1
|
Tsai CY, Oo M, Peh JH, Yeo BCM, Aptekmann A, Lee B, Liu JJJ, Tsao WS, Dick T, Fink K, Gengenbacher M. Splenic marginal zone B cells restrict Mycobacterium tuberculosis infection by shaping the cytokine pattern and cell-mediated immunity. Cell Rep 2024; 43:114426. [PMID: 38959109 PMCID: PMC11307145 DOI: 10.1016/j.celrep.2024.114426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/29/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024] Open
Abstract
Understanding the role of B cells in tuberculosis (TB) is crucial for developing new TB vaccines. However, the changes in B cell immune landscapes during TB and their functional implications remain incompletely explored. Using high-dimensional flow cytometry to map the immune landscape in response to Mycobacterium tuberculosis (Mtb) infection, our results show an accumulation of marginal zone B (MZB) cells and other unconventional B cell subsets in the lungs and spleen, shaping an unconventional B cell landscape. These MZB cells exhibit activated and memory-like phenotypes, distinguishing their functional profiles from those of conventional B cells. Notably, functional studies show that MZB cells produce multiple cytokines and contribute to systemic protection against TB by shaping cytokine patterns and cell-mediated immunity. These changes in the immune landscape are reversible upon successful TB chemotherapy. Our study suggests that, beyond antibody production, targeting the regulatory function of B cells may be a valuable strategy for TB vaccine development.
Collapse
Affiliation(s)
- Chen-Yu Tsai
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA
| | - Myo Oo
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA
| | - Jih Hou Peh
- Biosafety Level 3 Core, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Level 15, Centre for Translational Medicine (MD6), NUS, 14 Medical Drive, Singapore 117599, Singapore
| | - Benjamin C M Yeo
- Infectious Diseases Translational Research Programme and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Level 2, Blk MD4, 5 Science Drive 2, Singapore 117545, Singapore
| | - Ariel Aptekmann
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, Level 3 & 4, Immunos Building, Singapore 138648, Singapore; Centre for Biomedical Informatics, Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; A(∗)STAR Infectious Diseases Labs, Agency for Science, Technology and Research, 8A Biomedical Grove #05-13, Immunos, Singapore 138648, Singapore
| | - Joe J J Liu
- Biosafety Level 3 Core, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Level 15, Centre for Translational Medicine (MD6), NUS, 14 Medical Drive, Singapore 117599, Singapore
| | - Wen-Shan Tsao
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA
| | - Thomas Dick
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA; Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
| | - Katja Fink
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, Level 3 & 4, Immunos Building, Singapore 138648, Singapore
| | - Martin Gengenbacher
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA; Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA.
| |
Collapse
|
2
|
Gatti DM, Tyler AL, Mahoney JM, Churchill GA, Yener B, Koyuncu D, Gurcan MN, Niazi MKK, Tavolara T, Gower A, Dayao D, McGlone E, Ginese ML, Specht A, Alsharaydeh A, Tessier PA, Kurtz SL, Elkins KL, Kramnik I, Beamer G. Systems genetics uncover new loci containing functional gene candidates in Mycobacterium tuberculosis-infected Diversity Outbred mice. PLoS Pathog 2024; 20:e1011915. [PMID: 38861581 PMCID: PMC11195971 DOI: 10.1371/journal.ppat.1011915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/24/2024] [Accepted: 04/17/2024] [Indexed: 06/13/2024] Open
Abstract
Mycobacterium tuberculosis infects two billion people across the globe, and results in 8-9 million new tuberculosis (TB) cases and 1-1.5 million deaths each year. Most patients have no known genetic basis that predisposes them to disease. Here, we investigate the complex genetic basis of pulmonary TB by modelling human genetic diversity with the Diversity Outbred mouse population. When infected with M. tuberculosis, one-third develop early onset, rapidly progressive, necrotizing granulomas and succumb within 60 days. The remaining develop non-necrotizing granulomas and survive longer than 60 days. Genetic mapping using immune and inflammatory mediators; and clinical, microbiological, and granuloma correlates of disease identified five new loci on mouse chromosomes 1, 2, 4, 16; and three known loci on chromosomes 3 and 17. Further, multiple positively correlated traits shared loci on chromosomes 1, 16, and 17 and had similar patterns of allele effects, suggesting these loci contain critical genetic regulators of inflammatory responses to M. tuberculosis. To narrow the list of candidate genes, we used a machine learning strategy that integrated gene expression signatures from lungs of M. tuberculosis-infected Diversity Outbred mice with gene interaction networks to generate scores representing functional relationships. The scores were used to rank candidates for each mapped trait, resulting in 11 candidate genes: Ncf2, Fam20b, S100a8, S100a9, Itgb5, Fstl1, Zbtb20, Ddr1, Ier3, Vegfa, and Zfp318. Although all candidates have roles in infection, inflammation, cell migration, extracellular matrix remodeling, or intracellular signaling, and all contain single nucleotide polymorphisms (SNPs), SNPs in only four genes (S100a8, Itgb5, Fstl1, Zfp318) are predicted to have deleterious effects on protein functions. We performed methodological and candidate validations to (i) assess biological relevance of predicted allele effects by showing that Diversity Outbred mice carrying PWK/PhJ alleles at the H-2 locus on chromosome 17 QTL have shorter survival; (ii) confirm accuracy of predicted allele effects by quantifying S100A8 protein in inbred founder strains; and (iii) infection of C57BL/6 mice deficient for the S100a8 gene. Overall, this body of work demonstrates that systems genetics using Diversity Outbred mice can identify new (and known) QTLs and functionally relevant gene candidates that may be major regulators of complex host-pathogens interactions contributing to granuloma necrosis and acute inflammation in pulmonary TB.
Collapse
Affiliation(s)
- Daniel M. Gatti
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Anna L. Tyler
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | | | - Bulent Yener
- Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Deniz Koyuncu
- Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Metin N. Gurcan
- Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
| | - MK Khalid Niazi
- Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
| | - Thomas Tavolara
- Wake Forest University School of Medicine, Winston Salem, North Carolina, United States of America
| | - Adam Gower
- Clinical and Translational Science Institute, Boston University, Boston, Massachusetts, United States of America
| | - Denise Dayao
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Emily McGlone
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Melanie L. Ginese
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Aubrey Specht
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, United States of America
| | - Anas Alsharaydeh
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Philipe A. Tessier
- Department of Microbiology and Immunology, Laval University School of Medicine, Quebec, Canada
| | - Sherry L. Kurtz
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Karen L. Elkins
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Igor Kramnik
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
| | - Gillian Beamer
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| |
Collapse
|
3
|
Bates TA, Trank-Greene M, Nguyenla X, Anastas A, Gurmessa SK, Merutka IR, Dixon SD, Shumate A, Groncki AR, Parson MAH, Ingram JR, Barklis E, Burke JE, Shinde U, Ploegh HL, Tafesse FG. ESAT-6 undergoes self-association at phagosomal pH and an ESAT-6-specific nanobody restricts M. tuberculosis growth in macrophages. eLife 2024; 12:RP91930. [PMID: 38805257 PMCID: PMC11132683 DOI: 10.7554/elife.91930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) is known to survive within macrophages by compromising the integrity of the phagosomal compartment in which it resides. This activity primarily relies on the ESX-1 secretion system, predominantly involving the protein duo ESAT-6 and CFP-10. CFP-10 likely acts as a chaperone, while ESAT-6 likely disrupts phagosomal membrane stability via a largely unknown mechanism. we employ a series of biochemical analyses, protein modeling techniques, and a novel ESAT-6-specific nanobody to gain insight into the ESAT-6's mode of action. First, we measure the binding kinetics of the tight 1:1 complex formed by ESAT-6 and CFP-10 at neutral pH. Subsequently, we demonstrate a rapid self-association of ESAT-6 into large complexes under acidic conditions, leading to the identification of a stable tetrameric ESAT-6 species. Using molecular dynamics simulations, we pinpoint the most probable interaction interface. Furthermore, we show that cytoplasmic expression of an anti-ESAT-6 nanobody blocks Mtb replication, thereby underlining the pivotal role of ESAT-6 in intracellular survival. Together, these data suggest that ESAT-6 acts by a pH-dependent mechanism to establish two-way communication between the cytoplasm and the Mtb-containing phagosome.
Collapse
Affiliation(s)
- Timothy A Bates
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Mila Trank-Greene
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Xammy Nguyenla
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Aidan Anastas
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Sintayehu K Gurmessa
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Ilaria R Merutka
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Shandee D Dixon
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Anthony Shumate
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science UniversityPortlandUnited States
| | - Abigail R Groncki
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Matthew AH Parson
- Department of Biochemistry and Microbiology, University of VictoriaVictoriaCanada
| | - Jessica R Ingram
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical SchoolBostonUnited States
| | - Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - John E Burke
- Department of Biochemistry and Microbiology, University of VictoriaVictoriaCanada
- Department of Biochemistry and Molecular Biology, The University of British ColumbiaVancouverCanada
| | - Ujwal Shinde
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science UniversityPortlandUnited States
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical SchoolBostonUnited States
| | - Fikadu G Tafesse
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| |
Collapse
|
4
|
Bates TA, Trank-Greene M, Nguyenla X, Anastas A, Gurmessa SK, Merutka IR, Dixon SD, Shumate A, Groncki AR, Parson MAH, Ingram JR, Barklis E, Burke JE, Shinde U, Ploegh HL, Tafesse FG. ESAT-6 undergoes self-association at phagosomal pH and an ESAT-6 specific nanobody restricts M. tuberculosis growth in macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.16.553641. [PMID: 37645775 PMCID: PMC10462100 DOI: 10.1101/2023.08.16.553641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is known to survive within macrophages by compromising the integrity of the phagosomal compartment in which it resides. This activity primarily relies on the ESX-1 secretion system, predominantly involving the protein duo ESAT-6 and CFP-10. CFP-10 likely acts as a chaperone, while ESAT-6 likely disrupts phagosomal membrane stability via a largely unknown mechanism. we employ a series of biochemical analyses, protein modeling techniques, and a novel ESAT-6-specific nanobody to gain insight into the ESAT-6's mode of action. First, we measure the binding kinetics of the tight 1:1 complex formed by ESAT-6 and CFP-10 at neutral pH. Subsequently, we demonstrate a rapid self-association of ESAT-6 into large complexes under acidic conditions, leading to the identification of a stable tetrameric ESAT-6 species. Using molecular dynamics simulations, we pinpoint the most probable interaction interface. Furthermore, we show that cytoplasmic expression of an anti-ESAT-6 nanobody blocks Mtb replication, thereby underlining the pivotal role of ESAT-6 in intracellular survival. Together, these data suggest that ESAT-6 acts by a pH dependent mechanism to establish two-way communication between the cytoplasm and the Mtb-containing phagosome.
Collapse
Affiliation(s)
- Timothy A Bates
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Mila Trank-Greene
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Xammy Nguyenla
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Aidan Anastas
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Sintayehu K Gurmessa
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Ilaria R Merutka
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Shandee D Dixon
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Anthony Shumate
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Abigail R Groncki
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Matthew AH Parson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Jessica R Ingram
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, Canada
| | - Ujwal Shinde
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Fikadu G Tafesse
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| |
Collapse
|
5
|
Kurtz SL, Baker RE, Boehm FJ, Lehman CC, Mittereder LR, Khan H, Rossi AP, Gatti DM, Beamer G, Sassetti CM, Elkins KL. Multiple genetic loci influence vaccine-induced protection against Mycobacterium tuberculosis in genetically diverse mice. PLoS Pathog 2024; 20:e1012069. [PMID: 38452145 PMCID: PMC10950258 DOI: 10.1371/journal.ppat.1012069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/19/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
Mycobacterium tuberculosis (M.tb.) infection leads to over 1.5 million deaths annually, despite widespread vaccination with BCG at birth. Causes for the ongoing tuberculosis endemic are complex and include the failure of BCG to protect many against progressive pulmonary disease. Host genetics is one of the known factors implicated in susceptibility to primary tuberculosis, but less is known about the role that host genetics plays in controlling host responses to vaccination against M.tb. Here, we addressed this gap by utilizing Diversity Outbred (DO) mice as a small animal model to query genetic drivers of vaccine-induced protection against M.tb. DO mice are a highly genetically and phenotypically diverse outbred population that is well suited for fine genetic mapping. Similar to outcomes in people, our previous studies demonstrated that DO mice have a wide range of disease outcomes following BCG vaccination and M.tb. challenge. In the current study, we used a large population of BCG-vaccinated/M.tb.-challenged mice to perform quantitative trait loci mapping of complex infection traits; these included lung and spleen M.tb. burdens, as well as lung cytokines measured at necropsy. We found sixteen chromosomal loci associated with complex infection traits and cytokine production. QTL associated with bacterial burdens included a region encoding major histocompatibility antigens that are known to affect susceptibility to tuberculosis, supporting validity of the approach. Most of the other QTL represent novel associations with immune responses to M.tb. and novel pathways of cytokine regulation. Most importantly, we discovered that protection induced by BCG is a multigenic trait, in which genetic loci harboring functionally-distinct candidate genes influence different aspects of immune responses that are crucial collectively for successful protection. These data provide exciting new avenues to explore and exploit in developing new vaccines against M.tb.
Collapse
Affiliation(s)
- Sherry L. Kurtz
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Richard E. Baker
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - Frederick J. Boehm
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Chelsea C. Lehman
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Lara R. Mittereder
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Hamda Khan
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Amy P. Rossi
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
- College of Medicine, University of Cincinatti, Cincinatti, Ohio, United States of America
| | - Daniel M. Gatti
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Gillian Beamer
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Christopher M. Sassetti
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - Karen L. Elkins
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| |
Collapse
|
6
|
Ghoshal A, Verma A, Bhaskar A, Dwivedi VP. The uncharted territory of host-pathogen interaction in tuberculosis. Front Immunol 2024; 15:1339467. [PMID: 38312835 PMCID: PMC10834760 DOI: 10.3389/fimmu.2024.1339467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
Mycobacterium tuberculosis (M.tb) effectively manipulates the host processes to establish the deadly respiratory disease, Tuberculosis (TB). M.tb has developed key mechanisms to disrupt the host cell health to combat immune responses and replicate efficaciously. M.tb antigens such as ESAT-6, 19kDa lipoprotein, Hip1, and Hsp70 destroy the integrity of cell organelles (Mitochondria, Endoplasmic Reticulum, Nucleus, Phagosomes) or delay innate/adaptive cell responses. This is followed by the induction of cellular stress responses in the host. Such cells can either undergo various cell death processes such as apoptosis or necrosis, or mount effective immune responses to clear the invading pathogen. Further, to combat the infection progression, the host secretes extracellular vesicles such as exosomes to initiate immune signaling. The exosomes can contain M.tb as well as host cell-derived peptides that can act as a double-edged sword in the immune signaling event. The host-symbiont microbiota produces various metabolites that are beneficial for maintaining healthy tissue microenvironment. In juxtaposition to the above-mentioned mechanisms, M.tb dysregulates the gut and respiratory microbiome to support its replication and dissemination process. The above-mentioned interconnected host cellular processes of Immunometabolism, Cellular stress, Host Microbiome, and Extracellular vesicles are less explored in the realm of exploration of novel Host-directed therapies for TB. Therefore, this review highlights the intertwined host cellular processes to control M.tb survival and showcases the important factors that can be targeted for designing efficacious therapy.
Collapse
Affiliation(s)
| | | | | | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
7
|
Gatti DM, Tyler AL, Mahoney JM, Churchill GA, Yener B, Koyuncu D, Gurcan MN, Niazi M, Tavolara T, Gower AC, Dayao D, McGlone E, Ginese ML, Specht A, Alsharaydeh A, Tessier PA, Kurtz SL, Elkins K, Kramnik I, Beamer G. Systems genetics uncover new loci containing functional gene candidates in Mycobacterium tuberculosis-infected Diversity Outbred mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572738. [PMID: 38187647 PMCID: PMC10769337 DOI: 10.1101/2023.12.21.572738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Mycobacterium tuberculosis, the bacillus that causes tuberculosis (TB), infects 2 billion people across the globe, and results in 8-9 million new TB cases and 1-1.5 million deaths each year. Most patients have no known genetic basis that predisposes them to disease. We investigated the complex genetic basis of pulmonary TB by modelling human genetic diversity with the Diversity Outbred mouse population. When infected with M. tuberculosis, one-third develop early onset, rapidly progressive, necrotizing granulomas and succumb within 60 days. The remaining develop non-necrotizing granulomas and survive longer than 60 days. Genetic mapping using clinical indicators of disease, granuloma histopathological features, and immune response traits identified five new loci on mouse chromosomes 1, 2, 4, 16 and three previously identified loci on chromosomes 3 and 17. Quantitative trait loci (QTLs) on chromosomes 1, 16, and 17, associated with multiple correlated traits and had similar patterns of allele effects, suggesting these QTLs contain important genetic regulators of responses to M. tuberculosis. To narrow the list of candidate genes in QTLs, we used a machine learning strategy that integrated gene expression signatures from lungs of M. tuberculosis-infected Diversity Outbred mice with gene interaction networks, generating functional scores. The scores were then used to rank candidates for each mapped trait in each locus, resulting in 11 candidates: Ncf2, Fam20b, S100a8, S100a9, Itgb5, Fstl1, Zbtb20, Ddr1, Ier3, Vegfa, and Zfp318. Importantly, all 11 candidates have roles in infection, inflammation, cell migration, extracellular matrix remodeling, or intracellular signaling. Further, all candidates contain single nucleotide polymorphisms (SNPs), and some but not all SNPs were predicted to have deleterious consequences on protein functions. Multiple methods were used for validation including (i) a statistical method that showed Diversity Outbred mice carrying PWH/PhJ alleles on chromosome 17 QTL have shorter survival; (ii) quantification of S100A8 protein levels, confirming predicted allele effects; and (iii) infection of C57BL/6 mice deficient for the S100a8 gene. Overall, this work demonstrates that systems genetics using Diversity Outbred mice can identify new (and known) QTLs and new functionally relevant gene candidates that may be major regulators of granuloma necrosis and acute inflammation in pulmonary TB.
Collapse
Affiliation(s)
- D M Gatti
- The Jackson Laboratory, Bar Harbor, ME
| | - A L Tyler
- The Jackson Laboratory, Bar Harbor, ME
| | | | | | - B Yener
- Rensselaer Polytechnic Institute, Troy, NY
| | - D Koyuncu
- Rensselaer Polytechnic Institute, Troy, NY
| | - M N Gurcan
- Wake Forest University School of Medicine, Winston Salem, NC
| | - Mkk Niazi
- Wake Forest University School of Medicine, Winston Salem, NC
| | - T Tavolara
- Wake Forest University School of Medicine, Winston Salem, NC
| | - A C Gower
- Clinical and Translational Science Institute, Boston University, Boston, MA
| | - D Dayao
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - E McGlone
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - M L Ginese
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - A Specht
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA
| | - A Alsharaydeh
- Texas Biomedical Research Institute, San Antonio, TX
| | - P A Tessier
- Department of Microbiology and Immunology, Laval University School of Medicine, Quebec, Canada
| | - S L Kurtz
- Center for Biologics, Food and Drug Administration, Bethesda, MD
| | - K Elkins
- Center for Biologics, Food and Drug Administration, Bethesda, MD
| | - I Kramnik
- NIEDL, Boston University, Boston, MA
| | - G Beamer
- Texas Biomedical Research Institute, San Antonio, TX
| |
Collapse
|
8
|
Cui Y, Dang G, Wang H, Tang Y, Lv M, Liu S, Song N. DosR's multifaceted role on Mycobacterium bovis BCG revealed through multi-omics. Front Cell Infect Microbiol 2023; 13:1292864. [PMID: 38076461 PMCID: PMC10703047 DOI: 10.3389/fcimb.2023.1292864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is an intracellular bacterium that causes a highly contagious and potentially lethal tuberculosis (TB) in humans. It can maintain a dormant TB infection within the host. DosR (dormancy survival regulator) (Rv3133c) has been recognized as one of the key transcriptional proteins regulating bacterial dormancy and participating in various metabolic processes. In this study, we extensively investigate the still not well-comprehended role and mechanism of DosR in Mycobacterium bovis (M. bovis) Bacillus Calmette-Guérin (BCG) through a combined omics analysis. Our study finds that deleting DosR significantly affects the transcriptional levels of 104 genes and 179 proteins. Targeted metabolomics data for amino acids indicate that DosR knockout significantly upregulates L-Aspartic acid and serine synthesis, while downregulating seven other amino acids, including L-histidine and lysine. This suggests that DosR regulates amino acid synthesis and metabolism. Taken together, these findings provide molecular and metabolic bases for DosR effects, suggesting that DosR may be a novel regulatory target.
Collapse
Affiliation(s)
- Yingying Cui
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guanghui Dang
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hui Wang
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yiyi Tang
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mingyue Lv
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Siguo Liu
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ningning Song
- State Key Laboratory for Animal Disease Control and Prevention, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- School of Life Science and Technology, Weifang Medical University, Weifang, China
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, Weifang, China
| |
Collapse
|
9
|
van der Geest R, Peñaloza HF, Xiong Z, Gonzalez-Ferrer S, An X, Li H, Fan H, Tabary M, Nouraie SM, Zhao Y, Zhang Y, Chen K, Alder JK, Bain WG, Lee JS. BATF2 enhances proinflammatory cytokine responses in macrophages and improves early host defense against pulmonary Klebsiella pneumoniae infection. Am J Physiol Lung Cell Mol Physiol 2023; 325:L604-L616. [PMID: 37724373 PMCID: PMC11068429 DOI: 10.1152/ajplung.00441.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 07/12/2023] [Accepted: 08/31/2023] [Indexed: 09/20/2023] Open
Abstract
Basic leucine zipper transcription factor ATF-like 2 (BATF2) is a transcription factor that is emerging as an important regulator of the innate immune system. BATF2 is among the top upregulated genes in human alveolar macrophages treated with LPS, but the signaling pathways that induce BATF2 expression in response to Gram-negative stimuli are incompletely understood. In addition, the role of BATF2 in the host response to pulmonary infection with a Gram-negative pathogen like Klebsiella pneumoniae (Kp) is not known. We show that induction of Batf2 gene expression in macrophages in response to Kp in vitro requires TRIF and type I interferon (IFN) signaling, but not MyD88 signaling. Analysis of the impact of BATF2 deficiency on macrophage effector functions in vitro showed that BATF2 does not directly impact macrophage phagocytic uptake and intracellular killing of Kp. However, BATF2 markedly enhanced macrophage proinflammatory gene expression and Kp-induced cytokine responses. In vivo, Batf2 gene expression was elevated in lung tissue of wild-type (WT) mice 24 h after pulmonary Kp infection, and Kp-infected BATF2-deficient (Batf2-/-) mice displayed an increase in bacterial burden in the lung, spleen, and liver compared with WT mice. WT and Batf2-/- mice showed similar recruitment of leukocytes following infection, but in line with in vitro observations, proinflammatory cytokine levels in the alveolar space were reduced in Batf2-/- mice. Altogether, these results suggest that BATF2 enhances proinflammatory cytokine responses in macrophages in response to Kp and contributes to the early host defense against pulmonary Kp infection.NEW & NOTEWORTHY This study investigates the signaling pathways that mediate induction of BATF2 expression downstream of TLR4 and also the impact of BATF2 on the host defense against pulmonary Kp infection. We demonstrate that Kp-induced upregulation of BATF2 in macrophages requires TRIF and type I IFN signaling. We also show that BATF2 enhances Kp-induced macrophage cytokine responses and that BATF2 contributes to the early host defense against pulmonary Kp infection.
Collapse
Affiliation(s)
- Rick van der Geest
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Hernán F Peñaloza
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Zeyu Xiong
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Shekina Gonzalez-Ferrer
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Xiaojing An
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Huihua Li
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Hongye Fan
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Mohammadreza Tabary
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - S Mehdi Nouraie
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Yanwu Zhao
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Yingze Zhang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Kong Chen
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Jonathan K Alder
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - William G Bain
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, United States
| | - Janet S Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Acute Lung Injury Center of Excellence, Department of Medicine, Pittsburgh, Pennsylvania, United States
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
10
|
Sampath P, Rajamanickam A, Thiruvengadam K, Natarajan AP, Hissar S, Dhanapal M, Thangavelu B, Jayabal L, Ramesh PM, Ranganathan UD, Babu S, Bethunaickan R. Plasma chemokines CXCL10 and CXCL9 as potential diagnostic markers of drug-sensitive and drug-resistant tuberculosis. Sci Rep 2023; 13:7404. [PMID: 37149713 PMCID: PMC10163852 DOI: 10.1038/s41598-023-34530-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023] Open
Abstract
Tuberculosis (TB) diagnosis still remains to be a challenge with the currently used immune based diagnostic methods particularly Interferon Gamma Release Assay due to the sensitivity issues and their inability in differentiating stages of TB infection. Immune markers are valuable sources for understanding disease biology and are easily accessible. Chemokines, the stimulant, and the shaper of host immune responses are the vital hub for disease mediated dysregulation and their varied levels in TB disease are considered as an important marker to define the disease status. Hence, we wanted to examine the levels of chemokines among the individuals with drug-resistant, drug-sensitive, and latent TB compared to healthy individuals. Our results demonstrated that the differential levels of chemokines between the study groups and revealed that CXCL10 and CXCL9 as potential markers of drug-resistant and drug-sensitive TB with better stage discriminating abilities.
Collapse
Affiliation(s)
- Pavithra Sampath
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis (ICMR-NIRT), No.1. Mayor Sathyamoorthy Road, Chetpet, Chennai, 600 031, India
| | | | - Kannan Thiruvengadam
- Department of Statistics, ICMR-National Institute for Research in Tuberculosis (ICMR-NIRT), Chennai, India
| | | | - Syed Hissar
- Department of Clinical Research, ICMR-National Institute for Research in Tuberculosis (ICMR-NIRT), Chennai, India
| | - Madhavan Dhanapal
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis (ICMR-NIRT), No.1. Mayor Sathyamoorthy Road, Chetpet, Chennai, 600 031, India
| | - Bharathiraja Thangavelu
- Department of Clinical Pharmacology, ICMR-National Institute for Research in Tuberculosis (ICMR-NIRT), Chennai, India
| | | | | | - Uma Devi Ranganathan
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis (ICMR-NIRT), No.1. Mayor Sathyamoorthy Road, Chetpet, Chennai, 600 031, India
| | - Subash Babu
- ICMR-NIRT-NIH-International Center for Excellence in Research, Chennai, India
| | - Ramalingam Bethunaickan
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis (ICMR-NIRT), No.1. Mayor Sathyamoorthy Road, Chetpet, Chennai, 600 031, India.
| |
Collapse
|
11
|
Peruhype-Magalhães V, de Araújo FF, de Morais Papini TF, Wendling APB, Campi-Azevedo AC, Coelho-Dos-Reis JG, de Almeida IN, do Valle Antonnelli LR, Amaral LR, de Souza Gomes M, Brito-de-Sousa JP, Elói-Santos SM, Augusto VM, Pretti Dalcolmo MM, Carneiro CM, Teixeira-Carvalho A, Martins-Filho OA. Serum biomarkers in patients with unilateral or bilateral active pulmonary tuberculosis: Immunological networks and promising diagnostic applications. Cytokine 2023; 162:156076. [PMID: 36417816 DOI: 10.1016/j.cyto.2022.156076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/21/2022]
Abstract
The present observational study was designed to characterize the integrative profile of serum soluble mediators to describe the immunological networks associated with clinical findings and identify putative biomarkers for diagnosis and prognosis of active tuberculosis. The study population comprises 163 volunteers, including 84 patients with active pulmonary tuberculosis/(TB), and 79 controls/(C). Soluble mediators were measured by multiplexed assay. Data analysis demonstrated that the levels of CCL3, CCL5, CXCL10, IL-1β, IL-6, IFN-γ, IL-1Ra, IL-4, IL-10, PDGF, VEGF, G-CSF, IL-7 were increased in TB as compared to C. Patients with bilateral pulmonary involvement/(TB-BI) exhibited higher levels of CXCL8, IL-6 and TNF with distinct biomarker signatures (CCL11, CCL2, TNF and IL-10) as compared to patients with unilateral infiltrates/(TB-UNI). Analysis of biomarker networks based in correlation power graph demonstrated small number of strong connections in TB and TB-BI. The search for biomarkers with relevant implications to understand the pathogenetic mechanisms and useful as complementary diagnosis tool of active TB pointed out the excellent performance of single analysis of IL-6 or CXCL10 and the stepwise combination of IL-6 → CXCL10 (Accuracy = 84 %; 80 % and 88 %, respectively). Together, our finding demonstrated that immunological networks of serum soluble biomarkers in TB patients differ according to the unilateral or bilateral pulmonary involvement and may have relevant implications to understand the pathogenetic mechanisms involved in the clinical outcome of Mtb infection.
Collapse
Affiliation(s)
- Vanessa Peruhype-Magalhães
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Fortes de Araújo
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Tatiane Figueiredo de Morais Papini
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil; Pós-graduação em Ciências Farmacêuticas (CIPHARMA), Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Ana Paula Barbosa Wendling
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Carolina Campi-Azevedo
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Jordana Grazziela Coelho-Dos-Reis
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Isabela Neves de Almeida
- Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Lis Ribeiro do Valle Antonnelli
- Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou - FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Laurence Rodrigues Amaral
- Rede Multidisciplinar de Pesquisa, Ciência e Tecnologia, Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, Campus Patos de Minas, Patos de Minas, MG, Brazil
| | - Matheus de Souza Gomes
- Rede Multidisciplinar de Pesquisa, Ciência e Tecnologia, Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, Campus Patos de Minas, Patos de Minas, MG, Brazil
| | - Joaquim Pedro Brito-de-Sousa
- Pós-graduação em Imunologia e Parasitologia Aplicadas (PPIPA), Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Silvana Maria Elói-Santos
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil; Departamento de Propedêutica Complementar, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Valéria Maria Augusto
- Departamento de Propedêutica Complementar, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Margareth Maria Pretti Dalcolmo
- Escola Nacional de Saúde Pública, Centro de Referência Professor Hélio Fraga, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cláudia Martins Carneiro
- Pós-graduação em Ciências Farmacêuticas (CIPHARMA), Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Andréa Teixeira-Carvalho
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil.
| | - Olindo Assis Martins-Filho
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
12
|
Exopolyphosphatases PPX1 and PPX2 from Mycobacterium tuberculosis regulate dormancy response and pathogenesis. Microb Pathog 2022; 173:105885. [DOI: 10.1016/j.micpath.2022.105885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/12/2022] [Accepted: 11/12/2022] [Indexed: 11/21/2022]
|
13
|
Gupta T, Somanna N, Rowe T, LaGatta M, Helms S, Owino SO, Jelesijevic T, Harvey S, Jacobs W, Voss T, Sakamoto K, Day C, Whalen C, Karls R, He B, Tompkins SM, Bakre A, Ross T, Quinn FD. Ferrets as a model for tuberculosis transmission. Front Cell Infect Microbiol 2022; 12:873416. [PMID: 36051240 PMCID: PMC9425069 DOI: 10.3389/fcimb.2022.873416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022] Open
Abstract
Even with the COVID-19 pandemic, tuberculosis remains a leading cause of human death due to a single infectious agent. Until successfully treated, infected individuals may continue to transmit Mycobacterium tuberculosis bacilli to contacts. As with other respiratory pathogens, such as SARS-CoV-2, modeling the process of person-to-person transmission will inform efforts to develop vaccines and therapies that specifically impede disease transmission. The ferret (Mustela furo), a relatively inexpensive, small animal has been successfully employed to model transmissibility, pathogenicity, and tropism of influenza and other respiratory disease agents. Ferrets can become naturally infected with Mycobacterium bovis and are closely related to badgers, well known in Great Britain and elsewhere as a natural transmission vehicle for bovine tuberculosis. Herein, we report results of a study demonstrating that within 7 weeks of intratracheal infection with a high dose (>5 x 103 CFU) of M. tuberculosis bacilli, ferrets develop clinical signs and pathological features similar to acute disease reported in larger animals, and ferrets infected with very-high doses (>5 x 104 CFU) develop severe signs within two to four weeks, with loss of body weight as high as 30%. Natural transmission of this pathogen was also examined. Acutely-infected ferrets transmitted M. tuberculosis bacilli to co-housed naïve sentinels; most of the sentinels tested positive for M. tuberculosis in nasal washes, while several developed variable disease symptomologies similar to those reported for humans exposed to an active tuberculosis patient in a closed setting. Transmission was more efficient when the transmitting animal had a well-established acute infection. The findings support further assessment of this model system for tuberculosis transmission including the testing of prevention measures and vaccine efficacy.
Collapse
Affiliation(s)
- Tuhina Gupta
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Naveen Somanna
- Molecular Analytics R&D, GlaxoSmithKline Vaccines, Rockville, MD, United States
| | - Thomas Rowe
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Monica LaGatta
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Shelly Helms
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Simon Odera Owino
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Tomislav Jelesijevic
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Stephen Harvey
- Animal Resources Program, University of Georgia, Athens, GA, United States
| | - Wayne Jacobs
- Animal Resources Program, University of Georgia, Athens, GA, United States
| | - Thomas Voss
- Merck Research Laboratories, West Point, PA, United States
| | - Kaori Sakamoto
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Cheryl Day
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Christopher Whalen
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, GA, United States
| | - Russell Karls
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Biao He
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - S. Mark Tompkins
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Abhijeet Bakre
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Ted Ross
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Frederick D. Quinn
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- *Correspondence: Frederick D. Quinn,
| |
Collapse
|
14
|
Yao Q, Xie Y, Xu D, Qu Z, Wu J, Zhou Y, Wei Y, Xiong H, Zhang XL. Lnc-EST12, which is negatively regulated by mycobacterial EST12, suppresses antimycobacterial innate immunity through its interaction with FUBP3. Cell Mol Immunol 2022; 19:883-897. [PMID: 35637281 PMCID: PMC9149337 DOI: 10.1038/s41423-022-00878-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/02/2022] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have been implicated in the pathogenesis of intracellular pathogens. However, the role and mechanism of the important lncRNAs in Mycobacterium tuberculosis (M.tb) infection remain largely unexplored. Recently, we found that a secreted M.tb Rv1579c (an early secreted target with a molecular weight of 12 kDa, named EST12) protein activates NLRP3-gasdermin D (GSDMD)-mediated pyroptosis and plays a pivotal role in M.tb-induced immunity. In the present study, M.tb and the EST12 protein negatively regulated the expression of a key lncRNA (named lnc-EST12) in mouse macrophages by activating the JAK2-STAT5a signaling pathway. Lnc-EST12, with a size of 1583 bp, is mainly expressed in immune-related organs (liver, lung and spleen). Lnc-EST12 not only reduces the expression of the proinflammatory cytokines IL-1β, IL-6, and CCL5/8 but also suppresses the NLRP3 inflammasome and GSDMD pyroptosis-IL-1β immune pathway through its interaction with the transcription factor far upstream element-binding protein 3 (FUBP3). The KH3 and KH4 domains of FUBP3 are the critical sites for binding to lnc-EST12. Deficiency of mouse lnc-EST12 or FUBP3 in macrophages increased M.tb clearance and inflammation in mouse macrophages or mice. In conclusion, we report a new immunoregulatory mechanism in which mouse lnc-EST12 negatively regulates anti-M.tb innate immunity through FUBP3.
Collapse
Affiliation(s)
- Qili Yao
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Yan Xie
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Dandan Xu
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Zilu Qu
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Jian Wu
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Yuanyuan Zhou
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Yuying Wei
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Huan Xiong
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Xiao-Lian Zhang
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China.
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
- Department of Allergy, Zhongnan Hospital, Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
15
|
Rankin AN, Hendrix SV, Naik SK, Stallings CL. Exploring the Role of Low-Density Neutrophils During Mycobacterium tuberculosis Infection. Front Cell Infect Microbiol 2022; 12:901590. [PMID: 35800386 PMCID: PMC9253571 DOI: 10.3389/fcimb.2022.901590] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/23/2022] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB) is caused by infection with the bacterium Mycobacterium tuberculosis (Mtb), which primarily infects the lungs but can also cause extrapulmonary disease. Both the disease outcome and the pathology of TB are driven by the immune response mounted by the host. Infection with Mtb elicits inflammatory host responses that are necessary to control infection, but can also cause extensive tissue damage when in excess, and thus must be precisely balanced. In particular, excessive recruitment of neutrophils to the site of infection has been associated with poor control of Mtb infection, prompting investigations into the roles of neutrophils in TB disease outcomes. Recent studies have revealed that neutrophils can be divided into subpopulations that are differentially abundant in TB disease states, highlighting the potential complexities in determining the roles of neutrophils in Mtb infection. Specifically, neutrophils can be separated into normal (NDN) and low-density neutrophils (LDNs) based on their separation during density gradient centrifugation and surface marker expression. LDNs are present in higher numbers during active TB disease and increase in frequency with disease progression, although their direct contribution to TB is still unknown. In addition, the abundance of LDNs has also been associated with the severity of other lung infections, including COVID-19. In this review, we discuss recent findings regarding the roles of LDNs during lung inflammation, emphasizing their association with TB disease outcomes. This review highlights the importance of future investigations into the relationship between neutrophil diversity and TB disease severity.
Collapse
|
16
|
Akter S, Chauhan KS, Dunlap MD, Choreño-Parra JA, Lu L, Esaulova E, Zúñiga J, Artyomov MN, Kaushal D, Khader SA. Mycobacterium tuberculosis infection drives a type I IFN signature in lung lymphocytes. Cell Rep 2022; 39:110983. [PMID: 35732116 PMCID: PMC9616001 DOI: 10.1016/j.celrep.2022.110983] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 04/20/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) infects 25% of the world's population and causes tuberculosis (TB), which is a leading cause of death globally. A clear understanding of the dynamics of immune response at the cellular level is crucial to design better strategies to control TB. We use the single-cell RNA sequencing approach on lung lymphocytes derived from healthy and Mtb-infected mice. Our results show the enrichment of the type I IFN signature among the lymphoid cell clusters, as well as heat shock responses in natural killer (NK) cells from Mtb-infected mice lungs. We identify Ly6A as a lymphoid cell activation marker and validate its upregulation in activated lymphoid cells following infection. The cross-analysis of the type I IFN signature in human TB-infected peripheral blood samples further validates our results. These findings contribute toward understanding and characterizing the transcriptional parameters at a single-cell depth in a highly relevant and reproducible mouse model of TB.
Collapse
Affiliation(s)
- Sadia Akter
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA,These authors contributed equally
| | - Kuldeep S. Chauhan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA,These authors contributed equally
| | - Micah D. Dunlap
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - José Alberto Choreño-Parra
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA,Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City 14080, Mexico,Laboratorio de Inmunoquímica I, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07320, Mexico
| | - Lan Lu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ekaterina Esaulova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joaquin Zúñiga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City 14080, Mexico,Laboratorio de Inmunoquímica I, Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07320, Mexico
| | - Maxim N. Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA.
| | - Shabaana A. Khader
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA,Lead contact,Correspondence: (D.K.), (S.A.K.) https://doi.org/10.1016/j.celrep.2022.110983
| |
Collapse
|
17
|
Gebremicael G, Gebreegziabxier A, Kassa D. Low transcriptomic of PTPRCv1 and CD3E is an independent predictor of mortality in HIV and tuberculosis co-infected patient. Sci Rep 2022; 12:10133. [PMID: 35710869 PMCID: PMC9203579 DOI: 10.1038/s41598-022-14305-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/06/2022] [Indexed: 11/09/2022] Open
Abstract
A comprehensive assessment of immunological profiles during HIV-TB co-infection is essential to predict mortality, and facilitate the development of effective diagnostic assays, therapeutic agents, and vaccines. Expression levels of 105 immune-related genes were measured at enrolment and 6th month follow-up from 9 deceased HIV and TB coinfected patients who died between 3 and 7th months follow-up and at enrolment, 6th and 18th month from 18 survived matched controls groups for 2 years. Focused gene expression profiling was assessed from peripheral whole blood using a dual-color Reverse-Transcription Multiplex Ligation-dependent Probe Amplification assay. Eleven of the 105 selected genes were differentially expressed between deceased individuals and survivor-matched controls at baseline. At baseline, IL4δ2 was significantly more highly expressed in the deceased group than survivor matched controls, whereas CD3E, IL7R, PTPRCv1, CCL4, GNLY, BCL2, CCL5, NOD1, TLR3, and NLRP13 had significantly lower expression levels in the deceased group compared to survivor matched controls. At baseline, a non-parametric receiver operator characteristic curve was conducted to determine the prediction of mortality of single genes identified CCL5, PTPRCv1, CD3E, and IL7R with Area under the Curve of 0.86, 0.86, 0.86, and 0.85 respectively. The expression of these genes in the survived control was increased at the end of TB treatment from that at baseline, while decreased in the deceased group. The expression of PTPRCv1, CD3E, CCL5, and IL7R host genes in peripheral blood of patients with TB-HIV coinfected can potentially be used as a predictor of mortality in the Ethiopian setting. Anti-TB treatment might be less likely to restore gene expression in the level expression of the deceased group. Therefore, other new therapeutics that can restore these genes (PTPRCv1, CD3E, IL7R, and CCL5) in the deceased groups at baseline might be needed to save lives.
Collapse
Affiliation(s)
| | | | - Desta Kassa
- Ethiopian Public Health Institute (EPHI), P.O.Box: 1242, Addis Ababa, Ethiopia
| |
Collapse
|
18
|
Barral TD, Rebouças MF, Loureiro D, Raynal JT, Sousa TJ, Moura-Costa LF, Azevedo V, Meyer R, Portela RW. Chemokine production induced by Corynebacterium pseudotuberculosis in a murine model. Braz J Microbiol 2022; 53:1019-1027. [PMID: 35138630 PMCID: PMC9151972 DOI: 10.1007/s42770-022-00694-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
Corynebacterium pseudotuberculosis is the etiological agent of caseous lymphadenitis. The main clinical sign of this disease is the development of granulomas, especially in small ruminants; however, the pathways that are involved in the formation and maintenance of these granulomas are unknown. Cytokines and chemokines are responsible for the migration of immune cells to specific sites and tissues; therefore, it is possible that chemokines participate in abscess formation. This study aimed to evaluate the induction of chemokine production by two C. pseudotuberculosis strains in a murine model. A highly pathogenic (VD57) and an attenuated (T1) strain of C. pseudotuberculosis, as well as somatic and secreted antigens derived from these strains, was used to stimulate murine splenocytes. Then, the concentrations of the chemokines CCL-2, CCL-3, CCL-4, and CCL-5 and the cytokines IL-1 and TNF were measured in the culture supernatants. The VD57 strain had a higher ability to stimulate the production of chemokines when compared to T1 strain, especially in the early stages of stimulation, which can have an impact on granuloma formation. The T1 lysate antigen was able to stimulate most of the chemokines studied herein when compared to the other antigenic fractions of both strains. These results indicate that C. pseudotuberculosis is a chemokine production inducer, and the bacterial strains differ in their induction pattern, a situation that can be related to the specific behavior of each strain.
Collapse
Affiliation(s)
- Thiago Doria Barral
- Laboratory of Immunology and Molecular Biology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia State, 40110-100, Brazil
| | - Miriam Flores Rebouças
- Laboratory of Immunology and Molecular Biology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia State, 40110-100, Brazil
| | - Dan Loureiro
- Laboratory of Immunology and Molecular Biology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia State, 40110-100, Brazil
| | - José Tadeu Raynal
- Laboratory of Immunology and Molecular Biology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia State, 40110-100, Brazil
| | - Thiago Jesus Sousa
- Laboratory of Molecular and Cellular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais State, 31270-901, Brazil
| | - Lilia Ferreira Moura-Costa
- Laboratory of Immunology and Molecular Biology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia State, 40110-100, Brazil
| | - Vasco Azevedo
- Laboratory of Molecular and Cellular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais State, 31270-901, Brazil
| | - Roberto Meyer
- Laboratory of Immunology and Molecular Biology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia State, 40110-100, Brazil
| | - Ricardo Wagner Portela
- Laboratory of Immunology and Molecular Biology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia State, 40110-100, Brazil.
| |
Collapse
|
19
|
Patil CD, Suryawanshi R, Ames J, Koganti R, Agelidis A, Kapoor D, Yadavalli T, Koujah L, Tseng HC, Shukla D. Intrinsic Antiviral Activity of Optineurin Prevents Hyperproliferation of a Primary Herpes Simplex Virus Type 2 Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:63-73. [PMID: 34880107 PMCID: PMC9015683 DOI: 10.4049/jimmunol.2100472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/22/2021] [Indexed: 01/03/2023]
Abstract
Very little knowledge exists on virus-specific host cell intrinsic mechanisms that prevent hyperproliferation of primary HSV type 2 (HSV-2) genital infections. In this study, we provide evidence that the Nemo-related protein, optineurin (OPTN), plays a key role in restricting HSV-2 infection both in vitro and in vivo. Contrary to previous reports regarding the proviral role of OPTN during Sendai virus infection, we demonstrate that lack of OPTN in cells causes enhanced virus production. OPTN deficiency negatively affects the host autophagy response and results in a marked reduction of CCL5 induction. OPTN knockout (OPTN-/-) mice display exacerbated genital disease and dysregulated T cell frequencies in infected tissues and lymph nodes. A human transcriptomic profile dataset provides further credence that a strong positive correlation exists between CCL5 upregulation and OPTN expression during HSV-2 genital infection. Our findings underscore a previously unknown OPTN/CCL5 nexus that restricts hyperproliferative spread of primary HSV-2 infection, which may constitute an intrinsic host defense mechanism against herpesviruses in general.
Collapse
Affiliation(s)
- Chandrashekhar D Patil
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Rahul Suryawanshi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Joshua Ames
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA.,Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Alex Agelidis
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA.,Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Divya Kapoor
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA.,Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Lulia Koujah
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Henry C Tseng
- Duke Eye Center, Department of Ophthalmology, Duke University Medical Center, Durham, NC, 27713, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA.,Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA.,Corresponding author. Phone number: 312-355-0908, Fax: 312-996-7773,
| |
Collapse
|
20
|
Cytokines Induced by Edwardsiella tarda: Profile and Role in Antibacterial Immunity. Biomolecules 2021; 11:biom11081242. [PMID: 34439908 PMCID: PMC8391551 DOI: 10.3390/biom11081242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/05/2021] [Accepted: 08/16/2021] [Indexed: 01/18/2023] Open
Abstract
Edwardsiella tarda is a Gram-negative bacterial pathogen with a broad range of hosts, including fish and mammals. In the present study, we used an advanced antibody array technology to identify the expression pattern of cytokines induced by E. tarda in a mouse infection model. In total, 31 and 24 differentially expressed cytokines (DECs) were identified in the plasma at 6 h and 24 h post-infection (hpi), respectively. The DECs were markedly enriched in the Gene Ontology (GO) terms associated with cell migration and response to chemokine and in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with immunity, diseases, and infection. Ten key DECs, including IL6 and TNF-α, were found to form extensive protein-protein interaction networks. IL6 was demonstrated to inhibit E. tarda infection and be required for E. tarda-induced inflammatory response. TNF-α also exerted an inhibitory effect on E. tarda infection, and knockdown of fish (Japanese flounder) TNF-α promoted E. tarda invasion in host cells. Together, the results of this study revealed a comprehensive profile of cytokines induced by E. tarda, thus adding new insights into the role of cytokine-associated immunity against bacterial infection and also providing the potential plasma biomarkers of E. tarda infection for future studies.
Collapse
|
21
|
Leukocytes from Patients with Drug-Sensitive and Multidrug-Resistant Tuberculosis Exhibit Distinctive Profiles of Chemokine Receptor Expression and Migration Capacity. J Immunol Res 2021; 2021:6654220. [PMID: 33977111 PMCID: PMC8084684 DOI: 10.1155/2021/6654220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/13/2021] [Accepted: 04/08/2021] [Indexed: 01/04/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains as a leading infectious cause of death worldwide. The increasing number of multidrug-resistant TB (MDR-TB) cases contributes to the poor control of the TB epidemic. Currently, little is known about the immunological requirements of protective responses against MDR-TB. This is of major relevance to identify immune markers for treatment monitoring and targets for adjuvant immunotherapies. Here, we hypothesized that MDR-TB patients display unique immunophenotypical features and immune cell migration dynamics compared to drug-sensitive TB (DS-TB). Hence, we prospectively conducted an extensive characterization of the immune profile of MDR-TB patients at different time points before and after pharmacological therapy. For this purpose, we focused on the leukocyte expression of chemokine receptors, distribution of different monocyte and lymphocyte subsets, plasma levels of chemotactic factors, and in vitro migration capacity of immune cells. Our comparative cohort consisted of DS-TB patients and healthy volunteer donors (HD). Our results demonstrate some unique features of leukocyte migration dynamics during MDR-TB. These include increased and prolonged circulation of CD3+ monocytes, CCR4+ monocytes, EM CD4+ T cells, EM/CM CD8+ T cells, and CXCR1+CXCR3+ T cells that is sustained even after the administration of anti-TB drugs. We also observed shared characteristics of both MDR-TB and DS-TB that include CCR2+ monocyte depletion in the blood; high plasma levels of MPC-1, CCL-7, and IP-10; and increased responsiveness of leukocytes to chemotactic signals in vitro. Our study contributes to a better understanding of the MDR-TB pathobiology and uncovers immunological readouts of treatment efficacy.
Collapse
|
22
|
Jongstra-Bilen J, Tai K, Althagafi MG, Siu A, Scipione CA, Karim S, Polenz CK, Ikeda J, Hyduk SJ, Cybulsky MI. Role of myeloid-derived chemokine CCL5/RANTES at an early stage of atherosclerosis. J Mol Cell Cardiol 2021; 156:69-78. [PMID: 33781821 DOI: 10.1016/j.yjmcc.2021.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/11/2021] [Accepted: 03/24/2021] [Indexed: 12/31/2022]
Abstract
One of the hallmarks of atherosclerosis is ongoing accumulation of macrophages in the artery intima beginning at disease onset. Monocyte recruitment contributes to increasing macrophage abundance at early stages of atherosclerosis. Although the chemokine CCL5 (RANTES) has been studied in atherosclerosis, its role in the recruitment of monocytes to early lesions has not been elucidated. We show that expression of Ccl5 mRNA, as well as other ligands of the CCR5 receptor (Ccl3 and Ccl4), is induced in the aortic intima of Ldlr-/- mice 3 weeks after the initiation of cholesterol-rich diet (CRD)-induced hypercholesterolemia. En face immunostaining revealed that CCL5 protein expression is also upregulated at 3 weeks of CRD. Blockade of CCR5 significantly reduced monocyte recruitment to 3-week lesions, suggesting that chemokine signaling through CCR5 is critical. However, we observed that Ccl5-deficiency had no effect on early lesion formation and CCL5-blockade did not affect monocyte recruitment in Ldlr-/- mice. Immunostaining of the lesions in Ldlr-/- mice and reciprocal bone marrow transplantation (BMT) of Ccl5+/+ and Ccl5-/- mice revealed that CCL5 is expressed by both myeloid and endothelial cells. BMT experiments were carried out to determine if CCL5 produced by distinct cells has functions that may be concealed in Ccl5-/-Ldlr-/- mice. We found that hematopoietic cell-derived CCL5 regulates monocyte recruitment and the abundance of intimal macrophages in 3-week lesions of Ldlr-/- mice but plays a minor role in 6-week lesions. Our findings suggest that there is a short window in early lesion formation during which myeloid cell-derived CCL5 has a critical role in monocyte recruitment and macrophage abundance.
Collapse
Affiliation(s)
- Jenny Jongstra-Bilen
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada.
| | - Kelly Tai
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Marwan G Althagafi
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada.
| | - Allan Siu
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada.
| | - Corey A Scipione
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada.
| | - Saraf Karim
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Chanele K Polenz
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada.
| | - Jiro Ikeda
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada.
| | - Sharon J Hyduk
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada.
| | - Myron I Cybulsky
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Peter Munk Cardiac Centre, University Health Network, Toronto, ON M5G 2C4, Canada; Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
23
|
Wang L, Wen Z, Ma H, Wu L, Chen H, Zhu Y, Niu L, Wu Q, Li H, Shi L, Li L, Wan L, Wang J, Wong KW, Song Y. Long non-coding RNAs ENST00000429730.1 and MSTRG.93125.4 are associated with metabolic activity in tuberculosis lesions of sputum-negative tuberculosis patients. Aging (Albany NY) 2021; 13:8228-8247. [PMID: 33686954 PMCID: PMC8034958 DOI: 10.18632/aging.202634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/23/2020] [Indexed: 11/25/2022]
Abstract
Accurate diagnosis of complete inactivation of tuberculosis lesions is still a challenge with respect to sputum-negative tuberculosis. RNA-sequencing was conducted to uncover potential lncRNA indicators of metabolic activity in tuberculosis lesions. Lung tissues with high metabolic activity and low metabolic activity demonstrated by fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography were collected from five sputum-negative tuberculosis patients for RNA-sequencing. Differentially-expressed mRNAs and lncRNAs were identified. Their correlations were evaluated to construct lncRNA-mRNA co-expression network, in which lncRNAs and mRNAs with high degrees were confirmed by quantitative real-time PCR using samples collected from 11 patients. Prediction efficiencies of lncRNA indicators were assessed by receiver operating characteristic curve analysis. Bioinformatics analysis was performed for potential lncRNAs. 386 mRNAs and 44 lncRNAs were identified to be differentially expressed. Differentially-expressed mRNAs in lncRNA-mRNA co-expression network were significantly associated with fibrillar collagen, platelet-derived growth factor binding, and leukocyte migration involved in inflammatory response. Seven mRNAs (C1QB, CD68, CCL5, CCL19, MMP7, HLA-DMB, and CYBB) and two lncRNAs (ENST00000429730.1 and MSTRG.93125.4) were validated to be significantly up-regulated. The area under the curve of ENST00000429730.1 and MSTRG.93125.4 was 0.750 and 0.813, respectively. Two lncRNAs ENST00000429730.1 and MSTRG.93125.4 might be considered as potential indicators of metabolic activity in tuberculosis lesions for sputum-negative tuberculosis.
Collapse
Affiliation(s)
- Lin Wang
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zilu Wen
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Department of Scientific Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hui Ma
- Department of Scientific Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Liwei Wu
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hui Chen
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yijun Zhu
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Liangfei Niu
- Department of Scientific Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Qihang Wu
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Department of Scientific Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hongwei Li
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lei Shi
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Leilei Li
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Leiyi Wan
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jun Wang
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Ka-Wing Wong
- Department of Scientific Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yanzheng Song
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Tavolara TE, Niazi MKK, Ginese M, Piedra-Mora C, Gatti DM, Beamer G, Gurcan MN. Automatic discovery of clinically interpretable imaging biomarkers for Mycobacterium tuberculosis supersusceptibility using deep learning. EBioMedicine 2020; 62:103094. [PMID: 33166789 PMCID: PMC7658666 DOI: 10.1016/j.ebiom.2020.103094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Identifying which individuals will develop tuberculosis (TB) remains an unresolved problem due to few animal models and computational approaches that effectively address its heterogeneity. To meet these shortcomings, we show that Diversity Outbred (DO) mice reflect human-like genetic diversity and develop human-like lung granulomas when infected with Mycobacterium tuberculosis (M.tb) . METHODS Following M.tb infection, a "supersusceptible" phenotype develops in approximately one-third of DO mice characterized by rapid morbidity and mortality within 8 weeks. These supersusceptible DO mice develop lung granulomas patterns akin to humans. This led us to utilize deep learning to identify supersusceptibility from hematoxylin & eosin (H&E) lung tissue sections utilizing only clinical outcomes (supersusceptible or not-supersusceptible) as labels. FINDINGS The proposed machine learning model diagnosed supersusceptibility with high accuracy (91.50 ± 4.68%) compared to two expert pathologists using H&E stained lung sections (94.95% and 94.58%). Two non-experts used the imaging biomarker to diagnose supersusceptibility with high accuracy (88.25% and 87.95%) and agreement (96.00%). A board-certified veterinary pathologist (GB) examined the imaging biomarker and determined the model was making diagnostic decisions using a form of granuloma necrosis (karyorrhectic and pyknotic nuclear debris). This was corroborated by one other board-certified veterinary pathologist. Finally, the imaging biomarker was quantified, providing a novel means to convert visual patterns within granulomas to data suitable for statistical analyses. IMPLICATIONS Overall, our results have translatable implication to improve our understanding of TB and also to the broader field of computational pathology in which clinical outcomes alone can drive automatic identification of interpretable imaging biomarkers, knowledge discovery, and validation of existing clinical biomarkers. FUNDING National Institutes of Health and American Lung Association.
Collapse
Affiliation(s)
- Thomas E Tavolara
- Center for Biomedical Informatics, Wake Forest School of Medicine, 486 Patterson Avenue, Winston-Salem, NC 27101, United States
| | - M Khalid Khan Niazi
- Center for Biomedical Informatics, Wake Forest School of Medicine, 486 Patterson Avenue, Winston-Salem, NC 27101, United States.
| | - Melanie Ginese
- Department of Infectious Disease and Global Health, Tufts University Cummings School of Veterinary Medicine, 200 Westboro Rd., North Grafton, MA 01536, United States
| | - Cesar Piedra-Mora
- Department of Biomedical Sciences, Tufts University Cummings School of Veterinary Medicine, 200 Westboro Rd., North Grafton, MA 01536, United States
| | - Daniel M Gatti
- The College of the Atlantic, 105 Eden Street, Bar Harbor, ME 04609, United States
| | - Gillian Beamer
- Department of Infectious Disease and Global Health, Tufts University Cummings School of Veterinary Medicine, 200 Westboro Rd., North Grafton, MA 01536, United States
| | - Metin N Gurcan
- Center for Biomedical Informatics, Wake Forest School of Medicine, 486 Patterson Avenue, Winston-Salem, NC 27101, United States
| |
Collapse
|
25
|
Naz F, Arish M. GPCRs as an emerging host-directed therapeutic target against mycobacterial infection: From notion to reality. Br J Pharmacol 2020; 179:4899-4909. [PMID: 33150959 DOI: 10.1111/bph.15315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/12/2020] [Accepted: 10/22/2020] [Indexed: 11/26/2022] Open
Abstract
Mycobacterium tuberculosis (M. tb) is one of the successful pathogens and claim millions of deaths across the globe. The emergence of drug resistance in M. tb has created new hurdles in the tuberculosis elimination programme worldwide. Hence, there is an unmet medical need for alternative therapy, which could be achieved by targeting the host's critical signalling pathways that are compromised during M. tb infection. In this review, we have summarized some of the findings involving the modulation of host GPCRs in the regulation of the mycobacterial infection. Understanding the role of these GPCRs not only unravels signalling pathways during infection but also provides clues for targeting critical signalling intermediates for the development of GPCR-based host-directive therapy.
Collapse
Affiliation(s)
- Farha Naz
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohd Arish
- JH-Institute of Molecular Medicine, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.,Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
26
|
Delma MI. Besieging the Tumoral Sites: Could It Be an Alternative Therapeutic Strategy in Ductal Pancreatic Adenocarcinoma? Cureus 2020; 12:e10909. [PMID: 33194476 PMCID: PMC7657315 DOI: 10.7759/cureus.10909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2020] [Indexed: 11/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is characterized by its high morbidity, and curative drugs are still lacking. In addition to immunotherapy, other molecular targeted therapeutics, such as stroma depleting agents, have been evaluated, given the abundant desmoplastic stroma that is considered a protective shield for tumor cells. However, the unexpected poor outcome has raised the debate on whether desmoplasia promotes or restrains tumor cell spread. After reviewing these key points in this paper, an approach taking advantage of desmoplasia and immune cells to besiege the tumoral sites will be proposed. Based on the available literature, the feasibility and potential limitations of this strategy will be discussed.
Collapse
|
27
|
Phelan JJ, McQuaid K, Kenny C, Gogan KM, Cox DJ, Basdeo SA, O’Leary S, Tazoll SC, Ó Maoldomhnaigh C, O’Sullivan MP, O’Neill LA, O’Sullivan MJ, Keane J. Desferrioxamine Supports Metabolic Function in Primary Human Macrophages Infected With Mycobacterium tuberculosis. Front Immunol 2020; 11:836. [PMID: 32477344 PMCID: PMC7237728 DOI: 10.3389/fimmu.2020.00836] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/14/2020] [Indexed: 02/02/2023] Open
Abstract
Tuberculosis is the single biggest infectious killer in the world and presents a major global health challenge. Antimicrobial therapy requires many months of multiple drugs and incidences of drug resistant tuberculosis continues to rise. Consequently, research is now focused on the development of therapies to support the function of infected immune cells. HIF1α-mediated induction of aerobic glycolysis is integral to the host macrophage response during infection with Mtb, as this promotes bacillary clearance. Some iron chelators have been shown to modulate cellular metabolism through the regulation of HIF1α. We examined if the iron chelator, desferrioxamine (DFX), could support the function of primary human macrophages infected with Mtb. Using RT-PCR, we found that DFX promoted the expression of key glycolytic enzymes in Mtb-infected primary human MDMs and human alveolar macrophages. Using Seahorse technology, we demonstrate that DFX enhances glycolytic metabolism in Mtb-stimulated human MDMs, while helping to enhance glycolysis during mitochondrial distress. Furthermore, the effect of DFX on glycolysis was not limited to Mtb infection as DFX also boosted glycolytic metabolism in uninfected and LPS-stimulated cells. DFX also supports innate immune function by inducing IL1β production in human macrophages during early infection with Mtb and upon stimulation with LPS. Moreover, using hypoxia, Western blot and ChIP-qPCR analyses, we show that DFX modulates IL1β levels in these cells in a HIF1α-mediated manner. Collectively, our data suggests that DFX exhibits potential to enhance immunometabolic responses and augment host immune function during early Mtb infection, in selected clinical settings.
Collapse
Affiliation(s)
- James Joseph Phelan
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Kate McQuaid
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Colin Kenny
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Dublin, Ireland
| | - Karl Michael Gogan
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Dónal J. Cox
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Sharee Ann Basdeo
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Seónadh O’Leary
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Simone Christa Tazoll
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Cilian Ó Maoldomhnaigh
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Mary P. O’Sullivan
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Luke A. O’Neill
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
| | - Maureen J. O’Sullivan
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Dublin, Ireland
| | - Joseph Keane
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
28
|
Lavalett L, Ortega H, Barrera LF. Human Alveolar and Splenic Macrophage Populations Display a Distinct Transcriptomic Response to Infection With Mycobacterium tuberculosis. Front Immunol 2020; 11:630. [PMID: 32373118 PMCID: PMC7186480 DOI: 10.3389/fimmu.2020.00630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/19/2020] [Indexed: 12/14/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) infects alveolar macrophages (AMs), causing pulmonary tuberculosis (PTB), the most common form of the disease. Less frequently, Mtb is disseminated to many other organs and tissues, resulting in different extrapulmonary forms of TB. Nevertheless, very few studies have addressed the global mRNA response of human AMs, particularly from humans with the active form of the disease. Strikingly, almost no studies have addressed the response of human extrapulmonary macrophages to Mtb infection. In this pilot study, using microarray technology, we examined the transcriptomic ex vivo response of AMs from PTB patients (AMTBs) and AMs from control subjects (AMCTs) infected with two clinical isolates of Mtb. Furthermore, we also studied the infection response of human splenic macrophages (SMs) to Mtb isolates, as a model for extrapulmonary infection, and compared the transcriptomic response between AMs and SMs. Our results showed a striking difference in global mRNA profiles in response to infection between AMs and SMs, implicating a tissue-specific macrophage response to Mtb.
Collapse
Affiliation(s)
- Lelia Lavalett
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Instituto de Investigaciones Médicas, Universidad de Antioquia, Medellín, Colombia.,Facultad de Ciencias, Universidad Nacional de Colombia Sede Medellín, Medellín, Colombia
| | - Hector Ortega
- Clínica Cardiovascular Santa María, Medellín, Colombia.,Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Luis F Barrera
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Instituto de Investigaciones Médicas, Universidad de Antioquia, Medellín, Colombia.,Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
29
|
Matsuzaki G, Yamasaki M, Tamura T, Umemura M. Dispensable role of chemokine receptors in migration of mycobacterial antigen-specific CD4 + T cells into Mycobacterium-infected lung. Immunobiology 2019; 224:440-448. [PMID: 30795859 DOI: 10.1016/j.imbio.2019.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 11/30/2022]
Abstract
Mycobacterial antigen-specific CD4+ Th1 cells have pivotal role in protective immunity against mycobacterial infections including pulmonary tuberculosis. In the course of the infection, Th1 cells differentiate in the lung-draining lymph nodes and migrate into the infected lung. Chemokine receptors on T cells are involved in T cell migration into the intestine and skin. However, role of chemokine receptors in the migration of CD4+ T cells into the lung is not yet established. To address the issue, the role of chemokine receptors in T cell migration into the mycobacteria-infected lung was analyzed using mycobacterial Ag85B peptide 25-specific T cell receptor-transgenic (P25) CD4+ T cells. The P25 T cells in the Mycobacterium bovis BCG-infected lung and lung-draining mediastinal lymph node expressed chemokine receptors CCR5, CCR6, CXCR3 and CXCR5 which bind chemokines expressed by the BCG-infected lung. To further analyze the role of the chemokine receptors in the migration of the BCG-primed P25 T cells into the lung or mediastinal lymph node, the P25 T cells were adoptively transferred into the BCG-infected wild type mice, and their migration into the lung was monitored. Unexpectedly, blocking of chemokine receptor function with pertussis toxin, a G-protein inhibitor, failed to suppress migration of the T cells into the infected lung although the treatment completely blocked migration of the mediastinal lymph node P25 T cells into the recipient lymph node. The results suggest that interaction of chemokine receptors on mycobacterial antigen-specific Th1 cells with chemokines is dispensable in their migration into the mycobacteria-infected lung.
Collapse
Affiliation(s)
- Goro Matsuzaki
- Molecular Microbiology Group, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan; Department of Host Defense, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0213, Japan.
| | - Masatoshi Yamasaki
- Molecular Microbiology Group, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Toshiki Tamura
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo 189-0002, Japan
| | - Masayuki Umemura
- Molecular Microbiology Group, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan; Department of Host Defense, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0213, Japan
| |
Collapse
|
30
|
Kroon EE, Coussens AK, Kinnear C, Orlova M, Möller M, Seeger A, Wilkinson RJ, Hoal EG, Schurr E. Neutrophils: Innate Effectors of TB Resistance? Front Immunol 2018; 9:2637. [PMID: 30487797 PMCID: PMC6246713 DOI: 10.3389/fimmu.2018.02637] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/26/2018] [Indexed: 12/19/2022] Open
Abstract
Certain individuals are able to resist Mycobacterium tuberculosis infection despite persistent and intense exposure. These persons do not exhibit adaptive immune priming as measured by tuberculin skin test (TST) and interferon-γ (IFN-γ) release assay (IGRA) responses, nor do they develop active tuberculosis (TB). Genetic investigation of individuals who are able to resist M. tuberculosis infection shows there are likely a combination of genetic variants that contribute to the phenotype. The contribution of the innate immune system and the exact cells involved in this phenotype remain incompletely elucidated. Neutrophils are prominent candidates for possible involvement as primers for microbial clearance. Significant variability is observed in neutrophil gene expression and DNA methylation. Furthermore, inter-individual variability is seen between the mycobactericidal capacities of donor neutrophils. Clearance of M. tuberculosis infection is favored by the mycobactericidal activity of neutrophils, apoptosis, effective clearance of cells by macrophages, and resolution of inflammation. In this review we will discuss the different mechanisms neutrophils utilize to clear M. tuberculosis infection. We discuss the duality between neutrophils' ability to clear infection and how increasing numbers of neutrophils contribute to active TB severity and mortality. Further investigation into the potential role of neutrophils in innate immune-mediated M. tuberculosis infection resistance is warranted since it may reveal clinically important activities for prevention as well as vaccine and treatment development.
Collapse
Affiliation(s)
- Elouise E Kroon
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Anna K Coussens
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Infection and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Division of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Craig Kinnear
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marianna Orlova
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,McGill International TB Centre, McGill University, Montreal, QC, Canada.,Departments of Medicine and Human Genetics, McGill University, Montreal, QC, Canada
| | - Marlo Möller
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Allison Seeger
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Department of Medicine, Imperial College London, London, United Kingdom.,The Francis Crick Institute, London, United Kingdom
| | - Eileen G Hoal
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Erwin Schurr
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,McGill International TB Centre, McGill University, Montreal, QC, Canada.,Departments of Medicine and Human Genetics, McGill University, Montreal, QC, Canada
| |
Collapse
|
31
|
Anuradha R, Munisankar S, Bhootra Y, Kumar NP, Dolla C, Babu S. Malnutrition is associated with diminished baseline and mycobacterial antigen - stimulated chemokine responses in latent tuberculosis infection. J Infect 2018; 77:410-416. [PMID: 29777718 PMCID: PMC6340055 DOI: 10.1016/j.jinf.2018.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 01/09/2023]
Abstract
OBJECTIVES Previous studies have demonstrated a diminution in the baseline and mycobacterial antigen - specific cytokines in low body mass index (LBMI) individuals with latent tuberculosis infection (LTBI). We hypothesized that LBMI might be also associated with alteration in the baseline and antigen - stimulated levels of chemokines in LTBI. METHODS To test this hypothesis, we examined baseline, TB-antigen and mitogen stimulated levels of chemokines in these individuals and compared them with those with LTBI and normal BMI (NBMI). RESULTS LBMI with LTBI is characterized by diminished baseline levels of CCL1, CCL4, CCL11, CXCL1, CXCL9, CXCL10 and CXCL11 in comparison to NBMI with LTBI. Similarly, LTBI with LBMI is also characterized by diminished TB-antigen stimulated levels of CCL1, CCL2, CCL3, CCL4, CCL11, CXCL1, CXCL2, CXCL9, CXCL10 and CXCL11. In contrast, there were no significant differences in the mitogen stimulated chemokine levels between the groups. Finally, there was a significant positive correlation between BMI and CCL1, CCL4, CCL11, CXCL11, CXCL2, CXCL9 and CXCL11 levels in LTBI individuals. CONCLUSIONS Therefore, our data reveal that LTBI subjects with low BMI are characterized by diminished levels of a variety of important chemokines, providing a novel biological mechanism for the increased risk of developing active TB.
Collapse
Affiliation(s)
- Rajamanickam Anuradha
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India
| | - Saravanan Munisankar
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India
| | - Yukthi Bhootra
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India
| | - Nathella Pavan Kumar
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India
| | | | - Subash Babu
- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India.
| |
Collapse
|
32
|
Mishra G, Poojary SS, Jain S, Tiwari PK. Genotype-phenotype relationship of CCL5 in pulmonary tuberculosis infection in Sahariya tribe: A pilot study. Indian J Med Res 2018; 146:768-773. [PMID: 29664036 PMCID: PMC5926349 DOI: 10.4103/ijmr.ijmr_1582_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background & objectives: Sahariya, a primitive tribe of Central India, has shown significantly increased incidence of pulmonary tuberculosis (PTB). Our previous study on Sahariya showed a significant association of −403G>A single nucleotide polymorphism (SNP) of CCL5 with susceptibility to PTB. Hence, this study was aimed to analyze a genotype-phenotype relationship of this disease-associated SNP to develop a potential diagnostic marker for TB in this tribe. Methods: The present study was carried out on 70 plasma samples from Sahariya tribe, wherein the plasma CCL5 level was determined using a commercially available ELISA kit. Results: The level of CCL5 decreased significantly in patients who were on therapy/completed their therapy [inactive TB patient/inactive PTB (IPTB)], particularly with AA genotype of −403G>A (P=0.046). The level, with AA genotype, was also found to gradually decrease in sputum 3+ and 1+/2+ than in sputum-negative samples. Similarly, the CCL5 level was found to be higher in sputum-positive/active TB patients than in IPTB group and healthy controls. Interpretation & conclusions: Our results suggested that the CCL5 level was influenced collectively not only by the genotypes of −403G>A SNP and bacillary load but also by the treatment. Thus, CCL5 may be considered for the development of a diagnostic marker and also as an indicator of recovery.
Collapse
Affiliation(s)
- Gunja Mishra
- Department of Molecular & Human Genetics, Centre for Genomics, Jiwaji University, Gwalior, India
| | - Satish S Poojary
- Department of Molecular & Human Genetics, Centre for Genomics, Jiwaji University, Gwalior, India
| | - Sanjay Jain
- Revised National Tuberculosis Control Programme Unit, District Hospital, Sheopur, India
| | - Pramod Kumar Tiwari
- Department of Molecular & Human Genetics, Centre for Genomics, Jiwaji University, Gwalior, India
| |
Collapse
|
33
|
Response of the respiratory mucosal cells to mycobacterium avium subsp. Hominissuis microaggregate. Arch Microbiol 2018; 200:729-742. [PMID: 29383404 DOI: 10.1007/s00203-018-1479-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 11/06/2017] [Accepted: 01/15/2018] [Indexed: 01/10/2023]
Abstract
Mycobacterium avium: subsp. hominissuis (MAH) is an opportunistic pathogen that commonly infects immunocompromised individuals. Recently, we described an invasive phenotypic change MAH undergoes when incubated with lung airway epithelial host cells for 24 h, which is accompanied with microaggregate formation in vitro. The microaggregate phenotype also resulted in higher colonization in the lungs of mice early during infection. Previously, we identified genes highly regulated during microaggregate formation and further characterized the function of two highly upregulated bacterial proteins, mycobacterial binding protein-1 (MBP-1) and mycobacterial inversion protein-1 (MIP-1), which were found to be involved in binding and invasion of the respiratory mucosa. While these studies are valuable in understanding the pathogenesis of MAH, they primarily investigated the bacteria during microaggregate infection without commenting on the differences in the host response to microaggregate and planktonic infection. The bacteria-host interaction between microaggregates and epithelial cells was examined in a variety of assays. Using a transwell polarized epithelial cell model, microaggregates translocated through the monolayer more efficiently than planktonic bacteria at set timepoints. In addition, during infection with microaggregate and planktonic bacteria, host phosphorylated proteins were identified revealing differences in immune response, glutathione synthesis, and apoptosis. The host immune response was further investigated by measuring pro-inflammatory cytokine secretion during microaggregate and planktonic infection of BEAS-2B bronchial epithelial cells. The epithelial cells secreted more CCL5 during infection with microaggregates suggesting that this chemokine may play an important role during microaggregate invasion. Subsequent experiments showed that microaggregates are formed more efficiently in the presence of CCL5, suggesting that MAH had evolved a strategy to use the host response in its benefit. Collectively, this study establishes the different nature of infection by planktonic bacteria and microaggregates.
Collapse
|
34
|
Chao WC, Yen CL, Hsieh CY, Huang YF, Tseng YL, Nigrovic PA, Shieh CC. Mycobacterial infection induces higher interleukin-1β and dysregulated lung inflammation in mice with defective leukocyte NADPH oxidase. PLoS One 2017; 12:e0189453. [PMID: 29228045 PMCID: PMC5724816 DOI: 10.1371/journal.pone.0189453] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/24/2017] [Indexed: 12/11/2022] Open
Abstract
Granulomatous inflammation causes severe tissue damage in mycobacterial infection while redox status was reported to be crucial in the granulomatous inflammation. Here, we used a NADPH oxidase 2 (NOX2)-deficient mice (Ncf1-/-) to investigate the role of leukocyte-produced reactive oxygen species (ROS) in mycobacterium-induced granulomatous inflammation. We found poorly controlled mycobacterial proliferation, significant body weight loss, and a high mortality rate after M. marinum infection in Ncf1-/- mice. Moreover, we noticed loose and neutrophilic granulomas and higher levels of interleukin (IL)-1β and neutrophil chemokines in Ncf1-/- mice when compared with those in wild type mice. The lack of ROS led to reduced production of IL-1β in macrophages, whereas neutrophil elastase (NE), an abundant product of neutrophils, may potentially exert increased inflammasome-independent protease activity and lead to higher IL-1β production. Moreover, we showed that the abundant NE and IL-1β were present in the caseous granulomatous inflammation of human TB infection. Importantly, blocking of IL-1β with either a specific antibody or a recombinant IL-1 receptor ameliorated the pulmonary inflammation. These findings revealed a novel role of ROS in the early pathogenesis of neutrophilic granulomatous inflammation and suggested a potential role of IL-1 blocking in the treatment of mycobacterial infection in the lung.
Collapse
Affiliation(s)
- Wen-Cheng Chao
- Institute of Clinical Medicine, National Cheng Kung University Medical College, Tainan, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chia-Liang Yen
- Institute of Clinical Medicine, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Cheng-Yuan Hsieh
- Institute of Clinical Medicine, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Ya-Fang Huang
- National Laboratory Animal Center, National Applied Research Laboratories, Tainan, Taiwan
| | - Yau-Lin Tseng
- Department of Surgery, Division of Thoracic Surgery, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Peter Andrija Nigrovic
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Chi-Chang Shieh
- Institute of Clinical Medicine, National Cheng Kung University Medical College, Tainan, Taiwan
- Department of Pediatrics, National Cheng Kung University Hospital, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
35
|
Arcos J, Sasindran SJ, Moliva JI, Scordo JM, Sidiki S, Guo H, Venigalla P, Kelley HV, Lin G, Diangelo L, Silwani SN, Zhang J, Turner J, Torrelles JB. Mycobacterium tuberculosis cell wall released fragments by the action of the human lung mucosa modulate macrophages to control infection in an IL-10-dependent manner. Mucosal Immunol 2017; 10:1248-1258. [PMID: 28000679 PMCID: PMC5479761 DOI: 10.1038/mi.2016.115] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 10/31/2016] [Indexed: 02/04/2023]
Abstract
Mycobacterium tuberculosis (M.tb), the causative agent of tuberculosis, is a major public health challenge facing the world. During infection, M.tb is deposited in the lung alveolar space where it comes in contact with the lung mucosa, known as alveolar lining fluid (ALF), an environment that M.tb encounters at different stages of the infection and disease. ALF is abundant in homeostatic and antimicrobial hydrolytic enzymes, also known as hydrolases. Here we demonstrate that ALF hydrolases, at their physiological concentrations and upon contact with M.tb, release M.tb cell envelope fragments into the milieu. These released fragments are bioactive, but non-cytotoxic, regulate the function of macrophages, and thus are capable of modulating the immune response contributing to the control of M.tb infection by human macrophages. Specifically, macrophages exposed to fragments derived from the exposure of M.tb to ALF were able to control the infection primarily by increasing phagosome-lysosome fusion and acidification events. This enhanced control was found to be dependent on fragment-induced interleukin-10 (IL-10) production but also involves the STAT3 signaling pathway in an IL-10-independent manner. Collectively our data indicate that M.tb fragments released upon contact with lung mucosa hydrolases participate in the host immune response to M.tb infection through innate immune modulation.
Collapse
Affiliation(s)
- Jesus Arcos
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, US
| | - Smitha J. Sasindran
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, US
| | - Juan I. Moliva
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, US
| | - Julia M. Scordo
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, US
| | - Sabeen Sidiki
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, US
| | - Hui Guo
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, US
| | - Poornima Venigalla
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, US
| | - Holden V. Kelley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, US
| | - Guoxin Lin
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, US
| | - Lauren Diangelo
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, US
| | - Sayeed N. Silwani
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, US
| | - Jian Zhang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, US
- Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, 43210, US
| | - Joanne Turner
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, US
- Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, 43210, US
| | - Jordi B. Torrelles
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, US
- Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, 43210, US
| |
Collapse
|
36
|
Primary macrophages and J774 cells respond differently to infection with Mycobacterium tuberculosis. Sci Rep 2017; 7:42225. [PMID: 28176867 PMCID: PMC5296737 DOI: 10.1038/srep42225] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/05/2017] [Indexed: 12/11/2022] Open
Abstract
Macrophages play an essential role in the early immune response to Mycobacterium tuberculosis and are the cell type preferentially infected in vivo. Primary macrophages and macrophage-like cell lines are commonly used as infection models, although the physiological relevance of cell lines, particularly for host-pathogen interaction studies, is debatable. Here we use high-throughput RNA-sequencing to analyse transcriptome dynamics of two macrophage models in response to M. tuberculosis infection. Specifically, we study the early response of bone marrow-derived mouse macrophages and cell line J774 to infection with live and γ-irradiated (killed) M. tuberculosis. We show that infection with live bacilli specifically alters the expression of host genes such as Rsad2, Ifit1/2/3 and Rig-I, whose potential roles in resistance to M. tuberculosis infection have not yet been investigated. In addition, the response of primary macrophages is faster and more intense than that of J774 cells in terms of number of differentially expressed genes and magnitude of induction/repression. Our results point to potentially novel processes leading to immune containment early during M. tuberculosis infection, and support the idea that important differences exist between primary macrophages and cell lines, which should be taken into account when choosing a macrophage model to study host-pathogen interactions.
Collapse
|
37
|
Gamma Interferon-Regulated Chemokines in Leishmania donovani Infection in the Liver. Infect Immun 2016; 85:IAI.00824-16. [PMID: 27795366 DOI: 10.1128/iai.00824-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/16/2016] [Indexed: 12/25/2022] Open
Abstract
In the livers of C57BL/6 mice, gamma interferon (IFN-γ) controls intracellular Leishmania donovani infection and the efficacy of antimony (Sb) chemotherapy. Since both responses usually correlate with granulomatous inflammation, we tested six prominently expressed, IFN-γ-regulated chemokines-CXCL9, CXCL10, CXCL13, CXCL16, CCL2, and CCL5-for their roles in (i) mononuclear cell recruitment and granuloma assembly and maturation, (ii) initial control of infection and self-cure, and (iii) responsiveness to Sb treatment. Together, the results for the L. donovani-infected livers of chemokine-deficient mice (CXCR6-/- mice were used as CXCL16-deficient surrogates) indicated that individual IFN-γ-induced chemokines have diverse affects and (i) may be entirely dispensable (CXCL13, CXCL16), (ii) may promote (CXCL10, CCL2, CCL5) or downregulate (CXCL9) initial granuloma assembly, (iii) may enhance (CCL2, CCL5) or hinder (CXCL10) early parasite control, (iv) may promote granuloma maturation (CCL2, CCL5), (v) may exert a granuloma-independent action that enables self-cure (CCL5), and (vi) may have no role in responsiveness to chemotherapy. Despite the near absence of tissue inflammation in early-stage infection, parasite replication could be controlled (in CXCL10-/- mice) and Sb was fully active (in CXCL10-/-, CCL2-/-, and CCL5-/- mice). These results characterize chemokine action in the response to L. donovani and also reemphasize that (i) recruited mononuclear cells and granulomas are not required to control infection or respond to Sb chemotherapy, (ii) granuloma assembly, control of infection, and Sb's efficacy are not invariably linked expressions of the same T cell-dependent, cytokine-mediated antileishmanial mechanism, and (iii) granulomas are not necessarily hallmarks of protective antileishmanial immunity.
Collapse
|
38
|
Domingo-Gonzalez R, Prince O, Cooper A, Khader SA. Cytokines and Chemokines in Mycobacterium tuberculosis Infection. Microbiol Spectr 2016; 4:10.1128/microbiolspec.TBTB2-0018-2016. [PMID: 27763255 PMCID: PMC5205539 DOI: 10.1128/microbiolspec.tbtb2-0018-2016] [Citation(s) in RCA: 237] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Indexed: 02/06/2023] Open
Abstract
Chemokines and cytokines are critical for initiating and coordinating the organized and sequential recruitment and activation of cells into Mycobacterium tuberculosis-infected lungs. Correct mononuclear cellular recruitment and localization are essential to ensure control of bacterial growth without the development of diffuse and damaging granulocytic inflammation. An important block to our understanding of TB pathogenesis lies in dissecting the critical aspects of the cytokine/chemokine interplay in light of the conditional role these molecules play throughout infection and disease development. Much of the data highlighted in this review appears at first glance to be contradictory, but it is the balance between the cytokines and chemokines that is critical, and the "goldilocks" (not too much and not too little) phenomenon is paramount in any discussion of the role of these molecules in TB. Determination of how the key chemokines/cytokines and their receptors are balanced and how the loss of that balance can promote disease is vital to understanding TB pathogenesis and to identifying novel therapies for effective eradication of this disease.
Collapse
Affiliation(s)
| | - Oliver Prince
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63130
| | - Andrea Cooper
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63130
| |
Collapse
|
39
|
Chavez-Galan L, Vesin D, Segueni N, Prasad P, Buser-Llinares R, Blaser G, Pache JC, Ryffel B, Quesniaux VFJ, Garcia I. Tumor Necrosis Factor and Its Receptors Are Crucial to Control Mycobacterium bovis Bacillus Calmette-Guerin Pleural Infection in a Murine Model. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2364-77. [PMID: 27456129 DOI: 10.1016/j.ajpath.2016.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/29/2016] [Accepted: 05/31/2016] [Indexed: 12/18/2022]
Abstract
Tumor necrosis factor (TNF) is crucial to control Mycobacterium tuberculosis infection, which remains a leading cause of morbidity and mortality worldwide. TNF blockade compromises host immunity and may cause reactivation of latent infection, resulting in overt pulmonary, pleural, and extrapulmonary tuberculosis. Herein, we investigate the roles of TNF and TNF receptors in the control of Mycobacterium bovis bacillus Calmette-Guerin (BCG) pleural infection in a murine model. As controls, wild-type mice and those with a defective CCR5, a receptor that is crucial for control of viral infection but not for tuberculosis, were used. BCG-induced pleural infection was uncontrolled and progressive in absence of TNF or TNF receptor 1 (TNFR1)/TNFR2 (TNFR1R2) with increased inflammatory cell recruitment and bacterial load in the pleural cavity, and heightened levels of pleural and serum proinflammatory cytokines and chemokines, compared to wild-type control mice. The visceral pleura was thickened with chronic inflammation, which was prominent in TNF(-/-) and TNFR1R2(-/-) mice. The parietal pleural of TNF(-/-) and TNFR1R2(-/-) mice exhibited abundant inflammatory nodules containing mycobacteria, and these mice developed nonresolving inflammation and succumbed from disseminated BCG infection. By contrast, CCR5(-/-) mice survived and controlled pleural BCG infection as wild-type control mice. In conclusion, BCG-induced pleurisy was uncontrolled in the absence of TNF or TNF receptors with exacerbated inflammatory response, impaired bacterial clearance, and defective mesothelium repair, suggesting a critical role of TNF to control mycobacterial pleurisy.
Collapse
Affiliation(s)
- Leslie Chavez-Galan
- Department of Pathology and Immunology, Centre Medical Universitaire, University of Geneva Medical School, Geneva, Switzerland; Laboratory of Integrative Immunology, National Institute of Respiratory Diseases Ismael Cosio Villegas, Mexico City, Mexico
| | - Dominique Vesin
- Department of Pathology and Immunology, Centre Medical Universitaire, University of Geneva Medical School, Geneva, Switzerland
| | - Noria Segueni
- Experimental Molecular Immunology and Neurogenetics (UMR7355), University of Orléans and CNRS, Orléans, France
| | - Pritha Prasad
- Department of Pathology and Immunology, Centre Medical Universitaire, University of Geneva Medical School, Geneva, Switzerland
| | - Raphaële Buser-Llinares
- Department of Pathology and Immunology, Centre Medical Universitaire, University of Geneva Medical School, Geneva, Switzerland
| | - Guillaume Blaser
- Department of Pathology and Immunology, Centre Medical Universitaire, University of Geneva Medical School, Geneva, Switzerland
| | - Jean-Claude Pache
- Division of Clinical Pathology, University Hospital, Geneva, Switzerland
| | - Bernhard Ryffel
- Experimental Molecular Immunology and Neurogenetics (UMR7355), University of Orléans and CNRS, Orléans, France
| | - Valérie F J Quesniaux
- Experimental Molecular Immunology and Neurogenetics (UMR7355), University of Orléans and CNRS, Orléans, France
| | - Irene Garcia
- Department of Pathology and Immunology, Centre Medical Universitaire, University of Geneva Medical School, Geneva, Switzerland.
| |
Collapse
|
40
|
RIPK4 activates an IRF6-mediated proinflammatory cytokine response in keratinocytes. Cytokine 2016; 83:19-26. [DOI: 10.1016/j.cyto.2016.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/08/2016] [Accepted: 03/08/2016] [Indexed: 12/12/2022]
|
41
|
Arish M, Husein A, Kashif M, Saleem M, Akhter Y, Rub A. Sphingosine-1-phosphate signaling: unraveling its role as a drug target against infectious diseases. Drug Discov Today 2015; 21:133-142. [PMID: 26456576 DOI: 10.1016/j.drudis.2015.09.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/23/2015] [Accepted: 09/29/2015] [Indexed: 12/25/2022]
Abstract
Sphingosine-1-phosphate (S1P) signaling is reported in variety of cell types, including immune, endothelial and cancerous cells. It is emerging as a crucial regulator of cellular processes, such as apoptosis, cell proliferation, migration, differentiation and so on. This signaling pathway is initiated by the intracellular production and secretion of S1P through a cascade of enzymatic reactions. Binding of S1P to different S1P receptors (S1PRs) activates different downstream signaling pathways that regulate the cellular functions differentially depending upon the cell type. An accumulating body of evidence suggests that S1P metabolism and signaling is often impaired during infectious diseases; thus, its manipulation might be helpful in the treatment of such diseases. In this review, we summarize recent advances in our understanding of the S1P signaling pathway and its candidature as a novel drug target against infectious diseases.
Collapse
Affiliation(s)
- Mohd Arish
- Infection and Immunity Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Atahar Husein
- Infection and Immunity Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Mohammad Kashif
- Infection and Immunity Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Mohammed Saleem
- Department of Life Sciences, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Yusuf Akhter
- School of Life Sciences, Central University of Himachal Pradesh, Temporary Academic Block, Shahpur, Kangra, HP 176216, India
| | - Abdur Rub
- Infection and Immunity Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India.
| |
Collapse
|
42
|
Lee MR, Tsai CJ, Wang WJ, Chuang TY, Yang CM, Chang LY, Lin CK, Wang JY, Shu CC, Lee LN, Yu CJ. Plasma Biomarkers Can Predict Treatment Response in Tuberculosis Patients: A Prospective Observational Study. Medicine (Baltimore) 2015; 94:e1628. [PMID: 26426648 PMCID: PMC4616826 DOI: 10.1097/md.0000000000001628] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Despite numerous studies, there has been little progress in the use of biomarkers for predicting treatment response in patients with tuberculosis (TB). Patients with culture-confirmed pulmonary TB between 2010 and 2014 were prospectively recruited. Blood samples were taken upon diagnosis and 2 months after the start of standard anti-TB treatment. A pilot study utilizing measurement of TB-antigen-stimulated cytokines was conducted to select potential biomarkers for further testing. Outcome was defined as persistent culture positivity at 2 months into treatment. Of 167 enrolled patients, 26 had persistent culture positivity. RANTES, IL-22, MMP-8, IL-18, MIG, and Granzyme A were selected as potential biomarkers. For predicting persistent culture positivity, receiver-operating characteristics (ROC) analysis showed that initial RANTES (AUC: 0.725 [0.624-0.827]) and 2-month MMP-8 (AUC: 0.632 [0.512-0.713]) had good discriminative ability. Using a logistic regression model, low initial RANTES level (< 440 pg/mL), initial smear positivity, and high 2-month MMP-8 level (> 3000 pg/mL) were associated with persistent culture positivity. Low initial RANTES level and initial smear positivity had a positive predictive value of 60% (12/20) for persistent culture positivity, compared with 4% (3/75) among patients with high RANTES level and smear negativity upon diagnosis. In the 72 patients with either low RANTES/smear negativity or high RANTES/smear positivity upon diagnosis, the 2-month MMP-8 level had a positive and negative predictive value of 24 and 94%, respectively, for 2-month culture status. Aside from an initial sputum smear status, serum RANTES level at diagnosis and MMP-8 level at 2 months of treatment may be used to stratify risk for culture persistence.
Collapse
Affiliation(s)
- Meng-Rui Lee
- From the Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu City, Taiwan (M-RL, L-YC, C-KL); Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan (M-RL, L-YC, C-KL, J-YW, L-NL, C-JY); Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University (M-RL); Department of Internal Medicine, Taoyuan General Hospital, Taoyuan (C-JT, W-JW, T-YC); Department of Laboratory, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu (C-MY); Department of Traumatology (C-CS); and Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan (L-NL)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hu L, Zhang K, Yao L, Wang J. Chemokine (C-C motif) ligand 5 -28C>G is significantly associated with an increased risk of tuberculosis: a meta-analysis. Int J Clin Exp Med 2015; 8:13211-13218. [PMID: 26550245 PMCID: PMC4612930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/10/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVE Chemokine (C-C motif) ligand 5 (CCL5) has been shown to play an important role in antimycobacterial immune responses. Previous studies have extensively reported that the CCL5 -28C>G gene polymorphism is associated with susceptibility to tuberculosis (TB). However, the results of these studies have been inconsistent. To investigate the relationship between the CCL5 -28C>G and the risk of TB, we performed a meta-analysis. METHODS We searched articles published before June 6, 2014 from PubMed, CNKI, and Wanfang databases. Data were extracted from all eligible publications independently by two investigators and statistically analyzed. Odds ratios (OR) with 95% confidence intervals (CI) were calculated to assess the strength of the association between CCL5 polymorphism and TB. RESULTS Four case-control studies including 647 TB cases and 726 controls were involved in the meta-analysis. Our meta-analysis indicated the CCL5 -28C>G gene polymorphism was significantly associated with increased risk of TB (G vs. C: 3.75, 95% CI = 1.76-7.99; GG vs. CC: OR = 30.26, 95% CI = 14.28-64.12). CONCLUSION Our results suggested that the -28C>G polymorphism is significantly associated with higher TB risk, which is opposite from previously published reports. However, the number of the study is limited, additional well-designed studies are required to elucidate the association between the CCL5 -28C>G gene polymorphism and TB.
Collapse
Affiliation(s)
- Lelin Hu
- Department of Radiation Oncology, Peking University 3rd HospitalHaidian District, Beijing 100191, People’s Republic of China
- Department of Medical Immunology, School of Medicine, Anhui University of Science and TechnologyHuainan 232001, Anhui, China
| | - Kaixian Zhang
- Department of Oncology, Teng Zhou Central People’s Hospital Affiliated to Jining Medical CollegeTeng Zhou 277599, Shandong, China
| | - Lihong Yao
- Department of Radiation Oncology, Peking University 3rd HospitalHaidian District, Beijing 100191, People’s Republic of China
| | - Junjie Wang
- Department of Radiation Oncology, Peking University 3rd HospitalHaidian District, Beijing 100191, People’s Republic of China
| |
Collapse
|
44
|
Correlates of Vaccine-Induced Protection against Mycobacterium tuberculosis Revealed in Comparative Analyses of Lymphocyte Populations. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:1096-108. [PMID: 26269537 DOI: 10.1128/cvi.00301-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/09/2015] [Indexed: 12/16/2022]
Abstract
A critical hindrance to the development of a novel vaccine against Mycobacterium tuberculosis is a lack of understanding of protective correlates of immunity and of host factors involved in a successful adaptive immune response. Studies from our group and others have used a mouse-based in vitro model system to assess correlates of protection. Here, using this coculture system and a panel of whole-cell vaccines with varied efficacy, we developed a comprehensive approach to understand correlates of protection. We compared the gene and protein expression profiles of vaccine-generated immune peripheral blood lymphocytes (PBLs) to the profiles found in immune splenocytes. PBLs not only represent a clinically relevant cell population, but comparing the expression in these populations gave insight into compartmentally specific mechanisms of protection. Additionally, we performed a direct comparison of host responses induced when immune cells were cocultured with either the vaccine strain Mycobacterium bovis BCG or virulent M. tuberculosis. These comparisons revealed host-specific and bacterium-specific factors involved in protection against virulent M. tuberculosis. Most significantly, we identified a set of 13 core molecules induced in the most protective vaccines under all of the conditions tested. Further validation of this panel of mediators as a predictor of vaccine efficacy will facilitate vaccine development, and determining how each promotes adaptive immunity will advance our understanding of antimycobacterial immune responses.
Collapse
|
45
|
Wang Y, Wang S, Liu T, Tu W, Li W, Dong G, Xu C, Qin B, Liu K, Yang J, Chai J, Shi X, Zhang Y. CARD15 Gene Polymorphisms Are Associated with Tuberculosis Susceptibility in Chinese Holstein Cows. PLoS One 2015; 10:e0135085. [PMID: 26244859 PMCID: PMC4526225 DOI: 10.1371/journal.pone.0135085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/17/2015] [Indexed: 12/14/2022] Open
Abstract
Bovine tuberculosis (BTB) is a significant veterinary and financial problem in many parts of the world. Associations between specific host genes and susceptibility to mycobacterial infections, such as tuberculosis, have been reported in several species. The objective of this study was to identify and evaluate the relationship of single-nucleotide polymorphisms (SNPs) in the CARD15 gene with susceptibility to BTB in Chinese Holstein cows. DNA samples from 201 Chinese Holstein cows (103 cases and 98 controls) were collected from Kunming City, Yuxi City, and Dali City in China. SNPs in the CARD15 gene were assessed using polymerase chain reaction (PCR) and restriction fragment length polymorphism-polymerase chain reaction (RFLP-PCR). Case-control association testing and statistical analysis identified six SNPs associated with susceptibility to BTB in Chinese Holstein cows. The frequency of genotypes C/T, A/G, A/G, A/G, C/T, and A/G in E4 (-37), 208, 1644, 1648, 1799, and E10 (+107), respectively, was significantly higher in cases than in controls, and also the alleles C, A, A, G, T, and A, respectively, were associated with a greater relative risk in cases than in controls. The distribution of two haplotypes, TGGACA and CAGACA, was significantly different between cases and controls. Overall, this case-control study suggested that E4 (-37)(C/T), 208(A/G), 1644(A/G), 1648(A/G), 1799(C/T), and E10 (+107)(A/G) in the CARD15 gene were significantly associated with susceptibility to BTB in Chinese Holstein cows and that haplotypes TGGACA and CAGACA could be used as genetic markers in marker-assisted breeding programs for breeding cows with high resistance to BTB.
Collapse
Affiliation(s)
- Youtao Wang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan Province, China
| | - Shengkui Wang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan Province, China
| | - Tong Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan Province, China
| | - Wenji Tu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan Province, China
| | - Wengui Li
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan Province, China
| | - Guodong Dong
- Center for Animal Disease Control and Prevention of Yunnan Province, Kunming, Yunnan Province, China
| | - Cong Xu
- Center for Animal Disease Control and Prevention of Yuxi City, Yuxi, Yunnan Province, China
| | - Bo Qin
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan Province, China
| | - Kaihua Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan Province, China
| | - Jie Yang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan Province, China
| | - Jun Chai
- College of Hydraulic and Architectural Engineering, Yunnan Agricultural University, Kunming, Yunnan Province, China
| | - Xianwei Shi
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan Province, China
| | - Yifang Zhang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan Province, China
| |
Collapse
|
46
|
Aiyaz M, Bipin C, Pantulwar V, Mugasimangalam R, Shanley CA, Ordway DJ, Orme IM. Whole genome response in guinea pigs infected with the high virulence strain Mycobacterium tuberculosis TT372. Tuberculosis (Edinb) 2015; 94:606-15. [PMID: 25621360 DOI: 10.1016/j.tube.2014.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study we conducted a microarray-based whole genomic analysis of gene expression in the lungs after exposure of guinea pigs to a low dose aerosol of the Atypical Beijing Western Cape TT372 strain of Mycobacterium tuberculosis, after harvesting lung tissues three weeks after infection at a time that effector immunity is starting to peak. The infection resulted in a very large up-regulation of multiple genes at this time, particularly in the context of a "chemokine storm" in the lungs. Overall gene expression was considerably reduced in animals that had been vaccinated with BCG two months earlier, but in both cases strong signatures featuring gamma interferon [IFNγ] and tumor necrosis factor [TNFα] were observed indicating the potent TH1 response in these animals. Even though their effects are not seen until later in the infection, even at this early time point gene expression patterns associated with the potential emergence of regulatory T cells were observed. Genes involving lung repair, response to oxidative stress, and cell trafficking were strongly expressed, but interesting these gene patterns differed substantially between the infected and vaccinated/infected groups of animals. Given the importance of this species as a relevant and cost-effective small animal model of tuberculosis, this approach has the potential to provide new information regarding the effects of vaccination on control of the disease process.
Collapse
|
47
|
Niazi MKK, Dhulekar N, Schmidt D, Major S, Cooper R, Abeijon C, Gatti DM, Kramnik I, Yener B, Gurcan M, Beamer G. Lung necrosis and neutrophils reflect common pathways of susceptibility to Mycobacterium tuberculosis in genetically diverse, immune-competent mice. Dis Model Mech 2015. [PMID: 26204894 PMCID: PMC4582107 DOI: 10.1242/dmm.020867] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pulmonary tuberculosis (TB) is caused by Mycobacterium tuberculosis in susceptible humans. Here, we infected Diversity Outbred (DO) mice with ∼100 bacilli by aerosol to model responses in a highly heterogeneous population. Following infection, ‘supersusceptible’, ‘susceptible’ and ‘resistant’ phenotypes emerged. TB disease (reduced survival, weight loss, high bacterial load) correlated strongly with neutrophils, neutrophil chemokines, tumor necrosis factor (TNF) and cell death. By contrast, immune cytokines were weak correlates of disease. We next applied statistical and machine learning approaches to our dataset of cytokines and chemokines from lungs and blood. Six molecules from the lung: TNF, CXCL1, CXCL2, CXCL5, interferon-γ (IFN-γ), interleukin 12 (IL-12); and two molecules from blood – IL-2 and TNF – were identified as being important by applying both statistical and machine learning methods. Using molecular features to generate tree classifiers, CXCL1, CXCL2 and CXCL5 distinguished four classes (supersusceptible, susceptible, resistant and non-infected) from each other with approximately 77% accuracy using completely independent experimental data. By contrast, models based on other molecules were less accurate. Low to no IFN-γ, IL-12, IL-2 and IL-10 successfully discriminated non-infected mice from infected mice but failed to discriminate disease status amongst supersusceptible, susceptible and resistant M.-tuberculosis-infected DO mice. Additional analyses identified CXCL1 as a promising peripheral biomarker of disease and of CXCL1 production in the lungs. From these results, we conclude that: (1) DO mice respond variably to M. tuberculosis infection and will be useful to identify pathways involving necrosis and neutrophils; (2) data from DO mice is suited for machine learning methods to build, validate and test models with independent data based solely on molecular biomarkers; (3) low levels of immunological cytokines best indicate a lack of exposure to M. tuberculosis but cannot distinguish infection from disease. Summary: Molecular biomarkers of tuberculosis are identified and used to classify disease status of Diversity Outbred mice that have been infected with Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Muhammad K K Niazi
- Department of Biomedical Informatics, The Ohio State University, Columbus, 43210 OH, USA
| | - Nimit Dhulekar
- Department of Computer Science and Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy, 12810 NY, USA
| | - Diane Schmidt
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, Grafton, 01536 MA, USA
| | - Samuel Major
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, Grafton, 01536 MA, USA
| | - Rachel Cooper
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, Grafton, 01536 MA, USA
| | - Claudia Abeijon
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, Grafton, 01536 MA, USA
| | | | - Igor Kramnik
- Department of Medicine, Boston University School of Medicine, Boston, 02215 MA, USA
| | - Bulent Yener
- Department of Computer Science and Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy, 12810 NY, USA
| | - Metin Gurcan
- Department of Biomedical Informatics, The Ohio State University, Columbus, 43210 OH, USA
| | - Gillian Beamer
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, Grafton, 01536 MA, USA
| |
Collapse
|
48
|
Spanos JP, Hsu NJ, Jacobs M. Microglia are crucial regulators of neuro-immunity during central nervous system tuberculosis. Front Cell Neurosci 2015; 9:182. [PMID: 26041993 PMCID: PMC4435040 DOI: 10.3389/fncel.2015.00182] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/27/2015] [Indexed: 01/11/2023] Open
Abstract
Mycobacterium tuberculosis (M. tuberculosis) infection of the central nervous system (CNS) is the most devastating manifestation of tuberculosis (TB), with both high mortality and morbidity. Although research has been fueled by the potential therapeutic target microglia offer against neurodegenerative inflammation, their part in TB infection of the CNS has not been fully evaluated nor elucidated. Yet, as both the preferential targets of M. tuberculosis and the immune-effector cells of the CNS, microglia are likely to be key determinants of disease severity and clinical outcomes. Following pathogen recognition, bacilli are internalized and capable of replicating within microglia. Cellular activation ensues, utilizing signaling molecules that may be neurotoxic. Central to initiating, orchestrating and modulating the tuberculous immune response is microglial secretion of cytokines and chemokines. However, the neurological environment is unique in that inflammatory signals, which appear to be damaging in the periphery, could be beneficial by governing neuronal survival, regeneration and differentiation. Furthermore, microglia are important in the recruitment of peripheral immune cells and central to defining the pro-inflammatory milieu of which neurotoxicity may result from many of the participating local or recruited cell types. Microglia are capable of both presenting antigen to infiltrating CD4(+) T-lymphocytes and inducing their differentiation-a possible correlate of protection against M. tuberculosis infection. Clarifying the nature of the immune effector molecules secreted by microglia, and the means by which other CNS-specific cell types govern microglial activation or modulate their responses is critical if improved diagnostic and therapeutic strategies are to be attained. Therefore, this review evaluates the diverse roles microglia play in the neuro-immunity to M. tuberculosis infection of the CNS.
Collapse
Affiliation(s)
- Jonathan Paul Spanos
- Division of Immunology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town Cape Town, South Africa
| | - Nai-Jen Hsu
- Division of Immunology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town Cape Town, South Africa
| | - Muazzam Jacobs
- Division of Immunology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town Cape Town, South Africa ; National Health Laboratory Service Johannesburg, South Africa
| |
Collapse
|
49
|
Tomankova T, Kriegova E, Liu M. Chemokine receptors and their therapeutic opportunities in diseased lung: far beyond leukocyte trafficking. Am J Physiol Lung Cell Mol Physiol 2015; 308:L603-18. [PMID: 25637606 DOI: 10.1152/ajplung.00203.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 01/28/2015] [Indexed: 12/13/2022] Open
Abstract
Chemokine receptors and their chemokine ligands, key mediators of inflammatory and immune cell trafficking, are involved in the regulation of both physiological and pathological processes in the lung. The discovery that chemokine receptors/chemokines, typically expressed by inflammatory and immune cells, are also expressed in structural lung tissue cells suggests their role in mediating the restoration of lung tissue structure and functions. Thus, chemokine receptors/chemokines contribute not only to inflammatory and immune responses in the lung but also play a critical role in the regulation of lung tissue repair, regeneration, and remodeling. This review aims to summarize current state-of-the-art on chemokine receptors and their ligands in lung diseases such as chronic obstructive pulmonary disease, asthma/allergy, pulmonary fibrosis, acute lung injury, and lung infection. Furthermore, the therapeutic opportunities of chemokine receptors in aforementioned lung diseases are discussed. The review also aims to delineate the potential contribution of chemokine receptors to the processes leading to repair/regeneration of the lung tissue.
Collapse
Affiliation(s)
- Tereza Tomankova
- Faculty of Medicine and Dentistry, Department of Immunology, Palacky University Olomouc, Czech Republic; Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada; and
| | - Eva Kriegova
- Faculty of Medicine and Dentistry, Department of Immunology, Palacky University Olomouc, Czech Republic
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada; and Faculty of Medicine, Departments of Physiology, Surgery, and Medicine, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
50
|
Faugaret D, Ben Amara A, Alingrin J, Daumas A, Delaby A, Lépolard C, Raoult D, Textoris J, Mège JL. Granulomatous response to Coxiella burnetii, the agent of Q fever: the lessons from gene expression analysis. Front Cell Infect Microbiol 2014; 4:172. [PMID: 25566510 PMCID: PMC4266094 DOI: 10.3389/fcimb.2014.00172] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/21/2014] [Indexed: 11/13/2022] Open
Abstract
The formation of granulomas is associated with the resolution of Q fever, a zoonosis due to Coxiella burnetii; however the molecular mechanisms of granuloma formation remain poorly understood. We generated human granulomas with peripheral blood mononuclear cells (PBMCs) and beads coated with C. burnetii, using BCG extracts as controls. A microarray analysis showed dramatic changes in gene expression in granuloma cells of which more than 50% were commonly modulated genes in response to C. burnetii and BCG. They included M1-related genes and genes related to chemotaxis. The inhibition of the chemokines, CCL2 and CCL5, directly interfered with granuloma formation. C. burnetii granulomas also expressed a specific transcriptional profile that was essentially enriched in genes associated with type I interferon response. Our results showed that granuloma formation is associated with a core of transcriptional response based on inflammatory genes. The specific granulomatous response to C. burnetii is characterized by the activation of type 1 interferon pathway.
Collapse
Affiliation(s)
- Delphine Faugaret
- Aix Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095 Marseille, France ; AltraBio SAS Lyon, France
| | - Amira Ben Amara
- Aix Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095 Marseille, France
| | - Julie Alingrin
- Aix Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095 Marseille, France
| | - Aurélie Daumas
- Aix Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095 Marseille, France
| | - Amélie Delaby
- Aix Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095 Marseille, France ; Centre d'Immunologie de Marseille-Luminy, Parc Scientifique et Technologique Marseille, France
| | - Catherine Lépolard
- Aix Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095 Marseille, France
| | - Didier Raoult
- Aix Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095 Marseille, France
| | - Julien Textoris
- Aix Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095 Marseille, France ; Unité Mixte BioMérieux-HCL, Hôpital Edouard Herriot - Pav P Lyon, France
| | - Jean-Louis Mège
- Aix Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095 Marseille, France
| |
Collapse
|