1
|
Palanisamy K, Karpagavalli M, Nareshkumar RN, Ramasubramanyan S, Angayarkanni N, Raman R, Chidambaram S. Adiponectin-induced activation of ERK1/2 drives fibrosis in retinal pigment epithelial cells. Hum Cell 2024; 38:8. [PMID: 39460900 DOI: 10.1007/s13577-024-01131-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024]
Abstract
Adiponectin (APN), a vasoactive cytokine produced by adipocytes, has emerged as a critical player in retinal diseases. Renowned for its antioxidant, anti-angiogenic, and anti-inflammatory properties, APN levels are closely linked to metabolic disorders, such as insulin resistance, obesity, and diabetic retinopathy (DR). Our previous work demonstrated that APN is similar in efficiency as Avastin in limiting neovascularization in retinal endothelial cells. In this study, we analyzed the effect of APN on retinal epithelial cells to understand its potential impact on eye-related pathologies. Overexpression of APN in ARPE-19 cells predominantly yielded the MMW-APN form, accompanied by increased expression of pro-fibrotic markers and decreased levels of tight junction (TJ) proteins, ZO-1, and Occludin. Further, confocal imaging revealed impaired TJ assembly and the integrity of TJ was also compromised as evidenced by the higher paracellular permeability and lower TEER. Besides, rAPN treatment in ARPE-19 cells as well triggered increased expression of pro-fibrotic markers, pro-MMP2, and enhanced cell migration and proliferation. Mechanistically, these pro-fibrotic effects were mediated by APN-induced phosphorylation of ERK1/2, causing RPE cell transdifferentiation. Furthermore, we identified that MMW-APN was the most prevalent form detected in the vitreous humor of proliferative diabetic retinopathy (PDR) patients, emphasizing the clinical relevance of our findings. Overall, our data suggest that APN, particularly its MMW form, induces epithelial-mesenchymal transition (EMT) and fibrosis in RPE cells, potentially driving the angio-fibrotic shift observed in PDR via ERK1/2 activation.
Collapse
Affiliation(s)
- Karthikka Palanisamy
- Department of Biochemistry and Cell Biology, R.S. Mehta Jain, KBIRVO, Vision Research Foundation, Chennai, India
| | | | | | - Sharada Ramasubramanyan
- Department of Biochemistry and Cell Biology, R.S. Mehta Jain, KBIRVO, Vision Research Foundation, Chennai, India
| | - Narayanasamy Angayarkanni
- Department of Biochemistry and Cell Biology, R.S. Mehta Jain, KBIRVO, Vision Research Foundation, Chennai, India
| | - Rajiv Raman
- Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | | |
Collapse
|
2
|
Lim JY, Templeton SP. Regulation of lung inflammation by adiponectin. Front Immunol 2023; 14:1244586. [PMID: 37724101 PMCID: PMC10505393 DOI: 10.3389/fimmu.2023.1244586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/21/2023] [Indexed: 09/20/2023] Open
Abstract
Adiponectin is an insulin sensitizing hormone that also plays a role in the regulation of inflammation. Although adiponectin can exert pro-inflammatory effects, more studies have reported anti-inflammatory effects, even in non-adipose tissues such as the lung. Obesity is considered an inflammatory disease, is a risk factor for lung diseases, and is associated with decreased levels of plasma adiponectin. The results of recent studies have suggested that adiponectin exerts anti-inflammatory activity in chronic obstructive pulmonary disease, asthma and invasive fungal infection. The signaling receptors of adiponectin, AdipoR1 and AdipoR2, are expressed by epithelial cells, endothelial cells, and immune cells in the lung. In this mini-review, we discuss the anti-inflammatory mechanisms of adiponectin in lung cells and tissues.
Collapse
Affiliation(s)
| | - Steven P. Templeton
- Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute, Terre Haute, IN, United States
| |
Collapse
|
3
|
Thymic involution caused by repeated cocaine administration includes apoptotic cell loss followed by ectopic adipogenesis. PLoS One 2022; 17:e0277032. [PMID: 36441681 PMCID: PMC9704633 DOI: 10.1371/journal.pone.0277032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/19/2022] [Indexed: 11/29/2022] Open
Abstract
Cocaine abuse has a negative impact on the immune system. To investigate the adverse effects of binge cocaine administration on lymphoid organs such as thymus and spleen, we examined the effects of repeated intravenous (i.v.) administration of cocaine on rats. Sprague Dawley rats (male, 8 weeks old) received 20 mg/kg body weight of cocaine hydrochloride per day for 7 or 14 days. In addition to a significant loss in the weight of the spleen, consistent with our previous intraperitoneal (i.p.) injection model of binge cocaine abuse (50 mg/kg cocaine for 7 days), we also found a significant loss of weight as well as apparent shrinkage of the thymus in the cocaine group. Transcriptome analysis of the thymus revealed increased expressions of genes involved in apoptosis, such as Ifi27 and Traf2, as well as decreased expressions of several genes related to lipid metabolism, such as Cd36, Adipoq, Scd1, and Fabp4, in the thymus of the cocaine group (7 days), suggesting an apoptotic loss of thymic cells as well as alterations in lipid metabolism. Paradoxically, cocaine activates PPARγ, a key transcriptional factor activating lipid metabolism, although ectopic adipogenesis was scarcely observed in the thymus. Further analysis of rats administered 20 mg/kg cocaine for 14 days revealed ectopic adipogenesis, which was accompanied with the activation of PPARγ as well as increased expression of Adipoq and Fabp4, in the thymus. Taken together, these results indicate that repeated cocaine administration induces thymic involution, which is initiated by the loss of thymic cells through apoptosis and subsequent ectopic adipocyte development.
Collapse
|
4
|
Mihajlović M, Ninić A, Ostojić M, Sopić M, Stefanović A, Vekić J, Antonić T, Zeljković D, Trifunović B, Spasojević-Kalimanovska V, Bogavac Stanojević N, Jančić I, Zeljković A. Association of Adiponectin Receptors with Metabolic and Immune Homeostasis Parameters in Colorectal Cancer: In Silico Analysis and Observational Findings. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14995. [PMID: 36429712 PMCID: PMC9691131 DOI: 10.3390/ijerph192214995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Adiponectin (ADIPOQ) as both a regulator of metabolic homeostasis and a protein involved in immune response might be of particular interest to contemporary laboratory medicine, especially in terms of minimally invasive diagnostics. The diverse roles of ADIPOQ with regard to the immune and metabolic aspects of colorectal carcinogenesis have been proposed. However, the expression of its receptors ADIPOR1 and ADIPOR2 is scarcely explored in peripheral blood mononuclear cells (PBMCs). Moreover, ADIPORs' relationships with the immune response mediator TNF-α have not been previously investigated in the PBMCs of CRC patients. This study used both in silico and observational case-control analyses with the aim of exploring the association of ADIPOR gene expression and ADIPOQ single nucleotide polymorphisms (SNPs) with the inflammatory marker TNF-α and lipid status parameters in patients with CRC. Publicly available transcriptomic datasets (GSE47756, GSE44076) obtained from analyses of monocytes and CRC tissue samples were employed for the in silico evaluation of ADIPORs' specific genetic traits. GSE47756 and GSE44076 datasets were processed with GSEA software to provide a genetic fingertip of different signaling pathways associated with ADIPORs' mRNA levels. The case-control aspect of the study included the PBMC samples of 73 patients diagnosed with CRC and 80 healthy volunteers. The PCR method was carried out for the PBMC gene expression analysis (ADIPOR1, ADIPOR2, TNF-α mRNA levels) and for the subjects' genotyping (ADIPOQ rs266729, ADIPOR1 rs7539542). GSEA showed significant associations of ADIPOR mRNA expression with gene sets related to metabolic and immune homeostasis in both datasets. The case-control study revealed the association of ADIPOR1 rs7539542 with reduced lipid status parameters in CRC. In addition, PBMC ADIPOR1 mRNA levels decreased in CRC (p < 0.001), whereas ADIPOR2 mRNA did not differ between the groups (p = 0.442). A reduction in PBMC TNF-α mRNA levels was noted in CRC (p < 0.05). Our results indicate that ADIPOR1 and ADIPOR2 play a significant role in the alteration of both metabolic and immune homeostasis during the progression of CRC. For the first time, ADIPOR1 is shown to be a specific receptor for mediating ADIPOQ's effects in the PBMCs of CRC patients.
Collapse
Affiliation(s)
- Marija Mihajlović
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Ana Ninić
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Marija Ostojić
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, 11000 Belgrade, Serbia
| | - Miron Sopić
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandra Stefanović
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena Vekić
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Tamara Antonić
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Dejan Zeljković
- Clinic of General Surgery, Military Medical Academy, 11000 Belgrade, Serbia
| | - Bratislav Trifunović
- Clinic of General Surgery, Military Medical Academy, 11000 Belgrade, Serbia
- Faculty of Medicine, Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | | | - Nataša Bogavac Stanojević
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Ivan Jančić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandra Zeljković
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
5
|
Al-Kuraishy HM, Al-Gareeb AI, Gabriela Bungau S, Radu AF, El-Saber Batiha G. The potential molecular implications of adiponectin in the evolution of SARS-CoV-2: Inbuilt tendency. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2022; 34:102347. [PMID: 36211634 PMCID: PMC9524222 DOI: 10.1016/j.jksus.2022.102347] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 12/16/2022]
Abstract
Adiponectin (APN) is an adipokine concerned in the regulation of glucose metabolism, insulin sensitivity and fatty acid oxidation. APN plays a critical role in viral infections by regulating the immune response through its anti-inflammatory/pro-inflammatory axis. Reduction of APN may augment the severity of viral infections because APN inhibits immune cells’ response via suppression of inflammatory signaling pathways and stimulation of adenosine monophosphate protein kinase (AMPK). Moreover, APN inhibits the stimulation of nuclear factor kappa B (NF-κB) and regulates the release of pro-inflammatory cytokines, such as tumor necrosis factor alpha (TNF-α) and interleukins (IL-18, IL-6). In COVID-19, abnormalities of the fatty tissue due to oxidative stress (OS) and hyperinflammation may inhibit the production and release of APN. APN has lung-protective effect and can prevent SARS-CoV-2-induced acute lung injury (ALI) through the amelioration of endoplasmic reticulum (ER) stress, endothelial dysfunction (ED) and stimulation of peroxisome proliferator-activated receptor-alpha (PPAR-α). It has been established that there is a potential correlation between inflammatory signal transduction pathways and APN that contributes to the development of SARS-CoV-2 infections. Deregulation of these molecular pathways affects the expression of APN and vice versa. In addition, the reduction of APN effect in SARS-CoV-2 infection could be a potential cause of the exacerbation of pro-inflammatory effects which are associated with the disease severity. In this context, exploratory, developmental, and extensive prospective studies are necessary.
Collapse
|
6
|
Schmidt V, Hogan AE, Fallon PG, Schwartz C. Obesity-Mediated Immune Modulation: One Step Forward, (Th)2 Steps Back. Front Immunol 2022; 13:932893. [PMID: 35844529 PMCID: PMC9279727 DOI: 10.3389/fimmu.2022.932893] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/27/2022] [Indexed: 11/15/2022] Open
Abstract
Over the past decades, the relationship between the immune system and metabolism has become a major research focus. In this arena of immunometabolism the capacity of adipose tissue to secrete immunomodulatory molecules, including adipokines, within the underlying low-grade inflammation during obesity brought attention to the impact obesity has on the immune system. Adipokines, such as leptin and adiponectin, influence T cell differentiation into different T helper subsets and their activation during immune responses. Furthermore, within the cellular milieu of adipose tissue nutrient availability regulates differentiation and activation of T cells and changes in cellular metabolic pathways. Upon activation, T cells shift from oxidative phosphorylation to oxidative glycolysis, while the differential signaling of the kinase mammalian target of rapamycin (mTOR) and the nuclear receptor PPARγ, amongst others, drive the subsequent T cell differentiation. While the mechanisms leading to a shift from the typical type 2-dominated milieu in lean people to a Th1-biased pro-inflammatory environment during obesity are the subject of extensive research, insights on its impact on peripheral Th2-dominated immune responses become more evident. In this review, we will summarize recent findings of how Th2 cells are metabolically regulated during obesity and malnutrition, and how these states affect local and systemic Th2-biased immune responses.
Collapse
Affiliation(s)
- Viviane Schmidt
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Andrew E. Hogan
- Kathleen Lonsdale Human Health Institute, Maynooth University, Maynooth, Ireland
- Obesity Immunology Research, St. Vincent’s University Hospital and University College Dublin, Dublin, Ireland
| | - Padraic G. Fallon
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Christian Schwartz
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- *Correspondence: Christian Schwartz,
| |
Collapse
|
7
|
Álvarez-Vásquez JL, Bravo-Guapisaca MI, Gavidia-Pazmiño JF, Intriago-Morales RV. Adipokines in dental pulp: physiological, pathological, and potential therapeutic roles. J Oral Biosci 2021; 64:59-70. [PMID: 34808362 DOI: 10.1016/j.job.2021.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hundreds of adipokines have been identified, and their extensive range of endocrine functions-regulating distant organs such as oral tissues-and local autocrine/paracrine roles have been studied. In dentistry, however, adipokines are poorly known proteins in the dental pulp; few of them have been studied despite their large number. This study reviews recent advances in the investigation of dental-pulp adipokines, with an emphasis on their roles in inflammatory processes and their potential therapeutic applications. HIGHLIGHTS The most recently identified adipokines in dental pulp include leptin, adiponectin, resistin, ghrelin, oncostatin, chemerin, and visfatin. They have numerous physiological and pathological functions in the pulp tissue: they are closely related to pulp inflammatory mechanisms and actively participate in cell differentiation, mineralization, angiogenesis, and immune-system modulation. CONCLUSION Adipokines have potential clinical applications in regenerative endodontics and as biomarkers or targets for the pharmacological management of inflammatory and degenerative processes in dental pulp. A promising direction for the development of new therapies may be the use of agonists/antagonists to modulate the expression of the most studied adipokines.
Collapse
|
8
|
Ortega-Loubon C, Martínez-Paz P, García-Morán E, Tamayo-Velasco Á, López-Hernández FJ, Jorge-Monjas P, Tamayo E. Genetic Susceptibility to Acute Kidney Injury. J Clin Med 2021; 10:jcm10143039. [PMID: 34300206 PMCID: PMC8307812 DOI: 10.3390/jcm10143039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/14/2022] Open
Abstract
Acute kidney injury (AKI) is a widely held concern related to a substantial burden of morbidity, mortality and expenditure in the healthcare system. AKI is not a simple illness but a complex conglomeration of syndromes that often occurs as part of other syndromes in its wide clinical spectrum of the disease. Genetic factors have been suggested as potentially responsible for its susceptibility and severity. As there is no current cure nor an effective treatment other than generally accepted supportive measures and renal replacement therapy, updated knowledge of the genetic implications may serve as a strategic tactic to counteract its dire consequences. Further understanding of the genetics that predispose AKI may shed light on novel approaches for the prevention and treatment of this condition. This review attempts to address the role of key genes in the appearance and development of AKI, providing not only a comprehensive update of the intertwined process involved but also identifying specific markers that could serve as precise targets for further AKI therapies.
Collapse
Affiliation(s)
- Christian Ortega-Loubon
- BioCritic. Group for Biomedical Research in Critical Care Medicine, University of Valladolid, 47003 Valladolid, Spain; (C.O.-L.); (E.G.-M.); (Á.T.-V.); (F.J.L.-H.); (E.T.)
- Department of Cardiovascular Surgery, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
| | - Pedro Martínez-Paz
- BioCritic. Group for Biomedical Research in Critical Care Medicine, University of Valladolid, 47003 Valladolid, Spain; (C.O.-L.); (E.G.-M.); (Á.T.-V.); (F.J.L.-H.); (E.T.)
- Department of Surgery, Faculty of Medicine, University of Valladolid, 47003 Valladolid, Spain
- Correspondence: (P.M.-P.); (P.J.-M.); Tel.: +34-9834200000 (P.M.-P.); +34-687978535 (P.J.-M)
| | - Emilio García-Morán
- BioCritic. Group for Biomedical Research in Critical Care Medicine, University of Valladolid, 47003 Valladolid, Spain; (C.O.-L.); (E.G.-M.); (Á.T.-V.); (F.J.L.-H.); (E.T.)
- Department of Cardiology, Clinical University Hospital of Valladolid, 47003 Valladolid, Spain
| | - Álvaro Tamayo-Velasco
- BioCritic. Group for Biomedical Research in Critical Care Medicine, University of Valladolid, 47003 Valladolid, Spain; (C.O.-L.); (E.G.-M.); (Á.T.-V.); (F.J.L.-H.); (E.T.)
- Department of Hematology and Hemotherapy, Clinical University Hospital of Valladolid, 47003 Valladolid, Spain
| | - Francisco J. López-Hernández
- BioCritic. Group for Biomedical Research in Critical Care Medicine, University of Valladolid, 47003 Valladolid, Spain; (C.O.-L.); (E.G.-M.); (Á.T.-V.); (F.J.L.-H.); (E.T.)
- Institute of Biomedical Research of Salamnca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain
- Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Departmental Building Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Pablo Jorge-Monjas
- BioCritic. Group for Biomedical Research in Critical Care Medicine, University of Valladolid, 47003 Valladolid, Spain; (C.O.-L.); (E.G.-M.); (Á.T.-V.); (F.J.L.-H.); (E.T.)
- Department of Anesthesiology and Critical Care, Clinical University Hospital of Valladolid, Ramón y Cajal Ave, 47003 Valladolid, Spain
- Correspondence: (P.M.-P.); (P.J.-M.); Tel.: +34-9834200000 (P.M.-P.); +34-687978535 (P.J.-M)
| | - Eduardo Tamayo
- BioCritic. Group for Biomedical Research in Critical Care Medicine, University of Valladolid, 47003 Valladolid, Spain; (C.O.-L.); (E.G.-M.); (Á.T.-V.); (F.J.L.-H.); (E.T.)
- Department of Anesthesiology and Critical Care, Clinical University Hospital of Valladolid, Ramón y Cajal Ave, 47003 Valladolid, Spain
| |
Collapse
|
9
|
Zhou Y, Yang Y, Zhou T, Li B, Wang Z. Adiponectin and Thyroid Cancer: Insight into the Association between Adiponectin and Obesity. Aging Dis 2021; 12:597-613. [PMID: 33815885 PMCID: PMC7990371 DOI: 10.14336/ad.2020.0919] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/13/2020] [Indexed: 12/14/2022] Open
Abstract
In recent decades, the incidence and diagnosis of thyroid cancer have risen dramatically, and thyroid cancer has now become the most common endocrine cancer in the world. The onset of thyroid cancer is insidious, and its progression is slow and difficult to detect. Therefore, early prevention and treatment have important strategic significance. Moreover, an in-depth exploration of the pathogenesis of thyroid cancer is key to early prevention and treatment. Substantial evidence supports obesity as an independent risk factor for thyroid cancer. Adipose tissue dysfunction in the obese state is accompanied by dysregulation of a variety of adipocytokines. Adiponectin (APN) is one of the most pivotal adipocytokines, and its connection with obesity and obesity-related disease has gradually become a hot topic in research. Recently, the association between APN and thyroid cancer has received increasing attention. The purpose of this review is to systematically review previous studies, give prominence to APN, focus on the relationship between APN, obesity and thyroid cancer, and uncover the underlying pathogenic mechanisms.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- 1Department of Endocrinology and Metabolism, The Second People's Hospital of Yunnan Province, Fourth Affiliated Hospital of Kunming Medical University, Kunming, China.,2Department of Endocrinology and Metabolism, Sixth Affiliated Hospital of Kunming Medical University, The People's Hospital of Yuxi City, Yuxi, China
| | - Ying Yang
- 1Department of Endocrinology and Metabolism, The Second People's Hospital of Yunnan Province, Fourth Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Taicheng Zhou
- 1Department of Endocrinology and Metabolism, The Second People's Hospital of Yunnan Province, Fourth Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bai Li
- 3School of Medicine, Yunnan University, Kunming, China
| | - Zhanjian Wang
- 4Department of Endocrinology and Metabolism, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
10
|
Zhang Y, Cao H, Chen J, Li Y, Xu A, Wang Y. Adiponectin-expressing Treg facilitate T lymphocyte development in thymic nurse cell complexes. Commun Biol 2021; 4:344. [PMID: 33727658 PMCID: PMC7966800 DOI: 10.1038/s42003-021-01877-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/19/2021] [Indexed: 02/06/2023] Open
Abstract
Adiponectin is a well-known insulin sensitizer and anti-inflammatory molecule, possessing therapeutic potentials in cardiovascular, metabolic and cancer diseases. Results of the present study demonstrate that adiponectin is expressed in a population of regulatory T-cells (Treg) resided within the thymic nurse cell (TNC) complexes. Adoptive transfer of adiponectin-expressing Treg precursors effectively attenuated obesity, improved glucose and insulin tolerance, prevented fatty liver injuries in wild-type mice fed a high-fat diet, and significantly inhibited breast cancer development in MMTV-PyVT transgenic mice. Within the TNC complexes, locally produced adiponectin bound to and regulated the expression as well as the distribution of CD100, a transmembrane lymphocyte semaphorin, in turn modulating the lymphoepithelial interactions to facilitate T-cell development and maturation. In summary, adiponectin plays an important role in the selection and development of T lymphocytes within the TNC complexes. Adiponectin-expressing Treg represent a promising candidate for adoptive cell immunotherapy against obesity-related metabolic and cancer diseases.
Collapse
MESH Headings
- Adiponectin/genetics
- Adiponectin/metabolism
- Adoptive Transfer
- Animals
- Antigens, CD/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/immunology
- Breast Neoplasms/metabolism
- Breast Neoplasms/prevention & control
- Cell Differentiation
- Cell Line, Tumor
- Disease Models, Animal
- Female
- Glucose Intolerance/immunology
- Glucose Intolerance/metabolism
- Glucose Intolerance/prevention & control
- Humans
- Insulin Resistance
- Mammary Tumor Virus, Mouse/genetics
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Non-alcoholic Fatty Liver Disease/immunology
- Non-alcoholic Fatty Liver Disease/metabolism
- Non-alcoholic Fatty Liver Disease/prevention & control
- Obesity/immunology
- Obesity/metabolism
- Obesity/prevention & control
- Phenotype
- Semaphorins/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/transplantation
- Thymocytes/immunology
- Thymocytes/metabolism
- Thymocytes/transplantation
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Mice
Collapse
Affiliation(s)
- Yiwei Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Handi Cao
- The State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jie Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, Guangdong, China
| | - Yuanxin Li
- The State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Aimin Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yu Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China.
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
11
|
Żelechowska P, Brzezińska-Błaszczyk E, Kusowska A, Kozłowska E. The role of adipokines in the modulation of lymphoid lineage cell development and activity: An overview. Obes Rev 2020; 21:e13055. [PMID: 32638520 DOI: 10.1111/obr.13055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/27/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022]
Abstract
Adipokines are predominantly known to play a vital role in the control of food intake, energy homeostasis and regulation of glucose and lipid metabolism. However, evidence supporting the concept of their extensive involvement in immune system defence mechanisms and inflammatory processes continues to grow. Some of the adipokines, that is, leptin and resistin, have been recognized to exhibit mainly pro-inflammatory properties, whereas others such as visfatin, chemerin, apelin and vaspin have been found to exert regulatory effects. In contrast, adiponectin or omentin are known for their anti-inflammatory activities. Hence, adipokines influence the activity of various cells engaged in innate immune response and inflammatory processes mainly by affecting adhesion molecule expression, chemotaxis, apoptosis and phagocytosis, as well as mediators production and release. However, much less is known about the role of adipokines in processes involving lymphoid lineage cells. This review summarizes the current knowledge regarding the importance of different adipokines in the lymphopoiesis, recirculation, differentiation and polarization of lymphoid lineage cells. It also provides insight into the influence of selected adipokines on the activity of those cells in tissues.
Collapse
Affiliation(s)
- Paulina Żelechowska
- Faculty of Health Sciences, Department of Experimental Immunology, Medical University of Lodz, Lodz, Poland
| | - Ewa Brzezińska-Błaszczyk
- Faculty of Health Sciences, Department of Experimental Immunology, Medical University of Lodz, Lodz, Poland
| | | | - Elżbieta Kozłowska
- Faculty of Health Sciences, Department of Experimental Immunology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
12
|
Nguyen TMD. Adiponectin: Role in Physiology and Pathophysiology. Int J Prev Med 2020; 11:136. [PMID: 33088464 PMCID: PMC7554603 DOI: 10.4103/ijpvm.ijpvm_193_20] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/18/2020] [Indexed: 01/20/2023] Open
Abstract
Adiponectin, an adipokine secreted by adipocytes, is a well-known homeostatic factor for regulating glucose levels, lipid metabolism, and insulin sensitivity through its anti-inflammatory, anti-fibrotic, and antioxidant effects. All these metabolic processes are mediated via two adiponectin receptors, AdipoR1 and AdipoR2. In addition, adiponectin is one of the hormones with the highest plasma concentrations. Weight loss or caloric restriction leads to increasing adiponectin levels, and this increase is associated with increased insulin sensitivity. Therefore, the adiponectin pathway can play a crucial role in the development of drugs to treat type 2 diabetes mellitus and other obesity-related diseases affected by insulin resistance like cancers or cardiovascular diseases. Adiponectin appears to increase insulin sensitivity by improving glucose and lipid metabolisms. The objective of this review is to analyze current knowledge concerning adiponectin and, in particular, its role in physiology and pathophysiology.
Collapse
Affiliation(s)
- Thi Mong Diep Nguyen
- Department of Applied Biology and Agriculture, Faculty of Natural Science, Quy Nhon University, 170 An Duong Vuong Street, Quy Nhon City, Binh Dinh Province, Vietnam
| |
Collapse
|
13
|
Busquets-Cortés C, Capó X, Argelich E, Ferrer MD, Mateos D, Bouzas C, Abbate M, Tur JA, Sureda A, Pons A. Effects of Millimolar Steady-State Hydrogen Peroxide Exposure on Inflammatory and Redox Gene Expression in Immune Cells from Humans with Metabolic Syndrome. Nutrients 2018; 10:nu10121920. [PMID: 30563042 PMCID: PMC6315942 DOI: 10.3390/nu10121920] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/28/2018] [Accepted: 12/01/2018] [Indexed: 12/19/2022] Open
Abstract
Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) can exert opposed effects depending on the dosage: low levels can be involved in signalling and adaptive processes, while higher levels can exert deleterious effects in cells and tissues. Our aim was to emulate a chronic ex vivo oxidative stress situation through a 2 h exposure of immune cells to sustained H2O2 produced by glucose oxidase (GOX), at high or low production rate, in order to determine dissimilar responses of peripheral blood mononuclear cells (PBMCs) and neutrophils on ROS and cytokine production, and mitochondrial dynamics-related proteins, pro/anti-inflammatory and anti-oxidant gene expression. Immune cells were obtained from subjects with metabolic syndrome. H2O2 at low concentrations can trigger a transient anti-inflammatory adiponectin secretion and reduced gene expression of toll-like receptors (TLRs) in PBMCs but may act as a stimulator of proinflammatory genes (IL6, IL8) and mitochondrial dynamics-related proteins (Mtf2, NRF2, Tfam). H2O2 at a high concentration enhances the expression of pro-inflammatory genes (TLR2 and IL1β) and diminishes the expression of mitochondrial dynamics-related proteins (Mtf1, Tfam) and antioxidant enzymes (Cu/Zn SOD) in PBMCs. The GOX treatments produce dissimilar changes in immune cells: Neutrophils were more resistant to H2O2 effects and exhibited a more constant response in terms of gene expression than PBMCs. We observe emerging roles of H2O2 in mitochondrial dynamics and redox and inflammation processes in immune cells.
Collapse
Affiliation(s)
- Carla Busquets-Cortés
- Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| | - Xavier Capó
- Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| | - Emma Argelich
- Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| | - Miguel D Ferrer
- Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| | - David Mateos
- Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| | - Cristina Bouzas
- Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| | - Manuela Abbate
- Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| | - Josep A Tur
- Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122 Palma de Mallorca, Spain.
- CIBER CB12/03/30038 Fisiopatología de la Obesidad la Nutrición, CIBEROBN, Instituto de Salud Carlos III (ISCIII), University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122 Palma de Mallorca, Spain.
- CIBER CB12/03/30038 Fisiopatología de la Obesidad la Nutrición, CIBEROBN, Instituto de Salud Carlos III (ISCIII), University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| | - Antoni Pons
- Research Group on Community Nutrition and Oxidative Stress, Science Laboratory of Physical Activity, Department of Fundamental Biology and Health Sciences, University of Balearic Islands, 07122 Palma de Mallorca, Spain.
- CIBER CB12/03/30038 Fisiopatología de la Obesidad la Nutrición, CIBEROBN, Instituto de Salud Carlos III (ISCIII), University of Balearic Islands, 07122 Palma de Mallorca, Spain.
| |
Collapse
|
14
|
Żelechowska P, Kozłowska E, Pastwińska J, Agier J, Brzezińska-Błaszczyk E. Adipocytokine Involvement in Innate Immune Mechanisms. J Interferon Cytokine Res 2018; 38:527-538. [PMID: 30431386 DOI: 10.1089/jir.2018.0102] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The innate immune response is defined as an immensely complex and sophisticated process aimed at defending the organism against any disturbance in the body homeostasis, including invading pathogens. It requires a close cooperation of a vast amount of different cell types, recognized as inflammatory migrating cells, as well as stationary cells that form tissues. Moreover, innate immune mechanisms require an efficient functioning of various humoral components that exert a significant impact on physiological and pathological processes. Apart from commonly mentioned humoral factors, this group also includes a family of proteins known as adipocytokines that may act as pro- or anti-inflammatory agents or act both ways. Leptin, predominantly characterized as a proinflammatory adipokine, plays a crucial role in endothelium remodeling and regulation, as well as in cell survival and production of numerous cytokines. Adiponectin, similar to leptin, acts on the endothelial cells and the phagocytic properties of immune cells; however, it exerts an anti-inflammatory impact. Resistin has a documented role in the control of angiogenesis and stimulation of proinflammatory mediator generation and release. Furthermore, there are adipokines, ie, visfatin and chemerin, whose participation in the inflammatory processes is ambiguous. This review focuses on the current knowledge on the extensive role of selected adipokines in innate immune response.
Collapse
Affiliation(s)
- Paulina Żelechowska
- Department of Experimental Immunology, Medical University of Lodz, Lodz, Poland
| | - Elżbieta Kozłowska
- Department of Experimental Immunology, Medical University of Lodz, Lodz, Poland
| | - Joanna Pastwińska
- Department of Experimental Immunology, Medical University of Lodz, Lodz, Poland
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Justyna Agier
- Department of Experimental Immunology, Medical University of Lodz, Lodz, Poland
| | | |
Collapse
|
15
|
|
16
|
Allegra A, Innao V, Gerace D, Allegra AG, Vaddinelli D, Bianco O, Musolino C. The adipose organ and multiple myeloma: Impact of adipokines on tumor growth and potential sites for therapeutic intervention. Eur J Intern Med 2018; 53:12-20. [PMID: 29859797 DOI: 10.1016/j.ejim.2018.05.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 02/06/2023]
Abstract
In addition to its capacity to store lipids the adipose tissue is now identified as a real organ with both endocrine and metabolic roles. Preclinical results indicate that modifying adipose tissue and bone marrow adipose tissue (BMAT) could be a successful multiple myeloma (MM) therapy. BMAT interrelates with bone marrow cells and other immune cells, and may influence MM disease progression. The BM adipocytes may have a role in MM progression, bone homing, chemoresistance, and relapse, due to local endocrine, paracrine, or metabolic factors. BM adipocytes isolated from MM subjects have been shown to increase myeloma growth in vitro and may preserve cells from chemotherapy-induced apoptosis. By producing free fatty acids and emitting signaling molecules such as growth factors and adipokines, BM adipocytes are both an energy font and an endocrine signaling factory. This review should suggest future research approaches toward developing novel treatments to target MM by targeting BMAT and its products.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 90100 Messina, Italy.
| | - Vanessa Innao
- Division of Hematology, Department of Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 90100 Messina, Italy
| | - Demetrio Gerace
- Division of Hematology, Department of Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 90100 Messina, Italy
| | - Andrea Gaetano Allegra
- Division of Hematology, Department of Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 90100 Messina, Italy
| | - Doriana Vaddinelli
- Division of Hematology, Department of Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 90100 Messina, Italy
| | - Oriana Bianco
- Division of Hematology, Department of Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 90100 Messina, Italy
| | - Caterina Musolino
- Division of Hematology, Department of Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 90100 Messina, Italy
| |
Collapse
|
17
|
Pal China S, Sanyal S, Chattopadhyay N. Adiponectin signaling and its role in bone metabolism. Cytokine 2018; 112:116-131. [PMID: 29937410 DOI: 10.1016/j.cyto.2018.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/06/2018] [Accepted: 06/09/2018] [Indexed: 12/14/2022]
Abstract
Adiponectin, the most prevalent adipo-cytokine in plasma plays critical metabolic and anti-inflammatory roles is fast emerging as an important molecular target for the treatment of metabolic disorders. Adiponectin action is critical in multiple organs including cardio-vascular system, muscle, liver, adipose tissue, brain and bone. Adiponectin signaling in bone has been a topic of active investigation lately. Human association studies and multiple mice models of gene deletion/modification failed to define a clear cause and effect of adiponectin signaling in bone. The most plausible reason could be the multimeric forms of adiponectin that display differential binding to receptors (adipoR1 and adipoR2) with cell-specific receptor variants in bone. Discovery of small molecule agonist of adipoR1 suggested a salutary role of this receptor in bone metabolism. The downstream signaling of adipoR1 in osteoblasts involves stimulation of oxidative phosphorylation leading to increased differentiation via the likely suppression of wnt inhibitor, sclerostin. On the other hand, the inflammation modulatory effect of adiponectin signaling suppresses the RANKL (receptor activator of nuclear factor κ-B ligand) - to - OPG (osteprotegerin) ratio in osteoblasts leading to the suppression of osteoclastogenic response. This review will discuss the adiponectin signaling and its role in skeletal homeostasis and critically assess whether adipoR1 could be a therapeutic target for the treatment of metabolic bone diseases.
Collapse
Affiliation(s)
- Shyamsundar Pal China
- Division of Endocrinology and CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226 031, India
| | - Sabyasachi Sanyal
- Division of Biochemistry, CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226 031, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and CSIR-Central Drug Research Institute, Sitapur Road, Lucknow 226 031, India.
| |
Collapse
|
18
|
Zarif H, Hosseiny S, Paquet A, Lebrigand K, Arguel MJ, Cazareth J, Lazzari A, Heurteaux C, Glaichenhaus N, Chabry J, Guyon A, Petit-Paitel A. CD4 + T Cells Have a Permissive Effect on Enriched Environment-Induced Hippocampus Synaptic Plasticity. Front Synaptic Neurosci 2018; 10:14. [PMID: 29950983 PMCID: PMC6008389 DOI: 10.3389/fnsyn.2018.00014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022] Open
Abstract
Living in an enriched environment (EE) benefits health by acting synergistically on various biological systems including the immune and the central nervous systems. The dialog between the brain and the immune cells has recently gained interest and is thought to play a pivotal role in beneficial effects of EE. Recent studies show that T lymphocytes have an important role in hippocampal plasticity, learning, and memory, although the precise mechanisms by which they act on the brain remain elusive. Using a mouse model of EE, we show here that CD4+ T cells are essential for spinogenesis and glutamatergic synaptic function in the CA of the hippocampus. However, CD4+ lymphocytes do not influence EE-induced neurogenesis in the DG of the hippocampus, by contrast to what we previously demonstrated for CD8+ T cells. Importantly, CD4+ T cells located in the choroid plexus have a specific transcriptomic signature as a function of the living environment. Our study highlights the contribution of CD4+ T cells in the brain plasticity and function.
Collapse
Affiliation(s)
- Hadi Zarif
- Université Côte d'Azur, CNRS, IPMC, Nice, France
| | | | - Agnès Paquet
- Université Côte d'Azur, CNRS, IPMC, Nice, France
| | | | | | | | - Anne Lazzari
- Université Côte d'Azur, INSERM, IPMC, Nice, France
| | | | | | - Joëlle Chabry
- Université Côte d'Azur, INSERM, C3M, IPMC, Nice, France
| | - Alice Guyon
- Université Côte d'Azur, CNRS, IPMC, Nice, France
| | | |
Collapse
|
19
|
High serum adiponectin is associated with anemia development in chronic kidney disease: The results from the KNOW-CKD study. Cytokine 2017; 103:1-9. [PMID: 29287218 DOI: 10.1016/j.cyto.2017.12.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/11/2017] [Accepted: 12/15/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Adiponectin is an adipokine secreted by adipocytes. A low adiponectin level is a significant risk factor of diabetes mellitus and cardiovascular disease. Recent studies have shown that adiponectin is negatively associated with hematopoiesis and predicts the development of anemia in the general population. In chronic kidney disease (CKD) patients, circulating adiponectin level is paradoxically elevated and the role of adiponectin is complex. Therefore, we evaluated the relationship between adiponectin and anemia in these patients. METHODS This prospective longitudinal study included 2113 patients from the KNOW-CKD study (KoreaN cohort study for Outcome in patients With CKD), after excluding 125 without data on adiponectin levels. Hemoglobin levels were measured yearly during a mean follow-up period of 23.7 months. Anemia was defined as hemoglobin levels of <13.0 and 12.0 g/dL for men and women, respectively. RESULTS Mean patient age was 53.6 ± 12.2 years, and 1289 (61%) were men. The mean estimated glomerular filtration rate (eGFR) was 50.4 ± 30.2 mL min-1 1.73 m-2. Serum adiponectin level was inversely associated with body mass index, eGFR, log-transformed C-reactive protein, and positively with Charlson comorbidity index, urine protein to creatinine ratio, and high density lipoprotein cholesterol. In addition, serum adiponectin level was also negatively correlated with hemoglobin level and reticulocyte production index in both men and women. In multivariable linear regression analysis after adjustment of multiple confounders, adiponectin was negatively associated with hemoglobin (men, β = -0.219, P < .001; women, β = -0.09, P = .025). Among 1227 patients without anemia at baseline, 307 newly developed anemia during the follow-up period. In multivariable Cox regression analysis after adjustment of confounders, high adiponectin level was significantly associated with an increased risk of incident anemia (per 1 µg/mL increase, hazard ratio, 1.02; 95% confidence interval 1.01-1.04; P = .001). CONCLUSIONS A high serum adiponectin level is independently associated with a low hemoglobin level and predicts the development of anemia in patients with CKD. These findings reveal the potential role of adiponectin in CKD-related anemia.
Collapse
|
20
|
Danturti S, Keslar KS, Steinhoff LR, Fan R, Dvorina N, Valujskikh A, Fairchild RL, Baldwin WM. CD4+ T lymphocytes produce adiponectin in response to transplants. JCI Insight 2017; 2:89641. [PMID: 28614792 PMCID: PMC5470881 DOI: 10.1172/jci.insight.89641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 05/10/2017] [Indexed: 11/17/2022] Open
Abstract
Adiponectin is a pleiotropic cytokine with diverse immunomodulatory effects on macrophages and lymphocytes. In the current paradigm, lymphocytes and macrophages respond to adiponectin that is produced by adipocytes and other parenchymal cells. Using a model of chronic arterial inflammation in cardiac transplants, we found that T cells derived from the recipient migrate to the heart and produce adiponectin locally. The evidence that T cells produce significant amounts of adiponectin is based on 3 experimental approaches. First, CD4+ T cells isolated from the blood and spleen after cardiac transplantation express mRNA for adiponectin. Second, reconstitution of T cell-deficient recipients with transgenic CD4+ T cells that express receptors for donor antigens results in arterial infiltrates containing T cells and increased mRNA expression for adiponectin in cardiac transplants. Third, CD4+ T cells isolated from the allograft secrete adiponectin in vitro. Taken together, these data indicate that adiponectin-competent cells originating in the recipient migrate into the transplant. Establishing T cells as a source of adiponectin provides a new dimension, to our knowledge, to the modulatory effects of adiponectin on immune responses.
Collapse
Affiliation(s)
- Sreedevi Danturti
- Department of Immunology, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio, USA
| | - Karen S Keslar
- Department of Immunology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Leah R Steinhoff
- Department of Immunology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ran Fan
- Department of Immunology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nina Dvorina
- Department of Immunology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Anna Valujskikh
- Department of Immunology, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | |
Collapse
|
21
|
Masamoto Y, Arai S, Sato T, Kubota N, Takamoto I, Kadowaki T, Kurokawa M. Adiponectin Enhances Quiescence Exit of Murine Hematopoietic Stem Cells and Hematopoietic Recovery Through mTORC1 Potentiation. Stem Cells 2017; 35:1835-1848. [PMID: 28480607 DOI: 10.1002/stem.2640] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/11/2017] [Accepted: 04/25/2017] [Indexed: 01/19/2023]
Abstract
Myelotoxic injury, such as chemotherapeutic agents and ionizing radiation, unlocks the vigorous power of hematopoietic stem cells (HSCs) to replenish the hematopoietic system, making quiescent HSCs enter the cell cycle. Considering that both HSC-intrinsic and -extrinsic mechanisms enforce quiescence of HSCs, the drastic change in bone marrow (BM) environment after injury, represented by massive expansion of BM adipocytes, might trigger HSC activation. BM adipocytes, the major cellular component in the ablated marrow, however, reportedly suppress proliferation of hematopoietic cells, which may indicate the BM adipocytogenesis is an irrational response of injured organism. Given that adipose tissue is an endocrine organ with pleiotropic functions, we hypothesized that adipocyte-derived factors, especially adiponectin, an anti-inflammatory adipokine involved in regulation of granulopoiesis, are implicated in HSC activation. Myeloablative intervention increased BM adiponectin by multiple mechanisms, including adipocyte expansion and increased diffusion from the blood. Adiponectin-null (Adipoq -/- ) mice showed delayed hematopoietic recovery after BM injury, with Adipoq-/- HSCs more quiescent and defective in mammalian target of rapamycin complex 1 (mTORC1) activation. Recombinant adiponectin promoted not only HSC activation in vivo but cytokine-induced activation in vitro, and shortened the time for exit from quiescence in an mTORC1-dependent manner. These data illustrate a scarcely-reported example of a cell-extrinsic factor, adiponectin, enhancing quiescence exit of HSCs, and subsequent hematopoietic recovery. Our findings also highlight adipocytes as a source of adiponectin to ensure the proliferative burst of hematopoietic cells in ablated marrow. Stem Cells 2017;35:1835-1848.
Collapse
Affiliation(s)
- Yosuke Masamoto
- Department of Hematology & Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Transfusion Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Shunya Arai
- Department of Hematology & Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomohiko Sato
- Department of Hematology & Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Transfusion Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Naoto Kubota
- Department of Diabetes & Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Iseki Takamoto
- Department of Diabetes & Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Kadowaki
- Department of Diabetes & Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mineo Kurokawa
- Department of Hematology & Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
22
|
Intron retention is regulated by altered MeCP2-mediated splicing factor recruitment. Nat Commun 2017; 8:15134. [PMID: 28480880 PMCID: PMC5424149 DOI: 10.1038/ncomms15134] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 03/02/2017] [Indexed: 01/07/2023] Open
Abstract
While intron retention (IR) is considered a widely conserved and distinct mechanism of gene expression control, its regulation is poorly understood. Here we show that DNA methylation directly regulates IR. We also find reduced occupancy of MeCP2 near the splice junctions of retained introns, mirroring the reduced DNA methylation at these sites. Accordingly, MeCP2 depletion in tissues and cells enhances IR. By analysing the MeCP2 interactome using mass spectrometry and RNA co-precipitation, we demonstrate that decreased MeCP2 binding near splice junctions facilitates IR via reduced recruitment of splicing factors, including Tra2b, and increased RNA polymerase II stalling. These results suggest an association between IR and a slower rate of transcription elongation, which reflects inefficient splicing factor recruitment. In summary, our results reinforce the interdependency between alternative splicing involving IR and epigenetic controls of gene expression. Intron retention is a conserved mechanism that controls gene expression but its regulation is poorly understood. Here, the authors provide evidence that DNA methylation regulates intron retention and find reduced MeCP2 occupancy and splicing factor recruitment near affected splice junctions.
Collapse
|
23
|
Sustained High Levels of Both Total and High Molecular Weight Adiponectin in Plasma during the Convalescent Phase of Haemorrhagic Fever with Renal Syndrome Are Associated with Disease Severity. J Immunol Res 2017; 2017:6468097. [PMID: 28424792 PMCID: PMC5382360 DOI: 10.1155/2017/6468097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/12/2017] [Indexed: 01/18/2023] Open
Abstract
Haemorrhagic fever with renal syndrome (HFRS) is characterised by an uncontrolled immune response that causes vascular leakage. Adiponectin (APN) is an adipocytokine involved in prorevascularisation and immunomodulation. To investigate the possible effects of APN in the pathogenesis of HFRS, total and high molecular weight (HMW) APN levels in the plasma of patients with HFRS were quantified using enzyme-linked immunosorbent assay (ELISA). Compared with those in healthy controls, the plasma total and HMW APN levels in patients were elevated to different degrees from the fever onset and remained high at the convalescent phase. Consistent with these results, western blot analysis additionally showed that low molecular weight (LMW), middle molecular weight (MMW), and HMW APN levels were all elevated and contributed to the elevation of the total APN level. Importantly, sustained high levels of total and HMW APN at the convalescent phase were significantly higher in patients with critical disease than those in patients with mild or moderate disease. Moreover, total and HMW APN levels negatively correlated with white blood cell count and positively correlated with platelet count and serum albumin level. These results may provide insights into understanding the roles of total and HMW APN in the pathogenesis of HFRS.
Collapse
|
24
|
Kohno K, Narimatsu H, Shiono Y, Suzuki I, Kato Y, Sho R, Otani K, Ishizawa K, Yamashita H, Kubota I, Ueno Y, Kato T, Fukao A, Kayama T. High Serum Adiponectin Level Is a Risk Factor for Anemia in Japanese Men: A Prospective Observational Study of 1,029 Japanese Subjects. PLoS One 2016; 11:e0165511. [PMID: 27918575 PMCID: PMC5137881 DOI: 10.1371/journal.pone.0165511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 10/13/2016] [Indexed: 12/19/2022] Open
Abstract
Erythroid abnormalities including anemia and polycythemia are often observed in the general clinical setting. Because recent studies reported that adiponectin negatively affects hematopoiesis, we performed a prospective observational study to assess the relationship between anemia and adiponectin, as well as other parameters, in 1029 Japanese subjects (477 men and 552 women) 40 years of age and older. Body measurements, blood tests, and nutrition intake studies were performed at baseline, and 5 to 7 years later (follow-up). Hemoglobin (Hb) and hematocrit (Hct) levels in men with high serum adiponectin levels were lower at follow-up than at baseline. Multiple regression analysis showed that age, body mass index, adiponectin, and glutamic-pyruvic transaminase were significantly associated with erythroid-related variables (red blood cells, Hb, and Hct) in both men and women (P <0.05). In a logistic regression analysis, adiponectin, fasting blood glucose, and β-natriuretic peptide were significant risk factors for anemia in men, and blood urea nitrogen and amylase were significant risk factors in women. Physical features and nutrient intake were not risk factors for anemia. Our study demonstrates, both clinically and epidemiologically, that a high serum adiponectin level decreases the amounts of erythroid-related variables and is a risk factor for anemia in Japanese men.
Collapse
Affiliation(s)
- Kei Kohno
- Department of Neurology, Hematology, Metabolism, Endocrinology and Diabetology, Yamagata University School of Medicine, Yamagata City, Yamagata, Japan
- * E-mail: (KK); (HN)
| | - Hiroto Narimatsu
- Cancer Prevention and Control Division, Kanagawa Cancer Center Research Institute, Yokohama City, Kanagawa, Japan
- * E-mail: (KK); (HN)
| | - Yosuke Shiono
- Department of Neurology, Hematology, Metabolism, Endocrinology and Diabetology, Yamagata University School of Medicine, Yamagata City, Yamagata, Japan
| | - Ikuko Suzuki
- Department of Neurology, Hematology, Metabolism, Endocrinology and Diabetology, Yamagata University School of Medicine, Yamagata City, Yamagata, Japan
| | - Yuichi Kato
- Department of Neurology, Hematology, Metabolism, Endocrinology and Diabetology, Yamagata University School of Medicine, Yamagata City, Yamagata, Japan
| | - Ri Sho
- Department of Public Health, Yamagata University Graduate School of Medicine, Yamagata City, Yamagata, Japan
| | - Katsumi Otani
- Department of Public Health, Yamagata University Graduate School of Medicine, Yamagata City, Yamagata, Japan
| | - Kenichi Ishizawa
- Department of Hematology and Cell Therapy, Yamagata University School of Medicine, Yamagata City, Yamagata, Japan
| | - Hidetoshi Yamashita
- Department of Ophthalmology and Visual Sciences, Yamagata University School of Medicine, Yamagata City, Yamagata, Japan
| | - Isao Kubota
- First Department of Internal Medicine, Yamagata University School of Medicine, Yamagata City, Yamagata, Japan
| | - Yoshiyuki Ueno
- Second Department of Internal Medicine, Yamagata University School of Medicine, Yamagata City, Yamagata, Japan
| | - Takeo Kato
- Department of Neurology, Hematology, Metabolism, Endocrinology and Diabetology, Yamagata University School of Medicine, Yamagata City, Yamagata, Japan
| | - Akira Fukao
- Department of Public Health, Yamagata University Graduate School of Medicine, Yamagata City, Yamagata, Japan
| | - Takamasa Kayama
- Department of Neurosurgery, Yamagata University School of Medicine, Yamagata City, Yamagata, Japan
| |
Collapse
|
25
|
Masamoto Y, Arai S, Sato T, Yoshimi A, Kubota N, Takamoto I, Iwakura Y, Yoshimura A, Kadowaki T, Kurokawa M. Adiponectin Enhances Antibacterial Activity of Hematopoietic Cells by Suppressing Bone Marrow Inflammation. Immunity 2016; 44:1422-33. [PMID: 27317261 DOI: 10.1016/j.immuni.2016.05.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 11/06/2015] [Accepted: 04/05/2016] [Indexed: 11/30/2022]
Abstract
Obesity has been shown to increase the morbidity of infections, however, the underlying mechanisms remain largely unknown. Here we demonstrate that obesity caused adiponectin deficiency in the bone marrow (BM), which led to an inflamed BM characterized by increased tumor necrosis factor (TNF) production from bone marrow macrophages. Hematopoietic stem and progenitor cells (HSPCs) chronically exposed to excessive TNF in obese marrow aberrantly expressed cytokine signaling suppressor SOCS3, impairing JAK-STAT mediated signal transduction and cytokine-driven cell proliferation. Accordingly, both obese and adiponectin-deficient mice showed attenuated clearance of infected Listeria monocytogenes, indicating that obesity or loss of adiponectin is critical for exacerbation of infection. Adiponectin treatment restored the defective HSPC proliferation and bacterial clearance of obese and adiponectin-deficient mice, affirming the importance of adiponectin against infection. Taken together, our findings demonstrate that obesity impairs hematopoietic response against infections through a TNF-SOCS3-STAT3 axis, highlighting adiponectin as a legitimate target against obesity-related infections.
Collapse
Affiliation(s)
- Yosuke Masamoto
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Department of Transfusion Medicine, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Shunya Arai
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tomohiko Sato
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Department of Transfusion Medicine, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Akihide Yoshimi
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Naoto Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Iseki Takamoto
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yoichiro Iwakura
- Division of Experimental Animal Immunology, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Mineo Kurokawa
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
| |
Collapse
|
26
|
Polvani S, Tarocchi M, Tempesti S, Bencini L, Galli A. Peroxisome proliferator activated receptors at the crossroad of obesity, diabetes, and pancreatic cancer. World J Gastroenterol 2016; 22:2441-2459. [PMID: 26937133 PMCID: PMC4768191 DOI: 10.3748/wjg.v22.i8.2441] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/17/2015] [Accepted: 01/11/2016] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth cause of cancer death with an overall survival of 5% at five years. The development of PDAC is characteristically associated to the accumulation of distinctive genetic mutations and is preceded by the exposure to several risk factors. Epidemiology has demonstrated that PDAC risk factors may be non-modifiable risks (sex, age, presence of genetic mutations, ethnicity) and modifiable and co-morbidity factors related to the specific habits and lifestyle. Recently it has become evident that obesity and diabetes are two important modifiable risk factors for PDAC. Obesity and diabetes are complex systemic and intertwined diseases and, over the years, experimental evidence indicate that insulin-resistance, alteration of adipokines, especially leptin and adiponectin, oxidative stress and inflammation may play a role in PDAC. Peroxisome proliferator activated receptor-γ (PPARγ) is a nuclear receptor transcription factor that is implicated in the regulation of metabolism, differentiation and inflammation. PPARγ is a key regulator of adipocytes differentiation, regulates insulin and adipokines production and secretion, may modulate inflammation, and it is implicated in PDAC. PPARγ agonists are used in the treatment of diabetes and oxidative stress-associated diseases and have been evaluated for the treatment of PDAC. PPARγ is at the cross-road of diabetes, obesity, and PDAC and it is an interesting target to pharmacologically prevent PDAC in obese and diabetic patients.
Collapse
|
27
|
Globular adiponectin induces leukocytosis and mobilizes hematopoietic progenitor cells in mice. Tissue Eng Regen Med 2015. [DOI: 10.1007/s13770-015-0040-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
28
|
Effect of Diet and Exercise on the Peripheral Immune System in Young Balb/c Mice. BIOMED RESEARCH INTERNATIONAL 2015; 2015:458470. [PMID: 26634209 PMCID: PMC4655039 DOI: 10.1155/2015/458470] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/13/2015] [Accepted: 10/20/2015] [Indexed: 01/29/2023]
Abstract
Although diet and exercise clearly have an influence on immune function, studies are scarce on the effect caused by exercise and the consumption of a carbohydrate-rich or fat-rich diet on the peripheral immune system. The aim of the present study was to evaluate the effect of exercise and the two aforementioned unbalanced diets on young Balb/c mice, especially in relation to BMI, the level of glucose, and the percentage of lymphocyte subpopulations in peripheral blood. The changes found were then related to the synthesis of leptin and adiponectin as well as the production of oxidative stress. The increase in BMI found with the carbohydrate-rich and fat-rich diets showed correlation with the levels of leptin and adiponectin. An increase in leptin and a decrease in adiponectin directly correlated with an increase in total lymphocytes and CD4+ cells and with a decrease in B cells. The increase in leptin also correlated with an increase in CD8+ cells. Glycemia and oxidative stress increased with the two unbalanced diets, negatively affecting the proliferation of total lymphocytes and the percentage of B cells, apparently by causing alterations in proteins through carbonylation. These alterations caused by an unbalanced diet were not modified by moderate exercise.
Collapse
|
29
|
Lewerin C, Johansson H, Lerner UH, Karlsson MK, Lorentzon M, Barrett-Connor E, Smith U, Ohlsson C, Mellström D. High serum adiponectin is associated with low blood haemoglobin in elderly men: the Swedish MrOS study. J Intern Med 2015; 278:68-76. [PMID: 25491722 DOI: 10.1111/joim.12340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Blood haemoglobin (Hb) concentration declines in elderly men, whilst the level of the adipocyte-derived protein adiponectin increases with age. The association between erythropoiesis and adiponectin in elderly men is unclear. The aim of this study was to determine whether adipokines such as adiponectin and leptin are associated with anaemia and Hb concentration in elderly community-dwelling men. DESIGN AND SETTING The Gothenburg part of the population-based Swedish Osteoporotic Fractures in Men (MrOS) cohort (n = 1010; median age 75.3 years, range 69-81). MAIN OUTCOME MEASURES We investigated the associations between levels of adiponectin and Hb before and after adjusting for potential confounders [i.e. age, body composition, erythropoietin (EPO), total oestradiol, leptin, cystatin C and iron and B vitamin status]. RESULTS In these elderly men, age was negatively associated with Hb (r = -0.12, P < 0.001) and positively associated with adiponectin level (r = 0.13, P < 0.001). In age-adjusted partial correlations, Hb and adiponectin levels were negatively correlated (r = -0.20, P < 0.001); this association remained significant after multivariable adjustment for age, body composition, EPO, fasting insulin, sex hormones, leptin and ferritin. Age-adjusted mean adiponectin concentrations were significantly higher in anaemic men (66/1005; Hb <130 g L(-1) ) compared to nonanaemic men (14.0 vs. 11.7 μg mL(-1) , P < 0.05). In multivariate analysis, adiponectin together with EPO, total oestradiol, insulin, albumin, transferrin saturation, HDL cholesterol, cystatin C, total body fat mass and free thyroxine, but not leptin, explained 35% of the variation in Hb level. These results remained essentially unchanged after exclusion of men with diabetes. CONCLUSIONS Serum adiponectin, but not leptin, was negatively and independently associated with Hb. This finding suggests a possible role of adiponectin in the age-related decline in Hb level observed in apparently healthy elderly men.
Collapse
Affiliation(s)
- C Lewerin
- Section of Haematology and Coagulation, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - H Johansson
- Center for Bone and Arthritis Research (CBAR) and Geriatric Medicine, Sahlgrenska Academy, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - U H Lerner
- Center for Bone and Arthritis Research (CBAR) and Geriatric Medicine, Sahlgrenska Academy, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Molecular Peridontology, Umeå University, Umeå, Sweden
| | - M K Karlsson
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences and Orthopaedics, Lund University, Malmö, Sweden
| | - M Lorentzon
- Center for Bone and Arthritis Research (CBAR) and Geriatric Medicine, Sahlgrenska Academy, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - E Barrett-Connor
- Department of Family and Preventive Medicine, University of California, San Diego, La Jolla, CA, USA
| | - U Smith
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - C Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Center for Bone and Arthritis Research (CBAR), Sahlgrenska Academy, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - D Mellström
- Center for Bone and Arthritis Research (CBAR) and Geriatric Medicine, Sahlgrenska Academy, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
30
|
Expression of Adiponectin Receptors on Peripheral Blood Leukocytes of Hypertensive Children Is Associated with the Severity of Hypertension. BIOMED RESEARCH INTERNATIONAL 2015; 2015:742646. [PMID: 26146630 PMCID: PMC4471253 DOI: 10.1155/2015/742646] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/30/2015] [Accepted: 02/25/2015] [Indexed: 12/16/2022]
Abstract
The aim of the study was to find out whether peripheral blood leukocyte adiponectin receptors 1 and 2 (AdipoR1, AdipoR2) protein expression patterns (flow cytometry) differ between the primary hypertension children (n = 57) and healthy controls (n = 19) and if their expression levels are related to selected clinical parameters. The group of 26 patients [AdipoR(-)] showed lower and the group of 31 patients [AdipoR(+)] showed higher AdipoRs protein expression than the control and each other (P < 0.01 for neutrophils, P < 0.05 for monocytes). The AdipoR(+) leukocytes expressed higher AdipoR1 mRNA levels (RT-PCR) than AdipoR(-) ones and controls (P = 0.022 and P = 0.007, resp.). Despite greater BMI, the AdipoR(-) patients had unchanged serum adiponectin levels. In contrast, AdipoR(+) patients had lower serum adiponectin concentrations than the AdipoR(-) ones and controls (P < 0.001). The AdipoR(+) patients had higher blood pressure (P = 0.042) and greater carotid intima-media thickness (P = 0.017) than the AdipoR(-) ones. The stage of hypertension was associated with increased neutrophil but not monocyte AdipoR1 density (AdipoR1 MFI) (P < 0.05). Severe ambulatory hypertension was presented more often in AdipoR(+) patients than in AdipoR(-) ones (51.6% versus 26.9%, resp.; P < 0.01). In conclusion, neutrophil AdipoRs upregulation was associated with early stages of vascular injury, hypertension severity, and low serum levels of adiponectin.
Collapse
|
31
|
Kohno K, Narimatsu H, Shiono Y, Suzuki I, Kato Y, Fukao A, Kubota I, Ueno Y, Kayama T, Kato T. Management of erythropoiesis: cross-sectional study of the relationships between erythropoiesis and nutrition, physical features, and adiponectin in 3519 Japanese people. Eur J Haematol 2014; 92:298-307. [PMID: 24329589 DOI: 10.1111/ejh.12250] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2013] [Indexed: 11/29/2022]
Abstract
Although erythroid abnormalities (anemia and polycythemia) are commonly observed pathological conditions, not much information about borderline abnormalities is available. In this study, a cross-sectional study to analyze the relationships between erythropoiesis and nutrition, physical features, and laboratory test findings was conducted in middle-aged and older men and women. The study included 3519 Japanese people (1579 men and 1940 women), age 40 years and over. Analysis of variance showed that the group with a tendency to anemia was older, had a lower body mass index and diastolic blood pressure, and had higher serum adiponectin and creatinine. Multiple regression analysis showed that adiponectin, triglycerides, and total protein were common factors that affected erythropoiesis in both men and women. Hepatic, renal, and cardiac functions were also factors involved in erythropoiesis in men and in postmenopausal women. In addition, nutrient factors such as alcohol, vitamins, and carbohydrates were also significantly involved in erythropoiesis in men, but there were no significant nutrient factors involved in erythropoiesis in either premenopausal or postmenopausal women. This study showed that factors that influence erythropoiesis differ between men, premenopausal women, and postmenopausal women, and it suggested that appropriately modifying erythropoiesis management for each group of people is essential.
Collapse
Affiliation(s)
- Kei Kohno
- Department of Neurology, Hematology, Metabolism, Endocrinology and Diabetology, Yamagata University School of Medicine, Yamagata, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Pacheco-Pantoja EL, Waring VJ, Wilson PJM, Fraser WD, Gallagher JA. Adiponectin receptors are present in RANK-L-induced multinucleated osteoclast-like cells. J Recept Signal Transduct Res 2013; 33:291-7. [DOI: 10.3109/10799893.2013.828070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
33
|
Adiponectin in inflammatory and immune-mediated diseases. Cytokine 2013; 64:1-10. [PMID: 23850004 DOI: 10.1016/j.cyto.2013.06.317] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/31/2013] [Accepted: 06/16/2013] [Indexed: 01/03/2023]
Abstract
Circulating levels of adiponectin (APN) are reduced in obesity and associated comorbidities, with inflammation playing an important role in downregulating APN production. In contrast to obesity and metabolic disease, elevated systemic and local levels of APN are present in patients with inflammatory and immune-mediated diseases, including autoimmune and pulmonary conditions, heart and kidney failure, viral hepatitis, organ transplantation and perhaps critical illness. A positive association between inflammation and APN is usually reported in inflammatory/immune pathologies, in contrast with the negative correlation typical of metabolic disease. This review discusses the role of APN in modulation of inflammation and immunity and the potential mechanisms leading to increased levels of APN in inflammatory/immune diseases, including modification of adipose tissue physiology; relative contribution of different tissues and adipose depots; hormonal, pharmacological, nutritional and life style factors; the potential contribution of the microbiota as well as the role of altered APN clearance and release from T-cadherin-associated tissue reservoirs. Potential reasons for some of the apparently contradictory findings on the role of APN as a modulator of immunity and inflammation are also discussed, including a comparison of types of recombinant APN used for in vitro studies and strain-dependent differences in the phenotype of APN KO mice.
Collapse
|
34
|
Yang J, Lin SC, Chen G, He L, Hu Z, Chan L, Trial J, Entman ML, Wang Y. Adiponectin promotes monocyte-to-fibroblast transition in renal fibrosis. J Am Soc Nephrol 2013; 24:1644-59. [PMID: 23833260 DOI: 10.1681/asn.2013030217] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bone marrow-derived fibroblasts may contribute substantially to the pathogenesis of renal fibrosis through the excessive production and deposition of extracellular matrix. However, the mechanisms underlying the accumulation and activation of these fibroblasts are not understood. Here, we used a mouse model of tubulointerstitial fibrosis to determine whether adiponectin, which is elevated in CKD and is associated with disease progression, regulates monocyte-to-fibroblast transition and fibroblast activation in injured kidneys. In wild-type mice, the expression of adiponectin and the number of bone marrow-derived fibroblasts in the kidney increased after renal obstruction. In contrast, the obstructed kidneys of adiponectin-knockout mice had fewer bone marrow-derived fibroblasts. Adiponectin deficiency also led to a reduction in the number of myofibroblasts, the expression of profibrotic chemokines and cytokines, and the number of procollagen-expressing M2 macrophages in injured kidneys. Consistent with these findings, adiponectin-deficiency reduced the expression of collagen I and fibronectin. Similar results were observed in wild-type and adiponectin-knockout mice after ischemia-reperfusion injury. In cultured bone marrow-derived monocytes, adiponectin stimulated the expression of α-smooth muscle actin (SMA) and extracellular matrix proteins and activated AMP-activated protein kinase (AMPK) in a time- and dose-dependent manner. Furthermore, specific activation of AMPK increased the expression of α-SMA and extracellular matrix proteins, while inhibition of AMPK attenuated these responses. Taken together, these findings identify adiponectin as a critical regulator of monocyte-to-fibroblast transition and renal fibrosis, suggesting that inhibition of adiponectin/AMPK signaling may represent a novel therapeutic target for fibrotic kidney disease.
Collapse
|
35
|
Pang TTL, Chimen M, Goble E, Dixon N, Benbow A, Eldershaw SE, Thompson D, Gough SCL, Narendran P. Inhibition of islet immunoreactivity by adiponectin is attenuated in human type 1 diabetes. J Clin Endocrinol Metab 2013; 98:E418-28. [PMID: 23386639 DOI: 10.1210/jc.2012-3516] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
CONTEXT Adiponectin is an adipocyte-derived cytokine with insulin-sensitizing and antiinflammatory properties. These dual actions have not previously been examined in the context of human disease. OBJECTIVES Our objective was to examine the adiponectin axis in type 1 diabetes (T1D). T1D is an autoimmune inflammatory disease resulting from pancreatic β-cell destruction, in which insulin resistance associates with progression to disease. DESIGN, PATIENTS, AND INTERVENTIONS We measured circulating adiponectin and adiponectin receptor expression on blood-immune cells from 108 matched healthy, T1D, and type 2 diabetic subjects. We tested adiponectin effect on T cell proliferation to islet antigens and antigen-presenting function of monocyte-derived dendritic cells (mDCs). Lastly, we assessed the effect of a 3-week lifestyle intervention program on immune cell adiponectin receptor expression in 18 healthy subjects. RESULTS Circulating concentrations of adiponectin were not affected by T1D. However, expression of adiponectin receptors on blood monocytes was markedly reduced and inversely associated with insulin resistance. Reduced adiponectin receptor expression resulted in increased T cell proliferation to islet-antigen presented by autologous mDCs. We demonstrated a critical role for adiponectin in down-regulating the costimulatory molecule CD86 on mDCs, and this function was impaired in T1D. We proceeded to show that lifestyle intervention increased adiponectin receptor but reduced CD86 expression on monocytes. CONCLUSIONS These data indicate that T cells are released from the antiinflammatory effects of adiponectin in T1D and suggest a mechanism linking insulin resistance and islet immunity. Furthermore, we suggest that interventions that reduce insulin resistance could modulate the inflammatory process in T1D.
Collapse
Affiliation(s)
- Terence T L Pang
- Centre of Endocrinology, Diabetes, and Metabolism, School of Clinical and Experimental Medicine, College of Dental and Medical Sciences, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Thomas S, Kratzsch D, Schaab M, Scholz M, Grunewald S, Thiery J, Paasch U, Kratzsch J. Seminal plasma adipokine levels are correlated with functional characteristics of spermatozoa. Fertil Steril 2013; 99:1256-1263.e3. [PMID: 23375204 DOI: 10.1016/j.fertnstert.2012.12.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 12/17/2012] [Accepted: 12/19/2012] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To study adipokines as a potential link between obesity and male subfertility. DESIGN Cross-sectional study of subjects stratified into subgroups according to body mass index (BMI): normal-weight (18.50-24.99 kg/m(2)), overweight (25-29.99 kg/m(2)), and obese (>30 kg/m(2)). SETTING Leipzig, Germany from 2007 to 2011. PATIENT(S) Ninety-six male volunteers without spermatogenesis-associated diseases. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Semen parameters, reproductive hormones in serum, and leptin, adiponectin, resistin, chemerin, progranulin, vaspin, and visfatin concentrations in serum and seminal plasma. RESULT(S) All measured adipokines were detectable in human seminal plasma. The levels of progranulin, visfatin, and vaspin were statistically significantly higher in seminal plasma than in serum. An increase in body weight was associated with decreased levels of seminal plasma progranulin. Additionally, overweight/obese men had statistically significantly lower progranulin levels in seminal plasma than normal weight men. Adiponectin and progranulin concentrations in seminal plasma statistically significantly positively correlated with sperm concentration, sperm count, and total normomorphic spermatozoa. CONCLUSION(S) Adipokines are differently regulated in human male reproductive tract compared with the peripheral blood, and they could influence sperm functionality.
Collapse
Affiliation(s)
- Stephanie Thomas
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Sun S, Wang W, Latchman Y, Gao D, Aronow B, Reems JA. Expression of plasma membrane receptor genes during megakaryocyte development. Physiol Genomics 2013; 45:217-27. [PMID: 23321270 DOI: 10.1152/physiolgenomics.00056.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Megakaryocyte (MK) development is critically informed by plasma membrane-localized receptors that integrate a multiplicity of environmental cues. Given that the current understanding about receptors and ligands involved in megakaryocytopoiesis is based on single targets, we performed a genome-wide search to identify a plasma membrane receptome for developing MKs. We identified 40 transmembrane receptor genes as being upregulated during MK development. Seven of the 40 receptor-associated genes were selected to validate the dataset. These genes included: interleukin-9 receptor (IL9R), transforming growth factor, β receptor II (TGFBR2), interleukin-4 receptor (IL4R), colony stimulating factor-2 receptor-beta (CSFR2B), adiponectin receptor (ADIPOR2), thrombin receptor (F2R), and interleukin-21 receptor (IL21R). RNA and protein analyses confirmed their expression in primary human MKs. Matched ligands to IL9R, TGFBR2, IL4R, CSFR2B, and ADIPOR2 affected megakaryocytopoiesis. IL9 was unique in its ability to increase the number of MKs formed. In contrast, MK colony formation was inhibited by adiponectin, TGF-β, IL4, and GM-CSF. The thrombin-F2R axis affected platelet function, but not MK development, while IL21 had no apparent detectable effects. ADP-induced platelet aggregation was suppressed by IL9, TGF-β, IL4, and adiponectin. Overall, six of seven of the plasma membrane receptors were confirmed to have functional roles in MK and platelet biology. Also, results show for the first time that adiponectin plays a regulatory role in MK development. Together these data support a strong likelihood that the 40 transmembrane genes identified as being upregulated during MK development will be an important resource to the research community for deciphering the complex repertoire of environmental cues regulating megakaryocytopoiesis and/or platelet function.
Collapse
Affiliation(s)
- Sijie Sun
- Department of Bioengineering, 2Puget Sound Blood Center, Seattle, Washington, USA
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Adiponectin is a multifunctional cytokine that has a role in regulating inflammation. Here we determined if adiponectin modulates ischemic acute kidney injury. Compared with wild-type mice, adiponectin knockout mice were found to have lower serum creatinine and less tubular damage or apoptosis following ischemia/reperfusion injury. This latter process was associated with decreased Bax and reduced activation of p53 and caspase-3. Targeted disruption of adiponectin was also found to inhibit the infiltration of neutrophils, macrophages, and T cells into the injured kidneys. This was associated with an inhibition of NF-κB activation and reduced expression of the proinflammatory molecules IL-6, TNF-α, MCP-1, and MIP-2 in the kidney after ischemia/reperfusion injury. Wild-type mice engrafted with adiponectin null bone marrow had less kidney dysfunction and tubular damage than adiponectin null mice engrafted with wild-type bone marrow. Conversely, adiponectin null mice engrafted with wild-type bone marrow had similar renal dysfunction and tubular damage compared to wild-type mice engrafted with wild-type bone marrow. In cultured macrophages, adiponectin directly promoted macrophage migration; a process blocked by the PI3 kinase inhibitor, LY294002. Thus, our results show that adiponectin plays a pivotal role in the pathogenesis of acute renal ischemia/reperfusion injury and may be a potential therapeutic target.
Collapse
|
39
|
Current world literature. Curr Opin Allergy Clin Immunol 2012; 12:211-7. [PMID: 22382450 DOI: 10.1097/aci.0b013e3283520fda] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Inoue T, Sugiyama H, Kitagawa M, Takiue K, Morinaga H, Ogawa A, Kikumoto Y, Kitamura S, Maeshima Y, Makino H. Suppression of adiponectin by aberrantly glycosylated IgA1 in glomerular mesangial cells in vitro and in vivo. PLoS One 2012; 7:e33965. [PMID: 22457806 PMCID: PMC3311555 DOI: 10.1371/journal.pone.0033965] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 02/20/2012] [Indexed: 02/06/2023] Open
Abstract
The pathogenesis of IgA nephropathy (IgAN) may be associated with the mesangial deposition of aberrantly glycosylated IgA1. To identify mediators affected by aberrantly glycosylated IgA1 in cultured human mesangial cells (HMCs), we generated enzymatically modified desialylated and degalactosylated (deSial/deGal) IgA1. The state of deglycosylated IgA1 was confirmed by lectin binding to Helix aspersa (HAA) and Sambucus nigra (SNA). In the cytokine array analysis, 52 proteins were upregulated and 34 were downregulated in HMCs after stimulation with deSial/deGal IgA1. Among them, the secretion of adiponectin was suppressed in HMCs after stimulation with deSial/deGal IgA1. HMCs expressed mRNAs for adiponectin and its type 1 receptor, but not the type 2 receptor. Moreover, we revealed a downregulation of adiponectin expression in the glomeruli of renal biopsy specimens from patients with IgAN compared to those with lupus nephritis. We also demonstrated that aberrantly glycosylated IgA1 was deposited in the mesangium of patients with IgAN by dual staining of HAA and IgA. Moreover, the urinary HAA/SNA ratio of lectin binding was significantly higher in IgAN compared to other kidney diseases. Since adiponectin has anti-inflammatory effects, including the inhibition of adhesion molecules and cytokines, these data suggest that the local suppression of this adipokine by aberrantly glycosylated IgA1 could be involved in the regulation of glomerular inflammation and sclerosis in IgAN.
Collapse
Affiliation(s)
- Tatsuyuki Inoue
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Hitoshi Sugiyama
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Center for Chronic Kidney Disease and Peritoneal Dialysis, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Masashi Kitagawa
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Keiichi Takiue
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Morinaga
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Ayu Ogawa
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yoko Kikumoto
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Shinji Kitamura
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yohei Maeshima
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hirofumi Makino
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
41
|
de Oliveira C, de Mattos ABM, Silva CBR, Mota JF, Zemdegs JCS. Nutritional and hormonal modulation of adiponectin and its receptors adipoR1 and adipoR2. VITAMINS AND HORMONES 2012; 90:57-94. [PMID: 23017712 DOI: 10.1016/b978-0-12-398313-8.00003-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adiponectin is the most abundant plasma protein synthesized mostly by adipose tissue and is an insulin-sensitive hormone, playing a central role in glucose and lipid metabolism. Adiponectin effects are mediated via two receptors, adipoR1 and adipoR2. Several hormones and diet components that are involved in insulin resistance may impair insulin sensitivity at least in part by decreasing adiponectin and adiponectin receptors. Adiponectin expression and serum levels are associated with the amount and type of fatty acids and carbohydrate consumed. Other food items, such as vitamins, alcohol, sodium, green tea, and coffee, have been reported to modify adiponectin levels. Several hormones, including testosterone, estrogen, prolactin, glucocorticoids, catecholamines, and growth hormone, have been shown to inhibit adiponectin production, but the studies are still controversial. Even so, adiponectin is a potential therapeutic target in the treatment of diabetes mellitus and other diseases associated with hypoadiponectinemia.
Collapse
Affiliation(s)
- Cristiane de Oliveira
- Systemic Inflammation Laboratory, Trauma Research, St. Joseph's Hospital and Medical Center, Phoenix, USA.
| | | | | | | | | |
Collapse
|
42
|
Gueuvoghlanian-Silva BY, Torloni MR, Mattar R, de Oliveira LS, Scomparini FB, Nakamura MU, Daher S. Profile of inflammatory mediators in gestational diabetes mellitus: phenotype and genotype. Am J Reprod Immunol 2011; 67:241-50. [PMID: 22070425 DOI: 10.1111/j.1600-0897.2011.01090.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PROBLEM Our study aimed to assess in vitro production of IL-10, IL-6, TNF-A, and adiponectin serum levels in pregnant women with and without gestational diabetes mellitus (GDM) and to investigate a possible association between GDM and IL-10-1082 A>G (rs1800896), IL-6-174 G>C (rs1800795), TNF-A-308 G>A (rs1800629), adiponectin +45 T>G (rs2241766), and adiponectin-11377 C>G (rs266729) gene polymorphisms. METHOD OF STUDY This case-control study included 79 women with GDM and 169 healthy controls (C) grouped according to pre-pregnancy BMI. IL-10, IL-6, and TNF-A culture supernatant and adiponectin serum levels were assessed by ELISA. DNA genotype was performed by PCR-RFLP. RESULTS Adiponectin levels were significantly higher in C than GDM women, even within the same BMI category. Cytokines levels were similar between the groups. There were no associations between GDM and the analyzed gene polymorphisms. CONCLUSIONS Women with GDM have significantly lower adiponectin levels in the third trimester, regardless of BMI.
Collapse
|
43
|
de Oliveira C, Iwanaga-Carvalho C, Mota JF, Oyama LM, Ribeiro EB, Oller do Nascimento CM. Effects of adrenal hormones on the expression of adiponectin and adiponectin receptors in adipose tissue, muscle and liver. Steroids 2011; 76:1260-7. [PMID: 21745490 DOI: 10.1016/j.steroids.2011.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/03/2011] [Accepted: 06/13/2011] [Indexed: 02/06/2023]
Abstract
BACKGROUND Adiponectin, an insulin-sensitive hormone that is primarily synthesized in adipose tissue, exerts its effects by binding to two receptors, adipoR1 and adipoR2. Little is known regarding the effects of glucocorticoids on the expression of adiponectin receptors. METHODS Male Wistar rats were bilaterally adrenalectomized and treated with dexamethasone (0.2 mg/100 g) twice daily for 3 days. To analyze the potential effects of glucocorticoids, rats received two daily injections of the glucocorticoid receptor antagonist (RU-486, 5.0 mg) over the course of 3 days. Additionally, 3T3-L1 adipocytes and C2C12 myotubes were treated with dexamethasone, adrenaline or RU-486. The gene expression of adiponectin, adipoR1 and adipoR2 was determined by real-time PCR, and protein secretion was examined by Western blotting using lysates from retroperitoneal, epididymal and subcutaneous adipose tissue depots, liver and muscle. RESULTS In rats, excess glucocorticoids increased the levels of insulin in serum and decreased serum adiponectin concentrations, whereas adrenalectomy decreased the mRNA expression of adiponectin (3-fold) and adipoR2 (7-fold) in epididymal adipose tissue and increased adipoR2 gene expression in muscle (3-fold) compared to control group sham-operated. Dexamethasone treatment did not reverse the effects of adrenalectomy, and glucocorticoid receptor blockade did not reproduce the effects of adrenalectomy. In 3T3-L1 adipocytes, dexamethasone and adrenaline both increased adipoR2 mRNA levels, but RU-486 reduced adipoR2 gene expression in vitro. CONCLUSION Dexamethasone treatment induces a state of insulin resistance but does not affect adiponectin receptor expression in adipose tissue. However, the effects of catecholamines on insulin resistance may be due to their effects on adipoR2.
Collapse
Affiliation(s)
- Cristiane de Oliveira
- Disciplina de Fisiologia da Nutrição, Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|