health and disease. Although LRG1 is constitutively expressed by hepatocytes and neutrophils, Lrg1-/- mice show no overt phenotypic abnormality suggesting that LRG1 is essentially redundant in development and homeostasis. However, emerging data are challenging this view by suggesting a novel role for LRG1 in innate immunity and preservation of tissue integrity. While our understanding of beneficial LRG1 functions in physiology remains limited, a consistent body of evidence shows that, in response to various inflammatory stimuli, LRG1 expression is induced and directly contributes to disease pathogenesis. Its potential role as a biomarker for the diagnosis, prognosis and monitoring of multiple conditions is widely discussed while dissecting the mechanisms underlying LRG1 pathogenic functions. Emphasis is given to the role that LRG1 plays as a vasculopathic factor where it disrupts the cellular interactions normally required for the formation and maintenance of mature vessels, thereby indirectly contributing to the establishment of a highly hypoxic and immunosuppressive microenvironment. In addition, LRG1 has also been reported to affect other cell types (including epithelial, immune, mesenchymal and cancer cells) mostly by modulating the TGFβ signalling pathway in a context-dependent manner. Crucially, animal studies have shown that LRG1 inhibition, through gene deletion or a function-blocking antibody, is sufficient to attenuate disease progression. In view of this, and taking into consideration its role as an upstream modifier of TGFβ signalling, LRG1 is suggested as a potentially important therapeutic target. While further investigations are needed to fill gaps in our current understanding of LRG1 function, the studies reviewed here confirm LRG1 as a pleiotropic and pathogenic signalling molecule providing a strong rationale for its use in the clinic as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Carlotta Camilli
- Institute of Ophthalmology, University College London, London, UK.
| | - Alexandra E Hoeh
- Institute of Ophthalmology, University College London, London, UK
| | - Giulia De Rossi
- Institute of Ophthalmology, University College London, London, UK
| | - Stephen E Moss
- Institute of Ophthalmology, University College London, London, UK
| | - John Greenwood
- Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
8
|
Huang H, Yang Y, Song T, Yang Y, Zhu Y, Liu Z, Li L, Wang X. Single-cell RNA Sequencing Uncovered the Involvement of an Endothelial Subset in Neutrophil Recruitment in Chemically Induced Rat Pulmonary Inflammation. Int J Med Sci 2022; 19:669-680. [PMID: 35582423 PMCID: PMC9108403 DOI: 10.7150/ijms.67806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/23/2022] [Indexed: 11/05/2022] Open
Abstract
There is growing support for the notion that chronic inflammation contributes to lung tumorigenesis, but the molecular and cellular basis underlying the protumorigenic effects of inflammation remains to be explored. 3-Methylcholanthrene and diethylnitrosamine were intratracheally instilled into rats to induce multistep lung carcinogenesis, and the presence of pulmonary inflammation was observed in addition to precancerous lesions. By leveraging single-cell RNA sequencing, we sought to unravel the mechanism underlying the inflammatory process at a higher resolution. A total of 14 cell types were identified in chemically treated and control rats. Chemical intervention introduced heterogeneity in cell type composition and gene expression patterns. Nonimmune cells were found to be the most affected, and two subpopulations of endothelial cells with diverse roles were defined. Car4-high endothelial cells were mainly responsible for angiogenesis, whereas Car4-low endothelial cells were involved in neutrophil recruitment, and adhesion between Car4-low endothelial cells and neutrophils was verified in inflamed tissues. Our work unveiled the intricate process of pulmonary inflammation at the single-cell level and characterized a proinflammatory subpopulation of endothelial cells involved in neutrophil recruitment. The conditions provided by chronic inflammatory environment are prerequisites for neoplastic progression. Targeting the specific subsets or processes defined herein holds promise for the early prevention and therapeutic intervention of lung cancer through the manipulation of angiogenesis or the inflammatory response.
Collapse
Affiliation(s)
- Hong Huang
- Institute of Clinical Pathology, Key Laboratory of Transplantation Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Yang
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tingting Song
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongfeng Yang
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yihan Zhu
- Institute of Clinical Pathology, Key Laboratory of Transplantation Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiqiang Liu
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Li
- Institute of Clinical Pathology, Key Laboratory of Transplantation Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuedong Wang
- West China Second Hospital, Sichuan University, Chengdu, 610041 P. R. China & Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education
| |
Collapse
|
9
|
Lázár J, Kovács A, Tornyi I, Takács L, Kurucz I. Detection of leucine-rich alpha-2-glycoprotein 1-containing immunocomplexes in the plasma of lung cancer patients with epitope-specific mAbs. Cancer Biomark 2021; 34:113-122. [PMID: 34744074 DOI: 10.3233/cbm-210164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related deaths worldwide. With the expectation of improved survival, tremendous efforts and resources have been invested in the discovery of specific biomarkers for early detection of the disease. Several investigators have reported the presence of cancer-associated autoantibodies in the plasma or serum of lung cancer patients. Previously, we used a monoclonal-antibody proteomics technology platform for the discovery of novel lung cancer-associated proteins. OBJECTIVE The identification of specific protein epitopes associated with various cancers is a promising method in biomarker discovery. Here, in a preliminary study, we aimed to detect autoantibody-leucine-rich alpha-2-glycoprotein 1 (LRG1) immunocomplexes using epitope-specific monoclonal antibodies (mAbs). METHODS We performed sandwich ELISA assays using the LRG1 epitope-specific capture mAbs, Bsi0352 and Bsi0392, and an IgG-specific polyclonal antibody coupled to a reporter system as the detection reagent. We tested the plasma of lung-cancer patients and apparently healthy controls. RESULTS Depending on the epitope specificity of the capture monoclonal mAb, we were either unable to distinguish the control from LC-groups or showed a higher level of LRG1 and IgG autoantibody containing immunocomplexes in the plasma of non-small cell lung cancer and small cell lung cancer subgroups of lung cancer patients than in the plasma of control subjects. CONCLUSIONS Our findings underline the importance of protein epitope-specific antibody targeted approaches in biomarker research, as this may increase the accuracy of previously described tests, which will need further validation in large clinical cohorts.
Collapse
Affiliation(s)
- József Lázár
- Biosystems International Kft., Debrecen, Hungary
| | | | - Ilona Tornyi
- Biosystems International Kft., Debrecen, Hungary.,Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Takács
- Biosystems International Kft., Debrecen, Hungary.,Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | |
Collapse
|
10
|
Sun Y, Wang F, Zhou Z, Teng J, Su Y, Chi H, Wang Z, Hu Q, Jia J, Liu T, Liu H, Cheng X, Shi H, Tan Y, Yang C, Ye J. Urinary Proteomics Identifying Novel Biomarkers for the Diagnosis of Adult-Onset Still's Disease. Front Immunol 2020; 11:2112. [PMID: 33013889 PMCID: PMC7500098 DOI: 10.3389/fimmu.2020.02112] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 08/04/2020] [Indexed: 12/31/2022] Open
Abstract
Adult-onset Still’s disease (AOSD) is a systemic, multigenic autoinflammatory disease, and the diagnosis of AOSD must rule out neoplasms, infections, and other autoimmune diseases. Development of a rapid and efficient but non-invasive diagnosis method is urgently needed for improving AOSD therapy. In this study, we first performed a urinary proteomic study using isobaric tags for relative and absolute quantification (iTRAQ) labeling combined with liquid chromatography–tandem mass spectrometry analysis in patients with AOSD and healthy control (HC) subjects. The urinary proteins were enriched in pathways of the innate immune system and neutrophil degranulation, and we identified that the α-1-acid glycoprotein 1 (LRG1), orosomucoid 1 (ORM1), and ORM2 proteins were highly expressed in patients with AOSD. The elevated urine levels of LRG1, ORM1, and ORM2 were further validated by enzyme-linked immunosorbent assay in active patients with AOSD, disease controls, and HC subjects. Receiver operating characteristic curves showed that the areas under the curve of LRG1, ORM1, and ORM2 were 0.700, 0.837, and 0.736, respectively (all p < 0.05). Furthermore, we found that the urine levels of LRG1, ORM1, and ORM2 were positively correlated with the systemic score and erythrocyte sedimentation rate and that the urine levels of LRG1 were positively correlated with interleukin 1β (IL-1β), IL-6, and IL-18 levels, whereas the urine levels of ORM1 were positively correlated with the IL-1β level. Together, our study identified novel urinary markers for non-invasive and simple screening of AOSD.
Collapse
Affiliation(s)
- Yue Sun
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Wang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuochao Zhou
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialin Teng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yutong Su
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huihui Chi
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihong Wang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiongyi Hu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinchao Jia
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Liu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Honglei Liu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaobing Cheng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Shi
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Tan
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengde Yang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junna Ye
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Jin J, Sun H, Liu D, Wang H, Liu Q, Chen H, Zhong D, Li G. LRG1 Promotes Apoptosis and Autophagy through the TGFβ-smad1/5 Signaling Pathway to Exacerbate Ischemia/Reperfusion Injury. Neuroscience 2019; 413:123-134. [PMID: 31220542 DOI: 10.1016/j.neuroscience.2019.06.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/28/2019] [Accepted: 06/06/2019] [Indexed: 12/20/2022]
Abstract
Leucine-rich α2-glycoprotein1 (LRG1), a pleiotropic protein, plays a pathogenic role in multiple human diseases. However, its pathophysiological function in ischemia/reperfusion injury remains unclear. In this study, we discussed the function and mechanism of LRG1 in acute ischemic stroke from both basic and clinical research points of view. Mice underwent transient middle cerebral artery occlusion (tMCAO) surgery 2 weeks after LRG1 was overexpressed by the delivery of adeno-associated virus (AAV). For wild-type mice, both the protein and the transcript of LRG1 in the brain tissue were elevated after tMCAO. Meanwhile, the serum levels of LRG1 were decreased after tMCAO. The neuronal injury was shown aggravated in the AAV-LRG1 group (AAV-LRG1 mice with tMCAO) through infarction volume, neurological score, HE, and Nissl staining. Meanwhile, LRG1 significantly enhanced apoptosis and autophagy during tMCAO, as detected by caspase3, Bax, Bcl-2, LC3II/LC3I, Beclin1, p62, and a TUNEL assay. Furthermore, by overexpression of LRG1, the protein of ALK1 was upregulated and the TGFβ-smad1/5 signaling pathway was activated upon tMCAO. We also showed that patients with acute cerebral infarction had lower serum levels of LRG1 compared to healthy controls. In addition, LRG1 levels were associated with infarction volume, stroke severity, and prognosis in patients with supratentorial infarction. Taken together, the data from this study revealed that LRG1 promoted apoptosis and autophagy through the TGFβ-smad1/5 signaling pathway by up-regulating ALK1, which exacerbates ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Jing Jin
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Hongxue Sun
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Dan Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Haining Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Qingqing Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Hongping Chen
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Di Zhong
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China.
| | - Guozhong Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China.
| |
Collapse
|
12
|
Chen C, Chen X, Huang H, Han C, Qu Y, Jin H, Niu T, Zhang Y, Liu K, Xu X. Elevated plasma and vitreous levels of leucine-rich-α2-glycoprotein are associated with diabetic retinopathy progression. Acta Ophthalmol 2019; 97:260-264. [PMID: 29168314 DOI: 10.1111/aos.13633] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/01/2017] [Indexed: 02/06/2023]
Abstract
PURPOSE To investigate the association of plasma and vitreous leucine-rich-α2-glycoprotein (LRG1) with diabetic retinopathy (DR) progression. METHODS A total of 86 outpatients and 33 inpatients were recruited. Outpatients with type 2 diabetes mellitus (T2DM) were classified as T2DM without DR (n = 22), nonproliferative DR (NPDR) (n = 20) and proliferative DR (PDR) (n = 22) based on international clinical DR severity scales. A total of 86 plasma and 33 vitreous samples were collected and subjected to enzyme-linked immunosorbent assay. The diagnostic value of plasma LRG1 was tested using receiver operating characteristic (ROC) curves. RESULTS Plasma LRG1 in PDR patients (9025 ± 1870 pg/ml) was significantly increased as compared with controls (5975 ± 2022 pg/ml), T2DM without DR (6550 ± 2359 pg/ml) and NPDR patients (6550 ± 2359 pg/ml) (p < 0.0001). Vitreous LRG1 in PDR patients was elevated by approximately 4.3-fold than that in controls (562.1 ± 273.5 ng/ml versus 130.0 ± 102.8 ng/ml, p = 0.000). The area under the ROC curve value for plasma LRG1 was 0.786 (p < 0.0001). The maximal Youden index was 0.4372 and the optimal cut-off value of LRG1 was 7357.043 pg/ml with 81.82% sensitivity and 61.90% specificity. CONCLUSION Plasma and vitreous LRG1 levels were elevated in patients with PDR. Leucine-rich-α2-glycoprotein (LRG1) might be a potential risk-warning marker for PDR.
Collapse
Affiliation(s)
- Chong Chen
- Department of Ophthalmology Shanghai Key Laboratory of Fundus Disease Shanghai General Hospital Shanghai Jiao Tong University Shanghai China
| | - Xia Chen
- Department of Ophthalmology Shanghai Key Laboratory of Fundus Disease Shanghai General Hospital Shanghai Jiao Tong University Shanghai China
| | - Hengye Huang
- School of Public Health Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Changjing Han
- Department of Ophthalmology The Second Affiliated Hospital Xi'an Jiao Tong University Xi'an China
| | - Yuan Qu
- Department of Ophthalmology Shanghai Key Laboratory of Fundus Disease Shanghai General Hospital Shanghai Jiao Tong University Shanghai China
| | - Huiyi Jin
- Department of Ophthalmology Shanghai Key Laboratory of Fundus Disease Shanghai General Hospital Shanghai Jiao Tong University Shanghai China
| | - Tian Niu
- Department of Ophthalmology Shanghai Key Laboratory of Fundus Disease Shanghai General Hospital Shanghai Jiao Tong University Shanghai China
| | - Yuan Zhang
- Department of Ophthalmology Shanghai Key Laboratory of Fundus Disease Shanghai General Hospital Shanghai Jiao Tong University Shanghai China
| | - Kun Liu
- Department of Ophthalmology Shanghai Key Laboratory of Fundus Disease Shanghai General Hospital Shanghai Jiao Tong University Shanghai China
| | - Xun Xu
- Department of Ophthalmology Shanghai Key Laboratory of Fundus Disease Shanghai General Hospital Shanghai Jiao Tong University Shanghai China
| |
Collapse
|
13
|
Otsuru T, Kobayashi S, Wada H, Takahashi T, Gotoh K, Iwagami Y, Yamada D, Noda T, Asaoka T, Serada S, Fujimoto M, Eguchi H, Mori M, Doki Y, Naka T. Epithelial-mesenchymal transition via transforming growth factor beta in pancreatic cancer is potentiated by the inflammatory glycoprotein leucine-rich alpha-2 glycoprotein. Cancer Sci 2019; 110:985-996. [PMID: 30575211 PMCID: PMC6398893 DOI: 10.1111/cas.13918] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/15/2022] Open
Abstract
We previously showed that an inflammation‐related, molecule leucine‐rich alpha‐2 glycoprotein (LRG) enhances the transforming growth factor (TGF)‐β1‐induced phosphorylation of Smad proteins and is elevated in patients with pancreatic ductal adenocarcinoma (PDAC). As TGF‐β/Smad signaling is considered to play a key role in epithelial‐mesenchymal transition (EMT), we attempted to clarify the mechanism underlying LRG‐related EMT in relation to metastasis in PDAC. We cultured LRG‐overexpressing PDAC cells (Panc1/LRG) and evaluated the morphology, EMT‐related molecules and TGF‐β/Smad signaling pathway in these cells. We also assessed the LRG levels in plasma and resected specimens from patients with PDAC. Inflammatory cytokines induced LRG production in PDAC cells. A spindle‐like shape was visualized more frequently than other shapes in Panc1/LRG with TGF‐β1 exposure. The expression of E‐cadherin in Panc1/LRG was decreased with TGF‐β1 exposure. Invasion increased with TGF‐β1 stimulation of Panc1/LRG. The phosphorylation of smad2 in Panc1/LRG was increased in comparison with parental Panc1 under TGF‐β1 stimulation. In the plasma LRG‐high group, the recurrence rate tended to be higher and the recurrence‐free survival (RFS) tended to be worse in comparison with the plasma LRG‐low group. LRG enhanced EMT induced by TGF‐β signaling, thus indicating that LRG has a significant effect on the metastasis of PDAC.
Collapse
Affiliation(s)
- Toru Otsuru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hiroshi Wada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kunihito Gotoh
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tadafumi Asaoka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Satoshi Serada
- Center for Intractable Immune Disease, Kochi University, Kochi, Japan
| | - Minoru Fujimoto
- Center for Intractable Immune Disease, Kochi University, Kochi, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Testuji Naka
- Center for Intractable Immune Disease, Kochi University, Kochi, Japan
| |
Collapse
|
14
|
Seamons A, Treuting PM, Meeker S, Hsu C, Paik J, Brabb T, Escobar SS, Alexander JS, Ericsson AC, Smith JG, Maggio-Price L. Obstructive Lymphangitis Precedes Colitis in Murine Norovirus-Infected Stat1-Deficient Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1536-1554. [PMID: 29753791 PMCID: PMC6109697 DOI: 10.1016/j.ajpath.2018.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 03/07/2018] [Accepted: 03/26/2018] [Indexed: 12/16/2022]
Abstract
Murine norovirus (MNV) is an RNA virus that can prove lethal in mice with impaired innate immunity. We found that MNV-4 infection of Stat1-/- mice was not lethal, but produced a 100% penetrant, previously undescribed lymphatic phenotype characterized by chronic-active lymphangitis with hepatitis, splenitis, and chronic cecal and colonic inflammation. Lesion pathogenesis progressed from early ileal enteritis and regional dilated lymphatics to lymphangitis, granulomatous changes in the liver and spleen, and, ultimately, typhlocolitis. Lesion development was neither affected by antibiotics nor reproduced by infection with another enteric RNA virus, rotavirus. MNV-4 infection in Stat1-/- mice decreased expression of vascular endothelial growth factor (Vegf) receptor 3, Vegf-c, and Vegf-d and increased interferon (Ifn)-γ, tumor necrosis factor-α, and inducible nitric oxide synthase. However, anti-IFN-γ and anti-tumor necrosis factor-α antibody treatment did not attenuate the histologic lesions. Studies in Ifnαβγr-/- mice suggested that canonical signaling via interferon receptors did not cause MNV-4-induced disease. Infected Stat1-/- mice had increased STAT3 phosphorylation and expressed many STAT3-regulated genes, consistent with our findings of increased myeloid cell subsets and serum granulocyte colony-stimulating factor, which are also associated with increased STAT3 activity. In conclusion, in Stat1-/- mice, MNV-4 induces lymphatic lesions similar to those seen in Crohn disease as well as hepatitis, splenitis, and typhlocolitis. MNV-4-infected Stat1-/- mice may be a useful model to study mechanistic associations between viral infections, lymphatic dysfunction, and intestinal inflammation in a genetically susceptible host.
Collapse
Affiliation(s)
- Audrey Seamons
- Department of Comparative Medicine, University of Washington, Seattle, Washington.
| | - Piper M Treuting
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Stacey Meeker
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Charlie Hsu
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Jisun Paik
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Thea Brabb
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Sabine S Escobar
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Jonathan S Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University, Shreveport, Louisiana
| | - Aaron C Ericsson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri
| | - Jason G Smith
- Department of Microbiology, University of Washington, Seattle, Washington
| | - Lillian Maggio-Price
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
15
|
Zhang Q, Huang R, Tang Q, Yu Y, Huang Q, Chen Y, Wang G, Wang X. Leucine-rich alpha-2-glycoprotein-1 is up-regulated in colorectal cancer and is a tumor promoter. Onco Targets Ther 2018; 11:2745-2752. [PMID: 29785123 PMCID: PMC5955028 DOI: 10.2147/ott.s153375] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Leucine-rich α-2-glycoprotein-1 (LRG1) is differentially expressed in many kinds of diseases including cancer, however, it has not been thoroughly studied yet. Purpose The objective of this study was to detect the expression and potential mechanism of LRG1 in colorectal cancer (CRC). In our study, we examined LRG1 levels in CRC tissue and plasma with quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. The effect of LRG1 on cancer cells was detected with transwell and MTT assays. Results The average plasma LRG1 level in CRC was significantly higher than in polyp group (P=0.002) and healthy controls (P<0.001). Second, plasma LRG1 was positively associated with CA19-9 (r=0.133, P=0.039) and neutrophil ratio (r=0.403, P<0.001). Third, plasma LRG1 of stage IV patients was dramatically different from that of stage I, stage II or stage III patients (P<0.001). LRG1 mRNA expression levels were about 2-fold higher in CRCs compared to normal tissues (P<0.001). And levels of plasma LRG1 were found to be a risk factor in CRC in univariate survival analysis of colorectal prognosis (P=0.013, hazard ratio [HR]=1.803, 95% CI: 1.521-2.137), and multivariate analysis showed that LRG1 was an independent risk factor (P<0.001, HR=1.492, 95% CI: 1.223-1.820). The patients with higher plasma LRG1 value presented with poorer outcome (P=0.013). Functional experiments showed that LRG1 could promote the invasion and growth ability of cells. LRG1 was increased in plasma and tissue compared with that of controls and LRG1 may predict prognosis of CRC patients and LRG1 maybe a tumor promoter. Conclusion LRG1 is increased in CRC patients and might serve as a tumor promoter.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Colorectal Cancer Center, Colorectal Cancer Institute of Harbin Medical University, Harbin, China
| | - Rui Huang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Colorectal Cancer Center, Colorectal Cancer Institute of Harbin Medical University, Harbin, China
| | - Qingchao Tang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Colorectal Cancer Center, Colorectal Cancer Institute of Harbin Medical University, Harbin, China
| | - Yang Yu
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Colorectal Cancer Center, Colorectal Cancer Institute of Harbin Medical University, Harbin, China
| | - Quanlong Huang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Colorectal Cancer Center, Colorectal Cancer Institute of Harbin Medical University, Harbin, China
| | - Yinggang Chen
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Colorectal Cancer Center, Colorectal Cancer Institute of Harbin Medical University, Harbin, China
| | - Guiyu Wang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Colorectal Cancer Center, Colorectal Cancer Institute of Harbin Medical University, Harbin, China
| | - Xishan Wang
- Colorectal Cancer Center, Colorectal Cancer Institute of Harbin Medical University, Harbin, China.,Department of Colorectal Surgery, Cancer Hospital of Chinese Academy of Medical Science, Beijing, China
| |
Collapse
|
16
|
Urushima H, Fujimoto M, Mishima T, Ohkawara T, Honda H, Lee H, Kawahata H, Serada S, Naka T. Leucine-rich alpha 2 glycoprotein promotes Th17 differentiation and collagen-induced arthritis in mice through enhancement of TGF-β-Smad2 signaling in naïve helper T cells. Arthritis Res Ther 2017; 19:137. [PMID: 28615031 PMCID: PMC5471956 DOI: 10.1186/s13075-017-1349-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/26/2017] [Indexed: 11/10/2022] Open
Abstract
Background Leucine-rich alpha 2 glycoprotein (LRG) has been identified as a serum protein elevated in patients with active rheumatoid arthritis (RA). Although the function of LRG is ill-defined, LRG binds with transforming growth factor (TGF)-β and enhances Smad2 phosphorylation. Considering that the imbalance between T helper 17 (Th17) cells and regulatory T cells (Treg) plays important roles in the pathogenesis of RA, LRG may affect arthritic pathology by enhancing the TGF-β-Smad2 pathway that is pivotal for both Treg and Th17 differentiation. The purpose of this study was to explore the contribution of LRG to the pathogenesis of arthritis, with a focus on the role of LRG in T cell differentiation. Methods The differentiation of CD4 T cells and the development of collagen-induced arthritis (CIA) were examined in wild-type mice and LRG knockout (KO) mice. To examine the influence of LRG on T cell differentiation, naïve CD4 T cells were isolated from LRG KO mice and cultured under Treg- or Th17-polarization condition in the absence or presence of recombinant LRG. Results In the CIA model, LRG deficiency led to ameliorated arthritis and reduced Th17 differentiation with no influence on Treg differentiation. By addition of recombinant LRG, the expression of IL-6 receptor (IL-6R) was enhanced through TGF-β-Smad2 signaling. In LRG KO mice, the IL-6R expression and IL-6-STAT3 signaling was attenuated in naïve CD4 T cells, compared to wild-type mice. Conclusions Our findings suggest that LRG upregulates IL-6R expression in naïve CD4 T cells by the enhancement of TGF-β-smad2 pathway and promote Th17 differentiation and arthritis development.
Collapse
Affiliation(s)
- Hayato Urushima
- Laboratory of Immune Signal, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Minoru Fujimoto
- Laboratory of Immune Signal, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan. .,Center for Intractable Immune Disease, Kochi Medical School, Kochi University, Kochi, Japan.
| | - Takashi Mishima
- Laboratory of Immune Signal, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Tomoharu Ohkawara
- Laboratory of Immune Signal, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Hiromi Honda
- Laboratory of Immune Signal, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Hyun Lee
- Laboratory of Immune Signal, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Hirohisa Kawahata
- Department of Medical Technology, Morinomiya University of medical science, Osaka, Japan
| | - Satoshi Serada
- Laboratory of Immune Signal, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan.,Center for Intractable Immune Disease, Kochi Medical School, Kochi University, Kochi, Japan
| | - Tetsuji Naka
- Laboratory of Immune Signal, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan.,Center for Intractable Immune Disease, Kochi Medical School, Kochi University, Kochi, Japan
| |
Collapse
|
17
|
Druhan LJ, Lance A, Li S, Price AE, Emerson JT, Baxter SA, Gerber JM, Avalos BR. Leucine Rich α-2 Glycoprotein: A Novel Neutrophil Granule Protein and Modulator of Myelopoiesis. PLoS One 2017; 12:e0170261. [PMID: 28081565 PMCID: PMC5233425 DOI: 10.1371/journal.pone.0170261] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/30/2016] [Indexed: 02/01/2023] Open
Abstract
Leucine-rich α2 glycoprotein (LRG1), a serum protein produced by hepatocytes, has been implicated in angiogenesis and tumor promotion. Our laboratory previously reported the expression of LRG1 in murine myeloid cell lines undergoing neutrophilic granulocyte differentiation. However, the presence of LRG1 in primary human neutrophils and a role for LRG1 in regulation of hematopoiesis have not been previously described. Here we show that LRG1 is packaged into the granule compartment of human neutrophils and secreted upon neutrophil activation to modulate the microenvironment. Using immunofluorescence microscopy and direct biochemical measurements, we demonstrate that LRG1 is present in the peroxidase-negative granules of human neutrophils. Exocytosis assays indicate that LRG1 is differentially glycosylated in neutrophils, and co-released with the secondary granule protein lactoferrin. Like LRG1 purified from human serum, LRG1 secreted from activated neutrophils also binds cytochrome c. We also show that LRG1 antagonizes the inhibitory effects of TGFβ1 on colony growth of human CD34+ cells and myeloid progenitors. Collectively, these data invoke an additional role for neutrophils in innate immunity that has not previously been reported, and suggest a novel mechanism whereby neutrophils may modulate the microenvironment via extracellular release of LRG1.
Collapse
Affiliation(s)
- Lawrence J. Druhan
- The Department of Hematologic Oncology, The Levine Cancer Institute, Carolinas HealthCare System, Charlotte, North Carolina, United States of America
| | - Amanda Lance
- The Department of Hematologic Oncology, The Levine Cancer Institute, Carolinas HealthCare System, Charlotte, North Carolina, United States of America
| | - Shimena Li
- The University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Andrea E. Price
- The Department of Hematologic Oncology, The Levine Cancer Institute, Carolinas HealthCare System, Charlotte, North Carolina, United States of America
| | - Jacob T. Emerson
- The Department of Hematologic Oncology, The Levine Cancer Institute, Carolinas HealthCare System, Charlotte, North Carolina, United States of America
| | - Sarah A. Baxter
- The Department of Hematologic Oncology, The Levine Cancer Institute, Carolinas HealthCare System, Charlotte, North Carolina, United States of America
| | - Jonathan M. Gerber
- The Department of Hematologic Oncology, The Levine Cancer Institute, Carolinas HealthCare System, Charlotte, North Carolina, United States of America
| | - Belinda R. Avalos
- The Department of Hematologic Oncology, The Levine Cancer Institute, Carolinas HealthCare System, Charlotte, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
18
|
Khoonsari PE, Häggmark A, Lönnberg M, Mikus M, Kilander L, Lannfelt L, Bergquist J, Ingelsson M, Nilsson P, Kultima K, Shevchenko G. Analysis of the Cerebrospinal Fluid Proteome in Alzheimer's Disease. PLoS One 2016; 11:e0150672. [PMID: 26950848 PMCID: PMC4780771 DOI: 10.1371/journal.pone.0150672] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/16/2016] [Indexed: 12/24/2022] Open
Abstract
Alzheimer’s disease is a neurodegenerative disorder accounting for more than 50% of cases of dementia. Diagnosis of Alzheimer’s disease relies on cognitive tests and analysis of amyloid beta, protein tau, and hyperphosphorylated tau in cerebrospinal fluid. Although these markers provide relatively high sensitivity and specificity for early disease detection, they are not suitable for monitor of disease progression. In the present study, we used label-free shotgun mass spectrometry to analyse the cerebrospinal fluid proteome of Alzheimer’s disease patients and non-demented controls to identify potential biomarkers for Alzheimer’s disease. We processed the data using five programs (DecyderMS, Maxquant, OpenMS, PEAKS, and Sieve) and compared their results by means of reproducibility and peptide identification, including three different normalization methods. After depletion of high abundant proteins we found that Alzheimer’s disease patients had lower fraction of low-abundance proteins in cerebrospinal fluid compared to healthy controls (p<0.05). Consequently, global normalization was found to be less accurate compared to using spiked-in chicken ovalbumin for normalization. In addition, we determined that Sieve and OpenMS resulted in the highest reproducibility and PEAKS was the programs with the highest identification performance. Finally, we successfully verified significantly lower levels (p<0.05) of eight proteins (A2GL, APOM, C1QB, C1QC, C1S, FBLN3, PTPRZ, and SEZ6) in Alzheimer’s disease compared to controls using an antibody-based detection method. These proteins are involved in different biological roles spanning from cell adhesion and migration, to regulation of the synapse and the immune system.
Collapse
Affiliation(s)
- Payam Emami Khoonsari
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Anna Häggmark
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Maria Lönnberg
- Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| | - Maria Mikus
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Lena Kilander
- Department of Public Health/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Lars Lannfelt
- Department of Public Health/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Jonas Bergquist
- Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| | - Martin Ingelsson
- Department of Public Health/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Peter Nilsson
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Kim Kultima
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Ganna Shevchenko
- Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Ishida S, Umeyama H, Iwadate M, Taguchi YH. Bioinformatic screening of autoimmune disease genes and protein structure prediction with FAMS for drug discovery. Protein Pept Lett 2015; 21:828-39. [PMID: 23855671 PMCID: PMC4141326 DOI: 10.2174/09298665113209990052] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/13/2013] [Accepted: 02/14/2013] [Indexed: 01/19/2023]
Abstract
Autoimmune diseases are often intractable because their causes are unknown. Identifying which genes contribute to these diseases may allow us to understand the pathogenesis, but it is difficult to determine which genes contribute to disease. Recently, epigenetic information has been considered to activate/deactivate disease-related genes. Thus, it may also be useful to study epigenetic information that differs between healthy controls and patients with autoimmune disease. Among several types of epigenetic information, promoter methylation is believed to be one of the most important factors. Here, we propose that principal component analysis is useful to identify specific gene promoters that are differently methylated between the normal healthy controls and patients with autoimmune disease. Full Automatic Modeling System (FAMS) was used to predict the three-dimensional structures of selected proteins and successfully inferred relatively confident structures. Several possibilities of the application to the drug discovery based on obtained structures are discussed.
Collapse
Affiliation(s)
| | | | | | - Y-H Taguchi
- Department of Physics, Chuo University, Tokyo 112-8551, Japan, and Department of Biological Sciences, Chuo University, Tokyo 112-8551, Japan.
| |
Collapse
|
20
|
Furukawa K, Kawamoto K, Eguchi H, Tanemura M, Tanida T, Tomimaru Y, Akita H, Hama N, Wada H, Kobayashi S, Nonaka Y, Takamatsu S, Shinzaki S, Kumada T, Satomura S, Ito T, Serada S, Naka T, Mori M, Doki Y, Miyoshi E, Nagano H. Clinicopathological Significance of Leucine-Rich α2-Glycoprotein-1 in Sera of Patients With Pancreatic Cancer. Pancreas 2015; 44:93-8. [PMID: 25058884 DOI: 10.1097/mpa.0000000000000205] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Leucine-rich α2-glycoprotein-1 (LRG-1) is an inflammatory protein. Serum LRG-1 levels can reportedly be used as a cancer biomarker for several types of carcinoma. In the present study, we investigated the clinical usefulness of serum LRG-1 levels as a biomarker of pancreatic cancer. METHODS A total of 124 patients with pancreatic cancer, 35 patients with chronic pancreatitis (CP), and 144 healthy volunteers were enrolled in the study. Serum LRG-1 levels were assayed by enzyme-linked immunosorbent assay. Immunohistochemistry was used to examine LRG-1 expression in pancreatic cancer tissues. RESULTS Serum LRG-1 levels were significantly increased in patients with pancreatic cancer compared with CP patients and healthy volunteers. The LRG-1 levels increased with progressive clinical stages of pancreatic cancer. Receiver operator curve analysis showed that a combination of carbohydrate antigen 19-9 and LRG-1 resulted in a higher area under the curve for the diagnosis of pancreatic cancer. Positive staining was observed in all cases of pancreatic cancer, but positive signal was scarcely detected in tissues from CP patients or normal surrounding tissue. CONCLUSIONS These results suggest that serum LRG-1 is a promising biomarker for pancreatic cancer.
Collapse
Affiliation(s)
- Kenta Furukawa
- From the *Department of Surgery, Osaka University Graduate School of Medicine, Osaka; †Department of Surgery and Institute for Clinical Research National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Hiroshima; ‡Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Osaka; §Department of Gastroenterology, Ogaki Municipal Hospital, Gifu; ║Wako Pure Chemical Industries, Ltd; ¶Department of Gastroenterology and Hepatology, Japan Community Health Care Organization Osaka Hospital; and #Laboratory for Immune Signal, National Institute of Biomedical Innovation, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Dalzell JR, Cannon JA, Jackson CE, Lang NN, Gardner RS. Emerging biomarkers for heart failure: an update. Biomark Med 2014; 8:833-40. [DOI: 10.2217/bmm.14.51] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A growing array of biological pathways underpins the syndrome we recognize as heart failure. These include both deleterious pathways promoting its development and progression, as well as compensatory cardioprotective pathways. Components of these pathways can be utilized as biomarkers of this condition to aid diagnosis, prognostication and potentially guide management. As our understanding of the pathophysiology of heart failure deepens further candidate biomarkers are being identified. We provide an overview of the more recently emerging biomarkers displaying potential promise for future clinical use.
Collapse
Affiliation(s)
- Jonathan R Dalzell
- Scottish Advanced Heart Failure Unit, Golden Jubilee National Hospital, Glasgow, G81 4DY, UK
| | - Jane A Cannon
- British Heart Foundation Cardiovascular Research Centre, University of Glasgow, Glasgow, G12 8TA, UK
| | - Colette E Jackson
- Scottish Advanced Heart Failure Unit, Golden Jubilee National Hospital, Glasgow, G81 4DY, UK
| | - Ninian N Lang
- Scottish Advanced Heart Failure Unit, Golden Jubilee National Hospital, Glasgow, G81 4DY, UK
| | - Roy S Gardner
- Scottish Advanced Heart Failure Unit, Golden Jubilee National Hospital, Glasgow, G81 4DY, UK
| |
Collapse
|
22
|
Choi JW, Liu H, Shin DH, Yu GI, Hwang JS, Kim ES, Yun JW. Proteomic and cytokine plasma biomarkers for predicting progression from colorectal adenoma to carcinoma in human patients. Proteomics 2013; 13:2361-74. [PMID: 23606366 DOI: 10.1002/pmic.201200550] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/28/2013] [Accepted: 03/30/2013] [Indexed: 12/12/2022]
Abstract
In the present study, we screened proteomic and cytokine biomarkers between patients with adenomatous polyps and colorectal cancer (CRC) in order to improve our understanding of the molecular mechanisms behind turmorigenesis and tumor progression in CRC. To this end, we performed comparative proteomic analysis of plasma proteins using a combination of 2DE and MS as well as profiled differentially regulated cytokines and chemokines by multiplex bead analysis. Proteomic analysis identified 11 upregulated and 13 downregulated plasma proteins showing significantly different regulation patterns with diagnostic potential for predicting progression from adenoma to carcinoma. Some of these proteins have not previously been implicated in CRC, including upregulated leucine-rich α-2-glycoprotein, hemoglobin subunit β, Ig α-2 chain C region, and complement factor B as well as downregulated afamin, zinc-α-2-glycoprotein, vitronectin, and α-1-antichymotrypsin. In addition, plasma levels of three cytokines/chemokines, including interleukin-8, interferon gamma-induced protein 10, and tumor necrosis factor α, were remarkably elevated in patients with CRC compared to those with adenomatous polyps. Although further clinical validation is required, these proteins and cytokines can be established as novel biomarkers for CRC and/or its progression from colon adenoma.
Collapse
Affiliation(s)
- Jung-Won Choi
- Department of Biotechnology, Daegu University, Kyungsan, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
23
|
Degraba TJ, Hoehn GT, Nyquist PA, Wang H, Kenney R, Gonzales DA, Kern SJ, Ying SX, Munson PJ, Suffredini AF. Biomarker discovery in serum from patients with carotid atherosclerosis. Cerebrovasc Dis Extra 2011; 1:115-29. [PMID: 22566989 PMCID: PMC3343755 DOI: 10.1159/000334477] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Blood-based biomarkers of atherosclerosis have been used to identify patients at high risk for developing stroke. We hypothesized that patients with carotid artery disease would have a distinctive proteomic signature in blood as compared to a healthy control population without carotid artery disease. In order to discover protein biomarkers associated with increased atherosclerotic risk, we used two different strategies to identify biomarkers from patients with clinically defined atherosclerosis who were undergoing endarterectomy for atherosclerotic carotid artery disease. These patients were compared with healthy matched controls. METHODS Serum was obtained from patients undergoing endarterectomy (EA; n = 38) and compared to a group of age-matched healthy controls (n = 40). Serum was fractionated using anion exchange chromatography and three different surface-enhanced laser desorption/ionization (SELDI) chip surfaces and then evaluated with mass spectrometry (MS) and two-dimensional difference gel electrophoresis (2D-DIGE). RESULTS A random forest (RF) analysis of the SELDI-MS protein peak data distinguished these two groups with 69.2% sensitivity and 73.2% specificity. Four unique SELDI peaks (4.2, 4.4, 16.7 and 28 kDa, all p< 0.01) showed the greatest influence in the RF model. The EA patients with a history of prior clinical atherosclerotic plaque rupture manifested as either stroke or transient ischemic attack (symptomatic; n = 16) were compared to patients with carotid atherosclerosis but no clinical evidence of plaque rupture (asymptomatic; n = 22). Analysis of the SELDI spectra did not separate these two patient subgroups. A subgroup analysis using 2D-DIGE images obtained from albumin-depleted serum comparing symptomatic (n = 10) to asymptomatic EA patients (n = 10) found 4 proteins that were differentially expressed (p < 0.01) in the symptomatic patients. These proteins were identified as α(1)-antitrypsin, haptoglobin and vitamin D binding protein that were downregulated and α(2)-glycoprotein precursor that was upregulated in the symptomatic EA group. CONCLUSIONS SELDI-MS data analysis of fractionated serum suggests that a distinct protein signature exists in patients with carotid atherosclerosis compared to age-matched healthy controls. Identification of 4 proteins in a subset of patients with symptomatic and asymptomatic carotid atherosclerosis suggests that these and other protein biomarkers may assist in identifying high-risk patients with carotid atherosclerosis.
Collapse
Affiliation(s)
- Thomas J Degraba
- Neurology Department, National Naval Medical Center, Bethesda, Md., USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Watson CJ, Ledwidge MT, Phelan D, Collier P, Byrne JC, Dunn MJ, McDonald KM, Baugh JA. Proteomic analysis of coronary sinus serum reveals leucine-rich α2-glycoprotein as a novel biomarker of ventricular dysfunction and heart failure. Circ Heart Fail 2011; 4:188-97. [PMID: 21282491 DOI: 10.1161/circheartfailure.110.952200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Heart failure (HF) prevention strategies require biomarkers that identify disease manifestation. Increases in B-type natriuretic peptide (BNP) correlate with increased risk of cardiovascular events and HF development. We hypothesize that coronary sinus serum from a high BNP hypertensive population reflects an active pathological process and can be used for biomarker exploration. Our aim was to discover differentially expressed disease-associated proteins that identify patients with ventricular dysfunction and HF. METHODS AND RESULTS Coronary sinus serum from 11 asymptomatic, hypertensive patients underwent quantitative differential protein expression analysis by 2-dimensional difference gel electrophoresis. Proteins were identified using mass spectrometry and then studied by enzyme-linked immunosorbent assay in sera from 40 asymptomatic, hypertensive patients and 105 patients across the spectrum of ventricular dysfunction (32 asymptomatic left ventricular diastolic dysfunction, 26 diastolic HF, and 47 systolic HF patients). Leucine-rich α2-glycoprotein (LRG) was consistently overexpressed in high BNP serum. LRG levels correlate significantly with BNP in hypertensive, asymptomatic left ventricular diastolic dysfunction, diastolic HF, and systolic HF patient groups (P≤0.05). LRG levels were able to identify HF independent of BNP. LRG correlates with coronary sinus serum levels of tumor necrosis factor-α (P=0.009) and interleukin-6 (P=0.021). LRG is expressed in myocardial tissue and correlates with transforming growth factor-βR1 (P<0.001) and α-smooth muscle actin (P=0.025) expression. CONCLUSIONS LRG was identified as a serum biomarker that accurately identifies patients with HF. Multivariable modeling confirmed that LRG is a stronger identifier of HF than BNP and this is independent of age, sex, creatinine, ischemia, β-blocker therapy, and BNP.
Collapse
Affiliation(s)
- Chris J Watson
- School of Medicine and Medical Science, St Vincent's University Hospital and The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Andersen JD, Boylan KL, Jemmerson R, Geller MA, Misemer B, Harrington KM, Weivoda S, Witthuhn BA, Argenta P, Vogel RI, Skubitz AP. Leucine-rich alpha-2-glycoprotein-1 is upregulated in sera and tumors of ovarian cancer patients. J Ovarian Res 2010; 3:21. [PMID: 20831812 PMCID: PMC2949730 DOI: 10.1186/1757-2215-3-21] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 09/10/2010] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND New biomarkers that replace or are used in conjunction with the current ovarian cancer diagnostic antigen, CA125, are needed for detection of ovarian cancer in the presurgical setting, as well as for detection of disease recurrence. We previously demonstrated the upregulation of leucine-rich alpha-2-glycoprotein-1 (LRG1) in the sera of ovarian cancer patients compared to healthy women using quantitative mass spectrometry. METHODS LRG1 was quantified by ELISA in serum from two relatively large cohorts of women with ovarian cancer and benign gynecological disease. The expression of LRG1 in ovarian cancer tissues and cell lines was examined by gene microarray, reverse-transcriptase polymerase chain reaction (RT-PCR), Western blot, immunocytochemistry and mass spectrometry. RESULTS Mean serum LRG1 was higher in 58 ovarian cancer patients than in 56 healthy women (89.33 ± 77.90 vs. 42.99 ± 9.88 ug/ml; p = 0.0008) and was highest among stage III/IV patients. In a separate set of 193 pre-surgical samples, LRG1 was higher in patients with serous or clear cell ovarian cancer (145.82 ± 65.99 ug/ml) compared to patients with benign gynecological diseases (82.53 ± 76.67 ug/ml, p < 0.0001). CA125 and LRG1 levels were moderately correlated (r = 0.47, p < 0.0001). LRG1 mRNA levels were higher in ovarian cancer tissues and cell lines compared to their normal counterparts when analyzed by gene microarray and RT-PCR. LRG1 protein was detected in ovarian cancer tissue samples and cell lines by immunocytochemistry and Western blotting. Multiple iosforms of LRG1 were observed by Western blot and were shown to represent different glycosylation states by digestion with glycosidase. LRG1 protein was also detected in the conditioned media of ovarian cancer cell culture by ELISA, Western blotting, and mass spectrometry. CONCLUSIONS Serum LRG1 was significantly elevated in women with ovarian cancer compared to healthy women and women with benign gynecological disease, and was only moderately correlated with CA125. Ovarian cancer cells secrete LRG1 and may contribute directly to the elevated levels of LRG1 observed in the serum of ovarian cancer patients. Future studies will determine whether LRG1 may serve as a biomarker for presurgical diagnosis, disease recurrence, and/or as a target for therapy.
Collapse
Affiliation(s)
- John D Andersen
- Department of Laboratory Medicine and Pathology, University of Minnesota, MMC 609, 420 Delaware St, SE Minneapolis, MN, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Shirai R, Gotou R, Hirano F, Ikeda K, Inoue S. Autologous extracellular cytochrome c is an endogenous ligand for leucine-rich alpha2-glycoprotein and beta-type phospholipase A2 inhibitor. J Biol Chem 2010; 285:21607-14. [PMID: 20442399 DOI: 10.1074/jbc.m110.122788] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Beta-type phospholipase A(2) inhibitory protein (PLIbeta) from the serum of the venomous snake Gloydius brevicaudus neutralizes basic phospholipase A(2) (PLA(2)) from its own venom, and it has 33% sequence homology with human leucine-rich alpha(2)-glycoprotein (LRG), which has been recently reported to bind cytochrome c (Cyt c) (Cummings, C., Walder, J., Treeful, A., and Jemmerson, R. (2006) Apoptosis 11, 1121-1129). In the present study, PLIbeta was found to bind Cyt c. The interactions of LRG and PLIbeta with Cyt c were compared by surface plasmon resonance analysis. Human LRG bound horse and snake Cyt c with dissociation constants of 1.58 x 10(-13) M and 1.65 x 10(-10) M, respectively, but did not bind yeast Cyt c, while G. brevicaudus PLIbeta bound horse, snake, and yeast Cyt c with dissociation constants of 1.05 x 10(-10) M, 2.37 x 10(-12) M, and 1.67 x 10(-6) M, respectively. On the other hand, LRG did not show any PLA(2) inhibitory activity and did not bind G. brevicaudus basic PLA(2), whereas PLIbeta bound the basic PLA(2) with a dissociation constant of 1.21 x 10(-9) M, which is smaller than those with the Cyt c described above. The PLA(2) inhibitory activity of PLIbeta was also found to be suppressed by the binding of Cyt c to PLIbeta. These results suggest that autologous Cyt c is an endogeneous ligand for LRG and PLIbeta and that these serum proteins neutralize the autologous Cyt c released from the dead cells.
Collapse
Affiliation(s)
- Ryoichi Shirai
- Laboratory of Biochemistry, Osaka University of Pharmaceutical Sciences, Nasahara, Takatsuki, Osaka 569-1094, Japan
| | | | | | | | | |
Collapse
|
27
|
Ai J, Druhan LJ, Loveland MJ, Avalos BR. G-CSFR ubiquitination critically regulates myeloid cell survival and proliferation. PLoS One 2008; 3:e3422. [PMID: 18923646 PMCID: PMC2561048 DOI: 10.1371/journal.pone.0003422] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 09/22/2008] [Indexed: 12/22/2022] Open
Abstract
The granulocyte colony-stimulating factor receptor (G-CSFR) is a critical regulator of granulopoiesis. Mutations in the G-CSFR in patients with severe congenital neutropenia (SCN) transforming to acute myelogenous leukemia (AML) have been shown to induce hypersensitivity and enhanced growth responses to G-CSF. Recent studies have demonstrated the importance of the ubiquitin/proteasome system in the initiation of negative signaling by the G-CSFR. To further investigate the role of ubiquitination in regulating G-CSFR signaling, we generated a mutant form of the G-CSFR (K762R/G-CSFR) which abrogates the attachment of ubiquitin to the lysine residue at position 762 of the G-CSFR that is deleted in the Δ716 G-CSFR form isolated from patients with SCN/AML. In response to G-CSF, mono-/polyubiquitination of the G-CSFR was impaired in cells expressing the mutant K762R/G-CSFR compared to cells transfected with the WT G-CSFR. Cells stably transfected with the K762R/G-CSFR displayed a higher proliferation rate, increased sensitivity to G-CSF, and enhanced survival following cytokine depletion, similar to previously published data with the Δ716 G-CSFR mutant. Activation of the signaling molecules Stat5 and Akt were also increased in K762R/G-CSFR transfected cells in response to G-CSF, and their activation remained prolonged after G-CSF withdrawal. These results indicate that ubiquitination is required for regulation of G-CSFR-mediated proliferation and cell survival. Mutations that disrupt G-CSFR ubiquitination at lysine 762 induce aberrant receptor signaling and hyperproliferative responses to G-CSF, which may contribute to leukemic transformation.
Collapse
Affiliation(s)
- Jing Ai
- Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Lawrence J. Druhan
- Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Megan J. Loveland
- Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Belinda R. Avalos
- Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
- Division of Hematology/Oncology, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|