1
|
Cascio P. PA28γ, the ring that makes tumors invisible to the immune system? Biochimie 2024; 226:136-147. [PMID: 38631454 DOI: 10.1016/j.biochi.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
PA28γ is a proteasomal interactor whose main and most known function is to stimulate the hydrolytic activity of the 20 S proteasome independently of ubiquitin and ATP. Unlike its two paralogues, PA28α and PA28β, PA28γ is largely present in the nuclear compartment and plays pivotal functions in important pathways such as cellular division, apoptosis, neoplastic transformation, chromatin structure and organization, fertility, lipid metabolism, and DNA repair mechanisms. Although it is known that a substantial fraction of PA28γ is found in the cell in a free form (i.e. not associated with 20 S), almost all of the studies so far have focused on its ability to modulate proteasomal enzymatic activities. In this respect, the ability of PA28γ to strongly stimulate degradation of proteins, especially if intrinsically disordered and therefore devoid of three-dimensional tightly folded structure, appears to be the main molecular mechanism underlying its multiple biological effects. Initial studies, conducted more than 20 years ago, came to the conclusion that among the many biological functions of PA28γ, the immunological ones were rather limited and circumscribed. In this review, we focus on recent evidence showing that PA28γ fulfills significant functions in cell-mediated acquired immunity, with a particular role in attenuating MHC class I antigen presentation, especially in relation to neoplastic transformation and autoimmune diseases.
Collapse
Affiliation(s)
- Paolo Cascio
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095, Grugliasco, Turin, Italy.
| |
Collapse
|
2
|
Ramalho S, Dopler A, Faller W. Ribosome specialization in cancer: a spotlight on ribosomal proteins. NAR Cancer 2024; 6:zcae029. [PMID: 38989007 PMCID: PMC11231584 DOI: 10.1093/narcan/zcae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 07/12/2024] Open
Abstract
In the past few decades, our view of ribosomes has changed substantially. Rather than passive machines without significant variability, it is now acknowledged that they are heterogeneous, and have direct regulatory capacity. This 'ribosome heterogeneity' comes in many flavors, including in both the RNA and protein components of ribosomes, so there are many paths through which ribosome specialization could arise. It is easy to imagine that specialized ribosomes could have wide physiological roles, through the translation of specific mRNA populations, and there is now evidence for this in several contexts. Translation is highly dysregulated in cancer, needed to support oncogenic phenotypes and to overcome cellular stress. However, the role of ribosome specialization in this is not clear. In this review we focus on specialized ribosomes in cancer. Specifically, we assess the impact that post-translational modifications and differential ribosome incorporation of ribosomal proteins (RPs) have in this disease. We focus on studies that have shown a ribosome-mediated change in translation of specific mRNA populations, and hypothesize how such a process could be driving other phenotypes. We review the impact of RP-mediated heterogeneity in both intrinsic and extrinsic oncogenic processes, and consider how this knowledge could be leveraged to benefit patients.
Collapse
Affiliation(s)
- Sofia Ramalho
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Anna Dopler
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - William James Faller
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
3
|
Cremer T, Hoelen H, van de Weijer ML, Janssen GM, Costa AI, van Veelen PA, Lebbink RJ, Wiertz EJHJ. Proinsulin degradation and presentation of a proinsulin B-chain autoantigen involves ER-associated protein degradation (ERAD)-enzyme UBE2G2. PLoS One 2024; 19:e0287877. [PMID: 38787820 PMCID: PMC11125532 DOI: 10.1371/journal.pone.0287877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/14/2024] [Indexed: 05/26/2024] Open
Abstract
Type 1 diabetes (T1D) is characterized by HLA class I-mediated presentation of autoantigens on the surface of pancreatic β-cells. Recognition of these autoantigens by CD8+ T cells results in the destruction of pancreatic β-cells and, consequently, insulin deficiency. Most epitopes presented at the surface of β-cells derive from the insulin precursor molecule proinsulin. The intracellular processing pathway(s) involved in the generation of these peptides are poorly defined. In this study, we show that a proinsulin B-chain antigen (PPIB5-14) originates from proinsulin molecules that are processed by ER-associated protein degradation (ERAD) and thus originate from ER-resident proteins. Furthermore, screening genes encoding for E2 ubiquitin conjugating enzymes, we identified UBE2G2 to be involved in proinsulin degradation and subsequent presentation of the PPIB10-18 autoantigen. These insights into the pathway involved in the generation of insulin-derived peptides emphasize the importance of proinsulin processing in the ER to T1D pathogenesis and identify novel targets for future T1D therapies.
Collapse
Affiliation(s)
- Tom Cremer
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, The Netherlands
| | - Hanneke Hoelen
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - George M. Janssen
- Department of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ana I. Costa
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter A. van Veelen
- Department of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert Jan Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
4
|
Uchihara Y, Shibata A. Regulation of DNA damage-induced HLA class I presentation. DNA Repair (Amst) 2023; 132:103590. [PMID: 37944422 DOI: 10.1016/j.dnarep.2023.103590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
Immune checkpoint inhibitors (ICI) are cancer therapies that restore anti-tumor immunity; however, only a small percentage of patients have been completely cured by ICI alone. Multiple approaches in combination with other modalities have been used to improve the efficacy of ICI therapy. Among conventional cancer treatments, radiotherapy or DNA damage-based chemotherapy is a promising candidate as a partner of ICI because DNA damage signaling potentially stimulates immune activities turning the tumor's immune environment into hot tumors. Programmed death-ligand 1 (PD-L1) and human leukocyte antigen class I (HLA-I), which are immune ligands, regulate the balance of anti-tumor immunity in the tumor microenvironment. PD-L1 functions as a brake to suppress cytotoxic T cell activity, whereas HLA-I is an immune accelerator that promotes the downstream of the T cell signaling. Accumulating evidence has demonstrated that DNA damage enhances the presentation of HLA-I on the surface of damaged cells. However, it is unclear how signal transduction in DNA-damaged cells upregulates the presentation of HLA-I with antigens. Our recent study uncovered the mechanism underlying DNA damage-induced HLA-I presentation, which requires polypeptide synthesis through a pioneer round of translation. In this review, we summarize the latest overview of how DNA damage stimulates antigen production presented by HLA-I.
Collapse
Affiliation(s)
- Yuki Uchihara
- Division of Molecular Oncological Pharmacy, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Atsushi Shibata
- Division of Molecular Oncological Pharmacy, Faculty of Pharmacy, Keio University, Tokyo, Japan.
| |
Collapse
|
5
|
Dinh VT, Loaëc N, Quillévéré A, Le Sénéchal R, Keruzoré M, Martins RP, Granzhan A, Blondel M. The hide-and-seek game of the oncogenic Epstein-Barr virus-encoded EBNA1 protein with the immune system: An RNA G-quadruplex tale. Biochimie 2023; 214:57-68. [PMID: 37473831 DOI: 10.1016/j.biochi.2023.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
The Epstein-Barr virus (EBV) is the first oncogenic virus described in human. EBV infects more than 90% of the human population worldwide, but most EBV infections are asymptomatic. After the primary infection, the virus persists lifelong in the memory B cells of the infected individuals. Under certain conditions the virus can cause several human cancers, that include lymphoproliferative disorders such as Burkitt and Hodgkin lymphomas and non-lymphoid malignancies such as 100% of nasopharyngeal carcinoma and 10% of gastric cancers. Each year, about 200,000 EBV-related cancers emerge, hence accounting for at least 1% of worldwide cancers. Like all gammaherpesviruses, EBV has evolved a strategy to escape the host immune system. This strategy is mainly based on the tight control of the expression of its Epstein-Barr nuclear antigen-1 (EBNA1) protein, the EBV-encoded genome maintenance protein. Indeed, EBNA1 is essential for viral genome replication and maintenance but, at the same time, is also highly antigenic and T cells raised against EBNA1 exist in infected individuals. For this reason, EBNA1 is considered as the Achilles heel of EBV and the virus has seemingly evolved a strategy that employs the binding of nucleolin, a host cell factor, to RNA G-quadruplex (rG4) within EBNA1 mRNA to limit its expression to the minimal level required for function while minimizing immune recognition. This review recapitulates in a historical way the knowledge accumulated on EBNA1 immune evasion and discusses how this rG4-dependent mechanism can be exploited as an intervention point to unveil EBV-related cancers to the immune system.
Collapse
Affiliation(s)
- Van-Trang Dinh
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France.
| | - Nadège Loaëc
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | - Alicia Quillévéré
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | - Ronan Le Sénéchal
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | - Marc Keruzoré
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | | | - Anton Granzhan
- Chemistry and Modelling for the Biology of Cancer (CMBC), CNRS UMR9187, Inserm U1196, Institut Curie, Université Paris Saclay, F-91405 Orsay, France
| | - Marc Blondel
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France.
| |
Collapse
|
6
|
Admon A. The biogenesis of the immunopeptidome. Semin Immunol 2023; 67:101766. [PMID: 37141766 DOI: 10.1016/j.smim.2023.101766] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
The immunopeptidome is the repertoire of peptides bound and presented by the MHC class I, class II, and non-classical molecules. The peptides are produced by the degradation of most cellular proteins, and in some cases, peptides are produced from extracellular proteins taken up by the cells. This review attempts to first describe some of its known and well-accepted concepts, and next, raise some questions about a few of the established dogmas in this field: The production of novel peptides by splicing is questioned, suggesting here that spliced peptides are extremely rare, if existent at all. The degree of the contribution to the immunopeptidome by degradation of cellular protein by the proteasome is doubted, therefore this review attempts to explain why it is likely that this contribution to the immunopeptidome is possibly overstated. The contribution of defective ribosome products (DRiPs) and non-canonical peptides to the immunopeptidome is noted and methods are suggested to quantify them. In addition, the common misconception that the MHC class II peptidome is mostly derived from extracellular proteins is noted, and corrected. It is stressed that the confirmation of sequence assignments of non-canonical and spliced peptides should rely on targeted mass spectrometry using spiking-in of heavy isotope-labeled peptides. Finally, the new methodologies and modern instrumentation currently available for high throughput kinetics and quantitative immunopeptidomics are described. These advanced methods open up new possibilities for utilizing the big data generated and taking a fresh look at the established dogmas and reevaluating them critically.
Collapse
Affiliation(s)
- Arie Admon
- Faculty of Biology, Technion-Israel Institute of Technology, Israel.
| |
Collapse
|
7
|
Santharam MA, Shukla A, Levesque D, Kufer TA, Boisvert FM, Ramanathan S, Ilangumaran S. NLRC5-CIITA Fusion Protein as an Effective Inducer of MHC-I Expression and Antitumor Immunity. Int J Mol Sci 2023; 24:ijms24087206. [PMID: 37108368 PMCID: PMC10138588 DOI: 10.3390/ijms24087206] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Aggressive tumors evade cytotoxic T lymphocytes by suppressing MHC class-I (MHC-I) expression that also compromises tumor responsiveness to immunotherapy. MHC-I defects strongly correlate to defective expression of NLRC5, the transcriptional activator of MHC-I and antigen processing genes. In poorly immunogenic B16 melanoma cells, restoring NLRC5 expression induces MHC-I and elicits antitumor immunity, raising the possibility of using NLRC5 for tumor immunotherapy. As the clinical application of NLRC5 is constrained by its large size, we examined whether a smaller NLRC5-CIITA fusion protein, dubbed NLRC5-superactivator (NLRC5-SA) as it retains the ability to induce MHC-I, could be used for tumor growth control. We show that stable NLRC5-SA expression in mouse and human cancer cells upregulates MHC-I expression. B16 melanoma and EL4 lymphoma tumors expressing NLRC5-SA are controlled as efficiently as those expressing full-length NLRC5 (NLRC5-FL). Comparison of MHC-I-associated peptides (MAPs) eluted from EL4 cells expressing NLRC5-FL or NLRC5-SA and analyzed by mass spectrometry revealed that both NLRC5 constructs expanded the MAP repertoire, which showed considerable overlap but also included a substantial proportion of distinct peptides. Thus, we propose that NLRC5-SA, with its ability to increase tumor immunogenicity and promote tumor growth control, could overcome the limitations of NLRC5-FL for translational immunotherapy applications.
Collapse
Affiliation(s)
- Madanraj Appiya Santharam
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Akhil Shukla
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Dominique Levesque
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, 70593 Stuttgart, Germany
| | - François-Michel Boisvert
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- CRCHUS, Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- CRCHUS, Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- CRCHUS, Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
8
|
Champagne J, Mordente K, Nagel R, Agami R. Slippy-Sloppy translation: a tale of programmed and induced-ribosomal frameshifting. Trends Genet 2022; 38:1123-1133. [PMID: 35641342 DOI: 10.1016/j.tig.2022.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 01/24/2023]
Abstract
Programmed ribosomal frameshifting (PRF) is a key mechanism that viruses use to generate essential proteins for replication, and as a means of regulating gene expression. PRF generally involves recoding signals or frameshift stimulators to elevate the occurrence of frameshifting at shift-prone 'slippery' sequences. Given its essential role in viral replication, targeting PRF was envisioned as an attractive tool to block viral infection. However, in contrast to controlled-PRF mechanisms, recent studies have shown that ribosomes of many human cancer cell types are prone to frameshifting upon amino acid shortage; thus, these cells are deemed to be sloppy. The resulting products of a sloppy frameshift at the 'hungry' codons are aberrant proteins the degradation and display of which at the cell surface can trigger T cell activation. In this review, we address recent discoveries in ribosomal frameshifting and their functional consequences for the proteome in human cancer cells.
Collapse
Affiliation(s)
- Julien Champagne
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Kelly Mordente
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Remco Nagel
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Reuven Agami
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands; Erasmus MC, Rotterdam University, Rotterdam, The Netherlands.
| |
Collapse
|
9
|
Meraviglia-Crivelli D, Zheleva A, Barainka M, Moreno B, Villanueva H, Pastor F. Therapeutic Strategies to Enhance Tumor Antigenicity: Making the Tumor Detectable by the Immune System. Biomedicines 2022; 10:1842. [PMID: 36009389 PMCID: PMC9405394 DOI: 10.3390/biomedicines10081842] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/12/2022] [Accepted: 07/27/2022] [Indexed: 12/22/2022] Open
Abstract
Cancer immunotherapy has revolutionized the oncology field, but many patients still do not respond to current immunotherapy approaches. One of the main challenges in broadening the range of responses to this type of treatment is the limited source of tumor neoantigens. T cells constitute a main line of defense against cancer, and the decisive step to trigger their activation is mediated by antigen recognition. Antigens allow the immune system to differentiate between self and foreign, which constitutes a critical step in recognition of cancer cells and the consequent development or control of the malignancy. One of the keystones to achieving a successful antitumor response is the presence of potent tumor antigens, known as neoantigens. However, tumors develop strategies to evade the immune system and resist current immunotherapies, and many tumors present a low tumor mutation burden limiting the presence of tumor antigenicity. Therefore, new approaches must be taken into consideration to overcome these shortcomings. The possibility of making tumors more antigenic represents a promising front to further improve the success of immunotherapy in cancer. Throughout this review, we explored different state-of-the-art tools to induce the presentation of new tumor antigens by intervening at protein, mRNA or genomic levels in malignant cells.
Collapse
Affiliation(s)
- Daniel Meraviglia-Crivelli
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain; (D.M.-C.); (A.Z.); (M.B.); (B.M.); (H.V.)
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Angelina Zheleva
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain; (D.M.-C.); (A.Z.); (M.B.); (B.M.); (H.V.)
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Martin Barainka
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain; (D.M.-C.); (A.Z.); (M.B.); (B.M.); (H.V.)
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Beatriz Moreno
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain; (D.M.-C.); (A.Z.); (M.B.); (B.M.); (H.V.)
| | - Helena Villanueva
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain; (D.M.-C.); (A.Z.); (M.B.); (B.M.); (H.V.)
| | - Fernando Pastor
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain; (D.M.-C.); (A.Z.); (M.B.); (B.M.); (H.V.)
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
10
|
DNA damage promotes HLA class I presentation by stimulating a pioneer round of translation-associated antigen production. Mol Cell 2022; 82:2557-2570.e7. [PMID: 35594857 DOI: 10.1016/j.molcel.2022.04.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/01/2022] [Accepted: 04/21/2022] [Indexed: 12/14/2022]
Abstract
Antigen presentation by the human leukocyte antigen (HLA) on the cell surface is critical for the transduction of the immune signal toward cytotoxic T lymphocytes. DNA damage upregulates HLA class I presentation; however, the mechanism is unclear. Here, we show that DNA-damage-induced HLA (di-HLA) presentation requires an immunoproteasome, PSMB8/9/10, and antigen-transporter, TAP1/2, demonstrating that antigen production is essential. Furthermore, we show that di-HLA presentation requires ATR, AKT, mTORC1, and p70-S6K signaling. Notably, the depletion of CBP20, a factor initiating the pioneer round of translation (PRT) that precedes nonsense-mediated mRNA decay (NMD), abolishes di-HLA presentation, suggesting that di-antigen production requires PRT. RNA-seq analysis demonstrates that DNA damage reduces NMD transcripts in an ATR-dependent manner, consistent with the requirement for ATR in the initiation of PRT/NMD. Finally, bioinformatics analysis identifies that PRT-derived 9-mer peptides bind to HLA and are potentially immunogenic. Therefore, DNA damage signaling produces immunogenic antigens by utilizing the machinery of PRT/NMD.
Collapse
|
11
|
Papendorf JJ, Krüger E, Ebstein F. Proteostasis Perturbations and Their Roles in Causing Sterile Inflammation and Autoinflammatory Diseases. Cells 2022; 11:cells11091422. [PMID: 35563729 PMCID: PMC9103147 DOI: 10.3390/cells11091422] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 12/17/2022] Open
Abstract
Proteostasis, a portmanteau of the words protein and homeostasis, refers to the ability of eukaryotic cells to maintain a stable proteome by acting on protein synthesis, quality control and/or degradation. Over the last two decades, an increasing number of disorders caused by proteostasis perturbations have been identified. Depending on their molecular etiology, such diseases may be classified into ribosomopathies, proteinopathies and proteasomopathies. Strikingly, most—if not all—of these syndromes exhibit an autoinflammatory component, implying a direct cause-and-effect relationship between proteostasis disruption and the initiation of innate immune responses. In this review, we provide a comprehensive overview of the molecular pathogenesis of these disorders and summarize current knowledge of the various mechanisms by which impaired proteostasis promotes autoinflammation. We particularly focus our discussion on the notion of how cells sense and integrate proteostasis perturbations as danger signals in the context of autoinflammatory diseases to provide insights into the complex and multiple facets of sterile inflammation.
Collapse
|
12
|
Nielsen M, Ternette N, Barra C. The interdependence of machine learning and LC-MS approaches for an unbiased understanding of the cellular immunopeptidome. Expert Rev Proteomics 2022; 19:77-88. [PMID: 35390265 DOI: 10.1080/14789450.2022.2064278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The comprehensive collection of peptides presented by Major Histocompatibility Complex (MHC) molecules on the cell surface is collectively known as the immunopeptidome. The analysis and interpretation of such data sets holds great promise for furthering our understanding of basic immunology and adaptive immune activation and regulation, and for direct rational discovery of T cell antigens and the design of T-cell based therapeutics and vaccines. These applications are however challenged by the complex nature of immunopeptidome data. AREAS COVERED Here, we describe the benefits and shortcomings of applying liquid chromatography-tandem mass spectrometry (MS) to obtain large scale immunopeptidome data sets and illustrate how the accurate analysis and optimal interpretation of such data is reliant on the availability of refined and highly optimized machine learning approaches. EXPERT OPINION Further we demonstrate how the accuracy of immunoinformatics prediction methods within the field of MHC antigen presentation has benefited greatly from the availability of MS-immunopeptidomics data, and exemplify how optimal antigen discovery is best performed in a synergistic combination of MS experiments and such in silico models trained on large scale immunopeptidomics data.
Collapse
Affiliation(s)
- Morten Nielsen
- Department of Health technology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Nicola Ternette
- Centre for Cellular and Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Carolina Barra
- Department of Health technology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
13
|
Knolle PA, Huang LR, Kosinska A, Wohlleber D, Protzer U. Improving Therapeutic Vaccination against Hepatitis B-Insights from Preclinical Models of Immune Therapy against Persistent Hepatitis B Virus Infection. Vaccines (Basel) 2021; 9:1333. [PMID: 34835264 PMCID: PMC8623083 DOI: 10.3390/vaccines9111333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 12/02/2022] Open
Abstract
Chronic hepatitis B affects more than 250 million individuals worldwide, putting them at risk of developing liver cirrhosis and liver cancer. While antiviral immune responses are key to eliminating hepatitis B virus (HBV) infections, insufficient antiviral immunity characterized by failure to eliminate HBV-infected hepatocytes is associated with chronic hepatitis B. Prophylactic vaccination against hepatitis B successfully established protective immunity against infection with the hepatitis B virus and has been instrumental in controlling hepatitis B. However, prophylactic vaccination schemes have not been successful in mounting protective immunity to eliminate HBV infections in patients with chronic hepatitis B. Here, we discuss the current knowledge on the development and efficacy of therapeutic vaccination strategies against chronic hepatitis B with particular emphasis on the pathogenetic understanding of dysfunctional anti-viral immunity. We explore the development of additional immune stimulation measures within tissues, in particular activation of immunogenic myeloid cell populations, and their use for combination with therapeutic vaccination strategies to improve the efficacy of therapeutic vaccination against chronic hepatitis B.
Collapse
Affiliation(s)
- Percy A. Knolle
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
- German Center for infection Research (DZIF), Munich Site, 81675 Munich, Germany;
| | - Li-Rung Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan Town, Miaoli City 350, Taiwan;
| | - Anna Kosinska
- Institute of Virology, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
| | - Dirk Wohlleber
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
| | - Ulrike Protzer
- German Center for infection Research (DZIF), Munich Site, 81675 Munich, Germany;
- Institute of Virology, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
| |
Collapse
|
14
|
Daouda T, Dumont-Lagacé M, Feghaly A, Benslimane Y, Panes R, Courcelles M, Benhammadi M, Harrington L, Thibault P, Major F, Bengio Y, Gagnon É, Lemieux S, Perreault C. CAMAP: Artificial neural networks unveil the role of codon arrangement in modulating MHC-I peptides presentation. PLoS Comput Biol 2021; 17:e1009482. [PMID: 34679099 PMCID: PMC8577786 DOI: 10.1371/journal.pcbi.1009482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 11/09/2021] [Accepted: 09/27/2021] [Indexed: 12/02/2022] Open
Abstract
MHC-I associated peptides (MAPs) play a central role in the elimination of virus-infected and neoplastic cells by CD8 T cells. However, accurately predicting the MAP repertoire remains difficult, because only a fraction of the transcriptome generates MAPs. In this study, we investigated whether codon arrangement (usage and placement) regulates MAP biogenesis. We developed an artificial neural network called Codon Arrangement MAP Predictor (CAMAP), predicting MAP presentation solely from mRNA sequences flanking the MAP-coding codons (MCCs), while excluding the MCC per se. CAMAP predictions were significantly more accurate when using original codon sequences than shuffled codon sequences which reflect amino acid usage. Furthermore, predictions were independent of mRNA expression and MAP binding affinity to MHC-I molecules and applied to several cell types and species. Combining MAP ligand scores, transcript expression level and CAMAP scores was particularly useful to increase MAP prediction accuracy. Using an in vitro assay, we showed that varying the synonymous codons in the regions flanking the MCCs (without changing the amino acid sequence) resulted in significant modulation of MAP presentation at the cell surface. Taken together, our results demonstrate the role of codon arrangement in the regulation of MAP presentation and support integration of both translational and post-translational events in predictive algorithms to ameliorate modeling of the immunopeptidome. MHC-I associated peptides (MAPs) are small fragments of intracellular proteins presented at the surface of cells and used by the immune system to detect and eliminate cancerous or virus-infected cells. While it is theoretically possible to predict which portions of the intracellular proteins will be naturally processed by the cells to ultimately reach the surface, current methodologies have prohibitively high false discovery rates. Here we introduce an artificial neural network called Codon Arrangement MAP Predictor (CAMAP) which integrates information from mRNA-to-protein translation to other factors regulating MAP biogenesis (e.g. MAP ligand score and transcript expression levels) to improve MAP prediction accuracy. While most MAP predictive approaches focus on MAP sequences per se, CAMAP’s novelty is to analyze the MAP-flanking mRNA sequences, thereby providing completely independent information for MAP prediction. We show on several datasets that the integration of CAMAP scores with other known factors involved in MAP presentation (i.e. MAP ligand score and mRNA expression) significantly improves MAP prediction accuracy, and further validate CAMAP learned features using an in-vitro assay. These findings may have major implications for the design of vaccines against cancers and viruses, and in times of pandemics could accelerate the identification of relevant MAPs of viral origins.
Collapse
Affiliation(s)
- Tariq Daouda
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Department of Biochemistry, Université de Montréal, Montréal, Canada
- * E-mail:
| | - Maude Dumont-Lagacé
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Department of Medicine, Université de Montréal, Montréal, Canada
| | - Albert Feghaly
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Yahya Benslimane
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Department of Medicine, Université de Montréal, Montréal, Canada
| | - Rébecca Panes
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, Canada
| | - Mathieu Courcelles
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Mohamed Benhammadi
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Department of Medicine, Université de Montréal, Montréal, Canada
| | - Lea Harrington
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Department of Medicine, Université de Montréal, Montréal, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Department of Chemistry, Université de Montréal, Montréal, Canada
| | - François Major
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Department of Computer Science and Operations Research, Université de Montréal, Montréal, Canada
| | - Yoshua Bengio
- Department of Computer Science and Operations Research, Université de Montréal, Montréal, Canada
| | - Étienne Gagnon
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, Canada
| | - Sébastien Lemieux
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Department of Biochemistry, Université de Montréal, Montréal, Canada
- Department of Computer Science and Operations Research, Université de Montréal, Montréal, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Department of Medicine, Université de Montréal, Montréal, Canada
| |
Collapse
|
15
|
Park J, Park J, Lee J, Lim C. The trinity of ribosome-associated quality control and stress signaling for proteostasis and neuronal physiology. BMB Rep 2021. [PMID: 34488933 PMCID: PMC8505234 DOI: 10.5483/bmbrep.2021.54.9.097] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Translating ribosomes accompany co-translational regulation of nascent polypeptide chains, including subcellular targeting, protein folding, and covalent modifications. Ribosome-associated quality control (RQC) is a co-translational surveillance mechanism triggered by ribosomal collisions, an indication of atypical translation. The ribosome-associated E3 ligase ZNF598 ubiquitinates small subunit proteins at the stalled ribosomes. A series of RQC factors are then recruited to dissociate and triage aberrant translation intermediates. Regulatory ribosomal stalling may occur on endogenous transcripts for quality gene expression, whereas ribosomal collisions are more globally induced by ribotoxic stressors such as translation inhibitors, ribotoxins, and UV radiation. The latter are sensed by ribosome-associated kinases GCN2 and ZAKα, activating integrated stress response (ISR) and ribotoxic stress response (RSR), respectively. Hierarchical crosstalks among RQC, ISR, and RSR pathways are readily detectable since the collided ribosome is their common substrate for activation. Given the strong implications of RQC factors in neuronal physiology and neurological disorders, the interplay between RQC and ribosome-associated stress signaling may sustain proteostasis, adaptively determine cell fate, and contribute to neural pathogenesis. The elucidation of underlying molecular principles in relevant human diseases should thus provide unexplored therapeutic opportunities.
Collapse
Affiliation(s)
- Jumin Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Jongmin Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Jongbin Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Chunghun Lim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| |
Collapse
|
16
|
Joyce S, Ternette N. Know thy immune self and non-self: Proteomics informs on the expanse of self and non-self, and how and where they arise. Proteomics 2021; 21:e2000143. [PMID: 34310018 PMCID: PMC8865197 DOI: 10.1002/pmic.202000143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/30/2021] [Accepted: 07/19/2021] [Indexed: 12/30/2022]
Abstract
T cells play an important role in the adaptive immune response to a variety of infections and cancers. Initiation of a T cell mediated immune response requires antigen recognition in a process termed MHC (major histocompatibility complex) restri ction. A T cell antigen is a composite structure made up of a peptide fragment bound within the antigen‐binding groove of an MHC‐encoded class I or class II molecule. Insight into the precise composition and biology of self and non‐self immunopeptidomes is essential to harness T cell mediated immunity to prevent, treat, or cure infectious diseases and cancers. T cell antigen discovery is an arduous task! The pioneering work in the early 1990s has made large‐scale T cell antigen discovery possible. Thus, advancements in mass spectrometry coupled with proteomics and genomics technologies make possible T cell antigen discovery with ease, accuracy, and sensitivity. Yet we have only begun to understand the breadth and the depth of self and non‐self immunopeptidomes because the molecular biology of the cell continues to surprise us with new secrets directly related to the source, and the processing and presentation of MHC ligands. Focused on MHC class I molecules, this review, therefore, provides a brief historic account of T cell antigen discovery and, against a backdrop of key advances in molecular cell biologic processes, elaborates on how proteogenomics approaches have revolutionised the field.
Collapse
Affiliation(s)
- Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare System and the Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nicola Ternette
- Centre for Cellular and Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Jongsma MLM, Neefjes J, Spaapen RM. Playing hide and seek: Tumor cells in control of MHC class I antigen presentation. Mol Immunol 2021; 136:36-44. [PMID: 34082257 DOI: 10.1016/j.molimm.2021.05.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/07/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022]
Abstract
MHC class I (MHC-I) molecules present a blueprint of the intracellular proteome to T cells allowing them to control infection or malignant transformation. As a response, pathogens and tumor cells often downmodulate MHC-I mediated antigen presentation to escape from immune surveillance. Although the fundamental rules of antigen presentation are known in detail, the players in this system are not saturated and new modules of regulation have recently been uncovered. Here, we update the understanding of antigen presentation by MHC-I molecules and how this can be exploited by tumors to prevent exposure of the intracellular proteome. This knowledge can provide new ways to improve immune responses against tumors and pathogens.
Collapse
Affiliation(s)
- M L M Jongsma
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - J Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - R M Spaapen
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
18
|
Abstract
Immunotherapy has changed the landscape of cancer treatment and has significantly improved the outcome of several cancer types including breast, lung, colorectal and prostate. Neoantigen recognition and immune checkpoint inhibitors are nowadays the milestones of different immunotherapeutic regimes; however, high cost, primary and acquired resistance and the high variability of responses make their extensive use difficult. The development of better predictive biomarkers that represent tumour diversity shows promise because there is a significant body of clinical data showing a spectrum of immunotherapeutic responses that might be related back to their specific characteristics. This article makes a conceptual and historical review to summarise the main advances in our understanding of the role of the immune system in cancer, while describing the methodological details that have been successfully implemented on cancer treatments and that may hold the key to improved therapeutic approaches.
Collapse
|
19
|
Nagamine BS, Godil J, Dolan BP. The Unfolded Protein Response Reveals eIF2α Phosphorylation as a Critical Factor for Direct MHC Class I Antigen Presentation. Immunohorizons 2021; 5:135-146. [PMID: 33685907 DOI: 10.4049/immunohorizons.2100012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 11/19/2022] Open
Abstract
The ability to modulate direct MHC class I (MHC I) Ag presentation is a desirable goal for the treatment of a variety of conditions, including autoimmune diseases, chronic viral infections, and cancers. It is therefore necessary to understand how changes in the cellular environment alter the cells' ability to present peptides to T cells. The unfolded protein response (UPR) is a signaling pathway activated by the presence of excess unfolded proteins in the endoplasmic reticulum. Previous studies have indicated that chemical induction of the UPR decreases direct MHC I Ag presentation, but the precise mechanisms are unknown. In this study, we used a variety of small molecule modulators of different UPR signaling pathways to query which UPR signaling pathways can alter Ag presentation in both murine and human cells. When signaling through the PERK pathway, and subsequent eIF2α phosphorylation, was blocked by treatment with GSK2656157, MHC I Ag presentation remain unchanged, whereas treatment with salubrinal, which has the opposite effect of GSK2656157, decreases both Ag presentation and overall cell-surface MHC I levels. Treatment with 4μ8C, an inhibitor of the IRE1α UPR activation pathway that blocks splicing of Xbp1 mRNA, also diminished MHC I Ag presentation. However, 4μ8C treatment unexpectedly led to an increase in eIF2α phosphorylation in addition to blocking IRE1α signaling. Given that salubrinal and 4μ8C lead to eIF2α phosphorylation and similar decreases in Ag presentation, we conclude that UPR signaling through PERK, leading to eIF2α phosphorylation, results in a modest decrease in direct MHC I Ag presentation.
Collapse
Affiliation(s)
- Brandy S Nagamine
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331
| | - Jamila Godil
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331
| | - Brian P Dolan
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
20
|
Padariya M, Kalathiya U, Mikac S, Dziubek K, Tovar Fernandez MC, Sroka E, Fahraeus R, Sznarkowska A. Viruses, cancer and non-self recognition. Open Biol 2021; 11:200348. [PMID: 33784856 PMCID: PMC8061760 DOI: 10.1098/rsob.200348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
Virus-host interactions form an essential part of every aspect of life, and this review is aimed at looking at the balance between the host and persistent viruses with a focus on the immune system. The virus-host interaction is like a cat-and-mouse game and viruses have developed ingenious mechanisms to manipulate cellular pathways, most notably the major histocompatibility (MHC) class I pathway, to reside within infected cell while evading detection and destruction by the immune system. However, some of the signals sensing and responding to viral infection are derived from viruses and the fact that certain viruses can prevent the infection of others, highlights a more complex coexistence between the host and the viral microbiota. Viral immune evasion strategies also illustrate that processes whereby cells detect and present non-self genetic material to the immune system are interlinked with other cellular pathways. Immune evasion is a target also for cancer cells and a more detailed look at the interfaces between viral factors and components of the MHC class I peptide-loading complex indicates that these interfaces are also targets for cancer mutations. In terms of the immune checkpoint, however, viral and cancer strategies appear different.
Collapse
Affiliation(s)
- Monikaben Padariya
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Umesh Kalathiya
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Sara Mikac
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Katarzyna Dziubek
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Maria C. Tovar Fernandez
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Ewa Sroka
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Robin Fahraeus
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 65653 Brno, Czech Republic
- Department of Medical Biosciences, Umeå University, Building 6M, 901 85 Umeå, Sweden
| | - Alicja Sznarkowska
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| |
Collapse
|
21
|
Darrigrand R, Pierson A, Rouillon M, Renko D, Boulpicante M, Bouyssié D, Mouton-Barbosa E, Marcoux J, Garcia C, Ghosh M, Alami M, Apcher S. Isoginkgetin derivative IP2 enhances the adaptive immune response against tumor antigens. Commun Biol 2021; 4:269. [PMID: 33649389 PMCID: PMC7921396 DOI: 10.1038/s42003-021-01801-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 02/05/2021] [Indexed: 11/25/2022] Open
Abstract
The success of cancer immunotherapy relies on the induction of an immunoprotective response targeting tumor antigens (TAs) presented on MHC-I molecules. We demonstrated that the splicing inhibitor isoginkgetin and its water-soluble and non-toxic derivative IP2 act at the production stage of the pioneer translation products (PTPs). We showed that IP2 increases PTP-derived antigen presentation in cancer cells in vitro and impairs tumor growth in vivo. IP2 action is long-lasting and dependent on the CD8+ T cell response against TAs. We observed that the antigen repertoire displayed on MHC-I molecules at the surface of MCA205 fibrosarcoma is modified upon treatment with IP2. In particular, IP2 enhances the presentation of an exon-derived epitope from the tumor suppressor nischarin. The combination of IP2 with a peptide vaccine targeting the nischarin-derived epitope showed a synergistic antitumor effect in vivo. These findings identify the spliceosome as a druggable target for the development of epitope-based immunotherapies.
Collapse
Affiliation(s)
- Romain Darrigrand
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, Immunologie des tumeurs et Immunothérapie, Villejuif, France
| | - Alison Pierson
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, Immunologie des tumeurs et Immunothérapie, Villejuif, France
| | - Marine Rouillon
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, Immunologie des tumeurs et Immunothérapie, Villejuif, France
- SATT Paris Saclay, Orsay, France
| | - Dolor Renko
- Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry, France
| | - Mathilde Boulpicante
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, Immunologie des tumeurs et Immunothérapie, Villejuif, France
| | - David Bouyssié
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Emmanuelle Mouton-Barbosa
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Camille Garcia
- Institut Jacques Monod, CNRS U7592 Université Paris Diderot, Paris, France
- Institut Pasteur, Unité de Spectrométrie de Masse pour la Biologie (MSBio), Centre de Ressources et Recherches Technologiques (C2RT), USR 2000 CNRS, Paris, France
| | - Michael Ghosh
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Mouad Alami
- Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry, France
| | - Sébastien Apcher
- Université Paris-Saclay, Institut Gustave Roussy, Inserm, Immunologie des tumeurs et Immunothérapie, Villejuif, France.
| |
Collapse
|
22
|
Shukla A, Cloutier M, Appiya Santharam M, Ramanathan S, Ilangumaran S. The MHC Class-I Transactivator NLRC5: Implications to Cancer Immunology and Potential Applications to Cancer Immunotherapy. Int J Mol Sci 2021; 22:ijms22041964. [PMID: 33671123 PMCID: PMC7922096 DOI: 10.3390/ijms22041964] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
The immune system constantly monitors the emergence of cancerous cells and eliminates them. CD8+ cytotoxic T lymphocytes (CTLs), which kill tumor cells and provide antitumor immunity, select their targets by recognizing tumor antigenic peptides presented by MHC class-I (MHC-I) molecules. Cancer cells circumvent immune surveillance using diverse strategies. A key mechanism of cancer immune evasion is downregulation of MHC-I and key proteins of the antigen processing and presentation machinery (APM). Even though impaired MHC-I expression in cancers is well-known, reversing the MHC-I defects remains the least advanced area of tumor immunology. The discoveries that NLRC5 is the key transcriptional activator of MHC-I and APM genes, and genetic lesions and epigenetic modifications of NLRC5 are the most common cause of MHC-I defects in cancers, have raised the hopes for restoring MHC-I expression. Here, we provide an overview of cancer immunity mediated by CD8+ T cells and the functions of NLRC5 in MHC-I antigen presentation pathways. We describe the impressive advances made in understanding the regulation of NLRC5 expression, the data supporting the antitumor functions of NLRC5 and a few reports that argue for a pro-tumorigenic role. Finally, we explore the possible avenues of exploiting NLRC5 for cancer immunotherapy.
Collapse
Affiliation(s)
- Akhil Shukla
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Maryse Cloutier
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Madanraj Appiya Santharam
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
- CRCHUS, Centre Hospitalier de l’Université de Sherbrooke, Sherbrooke, QC J1H5N4, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
- CRCHUS, Centre Hospitalier de l’Université de Sherbrooke, Sherbrooke, QC J1H5N4, Canada
- Correspondence: ; Tel.: +1-819-346-1110 (ext. 14834)
| |
Collapse
|
23
|
Lehmann AA, Zhang T, Reche PA, Lehmann PV. Discordance Between the Predicted Versus the Actually Recognized CD8+ T Cell Epitopes of HCMV pp65 Antigen and Aleatory Epitope Dominance. Front Immunol 2021; 11:618428. [PMID: 33633736 PMCID: PMC7900545 DOI: 10.3389/fimmu.2020.618428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
CD8+ T cell immune monitoring aims at measuring the size and functions of antigen-specific CD8+ T cell populations, thereby providing insights into cell-mediated immunity operational in a test subject. The selection of peptides for ex vivo CD8+ T cell detection is critical because within a complex antigen exists a multitude of potential epitopes that can be presented by HLA class I molecules. Further complicating this task, there is HLA class I polygenism and polymorphism which predisposes CD8+ T cell responses towards individualized epitope recognition profiles. In this study, we compare the actual CD8+ T cell recognition of a well-characterized model antigen, human cytomegalovirus (HCMV) pp65 protein, with its anticipated epitope coverage. Due to the abundance of experimentally defined HLA-A*02:01-restricted pp65 epitopes, and because in silico epitope predictions are most advanced for HLA-A*02:01, we elected to focus on subjects expressing this allele. In each test subject, every possible CD8+ T cell epitope was systematically covered testing 553 individual peptides that walk the sequence of pp65 in steps of single amino acids. Highly individualized CD8+ T cell response profiles with aleatory epitope recognition patterns were observed. No correlation was found between epitopes' ranking on the prediction scale and their actual immune dominance. Collectively, these data suggest that accurate CD8+ T cell immune monitoring may necessitate reliance on agnostic mega peptide pools, or brute force mapping, rather than electing individual peptides as representative epitopes for tetramer and other multimer labeling of surface antigen receptors.
Collapse
Affiliation(s)
- Alexander A. Lehmann
- Research and Development, Cellular Technology Ltd., Shaker Heights, OH, United States
| | - Ting Zhang
- Research and Development, Cellular Technology Ltd., Shaker Heights, OH, United States
| | - Pedro A. Reche
- Laboratorio de Inmunomedicina & Inmunoinformatica, Departamento de Immunologia & O2, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Paul V. Lehmann
- Research and Development, Cellular Technology Ltd., Shaker Heights, OH, United States
| |
Collapse
|
24
|
Çetin G, Klafack S, Studencka-Turski M, Krüger E, Ebstein F. The Ubiquitin-Proteasome System in Immune Cells. Biomolecules 2021; 11:biom11010060. [PMID: 33466553 PMCID: PMC7824874 DOI: 10.3390/biom11010060] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
The ubiquitin–proteasome system (UPS) is the major intracellular and non-lysosomal protein degradation system. Thanks to its unique capacity of eliminating old, damaged, misfolded, and/or regulatory proteins in a highly specific manner, the UPS is virtually involved in almost all aspects of eukaryotic life. The critical importance of the UPS is particularly visible in immune cells which undergo a rapid and profound functional remodelling upon pathogen recognition. Innate and/or adaptive immune activation is indeed characterized by a number of substantial changes impacting various cellular processes including protein homeostasis, signal transduction, cell proliferation, and antigen processing which are all tightly regulated by the UPS. In this review, we summarize and discuss recent progress in our understanding of the molecular mechanisms by which the UPS contributes to the generation of an adequate immune response. In this regard, we also discuss the consequences of UPS dysfunction and its role in the pathogenesis of recently described immune disorders including cancer and auto-inflammatory diseases.
Collapse
|
25
|
Mediani L, Galli V, Carrà AD, Bigi I, Vinet J, Ganassi M, Antoniani F, Tiago T, Cimino M, Mateju D, Cereda C, Pansarasa O, Alberti S, Mandrioli J, Carra S. BAG3 and BAG6 differentially affect the dynamics of stress granules by targeting distinct subsets of defective polypeptides released from ribosomes. Cell Stress Chaperones 2020; 25:1045-1058. [PMID: 32696179 PMCID: PMC7591658 DOI: 10.1007/s12192-020-01141-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 12/26/2022] Open
Abstract
Stress granules (SGs) are dynamic ribonucleoprotein granules induced by environmental stresses. They play an important role in the stress response by integrating mRNA stability, translation, and signaling pathways. Recent work has connected SG dysfunction to neurodegenerative diseases. In these diseases, SG dynamics are impaired because of mutations in SG proteins or protein quality control factors. Impaired SG dynamics and delayed SG dissolution have also been observed for SGs that accumulate misfolding-prone defective ribosomal products (DRiPs). DRiP accumulation inside SGs is controlled by a surveillance system referred to as granulostasis and encompasses the molecular chaperones VCP and the HSPB8-BAG3-HSP70 complex. BAG3 is a member of the BAG family of proteins, which includes five additional members. One of these proteins, BAG6, is functionally related to BAG3 and able to assist degradation of DRiPs. However, whether BAG6 is involved in granulostasis is unknown. We report that BAG6 is not recruited into SGs induced by different types of stress, nor does it affect SG dynamics. BAG6 also does not replace BAG3's function in SG granulostasis. We show that BAG3 and BAG6 target different subsets of DRiPs, and BAG3 binding to DRiPs is mediated by HSPB8 and HSP70. Our data support the idea that SGs are sensitive to BAG3-HSP70-bound DRiPs but not to BAG6-bound DRiPs. Additionally, only BAG3 is strongly upregulated in the stress recovery phase, when SGs dissolve. These data exclude a role for BAG6 in granulostasis and point to a more specialized function in the clearance of a specific subset of DRiPs.
Collapse
Affiliation(s)
- Laura Mediani
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Veronica Galli
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Arianna Dorotea Carrà
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Ilaria Bigi
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Jonathan Vinet
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Ganassi
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Antoniani
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Tatiana Tiago
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Cimino
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniel Mateju
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Cristina Cereda
- Genomic and post-Genomic Center, IRCCS Mondino Foundation, Via Mondino 2, 27100, Pavia, Italy
| | - Orietta Pansarasa
- Genomic and post-Genomic Center, IRCCS Mondino Foundation, Via Mondino 2, 27100, Pavia, Italy
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany
| | - Jessica Mandrioli
- Department of Neuroscience, St. Agostino Estense Hospital, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Serena Carra
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
26
|
Mallone R, Eizirik DL. Presumption of innocence for beta cells: why are they vulnerable autoimmune targets in type 1 diabetes? Diabetologia 2020; 63:1999-2006. [PMID: 32894310 DOI: 10.1007/s00125-020-05176-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
It is increasingly appreciated that the pathogenic mechanisms of type 1 diabetes involve both the autoimmune aggressors and their beta cell targets, which engage in a conflicting dialogue within and possibly outside the pancreas. Indeed, autoimmune CD8+ T cells, which are the final mediators of beta cell destruction, circulate at similar frequencies in type 1 diabetic and healthy individuals. Hence a universal state of 'benign' islet autoimmunity exists, and we hypothesise that its progression to type 1 diabetes may at least partially rely on a higher vulnerability of beta cells, which play a key, active role in disease development and/or amplification. We posit that this autoimmune vulnerability is rooted in some features of beta cell biology: the stress imposed by the high rate of production of insulin and other granule proteins, their dense vascularisation and the secretion of their products directly into the bloodstream. Gene variants that may predispose individuals to this vulnerability have been identified, e.g. MDA5, TYK2, PTPN2. They interact with environmental cues, such as viral infections, that may drive this genetic potential towards exacerbated local inflammation and progressive beta cell loss. On top of this, beta cells set up compensatory responses, such as the unfolded protein response, that become deleterious in the long term. The relative contribution of immune and beta cell drivers may vary and phenotypic subtypes (endotypes) are likely to exist. This dual view argues for the use of circulating biomarkers of both autoimmunity and beta cell stress for disease staging, and for the implementation of both immunomodulatory and beta cell-protective therapeutic strategies. Graphical abstract.
Collapse
Affiliation(s)
- Roberto Mallone
- Université de Paris, Institut Cochin, CNRS, INSERM, G.H. Cochin-Port Royal, Cassini building, 123 boulevard de Port Royal, 75014, Paris, France.
- Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires de Paris Centre-Université de Paris, Cochin Hospital, Service de Diabétologie et Immunologie Clinique, 75014, Paris, France.
| | - Decio L Eizirik
- ULB Center for Diabetes Research and WELBIO, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| |
Collapse
|
27
|
Vavougios GD, Nday C, Pelidou SH, Zarogiannis SG, Gourgoulianis KI, Stamoulis G, Doskas T. Double hit viral parasitism, polymicrobial CNS residency and perturbed proteostasis in Alzheimer's disease: A data driven, in silico analysis of gene expression data. Mol Immunol 2020; 127:124-135. [PMID: 32971399 DOI: 10.1016/j.molimm.2020.08.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/25/2020] [Accepted: 08/30/2020] [Indexed: 01/04/2023]
Abstract
The aim of this study was to determine the interaction of peripheral immunity vs. the CNS in the setting of AD pathogenesis at the transcriptomic level in a data driven manner. For this purpose, publicly available gene expression data from the GEO Datasets repository. We performed differential gene expression and functional enrichment analyses were performed on the five retrieved studies: (a) three hippocampal cortex (HC) studies (b) one study of peripheral blood mononuclear cells (PBMC) and (c) one involving neurofibrillary tangle - containing neurons of the entorhinal cortex (NFT EC). Subsequently, BLAST was used to determine protein conservation between human proteins vs. microbial, whereas putative protein / oligopeptide antigenicity were determined via RANKPep. Gene ontology and pathway analyses revealed significantly enriched viral parasitism pathways in both PBMC and NFT - EC datasets, mediated by ribosomal protein families and epigenetic regulators. Among these, a salient viral pathway referred to Influenza A infection. NFT - EC annotations included leukocyte chemotaxis and immune response pathways. All datasets were significantly enriched for infectious pathways, as well as pathways involved in impaired proteostasis and non - phagocytic cell phagosomal cascades. In conclusion, our in silico analysis outlined an ad hoc model of AD pathophysiology in which double hit (PBMC and NFT-EC) viral parasitism is mediated by eukaryotic translational hijacking, and may be further implicated by impaired immune responses. Overall, our results overlap with the antimicrobial protection hypothesis of AD pathogenesis and support the notion of a pathogen - driven etiology.
Collapse
Affiliation(s)
- George D Vavougios
- Department of Neurology, Athens Naval Hospital, P.C. 115 21, Athens, Greece; Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, P.C, 41500, Larissa, Greece; Department of Computer Science and Telecommunications, University of Thessaly, Papasiopoulou 2 - 4, P.C. 35 131 Galaneika, Lamia, Greece.
| | - Christiane Nday
- Laboratory of Medical Physics, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, P.C. 5414, Thessaloniki, Greece
| | | | - Sotirios G Zarogiannis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, 41500, Greece
| | - Konstantinos I Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, P.C, 41500, Larissa, Greece
| | - George Stamoulis
- Department of Electrical and Computer Engineering, University of Thessaly, 37 Glavani - 28th October Str, Deligiorgi Building, 4th floor, P.C. 382 21, Volos, Greece
| | | |
Collapse
|
28
|
A few good peptides: MHC class I-based cancer immunosurveillance and immunoevasion. Nat Rev Immunol 2020; 21:116-128. [PMID: 32820267 DOI: 10.1038/s41577-020-0390-6] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2020] [Indexed: 12/25/2022]
Abstract
The remarkable success of immune checkpoint inhibitors demonstrates the potential of tumour-specific CD8+ T cells to prevent and treat cancer. Although the number of lives saved by immunotherapy mounts, only a relatively small fraction of patients are cured. Here, we review two of the factors that limit the application of CD8+ T cell immunotherapies: difficulties in identifying tumour-specific peptides presented by MHC class I molecules and the ability of tumour cells to impair antigen presentation as they evolve under T cell selection. We describe recent advances in understanding how peptides are generated from non-canonical translation of defective ribosomal products, relate this to the dysregulated translation that is a feature of carcinogenesis and propose dysregulated translation as an important new source of tumour-specific peptides. We discuss how the synthesis and function of components of the antigen-processing and presentation pathway, including the recently described immunoribosome, are manipulated by tumours for immunoevasion and point to common druggable targets that may enhance immunotherapy.
Collapse
|
29
|
Abstract
The defective ribosomal product (DRiP) hypothesis was proposed nearly 25 years ago to account for the rapid generation of peptides from otherwise metabolically stable viral proteins. It posits that errors in converting genetic information into stable proteins accounts for a sizeable fraction of the immunopeptidome. Here, we review recent studies that provide insight into the importance of DRiPs for immunosurveillance and the myriad mechanisms that give rise to DRiPs.
Collapse
|
30
|
Erhard F, Dölken L, Schilling B, Schlosser A. Identification of the Cryptic HLA-I Immunopeptidome. Cancer Immunol Res 2020; 8:1018-1026. [PMID: 32561536 DOI: 10.1158/2326-6066.cir-19-0886] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/11/2020] [Accepted: 06/10/2020] [Indexed: 11/16/2022]
Abstract
The success of cancer immunotherapy relies on the ability of cytotoxic T cells to specifically recognize and eliminate tumor cells based on peptides presented by HLA-I. Although the peptide epitopes that elicit the corresponding immune response often remain unidentified, it is generally assumed that neoantigens, due to tumor-specific mutations, are the most common targets. Here, we used a mass spectrometric approach to show an underappreciated class of epitopes that accounts for up to 15% of HLA-I peptides for certain HLA alleles in various tumors and patients. These peptides are translated from cryptic open reading frames in supposedly noncoding regions in the genome and are mostly unidentifiable with conventional computational analyses of mass spectrometry (MS) data. Our approach, Peptide-PRISM, identified thousands of such cryptic peptides in tumor immunopeptidomes. About 20% of these HLA-I peptides represented the C-terminus of the corresponding translation product, suggesting frequent proteasome-independent processing. Our data also revealed HLA-I allele-dependent presentation of cryptic peptides, with HLA-A*03 and HLA-A*11 presenting the highest percentage of cryptic peptides. Our analyses refute the reported frequent presentation of HLA peptides generated by proteasome-catalyzed peptide splicing. Thus, Peptide-PRISM represents an important step toward comprehensive identification of HLA-I immunopeptidomes and reveals cryptic peptides as an abundant class of epitopes with potential relevance for novel immunotherapeutic approaches.
Collapse
Affiliation(s)
- Florian Erhard
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
| | - Lars Dölken
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Bastian Schilling
- Department of Dermatology, Venereology, and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
| |
Collapse
|
31
|
Role for ribosome-associated quality control in sampling proteins for MHC class I-mediated antigen presentation. Proc Natl Acad Sci U S A 2020; 117:4099-4108. [PMID: 32047030 PMCID: PMC7049129 DOI: 10.1073/pnas.1914401117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pathogens and tumors are detected by the immune system through the display of intracellular peptides on MHC-I complexes. These peptides are generated by the ubiquitin−proteasome system preferentially from newly synthesized polypeptides. Here we show that the ribosome-associated quality control (RQC) pathway, responsible for proteasomal degradation of polypeptide chains that stall during translation, mediates efficient antigen presentation of model proteins independent of their intrinsic folding properties. Immunopeptidome characterization of RQC-deficient cells shows that RQC contributes to the presentation of a wide variety of proteins, including proteins that may otherwise evade presentation due to efficient folding. By identifying endogenous substrates of the RQC pathway in human cells, our results also enable the analysis of common principles causing ribosome stalling under physiological conditions. Mammalian cells present a fingerprint of their proteome to the adaptive immune system through the display of endogenous peptides on MHC-I complexes. MHC-I−bound peptides originate from protein degradation by the proteasome, suggesting that stably folded, long-lived proteins could evade monitoring. Here, we investigate the role in antigen presentation of the ribosome-associated quality control (RQC) pathway for the degradation of nascent polypeptides that are encoded by defective messenger RNAs and undergo stalling at the ribosome during translation. We find that degradation of model proteins by RQC results in efficient MHC-I presentation, independent of their intrinsic folding properties. Quantitative profiling of MHC-I peptides in wild-type and RQC-deficient cells by mass spectrometry showed that RQC substantially contributes to the composition of the immunopeptidome. Our results also identify endogenous substrates of the RQC pathway in human cells and provide insight into common principles causing ribosome stalling under physiological conditions.
Collapse
|
32
|
Del Val M, Antón LC, Ramos M, Muñoz-Abad V, Campos-Sánchez E. Endogenous TAP-independent MHC-I antigen presentation: not just the ER lumen. Curr Opin Immunol 2020; 64:9-14. [PMID: 31935516 DOI: 10.1016/j.coi.2019.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/11/2019] [Indexed: 11/30/2022]
Abstract
Altered and infected cells are eliminated by CD8+ cytotoxic T lymphocytes. This requires production of antigenic peptides mostly in the cytosol, transport to the endoplasmic reticulum (ER) by the transporter associated with antigen processing (TAP), and cell surface presentation by major histocompatibility complex class I (MHC-I). Strikingly, antigen presentation occurs without TAP, although it is inefficient and associated to human pathology. TAP-independent peptides derive both from membrane and secreted proteins, as well as cytosolic ones. The efficiency of TAP-independent presentation may be impacted by the availability of receptive MHC-I, and in turn by the functional presence in the ER of the peptide-loading complex, itself anchored on TAP. Without TAP, surface expression of human leukocyte antigen (HLA)-B allotypes varies widely, with those presenting a broader peptide repertoire among the most TAP-independent. Much remains to be learned on the alternative cellular pathways for antigen presentation in the absence of TAP.
Collapse
Affiliation(s)
- Margarita Del Val
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain.
| | - Luis C Antón
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Manuel Ramos
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Víctor Muñoz-Abad
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Elena Campos-Sánchez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| |
Collapse
|
33
|
Yewdell JW, Dersh D, Fåhraeus R. Peptide Channeling: The Key to MHC Class I Immunosurveillance? Trends Cell Biol 2019; 29:929-939. [PMID: 31662235 DOI: 10.1016/j.tcb.2019.09.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022]
Abstract
MHC class I presentation of short peptides enables CD8+ T cell (TCD8+) immunosurveillance of tumors and intracellular pathogens. A key feature of the class I pathway is that the immunopeptidome is highly skewed from the cellular degradome, indicating high selectivity of the access of protease-generated peptides to class I molecules. Similarly, in professional antigen-presenting cells, peptides from minute amounts of proteins introduced into the cytosol outcompete an overwhelming supply of constitutively generated peptides. Here, we propose that antigen processing is based on substrate channeling and review recent studies from the antigen processing and cell biology fields that provide a starting point for testing this hypothesis.
Collapse
Affiliation(s)
- Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD 20892, USA.
| | - Devin Dersh
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD 20892, USA
| | - Robin Fåhraeus
- Inserm, 27 rue Juliette Dodu, 750 10 Paris, France; International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, Science, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland; Department of Medical Biosciences, Umeå University, 90187 Umeå, Sweden; RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 65653 Brno, Czech Republic
| |
Collapse
|
34
|
Boucau J, Le Gall S. Antigen processing and presentation in HIV infection. Mol Immunol 2019; 113:67-74. [PMID: 29636181 PMCID: PMC6174111 DOI: 10.1016/j.molimm.2018.03.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/09/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022]
Abstract
The presentation of virus-derived peptides by MHC molecules constitutes the earliest signals for immune recognition by T cells. In HIV infection, immune responses elicited during infection do not enable to clear infection and correlates of immune protection are not well defined. Here we review features of antigen processing and presentation specific to HIV, analyze how HIV has adapted to the antigen processing machinery and discuss how advances in biochemical and computational protein degradation analyses and in immunopeptidome definition may help identify targets for efficient immune clearance and vaccine immunogen design.
Collapse
Affiliation(s)
- Julie Boucau
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, United States
| | - Sylvie Le Gall
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, United States.
| |
Collapse
|
35
|
Kanaseki T, Tokita S, Torigoe T. Proteogenomic discovery of cancer antigens: Neoantigens and beyond. Pathol Int 2019; 69:511-518. [PMID: 31397525 DOI: 10.1111/pin.12841] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/07/2019] [Indexed: 12/24/2022]
Abstract
Host T cells infiltrate the cancer lesion and contribute to patient survival. T cells recognize antigen peptides displayed by the cancer cell human leukocyte antigen (HLA) system. Cancer antigens constitute an essential element of T-cell discrimination and play an indispensable role in anti-cancer responses. HLA ligandome analysis directly and comprehensively detects the peptides that are naturally presented by HLA of given cells, leading to discovery of cancer antigens. A proteogenomic approach, which combines conventional proteomics with genomic information, has further deciphered the landscape of the cancer HLA ligandome. Neoantigens that arise from somatic mutations are arguably the major type of peptides patient T cells recognize. Moreover, cancer cells present peptides derived from alleged noncoding regions, which also elicit T-cell responses thereby serving as cancer antigens. The diversity of newly discovered antigen sources implies that T cells are capable of sensing a variety of genomic aberrations in cancer.
Collapse
Affiliation(s)
| | - Serina Tokita
- Department of Pathology, Sapporo Medical University, Sapporo, Japan.,Sapporo Dohto Hospital, Sapporo, Japan
| | | |
Collapse
|
36
|
Weinstein-Marom H, Hendel L, Laron EA, Sharabi-Nov A, Margalit A, Gross G. MHC-I presentation of peptides derived from intact protein products of the pioneer round of translation. FASEB J 2019; 33:11458-11468. [PMID: 31343935 DOI: 10.1096/fj.201802717rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Among the earliest protein products of most cellular genes are those synthesized during the pioneer round of translation (PRT), a key step in nonsense-mediated mRNA decay (NMD) that allows scanning of new transcripts for the presence of a premature termination codon (PTC). It has been demonstrated that at least some PRT degradation products can be targeted to major histocompatibility (MHC)-I presentation. To gain new insight into this putative PRT-to-MHC-I route, we have assembled 2 pairs of reporter genes so that the 2 genes in each pair encode an identical fusion protein between a model antigenic peptide and enhanced green fluorescent protein (EGFP), one of which harbors a PTC. We expressed these genes in different mouse and human cell lines and confirmed enhanced NMD activity for the PTC(+) gene in each pair by monitoring the effect of cycloheximide on the level of the respective mRNA. We then exploited several strategies for establishing the ratio between level of peptide presentation and total amount of protein product. We consistently observed significantly higher ratios for the PTC(+) mRNAs compared with the PTC(-) ones, pointing to correlation between the turnover of otherwise identical proteins and the fate of their template mRNA. Using confocal microscopy, we showed a clear link between NMD, the presence of misfolded EGFP polypeptides, and enhanced MHC-I peptide presentation. Altogether, these findings imply that identical full-length gene products differing only in 3' noncoding sequences can be differentially degraded and targeted to the MHC-I presentation pathway, suggesting a more general role for the PRT in establishing the MHC-I peptidome.-Weinstein-Marom, H., Hendel, L., Laron, E. A., Sharabi-Nov, A., Margalit, A., Gross, G. MHC-I presentation of peptides derived from intact protein products of the pioneer round of translation.
Collapse
Affiliation(s)
- Hadas Weinstein-Marom
- Laboratory of Immunology, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel.,Tel-Hai College, Upper Galilee, Israel.,Inter-Faculty Biotechnology Program, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liron Hendel
- Laboratory of Immunology, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel.,Tel-Hai College, Upper Galilee, Israel
| | - Efrat Avigad Laron
- Laboratory of Immunology, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel.,Tel-Hai College, Upper Galilee, Israel
| | | | - Alon Margalit
- Laboratory of Immunology, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel.,Tel-Hai College, Upper Galilee, Israel
| | - Gideon Gross
- Laboratory of Immunology, MIGAL-Galilee Research Institute, Kiryat Shmona, Israel.,Tel-Hai College, Upper Galilee, Israel
| |
Collapse
|
37
|
Lhuillier C, Rudqvist NP, Elemento O, Formenti SC, Demaria S. Radiation therapy and anti-tumor immunity: exposing immunogenic mutations to the immune system. Genome Med 2019; 11:40. [PMID: 31221199 PMCID: PMC6587285 DOI: 10.1186/s13073-019-0653-7] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The expression of antigens that are recognized by self-reactive T cells is essential for immune-mediated tumor rejection by immune checkpoint blockade (ICB) therapy. Growing evidence suggests that mutation-associated neoantigens drive ICB responses in tumors with high mutational burden. In most patients, only a few of the mutations in the cancer exome that are predicted to be immunogenic are recognized by T cells. One factor that limits this recognition is the level of expression of the mutated gene product in cancer cells. Substantial preclinical data show that radiation can convert the irradiated tumor into a site for priming of tumor-specific T cells, that is, an in situ vaccine, and can induce responses in otherwise ICB-resistant tumors. Critical for radiation-elicited T-cell activation is the induction of viral mimicry, which is mediated by the accumulation of cytosolic DNA in the irradiated cells, with consequent activation of the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon (IFN) genes (STING) pathway and downstream production of type I IFN and other pro-inflammatory cytokines. Recent data suggest that radiation can also enhance cancer cell antigenicity by upregulating the expression of a large number of genes that are involved in the response to DNA damage and cellular stress, thus potentially exposing immunogenic mutations to the immune system. Here, we discuss how the principles of antigen presentation favor the presentation of peptides that are derived from newly synthesized proteins in irradiated cells. These concepts support a model that incorporates the presence of immunogenic mutations in genes that are upregulated by radiation to predict which patients might benefit from treatment with combinations of radiotherapy and ICB.
Collapse
Affiliation(s)
- Claire Lhuillier
- Department of Radiation Oncology, Weill Cornell Medicine, Stich Radiation Oncology Center, 525 East 68th Street, New York, NY, 10065, USA
| | - Nils-Petter Rudqvist
- Department of Radiation Oncology, Weill Cornell Medicine, Stich Radiation Oncology Center, 525 East 68th Street, New York, NY, 10065, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, 413 East 69th Street, New York, NY, 10021, USA.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.,Institute for Computational Biomedicine, Weill Cornell Medical College, 1305 York Avenue, New York, NY, 10021, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, Stich Radiation Oncology Center, 525 East 68th Street, New York, NY, 10065, USA.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, Stich Radiation Oncology Center, 525 East 68th Street, New York, NY, 10065, USA. .,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA. .,Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
38
|
Zanker DJ, Oveissi S, Tscharke DC, Duan M, Wan S, Zhang X, Xiao K, Mifsud NA, Gibbs J, Izzard L, Dlugolenski D, Faou P, Laurie KL, Vigneron N, Barr IG, Stambas J, Van den Eynde BJ, Bennink JR, Yewdell JW, Chen W. Influenza A Virus Infection Induces Viral and Cellular Defective Ribosomal Products Encoded by Alternative Reading Frames. THE JOURNAL OF IMMUNOLOGY 2019; 202:3370-3380. [PMID: 31092636 DOI: 10.4049/jimmunol.1900070] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/15/2019] [Indexed: 01/10/2023]
Abstract
The importance of antiviral CD8+ T cell recognition of alternative reading frame (ARF)-derived peptides is uncertain. In this study, we describe an epitope (NS1-ARF21-8) present in a predicted 14-residue peptide encoded by the +1 register of NS1 mRNA in the influenza A virus (IAV). NS1-ARF21-8 elicits a robust, highly functional CD8+ T cell response in IAV-infected BALB/c mice. NS1-ARF21-8 is presented from unspliced NS mRNA, likely from downstream initiation on a Met residue that comprises the P1 position of NS1-ARF21-8 Derived from a 14-residue peptide with no apparent biological function and negligible impacts on IAV infection, infectivity, and pathogenicity, NS1-ARF21-8 provides a clear demonstration of how immunosurveillance exploits natural errors in protein translation to provide antiviral immunity. We further show that IAV infection enhances a model cellular ARF translation, which potentially has important implications for virus-induced autoimmunity.
Collapse
Affiliation(s)
- Damien J Zanker
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Sara Oveissi
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - David C Tscharke
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Mubing Duan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Siyuan Wan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Xiaomu Zhang
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Kun Xiao
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Nicole A Mifsud
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia.,Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - James Gibbs
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Lenny Izzard
- School of Medicine, Deakin University, Geelong, Victoria 3220, Australia
| | - Daniel Dlugolenski
- School of Medicine, Deakin University, Geelong, Victoria 3220, Australia
| | - Pierre Faou
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Karen L Laurie
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3010, Australia; and
| | | | - Ian G Barr
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3010, Australia; and
| | - John Stambas
- School of Medicine, Deakin University, Geelong, Victoria 3220, Australia
| | | | - Jack R Bennink
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Jonathan W Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia;
| |
Collapse
|
39
|
Okahata S, Sakamoto K, Mitsumatsu T, Kondo Y, Noso S, Ikegami H, Shiba T. Fulminant type 1 diabetes associated with Isolated ACTH deficiency induced by anti-programmed cell death 1 antibody-insight into the pathogenesis of autoimmune endocrinopathy. Endocr J 2019; 66:295-300. [PMID: 30814440 DOI: 10.1507/endocrj.ej18-0328] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Therapeutic blocking antibodies against programmed death 1 (PD1) and cytotoxic T-lymphocyte antigen 4 (CTLA4) are applied for advanced cancer therapy, but induce a wide range of immune-related adverse events. In our recent case of a 52-year-old female doctor suffering from breast cancer having metastasized to the lung and liver, it was decided to use nivolumab to prevent the disease progressing after excisional surgeries and multiple chemotherapies. One month after completing the nivolumab course, fatigue, hypoglycemia and hypotension developed and isolated ACTH deficiency (IAD) was diagnosed. A further month later, under steroid supplementation, hyperglycemia emerged alongside thirst and polydipsia, prompting a diagnosis of fulminant type 1 diabetes (FT1D). Her susceptibility to type 1 diabetes was examined by HLA haplotype and CTLA4 gene polymorphism analyses. Polymorphisms CT60G>A and +49G>A in CTLA4 both generated a GG genotype. Our patient manifested one of the rarest combinations of autoimmune disease induced by nivolumab. Whereas the HLA haplotype was unsusceptible to autoimmune type 1 diabetes, polymorphisms of CTLA4, the antibody of which frequently causes hypophysitis, were susceptible to FT1D. Peripheral modulation of activated T cells, mainly by PD-1 antibodies, induced FT1D associated with IAD in patients with CTLA4 polymorphism. This case reveals hints of the T-cell etiology in T1D and evidence of CTLA4 involvement in IAD.
Collapse
Affiliation(s)
- Sumie Okahata
- Division of Diabetes and Metabolism, Toho University Ohashi Medical Center, Tokyo 153-8515, Japan
| | - Kentaro Sakamoto
- Division of Diabetes and Metabolism, Toho University Ohashi Medical Center, Tokyo 153-8515, Japan
| | - Takako Mitsumatsu
- Division of Diabetes and Metabolism, Toho University Ohashi Medical Center, Tokyo 153-8515, Japan
| | - Yuko Kondo
- Division of Diabetes and Metabolism, Toho University Ohashi Medical Center, Tokyo 153-8515, Japan
| | - Shinsuke Noso
- Department of Endocrinology, Metabolism and Diabetes, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Hiroshi Ikegami
- Department of Endocrinology, Metabolism and Diabetes, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Teruo Shiba
- Division of Diabetes and Metabolism, Toho University Ohashi Medical Center, Tokyo 153-8515, Japan
| |
Collapse
|
40
|
Pont MJ, Oostvogels R, van Bergen CA, van der Meijden ED, Honders MW, Bliss S, Jongsma ML, Lokhorst HM, Falkenburg JF, Mutis T, Griffioen M, Spaapen RM. T Cells Specific for an Unconventional Natural Antigen Fail to Recognize Leukemic Cells. Cancer Immunol Res 2019; 7:797-804. [DOI: 10.1158/2326-6066.cir-18-0137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 12/21/2018] [Accepted: 03/14/2019] [Indexed: 11/16/2022]
|
41
|
Emerging Role of Eukaryote Ribosomes in Translational Control. Int J Mol Sci 2019; 20:ijms20051226. [PMID: 30862090 PMCID: PMC6429320 DOI: 10.3390/ijms20051226] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 12/15/2022] Open
Abstract
Translation is one of the final steps that regulate gene expression. The ribosome is the effector of translation through to its role in mRNA decoding and protein synthesis. Many mechanisms have been extensively described accounting for translational regulation. However it emerged only recently that ribosomes themselves could contribute to this regulation. Indeed, though it is well-known that the translational efficiency of the cell is linked to ribosome abundance, studies recently demonstrated that the composition of the ribosome could alter translation of specific mRNAs. Evidences suggest that according to the status, environment, development, or pathological conditions, cells produce different populations of ribosomes which differ in their ribosomal protein and/or RNA composition. Those observations gave rise to the concept of "specialized ribosomes", which proposes that a unique ribosome composition determines the translational activity of this ribosome. The current review will present how technological advances have participated in the emergence of this concept, and to which extent the literature sustains this concept today.
Collapse
|
42
|
Abstract
Most studies of T lymphocytes focus on recognition of classical major histocompatibility complex (MHC) class I or II molecules presenting oligopeptides, yet there are numerous variations and exceptions of biological significance based on recognition of a wide variety of nonclassical MHC molecules. These include αβ and γδ T cells that recognize different class Ib molecules (CD1, MR-1, HLA-E, G, F, et al.) that are nearly monomorphic within a given species. Collectively, these T cells can be considered “unconventional,” in part because they recognize lipids, metabolites, and modified peptides. Unlike classical MHC-specific cells, unconventional T cells generally exhibit limited T-cell antigen receptor (TCR) repertoires and often produce innate immune cell-like rapid effector responses. Exploiting this system in new generation vaccines for human immunodeficiency virus (HIV), tuberculosis (TB), other infectious agents, and cancer was the focus of a recent workshop, “Immune Surveillance by Non-classical MHC Molecules: Improving Diversity for Antigens,” sponsored by the National Institute of Allergy and Infectious Diseases. Here, we summarize salient points presented regarding the basic immunobiology of unconventional T cells, recent advances in methodologies to measure unconventional T-cell activity in diseases, and approaches to harness their considerable clinical potential.
Collapse
|
43
|
Wei J, Kishton RJ, Angel M, Conn CS, Dalla-Venezia N, Marcel V, Vincent A, Catez F, Ferré S, Ayadi L, Marchand V, Dersh D, Gibbs JS, Ivanov IP, Fridlyand N, Couté Y, Diaz JJ, Qian SB, Staudt LM, Restifo NP, Yewdell JW. Ribosomal Proteins Regulate MHC Class I Peptide Generation for Immunosurveillance. Mol Cell 2019; 73:1162-1173.e5. [PMID: 30712990 DOI: 10.1016/j.molcel.2018.12.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/29/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023]
Abstract
The MHC class I antigen presentation system enables T cell immunosurveillance of cancers and viruses. A substantial fraction of the immunopeptidome derives from rapidly degraded nascent polypeptides (DRiPs). By knocking down each of the 80 ribosomal proteins, we identified proteins that modulate peptide generation without altering source protein expression. We show that 60S ribosomal proteins L6 (RPL6) and RPL28, which are adjacent on the ribosome, play opposite roles in generating an influenza A virus-encoded peptide. Depleting RPL6 decreases ubiquitin-dependent peptide presentation, whereas depleting RPL28 increases ubiquitin-dependent and -independent peptide presentation. 40S ribosomal protein S28 (RPS28) knockdown increases total peptide supply in uninfected cells by increasing DRiP synthesis from non-canonical translation of "untranslated" regions and non-AUG start codons and sensitizes tumor cells for T cell targeting. Our findings raise the possibility of modulating immunosurveillance by pharmaceutical targeting ribosomes.
Collapse
MESH Headings
- Animals
- Antigen Presentation
- Cell Line, Tumor
- Coculture Techniques
- HEK293 Cells
- Histocompatibility Antigens Class I/biosynthesis
- Histocompatibility Antigens Class I/immunology
- Host-Pathogen Interactions
- Humans
- Immunologic Surveillance
- Influenza A virus/immunology
- Influenza A virus/pathogenicity
- Melanoma/immunology
- Melanoma/metabolism
- Mice, Inbred C57BL
- Mice, Transgenic
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosome Subunits, Large, Eukaryotic/genetics
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Ribosome Subunits, Small, Eukaryotic/genetics
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Skin Neoplasms/immunology
- Skin Neoplasms/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/virology
Collapse
Affiliation(s)
- Jiajie Wei
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| | | | - Matthew Angel
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Crystal S Conn
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Nicole Dalla-Venezia
- University of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Center Léon Bérard, Center de Recherche en Cancérologie de Lyon, Lyon, 69373 Cedex 08, France
| | - Virginie Marcel
- University of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Center Léon Bérard, Center de Recherche en Cancérologie de Lyon, Lyon, 69373 Cedex 08, France
| | - Anne Vincent
- University of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Center Léon Bérard, Center de Recherche en Cancérologie de Lyon, Lyon, 69373 Cedex 08, France
| | - Frédéric Catez
- University of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Center Léon Bérard, Center de Recherche en Cancérologie de Lyon, Lyon, 69373 Cedex 08, France
| | - Sabrina Ferré
- University of Grenoble Alpes, CEA, INSERM, BIG-BGE, 38000 Grenoble, France
| | - Lilia Ayadi
- Next-Generation Sequencing Core Facility, UMS2008 IBSLor CNRS-INSERM-University of Lorraine, 54505 Vandoeuvre-les-Nancy, France; Laboratory IMoPA, UMR7365 CNRS-University of Lorraine, 54505 Vandoeuvre-les-Nancy, France
| | - Virginie Marchand
- Next-Generation Sequencing Core Facility, UMS2008 IBSLor CNRS-INSERM-University of Lorraine, 54505 Vandoeuvre-les-Nancy, France; Laboratory IMoPA, UMR7365 CNRS-University of Lorraine, 54505 Vandoeuvre-les-Nancy, France
| | - Devin Dersh
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - James S Gibbs
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Ivaylo P Ivanov
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Nathan Fridlyand
- Laboratory of Translational Biology, School of Biosciences and Biotechnology, University of Camerino, Camerino MC 62032, Italy
| | - Yohann Couté
- University of Grenoble Alpes, CEA, INSERM, BIG-BGE, 38000 Grenoble, France
| | - Jean-Jacques Diaz
- University of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Center Léon Bérard, Center de Recherche en Cancérologie de Lyon, Lyon, 69373 Cedex 08, France
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Nicholas P Restifo
- National Cancer Institute, NIH, Bethesda, MD 20892, USA; Center for Cell-Based Therapy, Center for Cancer Research, NIH, Bethesda, MD 20892, USA
| | - Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
44
|
Sorel O, Dewals BG. The Critical Role of Genome Maintenance Proteins in Immune Evasion During Gammaherpesvirus Latency. Front Microbiol 2019; 9:3315. [PMID: 30687291 PMCID: PMC6333680 DOI: 10.3389/fmicb.2018.03315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/20/2018] [Indexed: 12/25/2022] Open
Abstract
Gammaherpesviruses are important pathogens that establish latent infection in their natural host for lifelong persistence. During latency, the viral genome persists in the nucleus of infected cells as a circular episomal element while the viral gene expression program is restricted to non-coding RNAs and a few latency proteins. Among these, the genome maintenance protein (GMP) is part of the small subset of genes expressed in latently infected cells. Despite sharing little peptidic sequence similarity, gammaherpesvirus GMPs have conserved functions playing essential roles in latent infection. Among these functions, GMPs have acquired an intriguing capacity to evade the cytotoxic T cell response through self-limitation of MHC class I-restricted antigen presentation, further ensuring virus persistence in the infected host. In this review, we provide an updated overview of the main functions of gammaherpesvirus GMPs during latency with an emphasis on their immune evasion properties.
Collapse
Affiliation(s)
- Océane Sorel
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine-FARAH, University of Liège, Liège, Belgium.,Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Benjamin G Dewals
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine-FARAH, University of Liège, Liège, Belgium
| |
Collapse
|
45
|
Preproinsulin Designer Antigens Excluded from Endoplasmic Reticulum Suppressed Diabetes Development in NOD Mice by DNA Vaccination. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 12:123-133. [PMID: 30623001 PMCID: PMC6319196 DOI: 10.1016/j.omtm.2018.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/03/2018] [Indexed: 11/20/2022]
Abstract
DNA vaccines against autoimmune type 1 diabetes (T1D) contain a nonpredictable risk to induce autoreactive T cell responses rather than a protective immunity. Little is known if (and how) antigen expression and processing requirements favor the induction of autoreactive or protective immune responses by DNA immunization. Here, we analyzed whether structural properties of preproinsulin (ppins) variants and/or subcellular targeting of ppins designer antigens influence the priming of effector CD8+ T cell responses by DNA immunization. Primarily, we used H-2b RIP-B7.1 tg mice, expressing the co-stimulator molecule B7.1 in beta cells, to identify antigens that induce or fail to induce autoreactive ppins-specific (Kb/A12-21 and/or Kb/B22-29) CD8+ T cell responses. Female NOD mice, expressing the diabetes-susceptible H-2g7 haplotype, were used to test ppins variants for their potential to suppress spontaneous diabetes development. We showed that ppins antigens excluded from expression in the endoplasmic reticulum (ER) did not induce CD8+ T cells or autoimmune diabetes in RIP-B7.1 tg mice, but efficiently suppressed spontaneous diabetes development in NOD mice as well as ppins-induced CD8+ T cell-mediated autoimmune diabetes in PD-L1−/− mice. The induction of a ppins-specific therapeutic immunity in mice has practical implications for the design of immune therapies against T1D in individuals expressing different major histocompatibility complex (MHC) I and II molecules.
Collapse
|
46
|
Gonzalez-Duque S, Azoury ME, Colli ML, Afonso G, Turatsinze JV, Nigi L, Lalanne AI, Sebastiani G, Carré A, Pinto S, Culina S, Corcos N, Bugliani M, Marchetti P, Armanet M, Diedisheim M, Kyewski B, Steinmetz LM, Buus S, You S, Dubois-Laforgue D, Larger E, Beressi JP, Bruno G, Dotta F, Scharfmann R, Eizirik DL, Verdier Y, Vinh J, Mallone R. Conventional and Neo-antigenic Peptides Presented by β Cells Are Targeted by Circulating Naïve CD8+ T Cells in Type 1 Diabetic and Healthy Donors. Cell Metab 2018; 28:946-960.e6. [PMID: 30078552 DOI: 10.1016/j.cmet.2018.07.007] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/20/2018] [Accepted: 07/11/2018] [Indexed: 10/28/2022]
Abstract
Although CD8+ T-cell-mediated autoimmune β cell destruction occurs in type 1 diabetes (T1D), the target epitopes processed and presented by β cells are unknown. To identify them, we combined peptidomics and transcriptomics strategies. Inflammatory cytokines increased peptide presentation in vitro, paralleling upregulation of human leukocyte antigen (HLA) class I expression. Peptide sources featured several insulin granule proteins and all known β cell antigens, barring islet-specific glucose-6-phosphatase catalytic subunit-related protein. Preproinsulin yielded HLA-A2-restricted epitopes previously described. Secretogranin V and its mRNA splice isoform SCG5-009, proconvertase-2, urocortin-3, the insulin gene enhancer protein ISL-1, and an islet amyloid polypeptide transpeptidation product emerged as antigens processed into HLA-A2-restricted epitopes, which, as those already described, were recognized by circulating naive CD8+ T cells in T1D and healthy donors and by pancreas-infiltrating cells in T1D donors. This peptidome opens new avenues to understand antigen processing by β cells and for the development of T cell biomarkers and tolerogenic vaccination strategies.
Collapse
Affiliation(s)
- Sergio Gonzalez-Duque
- INSERM, U1016, Cochin Institute, 75014 Paris, France; CNRS, UMR8104, Cochin Institute, 75014 Paris, France; Paris Descartes University, Sorbonne Paris Cité, 75014 Paris, France; ESPCI Paris, PSL University, Spectrométrie de Masse Biologique et Protéomique, CNRS USR3149, 75005 Paris, France
| | - Marie Eliane Azoury
- INSERM, U1016, Cochin Institute, 75014 Paris, France; CNRS, UMR8104, Cochin Institute, 75014 Paris, France; Paris Descartes University, Sorbonne Paris Cité, 75014 Paris, France
| | - Maikel L Colli
- Université Libre de Bruxelles Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Georgia Afonso
- INSERM, U1016, Cochin Institute, 75014 Paris, France; CNRS, UMR8104, Cochin Institute, 75014 Paris, France; Paris Descartes University, Sorbonne Paris Cité, 75014 Paris, France
| | - Jean-Valery Turatsinze
- Université Libre de Bruxelles Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Laura Nigi
- University of Siena, Department of Medicine, Surgery and Neuroscience, Diabetes Unit and Fondazione Umberto di Mario ONLUS, Toscana Life Sciences, 53100 Siena, Italy
| | - Ana Ines Lalanne
- INSERM, U1016, Cochin Institute, 75014 Paris, France; CNRS, UMR8104, Cochin Institute, 75014 Paris, France; Paris Descartes University, Sorbonne Paris Cité, 75014 Paris, France
| | - Guido Sebastiani
- University of Siena, Department of Medicine, Surgery and Neuroscience, Diabetes Unit and Fondazione Umberto di Mario ONLUS, Toscana Life Sciences, 53100 Siena, Italy
| | - Alexia Carré
- INSERM, U1016, Cochin Institute, 75014 Paris, France; CNRS, UMR8104, Cochin Institute, 75014 Paris, France; Paris Descartes University, Sorbonne Paris Cité, 75014 Paris, France
| | - Sheena Pinto
- DKFZ, Division of Developmental Immunology, 69120 Heidelberg, Germany
| | - Slobodan Culina
- INSERM, U1016, Cochin Institute, 75014 Paris, France; CNRS, UMR8104, Cochin Institute, 75014 Paris, France; Paris Descartes University, Sorbonne Paris Cité, 75014 Paris, France
| | - Noémie Corcos
- INSERM, U1016, Cochin Institute, 75014 Paris, France; CNRS, UMR8104, Cochin Institute, 75014 Paris, France; Paris Descartes University, Sorbonne Paris Cité, 75014 Paris, France
| | - Marco Bugliani
- University of Pisa, Department of Clinical and Experimental Medicine, 56124 Pisa, Italy
| | - Piero Marchetti
- University of Pisa, Department of Clinical and Experimental Medicine, 56124 Pisa, Italy
| | - Mathieu Armanet
- Assistance Publique Hôpitaux de Paris, Cell Therapy Unit, Saint Louis Hospital, 75010 Paris, France
| | - Marc Diedisheim
- INSERM, U1016, Cochin Institute, 75014 Paris, France; CNRS, UMR8104, Cochin Institute, 75014 Paris, France; Paris Descartes University, Sorbonne Paris Cité, 75014 Paris, France; Assistance Publique Hôpitaux de Paris, Service de Diabétologie, Cochin Hospital, 75014 Paris, France
| | - Bruno Kyewski
- DKFZ, Division of Developmental Immunology, 69120 Heidelberg, Germany
| | - Lars M Steinmetz
- Stanford University, School of Medicine, Department of Genetics and Stanford Genome Technology Center, Stanford, CA 94305, USA; European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
| | - Søren Buus
- Panum Institute, Department of International Health, Immunology and Microbiology, 2200 Copenhagen, Denmark
| | - Sylvaine You
- INSERM, U1016, Cochin Institute, 75014 Paris, France; CNRS, UMR8104, Cochin Institute, 75014 Paris, France; Paris Descartes University, Sorbonne Paris Cité, 75014 Paris, France
| | - Daniele Dubois-Laforgue
- INSERM, U1016, Cochin Institute, 75014 Paris, France; CNRS, UMR8104, Cochin Institute, 75014 Paris, France; Paris Descartes University, Sorbonne Paris Cité, 75014 Paris, France; Assistance Publique Hôpitaux de Paris, Service de Diabétologie, Cochin Hospital, 75014 Paris, France
| | - Etienne Larger
- INSERM, U1016, Cochin Institute, 75014 Paris, France; CNRS, UMR8104, Cochin Institute, 75014 Paris, France; Paris Descartes University, Sorbonne Paris Cité, 75014 Paris, France; Assistance Publique Hôpitaux de Paris, Service de Diabétologie, Cochin Hospital, 75014 Paris, France
| | - Jean-Paul Beressi
- Centre Hospitalier de Versailles André Mignot, Service de Diabétologie, 78150 Le Chesnay, France
| | - Graziella Bruno
- University of Turin, Department of Medical Sciences, 10126 Turin, Italy
| | - Francesco Dotta
- University of Siena, Department of Medicine, Surgery and Neuroscience, Diabetes Unit and Fondazione Umberto di Mario ONLUS, Toscana Life Sciences, 53100 Siena, Italy
| | - Raphael Scharfmann
- INSERM, U1016, Cochin Institute, 75014 Paris, France; CNRS, UMR8104, Cochin Institute, 75014 Paris, France; Paris Descartes University, Sorbonne Paris Cité, 75014 Paris, France
| | - Decio L Eizirik
- Université Libre de Bruxelles Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Yann Verdier
- ESPCI Paris, PSL University, Spectrométrie de Masse Biologique et Protéomique, CNRS USR3149, 75005 Paris, France
| | - Joelle Vinh
- ESPCI Paris, PSL University, Spectrométrie de Masse Biologique et Protéomique, CNRS USR3149, 75005 Paris, France
| | - Roberto Mallone
- INSERM, U1016, Cochin Institute, 75014 Paris, France; CNRS, UMR8104, Cochin Institute, 75014 Paris, France; Paris Descartes University, Sorbonne Paris Cité, 75014 Paris, France; Assistance Publique Hôpitaux de Paris, Service de Diabétologie, Cochin Hospital, 75014 Paris, France.
| |
Collapse
|
47
|
Jensen SM, Potts GK, Ready DB, Patterson MJ. Specific MHC-I Peptides Are Induced Using PROTACs. Front Immunol 2018; 9:2697. [PMID: 30524438 PMCID: PMC6262898 DOI: 10.3389/fimmu.2018.02697] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/01/2018] [Indexed: 01/10/2023] Open
Abstract
Peptides presented by the class-I major histocompatibility complex (MHC-I) are important targets for immunotherapy. The identification of these peptide targets greatly facilitates the generation of T-cell-based therapeutics. Herein, we report the capability of proteolysis targeting chimera (PROTAC) compounds to induce the presentation of specific MHC class-I peptides derived from endogenous cellular proteins. Using LC-MS/MS, we identified several BET-derived MHC-I peptides induced by treatment with three BET-directed PROTAC compounds. To understand our ability to tune this process, we measured the relative rate of presentation of these peptides under varying treatment conditions using label-free mass spectrometry quantification. We found that the rate of peptide presentation reflected the rate of protein degradation, indicating a direct relationship between PROTAC treatment and peptide presentation. We additionally analyzed the effect of PROTAC treatment on the entire immunopeptidome and found many new peptides that were displayed in a PROTAC-specific fashion: we determined that these identifications map to the BET pathway, as well as, potential off-target or unique-to-PROTAC pathways. This work represents the first evidence of the use of PROTAC compounds to induce the presentation of MHC-I peptides from endogenous cellular proteins, highlighting the capability of PROTAC compounds for the discovery and generation of new targets for immunotherapy.
Collapse
Affiliation(s)
- Stephanie M Jensen
- Discovery Chemistry and Technology, AbbVie North Chicago, IL, United States
| | - Gregory K Potts
- Discovery Chemistry and Technology, AbbVie North Chicago, IL, United States
| | - Damien B Ready
- Discovery Chemistry and Technology, AbbVie North Chicago, IL, United States
| | | |
Collapse
|
48
|
Abstract
Since the publication of the DRiP (defective ribosomal product) hypothesis in 1996, numerous studies have addressed the contribution of DRiPs to generating viral antigenic peptides for CD8+ T cell immunosurveillance. Here, we review studies characterizing the generation of antigenic peptides from influenza A virus encoded DRiPs, discuss the many remaining mysteries regarding the nature of their co-translational generation, and speculate on where the future might lead.
Collapse
|
49
|
Wilson EA, Anderson KS. Lost in the crowd: identifying targetable MHC class I neoepitopes for cancer immunotherapy. Expert Rev Proteomics 2018; 15:1065-1077. [PMID: 30408427 DOI: 10.1080/14789450.2018.1545578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The recent development of checkpoint blockade immunotherapy for cancer has led to impressive clinical results across multiple tumor types. There is mounting evidence that immune recognition of tumor derived MHC class I (MHC-I) restricted epitopes bearing cancer specific mutations and alterations is a crucial mechanism in successfully triggering immune-mediated tumor rejection. Therapeutic targeting of these cancer specific epitopes (neoepitopes) is emerging as a promising opportunity for the generation of personalized cancer vaccines and adoptive T cell therapies. However, one major obstacle limiting the broader application of neoepitope based therapies is the difficulty of selecting highly immunogenic neoepitopes among the wide array of presented non-immunogenic HLA ligands derived from self-proteins. Areas covered: In this review, we present an overview of the MHC-I processing and presentation pathway, as well as highlight key areas that contribute to the complexity of the associated MHC-I peptidome. We cover recent technological advances that simplify and optimize the identification of targetable neoepitopes for cancer immunotherapeutic applications. Expert commentary: Recent advances in computational modeling, bioinformatics, and mass spectrometry are unlocking the underlying mechanisms governing antigen processing and presentation of tumor-derived neoepitopes.
Collapse
Affiliation(s)
- Eric A Wilson
- a Center for Personalized Diagnostics, Biodesign Institute , Arizona State University , Tempe , AZ , USA
| | - Karen S Anderson
- a Center for Personalized Diagnostics, Biodesign Institute , Arizona State University , Tempe , AZ , USA.,b Department of Medical Oncology , Mayo Clinic Arizona , Scottsdale , AZ , USA
| |
Collapse
|
50
|
Boulanger DSM, Eccleston RC, Phillips A, Coveney PV, Elliott T, Dalchau N. A Mechanistic Model for Predicting Cell Surface Presentation of Competing Peptides by MHC Class I Molecules. Front Immunol 2018; 9:1538. [PMID: 30026743 PMCID: PMC6041393 DOI: 10.3389/fimmu.2018.01538] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/21/2018] [Indexed: 12/15/2022] Open
Abstract
Major histocompatibility complex-I (MHC-I) molecules play a central role in the immune response to viruses and cancers. They present peptides on the surface of affected cells, for recognition by cytotoxic T cells. Determining which peptides are presented, and in what proportion, has profound implications for developing effective, medical treatments. However, our ability to predict peptide presentation levels is currently limited. Existing prediction algorithms focus primarily on the binding affinity of peptides to MHC-I, and do not predict the relative abundance of individual peptides on the surface of antigen-presenting cells in situ which is a critical parameter for determining the strength and specificity of the ensuing immune response. Here, we develop and experimentally verify a mechanistic model for predicting cell-surface presentation of competing peptides. Our approach explicitly models key steps in the processing of intracellular peptides, incorporating both peptide binding affinity and intracellular peptide abundance. We use the resulting model to predict how the peptide repertoire is modified by interferon-γ, an immune modulator well known to enhance expression of antigen processing and presentation proteins.
Collapse
Affiliation(s)
- Denise S. M. Boulanger
- Centre for Cancer Immunology and Institute for Life Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ruth C. Eccleston
- Centre for Computational Science, Department of Chemistry, University College London, London, United Kingdom
- CoMPLEX, University College London, London, United Kingdom
| | | | - Peter V. Coveney
- Centre for Computational Science, Department of Chemistry, University College London, London, United Kingdom
- CoMPLEX, University College London, London, United Kingdom
| | - Tim Elliott
- Centre for Cancer Immunology and Institute for Life Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | |
Collapse
|