1
|
Sun X, Gu R, Bai J. Differentiation and regulation of CD4 + T cell subsets in Parkinson's disease. Cell Mol Life Sci 2024; 81:352. [PMID: 39153043 PMCID: PMC11335276 DOI: 10.1007/s00018-024-05402-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, and its hallmark pathological features are the loss of dopaminergic (DA) neurons in the midbrain substantia nigra pars compacta (SNpc) and the accumulation of alpha-synuclein (α-syn). It has been shown that the integrity of the blood-brain barrier (BBB) is damaged in PD patients, and a large number of infiltrating T cells and inflammatory cytokines have been detected in the cerebrospinal fluid (CSF) and brain parenchyma of PD patients and PD animal models, including significant change in the number and proportion of different CD4+ T cell subsets. This suggests that the neuroinflammatory response caused by CD4+ T cells is an important risk factor for the development of PD. Here, we systematically review the differentiation of CD4+ T cell subsets, and focus on describing the functions and mechanisms of different CD4+ T cell subsets and their secreted cytokines in PD. We also summarize the current immunotherapy targeting CD4+ T cells with a view to providing assistance in the diagnosis and treatment of PD.
Collapse
Affiliation(s)
- Xiaowei Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650500, China
| | - Rou Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China.
- Southwest United Graduate School, Kunming, 650500, China.
| |
Collapse
|
2
|
Chen H, Wang X, Wang Y, Chang X. What happens to regulatory T cells in multiple myeloma. Cell Death Discov 2023; 9:468. [PMID: 38129374 PMCID: PMC10739837 DOI: 10.1038/s41420-023-01765-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Abnormal tumor microenvironment and immune escape in multiple myeloma (MM) are associated with regulatory T cells (Tregs), which play an important role in maintaining self-tolerance and regulating the overall immune response to infection or tumor cells. In patients with MM, there are abnormalities in the number, function and distribution of Tregs, and these abnormalities may be related to the disease stage, risk grade and prognosis of patients. During the treatment, Tregs have different responses to various treatment regiments, thus affecting the therapeutic effect of MM. It is also possible to predict the therapeutic response by observing the changes of Tregs. In addition to the above, we reviewed the application of Tregs in the treatment of MM. In conclusion, there is still much room for research on the mechanism and application of Tregs in MM.
Collapse
Affiliation(s)
- Huixian Chen
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xueling Wang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yan Wang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xiaotian Chang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
3
|
Zhai N, Liu W, Jin CH, Ding Y, Sun L, Zhang D, Wang Z, Tang Y, Zhao W, LeGuern C, Mapara MY, Wang H, Yang YG. Lack of IFN-γ Receptor Signaling Inhibits Graft-versus-Host Disease by Potentiating Regulatory T Cell Expansion and Conversion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:885-894. [PMID: 37486211 DOI: 10.4049/jimmunol.2200411] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/29/2023] [Indexed: 07/25/2023]
Abstract
IFN-γ is a pleiotropic cytokine that plays a controversial role in regulatory T cell (Treg) activity. In this study, we sought to understand how IFN-γ receptor (IFN-γR) signaling affects donor Tregs following allogeneic hematopoietic cell transplant (allo-HCT), a potentially curative therapy for leukemia. We show that IFN-γR signaling inhibits Treg expansion and conversion of conventional T cells (Tcons) to peripheral Tregs in both mice and humans. Mice receiving IFN-γR-deficient allo-HCT showed markedly reduced graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL) effects, a trend associated with increased frequencies of Tregs, compared with recipients of wild-type allo-HCT. In mice receiving Treg-depleted allo-HCT, IFN-γR deficiency-induced peripheral Treg conversion was effective in preventing persistent GVHD while minimally affecting GVL effects. Thus, impairing IFN-γR signaling in Tcons may offer a promising strategy for achieving GVL effects without refractory GVHD. Similarly, in a human PBMC-induced xenogeneic GVHD model, significant inhibition of GVHD and an increase in donor Tregs were observed in mice cotransferred with human CD4 T cells that were deleted of IFN-γR1 by CRISPR/Cas9 technology, providing proof-of-concept support for using IFN-γR-deficient T cells in clinical allo-HCT.
Collapse
Affiliation(s)
- Naicui Zhai
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Wentao Liu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Chun-Hui Jin
- Department of Pathology, The First Hospital of Jilin University, Changchun, China
| | - Yanan Ding
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Liguang Sun
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Donghui Zhang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Zhaowei Wang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Yang Tang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Wenjie Zhao
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Christian LeGuern
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Markus Y Mapara
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Hui Wang
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| |
Collapse
|
4
|
Muhammad S, Fan T, Hai Y, Gao Y, He J. Reigniting hope in cancer treatment: the promise and pitfalls of IL-2 and IL-2R targeting strategies. Mol Cancer 2023; 22:121. [PMID: 37516849 PMCID: PMC10385932 DOI: 10.1186/s12943-023-01826-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023] Open
Abstract
Interleukin-2 (IL-2) and its receptor (IL-2R) are essential in orchestrating immune responses. Their function and expression in the tumor microenvironment make them attractive targets for immunotherapy, leading to the development of IL-2/IL-2R-targeted therapeutic strategies. However, the dynamic interplay between IL-2/IL-2R and various immune cells and their dual roles in promoting immune activation and tolerance presents a complex landscape for clinical exploitation. This review discusses the pivotal roles of IL-2 and IL-2R in tumorigenesis, shedding light on their potential as diagnostic and prognostic markers and their therapeutic manipulation in cancer. It underlines the necessity to balance the anti-tumor activity with regulatory T-cell expansion and evaluates strategies such as dose optimization and selective targeting for enhanced therapeutic effectiveness. The article explores recent advancements in the field, including developing genetically engineered IL-2 variants, combining IL-2/IL-2R-targeted therapies with other cancer treatments, and the potential benefits of a multidimensional approach integrating molecular profiling, immunological analyses, and clinical data. The review concludes that a deeper understanding of IL-2/IL-2R interactions within the tumor microenvironment is crucial for realizing the full potential of IL-2-based therapies, heralding the promise of improved outcomes for cancer patients.
Collapse
Affiliation(s)
- Shan Muhammad
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yang Hai
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| | - Jie He
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| |
Collapse
|
5
|
Breast cancer tumor microenvironment affects Treg/IL-17-producing Treg/Th17 cell axis: Molecular and therapeutic perspectives. Mol Ther Oncolytics 2023; 28:132-157. [PMID: 36816749 PMCID: PMC9922830 DOI: 10.1016/j.omto.2023.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The tumor microenvironment (TME) comprises a variety of immune cells, among which T cells exert a prominent axial role in tumor development or anti-tumor responses in patients with breast cancer (BC). High or low levels of anti-inflammatory cytokines, such as transforming growth factor β, in the absence or presence of proinflammatory cytokines, such as interleukin-6 (IL-6), delineate the fate of T cells toward either regulatory T (Treg) or T helper 17 (Th17) cells, respectively. The transitional state of RORγt+Foxp3+ Treg (IL-17-producing Treg) resides in the middle of this reciprocal polarization, which is known as Treg/IL-17-producing Treg/Th17 cell axis. TME secretome, including microRNAs, cytokines, and extracellular vesicles, can significantly affect this axis. Furthermore, immune checkpoint inhibitors may be used to reconstruct immune cells; however, some of these novel therapies may favor tumor development. Therefore, understanding secretory and cell-associated factors involved in their differentiation or polarization and functions may be targeted for BC management. This review discusses microRNAs, cytokines, and extracellular vesicles (as secretome), as well as transcription factors and immune checkpoints (as cell-associated factors), which influence the Treg/IL-17-producing Treg/Th17 cell axis in BC. Furthermore, approved or ongoing clinical trials related to the modulation of this axis in the TME of BC are described to broaden new horizons of promising therapeutic approaches.
Collapse
|
6
|
Conlon K, Watson DC, Waldmann TA, Valentin A, Bergamaschi C, Felber BK, Peer CJ, Figg WD, Potter EL, Roederer M, McNeel DG, Thompson JA, Gupta S, Leidner R, Wang-Gillam A, Parikh NS, Long D, Kurtulus S, Ho Lee L, Chowdhury NR, Bender F, Pavlakis GN. Phase I study of single agent NIZ985, a recombinant heterodimeric IL-15 agonist, in adult patients with metastatic or unresectable solid tumors. J Immunother Cancer 2021; 9:jitc-2021-003388. [PMID: 34799399 PMCID: PMC8606766 DOI: 10.1136/jitc-2021-003388] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2021] [Indexed: 11/30/2022] Open
Abstract
Background NIZ985 is a recombinant heterodimer of physiologically active interleukin (IL-)15 and IL-15 receptor alpha. In preclinical models, NIZ985 promotes cytotoxic lymphocyte proliferation, killing function, and organ/tumor infiltration, with resultant anticancer effects. In this first-in-human study, we assessed the safety, pharmacokinetics, and immune effects of NIZ985 in patients with metastatic or unresectable solid tumors. Methods Single agent NIZ985 dose escalation data are reported from a phase I dose escalation/expansion study of NIZ985 as monotherapy. Adult patients (N=14) received 0.25, 0.5, 1, 2 or 4 µg/kg subcutaneous NIZ985 three times weekly (TIW) for the first 2 weeks of each 28-day cycle, in an accelerated 3+3 dose escalation trial design. IL-15 and endogenous cytokines were monitored by ELISA and multiplexed electrochemiluminescent assays. Multiparameter flow cytometry assessed the frequency, phenotype and proliferation of peripheral blood mononuclear cells. Preliminary antitumor activity was assessed by overall response rate (Response Evaluation Criteria in Solid Tumors V.1.1). Results As of March 2, 2020, median treatment duration was 7.5 weeks (range 1.1–77.1). Thirteen patients had discontinued and one (uveal melanoma) remains on treatment with stable disease. Best clinical response was stable disease (3 of 14 patients; 21%). The most frequent adverse events (AEs) were circular erythematous injection site reactions (100%), chills (71%), fatigue (57%), and fever (50%). Treatment-related grade 3/4 AEs occurred in six participants (43%); treatment-related serious AEs (SAEs) in three (21%). The per-protocol maximum tolerated dose was not reached. Pharmacokinetic accumulation of serum IL-15 in the first week was followed by significantly lower levels in week 2, likely due to more rapid cytokine consumption by an expanding lymphocyte pool. NIZ985 treatment was associated with increases in several cytokines, including interferon (IFN)-γ, IL-18, C-X-C motif chemokine ligand 10, and tumor necrosis factor-β, plus significant induction of cytotoxic lymphocyte proliferation (including natural killer and CD8+ T cells), increased CD16+ monocytes, and increased CD163+ macrophages at injection sites. Conclusions Subcutaneous NIZ985 TIW was generally well tolerated in patients with advanced cancer and produced immune activation paralleling preclinical observations, with induction of IFN-γ and proliferation of cytotoxic lymphocytes. Due to delayed SAEs at the two highest dose levels, administration is being changed to once-weekly in a revised protocol, as monotherapy and combined with checkpoint inhibitor spartalizumab. These alterations are expected to maximize the potential of NIZ985 as a novel immunotherapy. Trial registration number NCT02452268.
Collapse
Affiliation(s)
- Kevin Conlon
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Dionysios C Watson
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA.,University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Cody J Peer
- Clinical Pharmacology Program, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - William D Figg
- Clinical Pharmacology Program, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - E Lake Potter
- Vaccine Research Center, NIAID, Bethesda, Maryland, USA
| | | | - Douglas G McNeel
- Carbone Cancer Center, University of Wisconsin Madison, Madison, Wisconsin, USA
| | | | - Sumati Gupta
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Rom Leidner
- Earle A Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Andrea Wang-Gillam
- Division of Oncology, Department of Medicine, Washington University in Saint Louis, St Louis, Missouri, USA
| | - Nehal S Parikh
- Novartis Institutes for BioMedical Research Inc, Cambridge, Massachusetts, USA
| | - Debby Long
- Novartis Institutes for BioMedical Research Inc, Cambridge, Massachusetts, USA
| | - Sema Kurtulus
- Novartis Institutes for BioMedical Research Inc, Cambridge, Massachusetts, USA
| | - Lang Ho Lee
- Novartis Institutes for BioMedical Research Inc, Cambridge, Massachusetts, USA
| | | | - Florent Bender
- Novartis Institutes for BioMedical Research Inc, Cambridge, Massachusetts, USA
| | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| |
Collapse
|
7
|
Harris KM, Clements MA, Kwilasz AJ, Watkins LR. T cell transgressions: Tales of T cell form and function in diverse disease states. Int Rev Immunol 2021; 41:475-516. [PMID: 34152881 PMCID: PMC8752099 DOI: 10.1080/08830185.2021.1921764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/17/2021] [Accepted: 04/20/2021] [Indexed: 01/03/2023]
Abstract
Insights into T cell form, function, and dysfunction are rapidly evolving. T cells have remarkably varied effector functions including protecting the host from infection, activating cells of the innate immune system, releasing cytokines and chemokines, and heavily contributing to immunological memory. Under healthy conditions, T cells orchestrate a finely tuned attack on invading pathogens while minimizing damage to the host. The dark side of T cells is that they also exhibit autoreactivity and inflict harm to host cells, creating autoimmunity. The mechanisms of T cell autoreactivity are complex and dynamic. Emerging research is elucidating the mechanisms leading T cells to become autoreactive and how such responses cause or contribute to diverse disease states, both peripherally and within the central nervous system. This review provides foundational information on T cell development, differentiation, and functions. Key T cell subtypes, cytokines that create their effector roles, and sex differences are highlighted. Pathological T cell contributions to diverse peripheral and central disease states, arising from errors in reactivity, are highlighted, with a focus on multiple sclerosis, rheumatoid arthritis, osteoarthritis, neuropathic pain, and type 1 diabetes.
Collapse
Affiliation(s)
- Kevin M. Harris
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Madison A. Clements
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Andrew J. Kwilasz
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Linda R. Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| |
Collapse
|
8
|
Guo S, Smeltz RB, Nanajian A, Heller R. IL-15/IL-15Rα Heterodimeric Complex as Cancer Immunotherapy in Murine Breast Cancer Models. Front Immunol 2021; 11:614667. [PMID: 33628206 PMCID: PMC7897681 DOI: 10.3389/fimmu.2020.614667] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/15/2020] [Indexed: 01/22/2023] Open
Abstract
Interleukin 15 (IL-15) has been evaluated as a potential treatment for solid tumors in clinical trials, but the effectiveness of systemic IL-15 administration as a monotherapy has not been realized. IL-15 receptor alpha (IL-15Rα) can stabilize IL-15 and enhance its bioactivity. The goal of this study was to examine the activity of IL-15/IL-15Rα complex (IL-15cx) to CD8+ T cells and evaluate its potential efficacy in murine breast cancer models. The antitumor efficacy was studied in mouse mammary carcinoma models (Her2/neu transgenic and 4T1-luc mammary cancers) treated with systemic recombinant protein with/without the depletion of myeloid-derived suppressor cells or intra-tumoral gene electrotransfer (GET). IL-15cx shows superior in vivo bioactivity to expand CD8 T cells in comparison to an equimolar single chain IL-15. T-bet is partially involved in CD8 T cell expansion ex vivo and in vivo due to IL-15 or IL-15cx. Intraperitoneal administration of IL-15cx results in a moderate inhibition of breast cancer growth that is associated with an increase in the frequency of cytotoxic CD8 T cells and the improvement of their function. The depletion of myeloid-derived suppressor cells (MDSCs) has no impact on mouse breast cancer growth. IL-15cx treatment diminishes MDSCs in murine tumors. However, it also antagonizes the effects of anti-Gr-1 depleting antibodies. Intratumoral GET with plasmid IL-15/IL-15Rα leads to a long-term survival benefit in 4T1 mammary carcinoma model. An early increase of local cytotoxic cells correlates with GET treatment and an increase of long-term memory T cells results from animals with complete tumor regression. Systemic and local administration of IL-15cx shows two distinct therapeutic responses, a moderate tumor growth inhibition or heterogeneous tumor regressions with survival improvement. Further studies are warranted to improve the efficacy of IL-15cx as an immunotherapy for breast cancer.
Collapse
Affiliation(s)
- Siqi Guo
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States.,Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA, United States
| | - Ronald B Smeltz
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA, United States
| | - Anthony Nanajian
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
| | - Richard Heller
- Department of Medical Engineering, University of South Florida, Tampa, FL, United States
| |
Collapse
|
9
|
Rébé C, Ghiringhelli F. STAT3, a Master Regulator of Anti-Tumor Immune Response. Cancers (Basel) 2019; 11:E1280. [PMID: 31480382 PMCID: PMC6770459 DOI: 10.3390/cancers11091280] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/27/2022] Open
Abstract
Immune cells in the tumor microenvironment regulate cancer growth. Thus cancer progression is dependent on the activation or repression of transcription programs involved in the proliferation/activation of lymphoid and myeloid cells. One of the main transcription factors involved in many of these pathways is the signal transducer and activator of transcription 3 (STAT3). In this review we will focus on the role of STAT3 and its regulation, e.g. by phosphorylation or acetylation in immune cells and how it might impact immune cell function and tumor progression. Moreover, we will review the ability of STAT3 to regulate checkpoint inhibitors.
Collapse
Affiliation(s)
- Cédric Rébé
- Platform of Transfer in Cancer Biology, Centre Georges François Leclerc, INSERM LNC UMR1231,University of Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - François Ghiringhelli
- Platform of Transfer in Cancer Biology, Centre Georges François Leclerc, INSERM LNC UMR1231,University of Bourgogne Franche-Comté, F-21000 Dijon, France.
| |
Collapse
|
10
|
Regulatory T cells limit unconventional memory to preserve the capacity to mount protective CD8 memory responses to pathogens. Proc Natl Acad Sci U S A 2019; 116:9969-9978. [PMID: 31036644 DOI: 10.1073/pnas.1818327116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Immunological memory exists so that following infection an expanded population of pathogen-specific lymphocytes can rapidly and efficiently control infection in the case of reexposure. However, in the case of CD8+ T lymphocytes, a population of unconventional CD44+CD122+ virtual memory T cells (TVM) has been described that possesses many, though not all, features of "true memory" T cells, without the requirement of first encountering cognate antigen. Here, we demonstrate a role for regulatory T cell-mediated restraint of TVM at least in part through limiting IL-15 trans-presentation by CD11b+ dendritic cells. Further, we show that keeping TVM in check ensures development of functional, antigen-specific "true" memory phenotype CD8+ T cells that can assist in pathogen control upon reexposure.
Collapse
|
11
|
Keyhanmehr N, Motedayyen H, Eskandari N. The Effects of Silymarin and Cyclosporine A on the Proliferation and Cytokine Production of Regulatory T Cells. Immunol Invest 2019; 48:533-548. [DOI: 10.1080/08820139.2019.1571506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Niloufar Keyhanmehr
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Nahid Eskandari
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
He Y, Lou X, Jin Z, Yu L, Deng L, Wan H. Mahuang decoction mitigates airway inflammation and regulates IL-21/STAT3 signaling pathway in rat asthma model. JOURNAL OF ETHNOPHARMACOLOGY 2018; 224:373-380. [PMID: 29906536 DOI: 10.1016/j.jep.2018.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Nowadays, bronchial asthma is still a severe disease threatening human health, and it is incumbent upon us to seek effective therapeutic drugs. Mahuang decoction (MHD), a classic famous Chinese prescription, has been used for thousands of years to prevent phlegm from forming, stop coughing and relieve asthma, but the relevant mechanism has not been thoroughly clarified. This study aims to investigate the anti-airway inflammation effect of MHD and the possible molecular mechanism underlying IL21/STAT3 signaling pathway, so as to provide guidance for the treatment of MHD on bronchial asthma. MATERIALS AND METHODS Specific pathogen free SD rats were randomly divided into 6 groups: normal control group, model group, positive group (Compound methoxyphenamine), MHD-treated groups at doses of 10 ml/kg, 5 ml/kg and 2.5 ml/kg, 10 rats in each group. Except for the normal control group, rats in other groups were sensitized with ovalbumin via introperitoneal injection and challenged with ovalbumin inhalation to trigger asthma model. At 24 h after the last excitation, bronchoalveolar lavage fluid (BALF) of every rat was drawn and the number of inflammatory cells was analyzed using cell counting method. ELISA method was performed to determine the concentrations of TXB2, 6-keto-PGF1α, MMP-9, TIMP-1, IL-2, IL-4, IL-5 and TNF-α in rat serum. The protein expressions of IL-21, IL-21R, STAT3 and p-STAT3 in murine pulmonary tissues were assessed with western blotting analysis. RESULTS Compared with the control group, the airway wall and airway smooth muscle of murine pulmonary tissues significantly thickened and massive inflammatory cells infiltration occurred around the bronchus in the model group, and the cell counts of WBC and EOS in BALF were also apparently increased, which indicated the rat asthma model was successfully established. MHD or Compound methoxyphenamine not only alleviated the pulmonary inflammatory pathological damages, but also down- regulated the numbers of WBC and EOS in BALF. What's more, the levels of TXB2, MMP-9, TIMP-1, ILs-(2, 4, 5) and TNF-α in rat serum were lessened by the treatment of MHD. In western blotting analysis, treatment with 10 ml/kg or 5 ml/kg MHD markedly declined the increased protein expressions of IL-21, IL-21R, STAT3 and p-STAT3 in lung tissues of asthmatic rats to normal level. CONCLUSION MHD intervention demonstrated a strong inhibitory action on the secretion of inflammatory mediators as well as the inflammatory cell infiltration in pulmonary tissues of asthmatic rats, and also depressed the protein expressions of IL-21, IL-21R, STAT3 and p-STAT3 in pulmonary tissues. MHD effectively mitigates airway inflammation and regulates the IL-21/STAT3 signaling pathway in rat asthma model.
Collapse
Affiliation(s)
- Yu He
- Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Xiaohui Lou
- Dongyang Traditional Chinese Medicine Hospital, Jinhua 322100, China.
| | - Zhan Jin
- Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Li Yu
- Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Ling Deng
- Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Haitong Wan
- Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
13
|
Sharma R, Kinsey GR. Regulatory T cells in acute and chronic kidney diseases. Am J Physiol Renal Physiol 2018; 314:F679-F698. [PMID: 28877881 PMCID: PMC6031912 DOI: 10.1152/ajprenal.00236.2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/18/2017] [Accepted: 09/04/2017] [Indexed: 02/07/2023] Open
Abstract
Foxp3-expressing CD4+ regulatory T cells (Tregs) make up one subset of the helper T cells (Th) and are one of the major mechanisms of peripheral tolerance. Tregs prevent abnormal activation of the immune system throughout the lifespan, thus protecting from autoimmune and inflammatory diseases. Recent studies have elucidated the role of Tregs beyond autoimmunity. Tregs play important functions in controlling not only innate and adaptive immune cell activation, but also regulate nonimmune cell function during insults and injury. Inflammation contributes to a multitude of acute and chronic diseases affecting the kidneys. This review examines the role of Tregs in pathogenesis of renal inflammatory diseases and explores the approaches for enhancing Tregs for prevention and therapy of renal inflammation.
Collapse
Affiliation(s)
- Rahul Sharma
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, University of Virginia , Charlottesville, Virginia
| | - Gilbert R Kinsey
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, University of Virginia , Charlottesville, Virginia
| |
Collapse
|
14
|
Ye C, Brand D, Zheng SG. Targeting IL-2: an unexpected effect in treating immunological diseases. Signal Transduct Target Ther 2018; 3:2. [PMID: 29527328 PMCID: PMC5837126 DOI: 10.1038/s41392-017-0002-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 10/10/2017] [Accepted: 10/30/2017] [Indexed: 12/21/2022] Open
Abstract
Regulatory T cells (Treg) play a crucial role in maintaining immune homeostasis since Treg dysfunction in both animals and humans is associated with multi-organ autoimmune and inflammatory disease. While IL-2 is generally considered to promote T-cell proliferation and enhance effector T-cell function, recent studies have demonstrated that treatments that utilize low-dose IL-2 unexpectedly induce immune tolerance and promote Treg development resulting in the suppression of unwanted immune responses and eventually leading to treatment of some autoimmune disorders. In the present review, we discuss the biology of IL-2 and its signaling to help define the key role played by IL-2 in the development and function of Treg cells. We also summarize proof-of-concept clinical trials which have shown that low-dose IL-2 can control autoimmune diseases safely and effectively by specifically expanding and activating Treg. However, future studies will be needed to validate a better and safer dosing strategy for low-dose IL-2 treatments utilizing well-controlled clinical trials. More studies will also be needed to validate the appropriate dose of IL-2/anti-cytokine or IL-2/anti-IL-2 complex in the experimental animal models before moving to the clinic.
Collapse
Affiliation(s)
- Congxiu Ye
- Department of Clinical Immunology, Third Affiliated Hospital at Sun Yat-sen University, Guangzhou, China
| | - David Brand
- Research Service, Memphis VA Medical Center, Memphis, TN USA
| | - Song G. Zheng
- Department of Clinical Immunology, Third Affiliated Hospital at Sun Yat-sen University, Guangzhou, China
- Division of Rheumatology, Penn State Milton S. Hershey Medical Center, Hershey, PA USA
| |
Collapse
|
15
|
Waickman AT, Ligons DL, Hwang S, Park JY, Lazarevic V, Sato N, Hong C, Park JH. CD4 effector T cell differentiation is controlled by IL-15 that is expressed and presented in trans. Cytokine 2017; 99:266-274. [PMID: 28807496 DOI: 10.1016/j.cyto.2017.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/13/2017] [Accepted: 08/07/2017] [Indexed: 12/24/2022]
Abstract
T cells are both producers and consumers of cytokines, and autocrine cytokine signaling plays a critical role in T cell immunity. IL-15 is a homeostatic cytokine for T cells that also controls inflammatory immune responses. An autocrine role of T cell-derived IL-15, however, remains unclear. Here we examined IL-15 expression and signaling upon effector T cell differentiation in mice, and, surprisingly, found that CD4 T cells did not express IL-15. CD4 T cells lacked Il15 gene reporter activity, did not contain IL-15 transcripts, and did not produce IL-15Rα, the proprietary IL-15 receptor required for IL-15 trans-presentation. Moreover, IL-15 failed to inhibit Th17 cell differentiation and failed to generate Foxp3+ Treg cells in vitro. IL-2, which utilizes the same IL-2Rβ/γc receptor complex, however, successfully did so. Exogenous IL-15 only exerted bioactivity and controlled T cell differentiation when it was trans-presented by IL-15Rα. Consequently, IL-15Rα-bound IL-15, but not free IL-15, suppressed Th17 cell differentiation and induced Treg cell generation. Collectively, these results reveal the absence of an IL-15 autocrine loop in CD4 T cells and strongly suggest that IL-15 trans-presentation by non-CD4 T cells is the primary mechanism via which IL-15 controls CD4 effector T cell differentiation.
Collapse
Affiliation(s)
- Adam T Waickman
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Davinna L Ligons
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - SuJin Hwang
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Joo-Young Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Vanja Lazarevic
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Noriko Sato
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Changwan Hong
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 626-870, South Korea
| | - Jung-Hyun Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, United States.
| |
Collapse
|
16
|
Alahgholi-Hajibehzad M, Durmuş H, Aysal F, Gülşen-Parman Y, Oflazer P, Deymeer F, Saruhan-Direskeneli G. The effect of interleukin (IL)-21 and CD4 + CD25 ++ T cells on cytokine production of CD4 + responder T cells in patients with myasthenia gravis. Clin Exp Immunol 2017; 190:201-207. [PMID: 28671717 DOI: 10.1111/cei.13006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2017] [Indexed: 12/11/2022] Open
Abstract
Impairment of the suppressive function of regulatory T (Treg ) cells has been reported in myasthenia gravis (MG). In this study, cytokine-related mechanisms that may lead to the defect of Treg were investigated in patients with anti-acetylcholine receptor antibody-positive MG (AChR + MG). Proliferation and cytokine production of responder T (Tresp ) cells in response to polyclonal activation were measured in a suppression assay. The effect of interleukin (IL)-21 on suppression was evaluated in vitro in co-culture. IL-21 increased the proliferation of Tresp cells in Tresp /Treg co-cultures. Tresp cells from patients with MG secreted significantly lower levels of IL-2. In patients with MG, IL-2 levels did not change with the addition of Treg to cultures, whereas it decreased significantly in controls. In Tresp /Treg co-cultures, IL-4, IL-6 and IL-10 production increased in the presence of Treg in patients. Interferon (IFN)-γ was decreased, whereas IL-17A was increased in both patient and control groups. IL-21 inhibited the secretion of IL-4 in MG and healthy controls (HC), and IL-17A in HC only. The results demonstrated that IL-21 enhances the proliferation of Tresp cells in the presence of Treg . An effect of IL-21 mainly on Tresp cells through IL-2 is implicated.
Collapse
Affiliation(s)
- M Alahgholi-Hajibehzad
- Department of Physiology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey.,Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - H Durmuş
- Department of Neurology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - F Aysal
- Department of Neurology, Bakirkoy Research and Training Hospital for Psychiatric and Neurological Diseases, Istanbul, Turkey
| | - Y Gülşen-Parman
- Department of Neurology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - P Oflazer
- Department of Neurology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - F Deymeer
- Department of Neurology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - G Saruhan-Direskeneli
- Department of Physiology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
17
|
Guo XH, Bai Z, Qiang B, Bu FH, Zhao N. Roles of monocyte chemotactic protein 1 and nuclear factor-κB in immune response to spinal tuberculosis in a New Zealand white rabbit model. ACTA ACUST UNITED AC 2017; 50:e5625. [PMID: 28225889 PMCID: PMC5333719 DOI: 10.1590/1414-431x20165625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 10/25/2016] [Indexed: 12/11/2022]
Abstract
This study aimed to explore the roles of monocyte chemotactic protein 1 (MCP-1) and nuclear factor kappa B (NF-κB) in immune response to spinal tuberculosis in a New Zealand white rabbit model. Forty-eight New Zealand white rabbits were collected and divided into four groups: experimental group (n=30, spinal tuberculosis model was established), the sham group (n=15, sham operation was performed) and the blank group (n=3). The qRT-PCR assay and western blotting were applied to detect the mRNA and protein expressions of MCP-1 and NF-κB in peripheral blood. ELISA was used to measure serum levels of MCP-1, NF-κB, IFN-γ, IL-2, IL-4, and IL-10. Flow cytometry was adopted to assess the distributions of CD4+, CD8+ lymphocytes and CD4+ CD25+ Foxp3 lymphocyte subsets. Compared with the sham and blank groups, the mRNA and protein expressions of MCP-1 and NF-κB in the experimental group were significantly increased. The experimental group had lower serum levels of IL-2 and IFN-γ and higher serum level of IL-10 than the sham and blank groups. In comparison to the sham and blank groups, CD4+ T lymphocyte subsets percentage, CD4+/CD8+ ratio and CD4+ CD25+ Foxp3+ Tregs subsets accounting for CD4+ lymphocyte in the experimental group were lower, while percentage of CD8+ T lymphocyte subsets was higher. Our study provided evidence that higher expression of MCP-1 and NF-κB may be associated with decreased immune function of spinal tuberculosis, which can provide a new treatment direction for spinal tuberculosis.
Collapse
Affiliation(s)
- X H Guo
- The Third Department of Orthopedics, the Fifth Hospital of Harbin, Harbin, China
| | - Z Bai
- The Third Department of Orthopedics, the Fifth Hospital of Harbin, Harbin, China
| | - B Qiang
- The Third Department of Orthopedics, the Fifth Hospital of Harbin, Harbin, China
| | - F H Bu
- Operating Room, the Fifth Hospital of Harbin, Harbin, China
| | - N Zhao
- The Third Department of Orthopedics, the Fifth Hospital of Harbin, Harbin, China
| |
Collapse
|
18
|
Zhang ZN, Bai LX, Fu YJ, Jiang YJ, Shang H. CD4 +IL-21 +T cells are correlated with regulatory T cells and IL-21 promotes regulatory T cells survival during HIV infection. Cytokine 2016; 91:110-117. [PMID: 28043029 DOI: 10.1016/j.cyto.2016.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 12/15/2022]
Abstract
INTRODUCTION IL-21 enhances T and natural killer cells survival and antiviral functions without promoting T cell activation during HIV infection, which makes it a better adjuvant in anti-HIV immunotherapy. Due to the pleiotropy and redundancy of cytokines, it is vital to have a comprehensive knowledge of the role of IL-21 in the regulation of immune responses. Regulatory T cells (Tregs) play an important role in immune regulation and are a determinant of immune therapeutic efficacy in certain circumstances. In this study, we explored the direct effect of IL-21 on Tregs during HIV infection, which has not been addressed before. METHODS Thirty-four HIV treatment-naïve patients were enrolled and the relationship between CD4+IL-21+T cells and Tregs were studied. The effects of IL-21 on CD4+CD25+CD127low Tregs' apoptosis, proliferation, and CTLA-4 and TGF-β expression in HIV-infected patients was investigated and compared with the effect of other common γ-chain cytokines. RESULTS We found the percentage and absolute numbers of CD4+IL-21+T cells were positively related to the frequency or absolute numbers of CD4+CD25+ or CD4+CD25+CD127low Tregs. Compared with the media-alone control, IL-21, IL-7, and IL-15 could significantly reduce apoptosis of Tregs (p<0.05). IL-21 did not promote the proliferation of Tregs as compared with media alone, while IL-2, IL-7, and IL-15 could significantly increase the proliferation of Tregs (p<0.05). IL-21 enhanced CTLA-4 expression by Tregs (p<0.05), but could not induce TGF-β secretion of Tregs from HIV infected patients. There were no significant differences of the fold induction of apoptosis, proliferation, or CTLA-4 and TGF-β expression by Tregs from HIV-infected patients and normal controls after IL-21 treatment. In vitro experiment showed that pretreatment with IL-21 significantly enhanced the suppressive effect of Tregs on CD8+ T cells' IFN-γ expression. CONCLUSION We conclude that IL-21 promotes the survival and CTLA-4 expression of Tregs and enhanced the suppressive capacity of Tregs during HIV infection. These results broaden the understanding of HIV pathogenesis and provide critical information for HIV interventions.
Collapse
Affiliation(s)
- Zi-Ning Zhang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| | - Li-Xin Bai
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, China
| | - Ya-Jing Fu
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| | - Yong-Jun Jiang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| | - Hong Shang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China.
| |
Collapse
|
19
|
Qin Q, Luo D, Shi Y, Zhao Q, Chen Y, Wu J, Zhao M. CD25 siRNA induces Treg/Th1 cytokine expression in rat corneal transplantation models. Exp Eye Res 2016; 151:134-41. [DOI: 10.1016/j.exer.2016.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 06/04/2016] [Accepted: 08/23/2016] [Indexed: 01/20/2023]
|
20
|
Billroth-MacLurg AC, Ford J, Rosenberg A, Miller J, Fowell DJ. Regulatory T Cell Numbers in Inflamed Skin Are Controlled by Local Inflammatory Cues That Upregulate CD25 and Facilitate Antigen-Driven Local Proliferation. THE JOURNAL OF IMMUNOLOGY 2016; 197:2208-18. [PMID: 27511734 PMCID: PMC5157695 DOI: 10.4049/jimmunol.1502575] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 07/11/2016] [Indexed: 01/07/2023]
Abstract
CD4(+)Foxp3(+) regulatory T cells (Tregs) are key immune suppressors that regulate immunity in diverse tissues. The tissue and/or inflammatory signals that influence the magnitude of the Treg response remain unclear. To define signals that promote Treg accumulation, we developed a simple system of skin inflammation using defined Ags and adjuvants that induce distinct cytokine milieus: OVA protein in CFA, aluminum salts (Alum), and Schistosoma mansoni eggs (Sm Egg). Polyclonal and Ag-specific Treg accumulation in the skin differed significantly between adjuvants. CFA and Alum led to robust Treg accumulation, with >50% of all skin CD4(+) T cells being Foxp3(+) In contrast, Tregs accumulated poorly in the Sm Egg-inflamed skin. Surprisingly, we found no evidence of inflammation-specific changes to the Treg gene program between adjuvant-inflamed skin types, suggesting a lack of selective recruitment or adaptation to the inflammatory milieu. Instead, Treg accumulation patterns were linked to differences in CD80/CD86 expression by APC and the regulation of CD25 expression, specifically in the inflamed skin. Inflammatory cues alone, without cognate Ag, differentially supported CD25 upregulation (CFA and Alum > Sm Egg). Only in inflammatory milieus that upregulated CD25 did the provision of Ag enhance local Treg proliferation. Reduced IL-33 in the Sm Egg-inflamed environment was shown to contribute to the failure to upregulate CD25. Thus, the magnitude of the Treg response in inflamed tissues is controlled at two interdependent levels: inflammatory signals that support the upregulation of the important Treg survival factor CD25 and Ag signals that drive local expansion.
Collapse
Affiliation(s)
- Alison C Billroth-MacLurg
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY 14642; and
| | - Jill Ford
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY 14642; and
| | - Alexander Rosenberg
- Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY 14642
| | - Jim Miller
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY 14642; and
| | - Deborah J Fowell
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY 14642; and
| |
Collapse
|
21
|
Cong M, Liu T, Tian D, Guo H, Wang P, Liu K, Lin J, Tian Y, Shi W, You H, Jia J, Zhang D. Interleukin-2 Enhances the Regulatory Functions of CD4+T Cell-Derived CD4−CD8− Double Negative T Cells. J Interferon Cytokine Res 2016; 36:499-505. [PMID: 27135902 DOI: 10.1089/jir.2015.0093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Min Cong
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China
| | - Tianhui Liu
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China
| | - Dan Tian
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China
| | - Hongbo Guo
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China
| | - Ping Wang
- National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Kai Liu
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China
| | - Jun Lin
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China
| | - Yue Tian
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China
| | - Wen Shi
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China
| | - Hong You
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Jidong Jia
- National Clinical Research Center of Digestive Diseases, Beijing, China
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, Beijing, China
| | - Dong Zhang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China
- National Clinical Research Center of Digestive Diseases, Beijing, China
| |
Collapse
|
22
|
Read KA, Powell MD, McDonald PW, Oestreich KJ. IL-2, IL-7, and IL-15: Multistage regulators of CD4(+) T helper cell differentiation. Exp Hematol 2016; 44:799-808. [PMID: 27423815 DOI: 10.1016/j.exphem.2016.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 12/20/2022]
Abstract
Cytokines represent a class of environmental factors that are critical drivers of immune cell development. Cytokines of the common gamma-chain family, including interleukin (IL)-2, IL-7, and IL-15, have been the subject of intense experimental scrutiny and have well-defined roles as regulators of diverse immune cell types including CD4(+) T helper cells. Because of their pleiotropic effects on T-cell development and function, researchers and clinicians have attempted to harness the capabilities of these cytokines for therapeutic benefit. In this review, we summarize the recent progress in our understanding of the molecular mechanisms underlying the effects of these cytokines on CD4(+) T cell development and briefly discuss how these immunomodulatory cytokines are being used in efforts to treat human disease.
Collapse
Affiliation(s)
| | - Michael D Powell
- Virginia Tech Carilion Research Institute, Roanoke, VA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA
| | | | - Kenneth J Oestreich
- Virginia Tech Carilion Research Institute, Roanoke, VA; Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA; Virginia Tech Carilion School of Medicine, Roanoke, VA.
| |
Collapse
|
23
|
Tuulasvaara A, Vanhanen R, Baldauf HM, Puntila J, Arstila TP. Interleukin-7 promotes human regulatory T cell development at the CD4+CD8+ double-positive thymocyte stage. J Leukoc Biol 2016; 100:491-8. [PMID: 26965634 DOI: 10.1189/jlb.1a0415-164r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 02/20/2016] [Indexed: 12/19/2022] Open
Abstract
Although mature human FOXP3(+) regulatory T cells are CD127 (IL-7Rα) negative, CD4(+)CD8(+) FOXP3(+) thymocytes express relatively high levels of CD127 and are responsive to IL-7. However, the role of IL-7 in human regulatory T cell development is poorly known. We show that at the CD4(+)CD8(+) stage, FOXP3(+) thymocytes are highly susceptible to apoptosis, and IL-7 selectively rescues them from death, leading to an increased frequency of FOXP3(+) cells. IL-7 also promotes the development of regulatory T cell phenotype by inducing up-regulation of FOXP3(+) and CTLA-4 expression. In contrast, IL-7 does not enhance proliferation of FOXP3(+)thymocytes or induce demethylation of FOXP3(+) regulatory T cell-specific demethylated region. After the CD4(+)CD8(+) stage, the FOXP3(+) thymocytes down-regulate CD127 expression but despite very low levels of CD127, remain responsive to IL-7. These results suggest that IL-7 affects human regulatory T cell development in the thymus by at least 2 distinct mechanisms: suppression of apoptosis and up-regulation of FOXP3(+) expression.
Collapse
Affiliation(s)
- Anni Tuulasvaara
- Haartman Institute, Department of Bacteriology and Immunology, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland; and
| | - Reetta Vanhanen
- Haartman Institute, Department of Bacteriology and Immunology, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland; and
| | - Hanna-Mari Baldauf
- Haartman Institute, Department of Bacteriology and Immunology, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland; and
| | - Juha Puntila
- Department of Surgery, Hospital for Children and Adolescents, Helsinki University Hospital, Helsinki, Finland
| | - T Petteri Arstila
- Haartman Institute, Department of Bacteriology and Immunology, and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland; and
| |
Collapse
|
24
|
Pioli PD, Whiteside SK, Weis JJ, Weis JH. Snai2 and Snai3 transcriptionally regulate cellular fitness and functionality of T cell lineages through distinct gene programs. Immunobiology 2016; 221:618-33. [PMID: 26831822 DOI: 10.1016/j.imbio.2016.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 01/31/2023]
Abstract
T lymphocytes are essential contributors to the adaptive immune system and consist of multiple lineages that serve various effector and regulatory roles. As such, precise control of gene expression is essential to the proper development and function of these cells. Previously, we identified Snai2 and Snai3 as being essential regulators of immune tolerance partly due to the impaired function of CD4(+) regulatory T cells in Snai2/3 conditional double knockout mice. Here we extend those previous findings using a bone marrow transplantation model to provide an environmentally unbiased view of the molecular changes imparted onto various T lymphocyte populations once Snai2 and Snai3 are deleted. The data presented here demonstrate that Snai2 and Snai3 transcriptionally regulate the cellular fitness and functionality of not only CD4(+) regulatory T cells but effector CD8(α+) and CD4(+) conventional T cells as well. This is achieved through the modulation of gene sets unique to each cell type and includes transcriptional targets relevant to the survival and function of each T cell lineage. As such, Snai2 and Snai3 are essential regulators of T cell immunobiology.
Collapse
Affiliation(s)
- Peter D Pioli
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, United States.
| | - Sarah K Whiteside
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, United States
| | - Janis J Weis
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, United States
| | - John H Weis
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, United States
| |
Collapse
|
25
|
Pham MN, von Herrath MG, Vela JL. Antigen-Specific Regulatory T Cells and Low Dose of IL-2 in Treatment of Type 1 Diabetes. Front Immunol 2016; 6:651. [PMID: 26793191 PMCID: PMC4707297 DOI: 10.3389/fimmu.2015.00651] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/17/2015] [Indexed: 12/19/2022] Open
Abstract
Regulatory T cells (Tregs) play an important role in preventing effector T-cell (Teff) targeting of self-antigens that can lead to tissue destruction in autoimmune settings, including type 1 diabetes (T1D). Autoimmunity is caused in part by an imbalance between Teff and Tregs. Early attempts to treat with immunosuppressive agents have led to serious side effects, thus requiring a more targeted approach. Low-dose IL-2 (LD IL-2) can provide immunoregulation with few side effects by preferentially acting on Tregs to drive tolerance. The concept of LD IL-2 as a therapeutic approach is supported by data in mouse models where autoimmunity is cured and further strengthened by success in human clinical studies in hepatitis C virus-induced vasculitis, chronic graft-versus-host disease, and Alopecia areata. Treatment will require identification of a safe therapeutic window, which is a difficult task given that patients are reported to have deficient or defective IL-2 production or signaling and have experienced mild activation of NK cells and eosinophils with LD IL-2 therapy. In T1D, an LD IL-2 clinical trial concluded that Tregs can be safely expanded in humans; however, the study was not designed to address efficacy. Antigen-specific therapies have also aimed at regulation of the autoimmune response but have been filled with disappointment despite an extensive list of diverse islet antigens tested in humans. This approach could be enhanced through the addition of LD IL-2 to the antigenic treatment regimen to improve the frequency and function of antigen-specific Tregs, without global immunosuppression. Here, we will discuss the use of LD IL-2 and islet antigen to enhance antigen-specific Tregs in T1D and focus on what is known about their immunological impact, their safety, and potential efficacy, and need for better methods to identify therapeutic effectiveness.
Collapse
Affiliation(s)
- Minh N Pham
- Novo Nordisk Research Center, Seattle, WA, USA; Pacific Northwest Diabetes Research Institute, Seattle, WA, USA
| | | | | |
Collapse
|
26
|
Chera M, Hamel Y, Baillou C, Touil S, Guillot-Delost M, Charlotte F, Kossir L, Simonin G, Maury S, Cohen JL, Lemoine FM. Generation of Human Alloantigen-Specific Regulatory T Cells under Good Manufacturing Practice-Compliant Conditions for Cell Therapy. Cell Transplant 2015; 24:2527-40. [DOI: 10.3727/096368914x683566] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Natural regulatory T cells (Tregs) may have a great therapeutic potential to induce tolerance in allogeneic cells and organ transplantations. In mice, we showed that alloantigen-specific Tregs (spe-Tregs) were more efficient than polyclonal Tregs (poly-Tregs) in controlling graft-versus-host disease (GVHD). Here we describe a clinical-grade compliant method for generating human spe-Tregs. Tregs were enriched from leukapheresis products with anti-CD25 immunomagnetic beads, primed twice by allogeneic mature monocyte-derived dendritic cells (mDCs), and cultured during 3 weeks in medium containing interleukin 2 (IL-2), IL-15, and rapamycin. After 3 weeks of culture, final cell products were expanded 8.3-fold from the initial CD25+ purifications. Immunophenotypic analyses of final cells indicate that they were composed of 88 ± 2.6% of CD4+ T cells, all expressing Treg-specific markers (FOXP3, Helios, GARP, LAP, and CD152). Spe-Tregs were highly suppressive in vitro and also in vivo using a xeno-GVHD model established in immunodeficient mice. The specificity of their suppressive activity was demonstrated on their ability to significantly suppress the proliferation of autologous effector T cells stimulated by the same mDCs compared to third-party mDCs. Our data provide evidence that functional alloantigen Tregs can be generated under clinical-grade compliant conditions. Taking into account that 130 × 106 CD25+ cells can be obtained at large scale from standard leukapheresis, our cell process may give rise to a theoretical final number of 1 × 109 spe-Tregs. Thus, using our strategy, we can propose to prepare spe-Tregs for clinical trials designed to control HLA-mismatched GVHD or organ transplantation rejection.
Collapse
Affiliation(s)
- Mustapha Chera
- AP-HP, University Hospital La Pitié-Salpêtrière, Department of Biotherapies, Paris, France
- Center of Clinical Investigation in Biotherapies 1420, University Hospital La Pitié-Salpêtrière, Paris, France
| | - Yamina Hamel
- Sorbonne Universités, UPMC Univ Paris 06, UMR-S CR7, CIMI-Paris, Paris, France
| | - Claude Baillou
- Sorbonne Universités, UPMC Univ Paris 06, UMR-S CR7, CIMI-Paris, Paris, France
- INSERM, UMR S 1135, CIMI-Paris, Paris, France
| | - Soumia Touil
- CNRS, UMR 7211, Immunology Immunopathology and Immunotherapy, Paris, France
| | - Maude Guillot-Delost
- Sorbonne Universités, UPMC Univ Paris 06, UMR-S CR7, CIMI-Paris, Paris, France
- INSERM, UMR S 1135, CIMI-Paris, Paris, France
| | - Frédéric Charlotte
- AP-HP, University Hospital La Pitié-Salpêtrière, Department of Pathology, Paris, France
| | - Laila Kossir
- AP-HP, University Hospital La Pitié-Salpêtrière, Department of Biotherapies, Paris, France
- Center of Clinical Investigation in Biotherapies 1420, University Hospital La Pitié-Salpêtrière, Paris, France
| | - Ghislaine Simonin
- AP-HP, University Hospital La Pitié-Salpêtrière, Department of Biotherapies, Paris, France
- Center of Clinical Investigation in Biotherapies 1420, University Hospital La Pitié-Salpêtrière, Paris, France
| | - Sébastien Maury
- AP-HP, Henri-Mondor Hospital, Department of Clinical Hematology, Créteil, France
- Université Paris-Est, UMR-S955, UPEC, Créteil, France
- INSERM, U955, Team 21, Créteil, France
| | - José L. Cohen
- Université Paris-Est, UMR-S955, UPEC, Créteil, France
- INSERM, U955, Team 21, Créteil, France
- AP-HP, Henri-Mondor - A. Chenevier Hospital, CIC-BT-504, Créteil, France
| | - François M. Lemoine
- AP-HP, University Hospital La Pitié-Salpêtrière, Department of Biotherapies, Paris, France
- Center of Clinical Investigation in Biotherapies 1420, University Hospital La Pitié-Salpêtrière, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR-S CR7, CIMI-Paris, Paris, France
- INSERM, UMR S 1135, CIMI-Paris, Paris, France
| |
Collapse
|
27
|
Regulatory T Cells Resist Cyclosporine-Induced Cell Death via CD44-Mediated Signaling Pathways. Int J Cell Biol 2015; 2015:614297. [PMID: 26448755 PMCID: PMC4581548 DOI: 10.1155/2015/614297] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 01/19/2015] [Accepted: 01/19/2015] [Indexed: 12/20/2022] Open
Abstract
Cyclosporine A (CSA) is an immunosuppressive agent that specifically targets T cells and also increases the percentage of pro-tolerogenic CD4+Foxp3+ regulatory T cells (Treg) through unknown mechanisms. We previously reported that CD44, a receptor for the extracellular matrix glycosaminoglycan hyaluronan (HA), promotes Treg stability in IL-2-low environments. Here, we asked whether CD44 signaling also promotes Treg resistance to CSA. We found that CD44 cross-linking promoted Foxp3 expression and Treg viability in the setting of CSA treatment. This effect was IL-2 independent but could be suppressed using sc-355979, an inhibitor of Stat5-phosphorylation. Moreover, we found that inhibition of HA synthesis impairs Treg homeostasis but that this effect could be overcome with exogenous IL-2 or CD44-cross-linking. Together, these data support a model whereby CD44 cross-linking by HA promotes IL-2-independent Foxp3 expression and Treg survival in the face of CSA.
Collapse
|
28
|
Li Y, Shi Y, Liao Y, Yan L, Zhang Q, Wang L. Differential regulation of Tregs and Th17/Th1 cells by a sirolimus-based regimen might be dependent on STAT-signaling in renal transplant recipients. Int Immunopharmacol 2015; 28:435-43. [PMID: 26186486 DOI: 10.1016/j.intimp.2015.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 06/21/2015] [Accepted: 07/07/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Sirolimus (SRL), a mammalian target of rapamycin inhibitor, has been used as a de novo base therapy with steroids and mycophenolate mofetil to avoid the use of calcineurin inhibitors. Our aim was to determine whether immunoregulation is promoted after conversion from tacrolimus (TAC) to SRL. METHODS The study included 24 renal transplant recipients who converted from TAC to SRL therapy and 24 normal controls. The frequency of T helper (Th) cells and the presence of signal transducer and activator of transcription (STAT) proteins in peripheral blood were analyzed by flow cytometry before conversion and at 3 and 6 months after conversion. Plasma levels of interleukin (IL)-1β, interferon-γ (IFN-γ), IL-17, IL-6, and IL-10 were analyzed by the Bio-Plex® suspension array system before and at 3 months after conversion. RESULTS Renal transplant recipients who switched to SRL showed a significant increase in regulatory T cell (Treg) frequencies and better renal function compared with preconversion (P<0.05). The plasma concentrations of inflammatory cytokines IL-1β, IL-6, IL-17, and IFN-γ were significantly decreased after conversion to SRL. Furthermore, recipients who switched to SRL showed an increase in STAT5 activation and a decrease in STAT3 activation compared with the TAC group. CONCLUSION Our results indicate that conversion to SRL might both minimize calcineurin inhibitor toxicity and promote immune tolerance.
Collapse
Affiliation(s)
- Yi Li
- Department of Clinical Immunological Laboratory, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yunying Shi
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yun Liao
- Department of Clinical Immunological Laboratory, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Lin Yan
- Department of Clinical Immunological Laboratory, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Qi Zhang
- Department of Clinical Immunological Laboratory, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Lanlan Wang
- Department of Clinical Immunological Laboratory, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
29
|
Lin SJ, Lu CH, Yan DC, Lee PT, Hsiao HS, Kuo ML. Expansion of regulatory T cells from umbilical cord blood and adult peripheral blood CD4(+)CD25 (+) T cells. Immunol Res 2015; 60:105-11. [PMID: 24515612 DOI: 10.1007/s12026-014-8488-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CD4(+)CD25(+) regulatory T cells (Treg), if properly expanded from umbilical cord blood (UCB), may provide a promising immunotherapeutic tool. Our previous data demonstrated that UCB CD4(+)CD25(+) T cells with 4-day stimulation have comparable phenotypes and suppressive function to that of adult peripheral blood (APB) CD4(+)CD25(+) T cells. We further examined whether 2-week culture would achieve higher expansion levels of Tregs. UCB CD4(+)CD25(+) T cells and their APB counterparts were stimulated with anti-CD3/anti-CD28 in the presence of IL-2 or IL-15 for 2 weeks. The cell proliferation and forkhead box P3 (FoxP3) expression were examined. The function of the expanded cells was then investigated by suppressive assay. IL-21 was applied to study whether it counteracts the function of UCB and APB CD4(+)CD25(+) T cells. The results indicate that UCB CD4(+)CD25(+) T cells expanded much better than their APB counterparts. IL-2 was superior to expand UCB and APB Tregs for 2 weeks than IL-15. FoxP3 expression which peaked on Day 10-14 was comparable. Most importantly, expanded UCB Tregs showed greater suppressive function in allogeneic mixed lymphocyte reaction. The addition of IL-21, however, counteracted the suppressive function of expanded UCB and APB Tregs. The results support using UCB as a source of Treg cells.
Collapse
Affiliation(s)
- Syh-Jae Lin
- Division of Asthma, Allergy, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | | | | | | | | | | |
Collapse
|
30
|
Litjens NHR, Boer K, Zuijderwijk JM, Klepper M, Peeters AMA, Prens EP, Verschoor W, Kraaijeveld R, Ozgur Z, van den Hout-van Vroonhoven MC, van IJcken WFJ, Baan CC, Betjes MGH. Allogeneic Mature Human Dendritic Cells Generate Superior Alloreactive Regulatory T Cells in the Presence of IL-15. THE JOURNAL OF IMMUNOLOGY 2015; 194:5282-93. [PMID: 25917092 DOI: 10.4049/jimmunol.1402827] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/23/2015] [Indexed: 11/19/2022]
Abstract
Expansion of Ag-specific naturally occurring regulatory T cells (nTregs) is required to obtain sufficient numbers of cells for cellular immunotherapy. In this study, different allogeneic stimuli were studied for their capacity to generate functional alloantigen-specific nTregs. A highly enriched nTreg fraction (CD4(+)CD25(bright)CD127(-) T cells) was alloantigen-specific expanded using HLA-mismatched immature, mature monocyte-derived dendritic cells (moDCs), or PBMCs. The allogeneic mature moDC-expanded nTregs were fully characterized by analysis of the demethylation status within the Treg-specific demethylation region of the FOXP3 gene and the expression of both protein and mRNA of FOXP3, HELIOS, CTLA4, and cytokines. In addition, the Ag-specific suppressive capacity of these expanded nTregs was tested. Allogeneic mature moDCs and skin-derived DCs were superior in inducing nTreg expansion compared with immature moDCs or PBMCs in an HLA-DR- and CD80/CD86-dependent way. Remarkably, the presence of exogenous IL-15 without IL-2 could facilitate optimal mature moDC-induced nTreg expansion. Allogeneic mature moDC-expanded nTregs were at low ratios (<1:320), potent suppressors of alloantigen-induced proliferation without significant suppression of completely HLA-mismatched, Ag-induced proliferation. Mature moDC-expanded nTregs were highly demethylated at the Treg-specific demethylation region within the FOXP3 gene and highly expressed of FOXP3, HELIOS, and CTLA4. A minority of the expanded nTregs produced IL-10, IL-2, IFN-γ, and TNF-α, but few IL-17-producing nTregs were found. Next-generation sequencing of mRNA of moDC-expanded nTregs revealed a strong induction of Treg-associated mRNAs. Human allogeneic mature moDCs are highly efficient stimulator cells, in the presence of exogenous IL-15, for expansion of stable alloantigen-specific nTregs with superior suppressive function.
Collapse
Affiliation(s)
- Nicolle H R Litjens
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands;
| | - Karin Boer
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Joke M Zuijderwijk
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Mariska Klepper
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Annemiek M A Peeters
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Errol P Prens
- Department of Dermatology, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands; Department of Rheumatology, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands; and
| | - Wenda Verschoor
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Rens Kraaijeveld
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Zeliha Ozgur
- Erasmus Medical Center, Erasmus Center for Biomics, 3000 CA Rotterdam, the Netherlands
| | | | | | - Carla C Baan
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Michiel G H Betjes
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands
| |
Collapse
|
31
|
Cichocki F, Verneris MR, Cooley S, Bachanova V, Brunstein CG, Blazar BR, Wagner J, Schlums H, Bryceson YT, Weisdorf DJ, Miller JS. The Past, Present, and Future of NK Cells in Hematopoietic Cell Transplantation and Adoptive Transfer. Curr Top Microbiol Immunol 2015; 395:225-43. [PMID: 26037048 DOI: 10.1007/82_2015_445] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hematopoietic cell transplantation (HCT) has been used as a part of cancer therapy for over half a decade. Beyond the necessity for donor-derived cells to reconstitute hematopoiesis after radiation and chemotherapy, immunologic reconstitution from allogeneic cells is important for the elimination of residual tumor cells. Natural killer (NK) cells are first among lymphocytes to reconstitute post-transplant and protect against cancer relapse. In this review, we provide a historical perspective on the role of NK cells in cancer control in the transplant setting and focus on current research aimed at improving NK cell responses for therapeutic benefit.
Collapse
Affiliation(s)
- Frank Cichocki
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | | | - Sarah Cooley
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | | | | | - Bruce R Blazar
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - John Wagner
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Heinrich Schlums
- Centre for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Yenan T Bryceson
- Centre for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Broeglmann Research Laboratory, Clinical Institute, University of Bergen, Bergen, Norway
| | - Daniel J Weisdorf
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Jeffrey S Miller
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA. .,MMC 806, Division of Hematology, Oncology and Transplantation, University of Minnesota Cancer Center, Harvard Street at East River Road, Minneapolis, MN, 55455, USA.
| |
Collapse
|
32
|
Abstract
UNLABELLED Regulatory T (Treg) cells are important in the maintenance of self-tolerance, and the depletion of Treg cells correlates with autoimmune development. It has been shown that type I interferon (IFN) responses induced early in the infection of mice can drive memory (CD44hi) CD8 and CD4 T cells into apoptosis, and we questioned here whether the apoptosis of CD44-expressing Treg cells might be involved in the infection-associated autoimmune development. Instead, we found that Treg cells were much more resistant to apoptosis than CD44hi CD8 and CD4 T cells at days 2 to 3 after lymphocytic choriomeningitis virus infection, when type I IFN levels are high. The infection caused a downregulation of the interleukin-7 (IL-7) receptor, needed for survival of conventional T cells, while increasing on Treg cells the expression of the high-affinity IL-2 receptor, needed for STAT5-dependent survival of Treg cells. The stably maintained Treg cells early during infection may explain the relatively low incidence of autoimmune manifestations among infected patients. IMPORTANCE Autoimmune diseases are controlled in part by regulatory T cells (Treg) and are thought to sometimes be initiated by viral infections. We tested the hypothesis that Treg may die off at early stages of infection, when virus-induced factors kill other lymphocyte types. Instead, we found that Treg resisted this cell death, perhaps reducing the tendency of viral infections to cause immune dysfunction and induce autoimmunity.
Collapse
|
33
|
Bergamaschi C, Kulkarni V, Rosati M, Alicea C, Jalah R, Chen S, Bear J, Sardesai NY, Valentin A, Felber BK, Pavlakis GN. Intramuscular delivery of heterodimeric IL-15 DNA in macaques produces systemic levels of bioactive cytokine inducing proliferation of NK and T cells. Gene Ther 2014; 22:76-86. [PMID: 25273353 PMCID: PMC4289118 DOI: 10.1038/gt.2014.84] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 08/01/2014] [Accepted: 08/11/2014] [Indexed: 01/06/2023]
Abstract
Interleukin-15 (IL-15) is a common γ-chain cytokine that has a significant role in the activation and proliferation of T and NK cells and holds great potential in fighting infection and cancer. We have previously shown that bioactive IL-15 in vivo comprises a complex of the IL-15 chain with the soluble or cell-associated IL-15 receptor alpha (IL-15Rα) chain, which together form the IL-15 heterodimer. We have generated DNA vectors expressing the heterodimeric IL-15 by optimizing mRNA expression and protein trafficking. Repeated administration of these DNA plasmids by intramuscular injection followed by in vivo electroporation in rhesus macaques resulted in sustained high levels of IL-15 in plasma, with no significant toxicity. Administration of DNAs expressing heterodimeric IL-15 also resulted in an increased frequency of NK and T cells undergoing proliferation in peripheral blood. Heterodimeric IL-15 led to preferential expansion of CD8+NK cells, all memory CD8+ T-cell subsets and effector memory CD4+ T cells. Expression of heterodimeric IL-15 by DNA delivery to the muscle is an efficient procedure to obtain high systemic levels of bioactive cytokine, without the toxicity linked to the high transient cytokine peak associated with protein injection.
Collapse
Affiliation(s)
- C Bergamaschi
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - V Kulkarni
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - M Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - C Alicea
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - R Jalah
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - S Chen
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - J Bear
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - N Y Sardesai
- Inovio Pharmaceuticals, Plymouth Meeting, PA, USA
| | - A Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - B K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - G N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| |
Collapse
|
34
|
Zaunders JJ, Lévy Y, Seddiki N. Exploiting differential expression of the IL-7 receptor on memory T cells to modulate immune responses. Cytokine Growth Factor Rev 2014; 25:391-401. [PMID: 25130296 DOI: 10.1016/j.cytogfr.2014.07.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Interleukin-7 is a non-redundant growth, differentiation and survival factor for human T lymphocytes. Most circulating, mature T cells express the receptor for IL-7, but not all. Importantly, CD4 Tregs express greatly reduced levels of IL-7R compared to conventional CD4 T cells, presenting an opportunity to selectively target the latter cells with either more IL-7 to boost responses, or to block IL-7 signalling to limit responses. This article reviews what is known about regulation of IL-7R expression, and recent progress in therapeutic approaches related to IL-7 and its receptor.
Collapse
Affiliation(s)
- John J Zaunders
- Centre for Applied Medical Research, St. Vincent's Hospital, Australia; Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Yves Lévy
- Inserm, U955, Equipe 16, Créteil, 94000, France; Université Paris Est, Faculté de médecine, Créteil, 94000, France; Vaccine Research Institute (VRI), Créteil, 94000, France; AP-HP, Hôpital H. Mondor-A. Chenevier, Service d'immunologie Clinique et maladies infectieuses, Créteil, 94000, France
| | - Nabila Seddiki
- Inserm, U955, Equipe 16, Créteil, 94000, France; Université Paris Est, Faculté de médecine, Créteil, 94000, France; Vaccine Research Institute (VRI), Créteil, 94000, France.
| |
Collapse
|
35
|
Rébé C, Végran F, Berger H, Ghiringhelli F. STAT3 activation: A key factor in tumor immunoescape. JAKSTAT 2014; 2:e23010. [PMID: 24058791 PMCID: PMC3670267 DOI: 10.4161/jkst.23010] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/21/2012] [Accepted: 11/27/2012] [Indexed: 12/28/2022] Open
Abstract
Cancer growth is controlled by cancer cells (cell intrinsic phenomenon), but also by the immune cells in the tumor microenvironment (cell extrinsic phenomenon). Thus cancer progression is mediated by the activation of transcription programs responsible for cancer cell proliferation, but also induced proliferation/activation of immunosuppressive cells such as Th17, Treg or myeloid derived suppressor cells (MDSCs). One of the key transcription factors involved in these pathways is the signal transducer and activator of transcription 3 (STAT3). In this review we will focus on STAT3 activation in immune cells, and how it impacts on tumor progression.
Collapse
Affiliation(s)
- Cédric Rébé
- INSERM, U866; Dijon, France ; Centre Georges François Leclerc; Dijon, France
| | | | | | | |
Collapse
|
36
|
Comparative dose-responses of recombinant human IL-2 and IL-7 on STAT5 phosphorylation in CD4+FOXP3- cells versus regulatory T cells: a whole blood perspective. Cytokine 2014; 69:146-9. [PMID: 24947990 DOI: 10.1016/j.cyto.2014.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/19/2014] [Accepted: 05/21/2014] [Indexed: 11/23/2022]
Abstract
Interleukin(IL)-2 and IL-7 are cytokines with important functions related to CD4(+) lymphocyte proliferation, differentiation and survival. Depending on doses, they theoretically activate regulatory (Treg) and/or effector T cells (Teff) and thus may be indicated with different therapeutic objectives. In this study we assessed ex vivo the differential dose-responses of CD4(+) T cell subsets (Treg versus CD4(+)FOXP3(-) cells) to recombinant human (rh) IL-2 and rhIL-7. Fresh whole blood from healthy donors was stimulated with increasing doses of cytokines. By using a novel flow cytometry procedure of intracellular signaling pathway staining (e.g., detection of STAT5 phosphorylation; a pivotal marker of cytokine-induced activation; in combination with intracellular FOXP3 staining), we were able to specifically measure Treg and CD4(+)FOXP3(-) cell responses in the same tube. Half maximal effective concentrations (EC50) were calculated. We observed a dose-response effect on Treg and CD4(+)FOXP3(-) cells for both cytokines. Interestingly, low doses of hIL-2 preferentially activated Treg (EC50 Treg = 0.15 pg/ml versus CD4(+)FOXP3(-) cells = 750 pg/ml - p < 0.0001) whereas low doses of rhIL-7 preferentially induced CD4(+)FOXP3(-) cell activation (EC50 Treg = 25 pg/ml and CD4(+)FOXP3(-) cells = 2.5 pg/ml - p < 0.0001). To our knowledge, this work is the first to show differential dose-response effects on CD4(+)FOXP3(-) cells versus Treg of rhIL-7 and rhIL-2 in one ex vivo whole blood single tube assay including two intracellular stainings (i.e., pSTAT5 and FOXP3). Beyond the confirmation of the dose-dependent differential effects of IL-2 versus IL-7 on CD4(+)FOXP3(-) cells/Treg, our results illustrate the value of this approach for monitoring drugs' activities by flow cytometry in daily clinical practice.
Collapse
|
37
|
Liao FH, Shui JW, Hsing EW, Hsiao WY, Lin YC, Chan YC, Tan TH, Huang CY. Protein phosphatase 4 is an essential positive regulator for Treg development, function, and protective gut immunity. Cell Biosci 2014; 4:25. [PMID: 24904742 PMCID: PMC4045899 DOI: 10.1186/2045-3701-4-25] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/21/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Protein phosphates 4 (PP4), encoded by the ppp4c gene, is a ubiquitously expressed phosphatase that has been implicated in the regulation of cytokine signaling and lymphocyte survival; recent reports suggest that PP4 may be involved in pre-TCR signaling and B cell development. However, whether PP4 also modulates the functions of peripheral T cells has not been investigated due to the lack of a suitable in vivo model. Treg cells are a specialized subset of CD4 helper T cells that can suppress the proliferation of activated effector T cells. In the absence of this negative regulation, autoimmune syndromes and inflammatory diseases, such as human Crohn's disease, will arise. RESULTS In this report, we generated mice with T cell-specific ablation of the ppp4c gene (CD4cre:PP4(f/f)) and a Foxp3-GFP reporter gene to examine the roles of PP4 in Treg development and function. Characterizations of the CD4cre:PP4(f/f) mice showed that PP4 deficiency induced partial αβ T lymphopenia and T cell hypo-proliferation. Further analyses revealed significant reductions in the numbers of thymic and peripheral Treg cells, as well as in the efficiency of in vitro Treg polarization. In addition, PP4-deficient Treg cells exhibited reduced suppressor functions that were associated with decreased IL-10, CTLA4, GITR and CD103 expression. More interestingly, the CD4cre:PP4(f/f) mice developed spontaneous rectal prolapse and colitis with symptoms similar to human Crohn's disease. The pathogenesis of colitis required the presence of commensal bacteria, and was correlated with reduced Treg cells in the gut. Nevertheless, PP4-deficient Treg cells were still capable of suppressing experimental colitis, suggesting that multiple factors contributed to the onset of the spontaneous colitis. CONCLUSIONS While the molecular mechanisms remain to be investigated, our results clearly show that PP4 plays a non-redundant role for the differentiation, suppressor activity and gut homeostasis of Treg cells. The onset of spontaneous colitis in the CD4cre:PP4(f/f) mice further suggests that PP4 is essential for the maintenance of protective gut immunity. The CD4cre:PP4(f/f) mice thus may serve as a good model for studying the interactions between Treg cells and gut commensal bacteria for the regulation of mucosal immunity.
Collapse
Affiliation(s)
- Fang-Hsuean Liao
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | - Jr-Wen Shui
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - En-Wei Hsing
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | - Wan-Yi Hsiao
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | - Yu-Chun Lin
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | - Yi-Chiao Chan
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan ; Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ching-Yu Huang
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| |
Collapse
|
38
|
Yap M, Boeffard F, Clave E, Pallier A, Danger R, Giral M, Dantal J, Foucher Y, Guillot-Gueguen C, Toubert A, Soulillou JP, Brouard S, Degauque N. Expansion of highly differentiated cytotoxic terminally differentiated effector memory CD8+ T cells in a subset of clinically stable kidney transplant recipients: a potential marker for late graft dysfunction. J Am Soc Nephrol 2014; 25:1856-68. [PMID: 24652799 DOI: 10.1681/asn.2013080848] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite the effectiveness of immunosuppressive drugs, kidney transplant recipients still face late graft dysfunction. Thus, it is necessary to identify biomarkers to detect the first pathologic events and guide therapeutic target development. Previously, we identified differences in the T-cell receptor Vβ repertoire in patients with stable graft function. In this prospective study, we assessed the long-term effect of CD8(+) T-cell differentiation and function in 131 patients who had stable graft function. In 45 of 131 patients, a restriction of TCR Vβ diversity was detected and associated with the expansion of terminally differentiated effector memory (TEMRA; CD45RA(+)CCR7(-)CD27(-)CD28(-)) CD8(+) T cells expressing high levels of perforin, granzyme B, and T-bet. This phenotype positively correlated with the level of CD57 and the ability of CD8(+) T cells to secrete TNF-α and IFN-γ. Finally, 47 of 131 patients experienced kidney dysfunction during the median 15-year follow-up period. Using a Cox regression model, we found a 2-fold higher risk (P=0.06) of long-term graft dysfunction in patients who had increased levels of differentiated TEMRA CD8(+) T cells at inclusion. Collectively, these results suggest that monitoring the phenotype and function of circulating CD8(+) T cells may improve the early identification of at-risk patients.
Collapse
Affiliation(s)
- Michelle Yap
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1064, Nantes, France; Centre Hospitalier Universitaire de Nantes, Institut de Transplantation Urologie-Néphrologie, Nantes, France; Faculté de Médecine, Université de Nantes, Nantes, France
| | - Françoise Boeffard
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1064, Nantes, France; Centre Hospitalier Universitaire de Nantes, Institut de Transplantation Urologie-Néphrologie, Nantes, France; Faculté de Médecine, Université de Nantes, Nantes, France
| | - Emmanuel Clave
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 940, Paris, France; and
| | - Annaick Pallier
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1064, Nantes, France; Centre Hospitalier Universitaire de Nantes, Institut de Transplantation Urologie-Néphrologie, Nantes, France; Faculté de Médecine, Université de Nantes, Nantes, France
| | - Richard Danger
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1064, Nantes, France; Centre Hospitalier Universitaire de Nantes, Institut de Transplantation Urologie-Néphrologie, Nantes, France; Faculté de Médecine, Université de Nantes, Nantes, France
| | - Magali Giral
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1064, Nantes, France; Centre Hospitalier Universitaire de Nantes, Institut de Transplantation Urologie-Néphrologie, Nantes, France; Faculté de Médecine, Université de Nantes, Nantes, France
| | - Jacques Dantal
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1064, Nantes, France; Centre Hospitalier Universitaire de Nantes, Institut de Transplantation Urologie-Néphrologie, Nantes, France; Faculté de Médecine, Université de Nantes, Nantes, France
| | - Yohann Foucher
- Centre Hospitalier Universitaire de Nantes, Institut de Transplantation Urologie-Néphrologie, Nantes, France; Université de Nantes, Equipe d'Accueil 4275 and Labex Transplantex, Nantes, France
| | - Cécile Guillot-Gueguen
- Centre Hospitalier Universitaire de Nantes, Institut de Transplantation Urologie-Néphrologie, Nantes, France
| | - Antoine Toubert
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 940, Paris, France; and
| | - Jean-Paul Soulillou
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1064, Nantes, France; Centre Hospitalier Universitaire de Nantes, Institut de Transplantation Urologie-Néphrologie, Nantes, France; Faculté de Médecine, Université de Nantes, Nantes, France;
| | - Sophie Brouard
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1064, Nantes, France; Centre Hospitalier Universitaire de Nantes, Institut de Transplantation Urologie-Néphrologie, Nantes, France; Faculté de Médecine, Université de Nantes, Nantes, France
| | - Nicolas Degauque
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1064, Nantes, France; Centre Hospitalier Universitaire de Nantes, Institut de Transplantation Urologie-Néphrologie, Nantes, France; Faculté de Médecine, Université de Nantes, Nantes, France
| |
Collapse
|
39
|
Selvaraj RK. Avian CD4(+)CD25(+) regulatory T cells: properties and therapeutic applications. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:397-402. [PMID: 23665004 DOI: 10.1016/j.dci.2013.04.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 04/19/2013] [Accepted: 04/23/2013] [Indexed: 06/02/2023]
Abstract
Regulatory T cells (Tregs) are a subset of T cells that specialize in immune suppression. CD4(+)CD25(+)FoxP3(+) T cells have been characterized as Tregs and extensively studied in mammals. In the absence of a putative FoxP3 ortholog in avians, CD4(+)CD25(+) cells is characterized as Tregs in avians. Avian CD4(+)CD25(+) cells produce high amounts of IL-10, TGF-β, CTLA-4, and LAG-3 mRNA; lack IL-2 mRNA; and suppress T cell proliferation in vitro through both contact-dependent and -independent pathways. Depleting avian CD4(+)CD25(+) cells increases the proliferation of, IL-2 amount, and IFNγ mRNA amount of CD4(+)CD25(-) cells. Avian CD4(+)CD25(+) cells lose their suppressive properties immediately after inflammation and acquire supersuppressive properties once inflammation subsides. Although Treg activity could be beneficial to the host, Tregs simultaneously inhibit host immunity and cause persistent infections of certain pathogens. Therapy targeted toward alleviating Treg mediated immune suppression can improve host immunity against those persistent pathogens and benefit poultry production.
Collapse
Affiliation(s)
- Ramesh K Selvaraj
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, Wooster, 44691, United States.
| |
Collapse
|
40
|
Younas M, Hue S, Lacabaratz C, Guguin A, Wiedemann A, Surenaud M, Beq S, Croughs T, Lelièvre JD, Lévy Y. IL-7 modulates in vitro and in vivo human memory T regulatory cell functions through the CD39/ATP axis. THE JOURNAL OF IMMUNOLOGY 2013; 191:3161-8. [PMID: 23966629 DOI: 10.4049/jimmunol.1203547] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The heterogeneity of human regulatory T cells (Tregs) may explain the discrepancies between studies on Tregs in physiology and pathology. Contrasting effects of IL-7 on the expansion and survival of human Tregs were reported. Therefore, we investigated the effects of IL-7 on the phenotype and function of well-characterized populations of human Tregs. We show that IL-7 signals via the CD127 receptor on naive, memory, and activated memory Tregs sorted from the blood of healthy donors, but it does not affect their proliferation. In contrast, IL-7 affects their suppressive capacities differently. This effect was modest on naive Tregs but was dramatic (90%) on memory Tregs. We provide evidence that IL-7 exerts a synergistic effect through downmodulation of the ectoenzyme CD39, which converts ATP to ADP/AMP, and an increase in ATP receptor P2X7. Both effects lead to an increase in the ATP-mediated effect, tipping the balance to favor Th17 conversion. Using an IL-7 therapeutic study, we show that IL-7 exerts the same effects in vitro and in vivo in HIV-infected individuals. Globally, our data show that IL-7 negatively regulates Tregs and contributes to increase the number of tools that may affect Treg function in pathology.
Collapse
Affiliation(s)
- Mehwish Younas
- INSERM U955, Institut Mondor de Recherche Biomédicale, 94010 Créteil, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Székely JI, Pataki Á. Effects of vitamin D on immune disorders with special regard to asthma, COPD and autoimmune diseases: a short review. Expert Rev Respir Med 2013; 6:683-704. [PMID: 23234453 DOI: 10.1586/ers.12.57] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This paper reviews the recent data on the role of vitamin D (VD) in the genesis of various immunological disorders. It inhibits immune reactions in general, but it enhances the transcription of 'endogenous antibiotics' such as cathelicidin and defensins. VD inhibits the genesis of both Th1- and Th2-cell mediated diseases. The pleiotropic character VD-induced effects are due to the altered transcription of hundreds of genes. VD supplementation in most related studies reduced the prevalence of asthma. Th1-dependent autoimmune diseases (e.g., multiple sclerosis, Type 1 diabetes, Crohn's disease, rheumatoid arthritis and so on) are also inhibited by VD due to inhibition of antigen presentation, reduced polarization of Th0 cells to Th1 cells and reduced production of cytokines from the latter cells. VD seems to also be a useful adjunct in the prevention of allograft rejection. Last but not least, VD supplementation may be useful in the prevention or adjunct treatment of chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Joseph I Székely
- Institute of Human Physiology and Clinical Experimental Research, School of Medicine, Semmelweis University, 37 - 47 Tüzoltó u., Budapest, H-1094, Hungary.
| | | |
Collapse
|
42
|
Singh K, Gatzka M, Peters T, Borkner L, Hainzl A, Wang H, Sindrilaru A, Scharffetter-Kochanek K. Reduced CD18 levels drive regulatory T cell conversion into Th17 cells in the CD18hypo PL/J mouse model of psoriasis. THE JOURNAL OF IMMUNOLOGY 2013; 190:2544-53. [PMID: 23418628 DOI: 10.4049/jimmunol.1202399] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Defective development and function of CD4(+)CD25(high+)Foxp3(+) regulatory T cells (Tregs) contribute to the pathogenesis of psoriasis and other autoimmune diseases. Little is known about the influence of adhesions molecules on the differentiation of Foxp3(+) Tregs into proinflammatory Th17 cells occurring in lesional skin and blood of psoriasis patients. In the CD18(hypo) PL/J mouse model of psoriasis, reduced expression of CD18/β2 integrin to 2-16% of wild-type levels is associated with progressive loss of Tregs, impaired cell-cell contact between Tregs and dendritic cells (DCs), as well as Treg dysfunction as reported earlier. In the present investigation, Tregs derived from CD18(hypo) PL/J mice were analyzed for their propensity to differentiate into IL-17-producing Th17 cells in vivo and in in vitro Treg-DC cocultures. Adoptively transferred CD18(hypo) PL/J Tregs were more inclined toward conversion into IL-17-producing Th17 cells in vivo in an inflammatory as well as noninflammatory environment compared with CD18(wt) PL/J Tregs. Addition of neutralizing Ab against CD18 to Treg-DC cocultures in vitro promoted conversion of CD18(wt) PL/J Tregs to Th17 cells in a dose-dependent manner similar to conversion rates of CD18(hypo) PL/J Tregs. Reduced thymic output of naturally occurring Tregs and peripheral conversion of Tregs into Th17 cells therefore both contribute to the loss of Tregs and the psoriasiform dermatitis observed in CD18(hypo) PL/J mice. Our data overall indicate that CD18 expression levels impact Treg development as well as Treg plasticity and that differentiation of Tregs into IL-17-producing Th17 cells is distinctly facilitated by a subtotal deficiency of CD18.
Collapse
Affiliation(s)
- Kamayani Singh
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm 89081, Germany
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Perna SK, De Angelis B, Pagliara D, Hasan ST, Zhang L, Mahendravada A, Heslop HE, Brenner MK, Rooney CM, Dotti G, Savoldo B. Interleukin 15 provides relief to CTLs from regulatory T cell-mediated inhibition: implications for adoptive T cell-based therapies for lymphoma. Clin Cancer Res 2012; 19:106-17. [PMID: 23149818 DOI: 10.1158/1078-0432.ccr-12-2143] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Systemic administration of recombinant interleukin (IL)-2 is used to support the expansion and persistence of adoptively transferred antigen-specific CTLs in patients with cancer. However, IL-2 also expands regulatory T cells (Treg) that in turn impair the antitumor activity of CTLs. As recombinant IL-15 is approaching clinical applications, we assessed the effects of this cytokine on the proliferation and antitumor activity of CTLs in the presence of Tregs. We used the model of adoptive transfer of Epstein-Barr virus (EBV)-CTLs, as these cells induce responses in patients with EBV-associated Hodgkin lymphoma, and Tregs are frequently abundant in these patients. EXPERIMENTAL DESIGN Tregs were isolated from the peripheral blood of healthy donors and patients with Hodgkin lymphoma or from Hodgkin lymphoma tumors and assessed for their ability to inhibit the proliferation and antitumor activity of EBV-CTLs in the presence of IL-15 or IL-2. Specific molecular pathways activated by IL-15 were also explored. RESULTS We found that in the presence of Tregs, IL-15, but not IL-2, promoted the proliferation, effector function, and resistance to apoptosis of effectors T cells and EBV-CTLs. IL-15 did not reverse or block Tregs but instead preferentially supported the proliferation of CTLs and effector T cells as compared with Tregs. CONCLUSIONS IL-15 selectively favors the survival, proliferation, and effector function of antigen-specific CTLs in the presence of Tregs, and thus IL-15, unlike IL-2, would have a significant impact in sustaining expansion and persistence of adoptively transferred CTLs in patients with cancer, including those infused with EBV-CTLs for treatment of EBV-associated malignancies.
Collapse
Affiliation(s)
- Serena K Perna
- Center for Cell and Gene Therapy, Baylor College of Medicine, The Methodist Hospital and Texas Children's Hospital, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Because of the potent effector mechanisms of the immune system, the potential for self-destructive immune responses is especially high and many negative regulatory modalities exist to prevent excessive tissue damage. This Commentary places such regulatory mechanisms in the larger context of system organization on many scales. The sometimes counterintuitive nature of feedback control is discussed and a case is made for greater attention to quantitative spatiotemporal aspects of regulation, rather than limiting the discussion to the qualitative descriptions of pathways that dominate at present.
Collapse
Affiliation(s)
- Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
45
|
Kulhankova K, Rouse T, Nasr ME, Field EH. Dendritic cells control CD4+CD25+ Treg cell suppressor function in vitro through juxtacrine delivery of IL-2. PLoS One 2012; 7:e43609. [PMID: 22984435 PMCID: PMC3440416 DOI: 10.1371/journal.pone.0043609] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 07/26/2012] [Indexed: 12/12/2022] Open
Abstract
CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) restrict inflammatory responses to self and nonself. Aberrant Treg activity is pathologic: Insufficient Treg activity is implicated in autoimmunity, allergy, and graft-versus-host-disease; overabundant activity is implicated in chronic infection and cancer. Tregs require IL-2 for their expansion and acquisition/execution of suppressor function; however, because Tregs cannot produce IL-2, they depend on IL-2 from an exogenous source. Until now, that IL-2 source had not been established. We asked whether dendritic cells (DCs) could supply IL-2 to Tregs and, if so, what was required for that delivery. We used flow cytometry, IL-2 ELISPOT, RT-qPCR, and IL-2 promoter-driven reporter assays to measure intracytoplasmic IL-2, secreted protein, IL-2 message and IL-2 promoter activity in bone marrow-derived (BMDC) and splenic DCs. We examined conjugate formation between Tregs, conventional CD4(+) cells, and IL-2-expressing DCs. We measured Treg levels of CD25, Foxp3, and suppressor function after co-culture with IL-2 sufficient and IL-2(-/-) DCs. We generated IL-2-mCherry-expressing DCs and used epifluorescence microscopy and flow cytometry to track IL-2 transfer to Tregs and test requirements for transfer. Between 0.7 to 2.4% of DCs constitutively produced IL-2 and diverted IL-2 secretion to Tregs by preferentially forming conjugates with them. Uptake of DC IL-2 by Tregs required cell-cell contact and CD25. Tregs increased levels of CD25 and Foxp3 from baseline and showed greater suppressor function when co-cultured with IL-2-sufficient DCs, but not when co-cultured with IL-2(-/-) DCs. Exogenous IL-2, added in excess of 500 U/ml to co-cultures with IL-2(-/-) DCs, restored Treg suppressor function. These data support a model of juxtacrine delivery of IL-2 from DCs to Tregs and suggest that a subset of DCs modulates Treg function through controlled, spatial delivery of IL-2. Knowledge of how DCs regulate Tregs should be integrated into the design of interventions intended to alter Treg function.
Collapse
Affiliation(s)
- Katarina Kulhankova
- Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Todd Rouse
- Department of Veterans Affairs Medical Center, Iowa City, Iowa, United States of America
| | - Mohamed E. Nasr
- Department of Veterans Affairs Medical Center, Iowa City, Iowa, United States of America
| | - Elizabeth H. Field
- Department of Veterans Affairs Medical Center, Iowa City, Iowa, United States of America
- Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
46
|
Le Campion A, Pommier A, Delpoux A, Stouvenel L, Auffray C, Martin B, Lucas B. IL-2 and IL-7 Determine the Homeostatic Balance between the Regulatory and Conventional CD4+ T Cell Compartments during Peripheral T Cell Reconstitution. THE JOURNAL OF IMMUNOLOGY 2012; 189:3339-46. [DOI: 10.4049/jimmunol.1103152] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Chakraborty R, Rooney C, Dotti G, Savoldo B. Changes in chemokine receptor expression of regulatory T cells after ex vivo culture. J Immunother 2012; 35:329-36. [PMID: 22495390 DOI: 10.1097/cji.0b013e318255adcc] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
By controlling and limiting inflammatory conditions, naturally occurring regulatory T cells (Tregs), defined as circulating CD4(+)CD25(bright)FoxP3(+) cells, play critical roles in maintaining tolerance and preventing autoimmunity and thus have tremendous potential for adoptive immunotherapy. Because they represent a scanty subset of the CD4(+) T-lymphocyte subset, several approaches have been developed to isolate and expand ex vivo polyclonal Tregs. However, one limitation of the functional analyses performed on these cultured Tregs is the incomplete characterization of their tissue-trafficking properties. As this aspect provides crucial information for their therapeutic effects, we have here explored the chemokine receptor expression profile and function of Tregs cultured ex vivo with validated expansion protocols. Our data show that ex vivo cultured Tregs retained the expression of CCR7 but dramatically downregulated CCR5 as compared with freshly isolated Tregs. The differential chemokine receptors expression pattern corroborated with their respective steady state messenger RNA expression and also with their migration toward specific chemokines. Our analyses suggest that ex vivo cultured Tregs may display impaired or suboptimal migration to the inflamed tissues releasing RANTES and MIP-1α chemokines.
Collapse
Affiliation(s)
- Rikhia Chakraborty
- Center for Cell and Gene Therapy, Department of Pediatrics, Baylor College of Medicine, Methodist Hospital and Texas Children's Hospital, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
48
|
Kim GY, Ligons DL, Hong C, Luckey MA, Keller HR, Tai X, Lucas PJ, Gress RE, Park JH. An in vivo IL-7 requirement for peripheral Foxp3+ regulatory T cell homeostasis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:5859-66. [PMID: 22593613 PMCID: PMC3370137 DOI: 10.4049/jimmunol.1102328] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
All T cells are dependent on IL-7 for their development and for homeostasis. Foxp3(+) regulatory T cells (Tregs) are unique among T cells in that they are dependent on IL-2. Whether such IL-2 dependency is distinct from or in addition to an IL-7 requirement has been a confounding issue, particularly because of the absence of an adequate experimental system to address this question. In this study, we present a novel in vivo mouse model where IL-2 expression is intact but IL-7 expression was geographically limited to the thymus. Consequently, IL-7 is not available in peripheral tissues. Such mice were generated by introducing a thymocyte-specific IL-7 transgene onto an IL-7 null background. In these mice, T cell development in the thymus, including Foxp3(+) Treg numbers, was completely restored, which correlates with the thymus-specific expression of transgenic IL-7. In peripheral cells, however, IL-7 expression was terminated, which resulted in a general paucity of T cells and a dramatic reduction of Foxp3(+) Treg numbers. Loss of Tregs was further accompanied by a significant reduction in Foxp3(+) expression levels. These data suggest that peripheral IL-7 is not only necessary for Treg survival but also for upregulating Foxp3 expression. Collectively, we assessed the effect of a selective peripheral IL-7 deficiency in the presence of a fully functional thymus, and we document a critical requirement for in vivo IL-7 in T cell maintenance and specifically in Foxp3(+) cell homeostasis.
Collapse
Affiliation(s)
- Grace Y. Kim
- Exp. Immunology Branch, National Cancer Inst., NIH, Bethesda, MD
- The Johns Hopkins University, School of Medicine, Baltimore, MD
- Howard Hughes Medical Institute-NIH Research Scholars Program, Bethesda, MD, USA
| | | | - Changwan Hong
- Exp. Immunology Branch, National Cancer Inst., NIH, Bethesda, MD
| | - Megan A. Luckey
- Exp. Immunology Branch, National Cancer Inst., NIH, Bethesda, MD
| | - Hilary R. Keller
- Exp. Immunology Branch, National Cancer Inst., NIH, Bethesda, MD
| | - Xuguang Tai
- Exp. Immunology Branch, National Cancer Inst., NIH, Bethesda, MD
| | - Philip J. Lucas
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD
| | - Ronald E. Gress
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD
| | - Jung-Hyun Park
- Exp. Immunology Branch, National Cancer Inst., NIH, Bethesda, MD
| |
Collapse
|
49
|
Abstract
Abstract
Modulation of regulatory T cell (Treg) suppression has important implications for vaccine development, the effectiveness of tumor surveillance, and the emergence of autoimmunity. We have previously shown that the cytokine IL-21 can counteract Treg suppression. However, whether this reflects an effect of IL-21 on Treg, conventional T cells, or antigen-presenting cells is not known. Here we have used lymphocyte populations from IL-21R–deficient mice to pinpoint which cell type needs to be targeted by IL-21 for Treg suppression to be overcome. We show that IL-21 counteracts suppression by acting on conventional T cells and that this is associated with inhibition of IL-2 production. Despite the lack of IL-2, conventional T-cell responses proceed unimpaired because IL-21 can substitute for IL-2 as a T cell growth factor. However, IL-21 is unable to substitute for IL-2 in supporting the Treg compartment. Thus, IL-21 signaling in conventional T cells indirectly impacts Treg homeostasis by decreasing IL-2 availability. These data demonstrate that IL-21 and IL-2 can have overlapping roles in promoting conventional T-cell responses but play distinct roles in controlling Treg homeostasis and function. The data also suggest a new paradigm whereby cytokines can promote immunity by inhibiting IL-2.
Collapse
|
50
|
Liu D, Song L, Wei J, Courtney AN, Gao X, Marinova E, Guo L, Heczey A, Asgharzadeh S, Kim E, Dotti G, Metelitsa LS. IL-15 protects NKT cells from inhibition by tumor-associated macrophages and enhances antimetastatic activity. J Clin Invest 2012; 122:2221-33. [PMID: 22565311 DOI: 10.1172/jci59535] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 03/21/2012] [Indexed: 12/21/2022] Open
Abstract
Vα24-invariant NKT cells inhibit tumor growth by targeting tumor-associated macrophages (TAMs). Tumor progression therefore requires that TAMs evade NKT cell activity through yet-unknown mechanisms. Here we report that a subset of cells in neuroblastoma (NB) cell lines and primary tumors expresses membrane-bound TNF-α (mbTNF-α). These proinflammatory tumor cells induced production of the chemokine CCL20 from TAMs via activation of the NF-κB signaling pathway, an effect that was amplified in hypoxia. Flow cytometry analyses of human primary NB tumors revealed selective accumulation of CCL20 in TAMs. Neutralization of the chemokine inhibited in vitro migration of NKT cells toward tumor-conditioned hypoxic monocytes and localization of NKT cells to NB grafts in mice. We also found that hypoxia impaired NKT cell viability and function. Thus, CCL20-producing TAMs served as a hypoxic trap for tumor-infiltrating NKT cells. IL-15 protected antigen-activated NKT cells from hypoxia, and transgenic expression of IL-15 in adoptively transferred NKT cells dramatically enhanced their antimetastatic activity in mice. Thus, tumor-induced chemokine production in hypoxic TAMs and consequent chemoattraction and inhibition of NKT cells represents a mechanism of immune escape that can be reversed by adoptive immunotherapy with IL-15-transduced NKT cells.
Collapse
Affiliation(s)
- Daofeng Liu
- Department of Pediatrics and Department of Pathology and Immunology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|