1
|
Liu J, Qi L, Bao S, Yan F, Chen J, Yu S, Dong C. The acute spinal cord injury microenvironment and its impact on the homing of mesenchymal stem cells. Exp Neurol 2024; 373:114682. [PMID: 38199509 DOI: 10.1016/j.expneurol.2024.114682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/08/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Spinal cord injury (SCI) is a highly debilitating condition that inflicts devastating harm on the lives of affected individuals, underscoring the urgent need for effective treatments. By activating inflammatory cells and releasing inflammatory factors, the secondary injury response creates an inflammatory microenvironment that ultimately determines whether neurons will undergo necrosis or regeneration. In recent years, mesenchymal stem cells (MSCs) have garnered increasing attention for their therapeutic potential in SCI. MSCs not only possess multipotent differentiation capabilities but also have homing abilities, making them valuable as carriers and mediators of therapeutic agents. The inflammatory microenvironment induced by SCI recruits MSCs to the site of injury through the release of various cytokines, chemokines, adhesion molecules, and enzymes. However, this mechanism has not been previously reported. Thus, a comprehensive exploration of the molecular mechanisms and cellular behaviors underlying the interplay between the inflammatory microenvironment and MSC homing is crucial. Such insights have the potential to provide a better understanding of how to harness the therapeutic potential of MSCs in treating inflammatory diseases and facilitating injury repair. This review aims to delve into the formation of the inflammatory microenvironment and how it influences the homing of MSCs.
Collapse
Affiliation(s)
- Jinyi Liu
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Longju Qi
- Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Shengzhe Bao
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Fangsu Yan
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Jiaxi Chen
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Shumin Yu
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Chuanming Dong
- Department of Anatomy, Medical College of Nantong University, Nantong, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China.
| |
Collapse
|
2
|
Li XY, Liu JQ, Wang Y, Chen Y, Hu WH, Lv YX, Wu Y, Lv J, Tang JM, Kong D. VNS improves VSMC metabolism and arteriogenesis in infarcted hearts through m/n-AChR-Akt-SDF-1α in adult male rats. J Mol Histol 2024; 55:51-67. [PMID: 38165566 PMCID: PMC10830782 DOI: 10.1007/s10735-023-10171-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 10/21/2023] [Indexed: 01/04/2024]
Abstract
Vagal nerve stimulation (VNS) provides a novel therapeutic strategy for injured hearts by activating cholinergic anti-inflammatory pathways. However, little information is available on the metabolic pattern and arteriogenesis of VSMCs after MI. VNS has been shown to stimulate the expression of CPT1α, CPT1β, Glut1, Glut4 and SDF-1α in coronary VSMCs, decreasing the number of CD68-positive macrophages while increasing CD206-positive macrophages in the infarcted hearts, leading to a decrease in TNF-α and IL-1β accompanied by a reduced ratio of CD68- and CD206-positive cells, which were dramatically abolished by atropine and mecamylamine in vivo. Knockdown of SDF-1α substantially abrogated the effect of VNS on macrophagecell alteration and inflammatory factors in infarcted hearts. Mechanistically, ACh induced SDF-1α expression in VSMCs in a dose-dependent manner. Conversely, atropine, mecamylamine, and a PI3K/Akt inhibitor completely eliminated the effect of ACh on SDF-1α expression. Functionally, VNS promoted arteriogenesis and improved left ventricular performance, which could be abolished by Ad-shSDF-1α. Thus, VNS altered the VSMC metabolism pattern and arteriogenesis to repair the infarcted heart by inducing SDF-1α expression, which was associated with the m/nAChR-Akt signaling pathway.
Collapse
Affiliation(s)
- Xing-Yuan Li
- Department of Physiology, Faculty of Basic Medical Sciences, Zunyi Medicical University, Zunyi, 563006, Guizhou, People's Republic of China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Jia-Qi Liu
- Nursing College, Hubei Province Chinese Medicine Hospital, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, Hubei, People's Republic of China
| | - Yan Wang
- Department of Physiology, Faculty of Basic Medical Sciences, Zunyi Medicical University, Zunyi, 563006, Guizhou, People's Republic of China
| | - Yan Chen
- Department of Physiology, Faculty of Basic Medical Sciences, Zunyi Medicical University, Zunyi, 563006, Guizhou, People's Republic of China
| | - Wen-Hui Hu
- Department of Physiology, Faculty of Basic Medical Sciences, Zunyi Medicical University, Zunyi, 563006, Guizhou, People's Republic of China
| | - Yan-Xia Lv
- Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Yan Wu
- Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Jing Lv
- Institute of Basic Medical Sciences, Institute of Biomedicine, Hubei University of Medicine, Hubei, 442000, People's Republic of China.
| | - Jun-Ming Tang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.
- Institute of Basic Medical Sciences, Institute of Biomedicine, Hubei University of Medicine, Hubei, 442000, People's Republic of China.
| | - Deying Kong
- Department of Physiology, Faculty of Basic Medical Sciences, Zunyi Medicical University, Zunyi, 563006, Guizhou, People's Republic of China.
| |
Collapse
|
3
|
Wang Y, Liu Y, Li X, Yao L, Mbadhi M, Chen S, Lv Y, Bao X, Chen L, Chen S, Zhang J, Wu Y, Lv J, Shi L, Tang J. Vagus nerve stimulation-induced stromal cell-derived factor-l alpha participates in angiogenesis and repair of infarcted hearts. ESC Heart Fail 2023; 10:3311-3329. [PMID: 37641543 PMCID: PMC10682864 DOI: 10.1002/ehf2.14475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/02/2023] [Accepted: 07/02/2023] [Indexed: 08/31/2023] Open
Abstract
AIMS We aim to explore the role and mechanism of vagus nerve stimulation (VNS) in coronary endothelial cells and angiogenesis in infarcted hearts. METHODS AND RESULTS Seven days after rat myocardial infarction (MI) was prepared by ligation of the left anterior descending coronary artery, the left cervical vagus nerve was treated with electrical stimulation 1 h after intraperitoneal administration of the α7-nicotinic acetylcholine inhibitor mecamylamine or the mAChR inhibitor atropine or 3 days after local injection of Ad-shSDF-1α into the infarcted heart. Cardiac tissue acetylcholine (ACh) and serum ACh, tumour necrosis factor α (TNF-α), interleukin 1β (IL-1β) and interleukin 6 (IL-6) levels were detected by ELISA to determine whether VNS was successful. An inflammatory injury model in human coronary artery endothelial cells (HCAECs) was established by lipopolysaccharide and identified by evaluating TNF-α, IL-1β and IL-6 levels and tube formation. Immunohistochemistry staining was performed to evaluate CD31-positive vessel density and stromal cell-derived factor-l alpha (SDF-1α) expression in the MI heart in vivo and the expression and distribution of SDF-1α, C-X-C motif chemokine receptor 4 and CXCR7 in HCAECs in vitro. Western blotting was used to detect the levels of SDF-1α, V-akt murine thymoma viral oncogene homolog (AKT), phosphorylated AKT (pAKT), specificity protein 1 (Sp1) and phosphorylation of Sp1 in HCAECs. Left ventricular performance, including left ventricular systolic pressure, left ventricular end-diastolic pressure and rate of the rise and fall of ventricular pressure, should be evaluated 28 days after VNS treatment. VNS was successfully established for MI therapy with decreases in serum TNF-α, IL-1β and IL-6 levels and increases in cardiac tissue and serum ACh levels, leading to increased SDF-1α expression in coronary endothelial cells of MI hearts, triggering angiogenesis of MI hearts with increased CD31-positive vessel density, which was abolished by the m/nAChR inhibitors mecamylamine and atropine or knockdown of SDF-1α by shRNA. ACh promoted SDF-1α expression and its distribution along with the branch of the formed tube in HCAECs, resulting in an increase in the number of tubes formed in HCAECs. ACh increased the levels of pAKT and phosphorylation of Sp1 in HCAECs, resulting in inducing SDF-1α expression, and the specific effects could be abolished by mecamylamine, atropine, the PI3K/AKT blocker wortmannin or the Sp1 blocker mithramycin. Functionally, VNS improved left ventricular performance, which could be abolished by Ad-shSDF-1α. CONCLUSIONS VNS promoted angiogenesis to repair the infarcted heart by inducing SDF-1α expression and redistribution along new branches during angiogenesis, which was associated with the m/nAChR-AKT-Sp1 signalling pathway.
Collapse
Affiliation(s)
- Yan Wang
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
- Department of Pathology, Renmin HospitalHubei University of MedicineShiyanPR China
| | - Yun Liu
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
| | - Xing‐yuan Li
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
| | - Lu‐yuan Yao
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
- Department of Anesthesiology, Institute of Anesthesiology, Taihe HospitalHubei University of MedicineShiyanPR China
| | - MagdaleenaNaemi Mbadhi
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
| | - Shao‐Juan Chen
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
- Department of Stomatology, Taihe HospitalHubei University of MedicineShiyanPR China
| | - Yan‐xia Lv
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
| | - Xin Bao
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
- Experimental Medical Center, Guoyao‐Dong Feng HospitalHubei University of MedicineShiyanPR China
| | - Long Chen
- Experimental Medical Center, Guoyao‐Dong Feng HospitalHubei University of MedicineShiyanPR China
| | - Shi‐You Chen
- Department of SurgeryUniversity of MissouriColumbiaMissouriUSA
| | - Jing‐xuan Zhang
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
- Institute of Basic Medical Sciences, Institute of BiomedicineHubei University of MedicineShiyanPR China
| | - Yan Wu
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
- Institute of Basic Medical Sciences, Institute of BiomedicineHubei University of MedicineShiyanPR China
| | - Jing Lv
- Department of Anesthesiology, Institute of Anesthesiology, Taihe HospitalHubei University of MedicineShiyanPR China
| | - Liu‐liu Shi
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
- Institute of Basic Medical Sciences, Institute of BiomedicineHubei University of MedicineShiyanPR China
| | - Jun‐ming Tang
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
- Institute of Basic Medical Sciences, Institute of BiomedicineHubei University of MedicineShiyanPR China
| |
Collapse
|
4
|
Ruknudin P, Nazari AR, Wirth M, Lahaie I, Bajon E, Rivard A, Chemtob S, Desjarlais M. Novel Function of Nogo-A as Negative Regulator of Endothelial Progenitor Cell Angiogenic Activity: Impact in Oxygen-Induced Retinopathy. Int J Mol Sci 2023; 24:13185. [PMID: 37685993 PMCID: PMC10488245 DOI: 10.3390/ijms241713185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Endothelial Progenitor Cells (EPCs) can actively participate in revascularization in oxygen-induced retinopathy (OIR). Yet the mechanisms responsible for their dysfunction is unclear. Nogo-A, whose function is traditionally related to the inhibition of neurite function in the central nervous system, has recently been documented to display anti-angiogenic pro-repellent properties. Based on the significant impact of EPCs in retinal vascularization, we surmised that Nogo-A affects EPC function, and proceeded to investigate the role of Nogo-A on EPC function in OIR. The expression of Nogo-A and its specific receptor NgR1 was significantly increased in isolated EPCs exposed to hyperoxia, as well as in EPCs isolated from rats subjected to OIR compared with respective controls (EPCs exposed to normoxia). EPCs exposed to hyperoxia displayed reduced migratory and tubulogenic activity, associated with the suppressed expression of prominent EPC-recruitment factors SDF-1/CXCR4. The inhibition of Nogo-A (using a Nogo-66 neutralizing antagonist peptide) or siRNA-NGR1 in hyperoxia-exposed EPCs restored SDF-1/CXCR4 expression and, in turn, rescued the curtailed neovascular functions of EPCs in hyperoxia. The in vivo intraperitoneal injection of engineered EPCs (Nogo-A-inhibited or NgR1-suppressed) in OIR rats at P5 (prior to exposure to hyperoxia) prevented retinal and choroidal vaso-obliteration upon localization adjacent to vasculature; coherently, the inhibition of Nogo-A/NgR1 in EPCs enhanced the expression of key angiogenic factors VEGF, SDF-1, PDGF, and EPO in retina; CXCR4 knock-down abrogated suppressed NgR1 pro-angiogenic effects. The findings revealed that hyperoxia-induced EPC malfunction is mediated to a significant extent by Nogo-A/NgR1 signaling via CXCR4 suppression; the inhibition of Nogo-A in EPCs restores specific angiogenic growth factors in retina and the ensuing vascularization of the retina in an OIR model.
Collapse
Affiliation(s)
- Pakiza Ruknudin
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC H1T 2H2, Canada
| | - Ali Riza Nazari
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC H1T 2H2, Canada
| | - Maelle Wirth
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC H1T 2H2, Canada
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC H1T 2H2, Canada
| | - Isabelle Lahaie
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC H1T 2H2, Canada
| | - Emmanuel Bajon
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC H1T 2H2, Canada
| | - Alain Rivard
- Department of Medicine, Centre Hospitalier de l’Université de Montréal (CHUM) Research Center, Montréal, QC H1T 2H2, Canada
| | - Sylvain Chemtob
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC H1T 2H2, Canada
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC H1T 2H2, Canada
| | - Michel Desjarlais
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC H1T 2H2, Canada
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC H1T 2H2, Canada
| |
Collapse
|
5
|
Fang J, Xu J, Zhang Y, Chen H, Ma Z, Huang Z, Hu J. Stromal cell-derived factor-1 may play pivotal role in distraction-stimulated neovascularization of diabetic foot ulcer. Med Hypotheses 2021; 149:110548. [PMID: 33690002 DOI: 10.1016/j.mehy.2021.110548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/16/2021] [Accepted: 02/24/2021] [Indexed: 02/05/2023]
Abstract
Diabetic foot ulcer (DFU) has become a major medical, social and economic concern worldwide. It is highly desirable to develop promising new solutions to effectively and appropriately treat DFU. In recent years, investigators have used an innovative technology called proximal tibial cortex transverse distraction (PTCTD) to treat DFU and have achieved satisfactory results in terms of improved wound healing and circumvention of amputation as a consequence of enhanced neovascularization and perfusion of the ulcerated feet after the operation, but the underlying mechanism has not been explored. Previous studies have suggested that in addition to stimulating osteogenesis, bone distraction also facilitates neovascularization, which may be associated with the chemokine stromal cell-derived factor-1 (SDF-1). As an important member of the chemokine family, SDF-1 is primarily responsible for the homing and migration of endothelial progenitor cells (EPCs) or bone marrow-derived mesenchymal stem cells (BMSCs), and plays a central role in the process of neovascularization. In vivo or in vitro experiments show that bone distraction can induce the expression of SDF-1 and increase its plasma concentration. Moreover, some researchers have found that an insufficient level of SDF-1 in the circulation and wounds of patients with DFU can lead to impaired neovascularization. Therefore, we believe that SDF-1 plays an important role in promoting neovascularization of DFU as a result of bone distraction. We summarize the currently relevant literature to put forward an undisclosed but meaningful mechanism of bone distraction in the treatment of DFU.
Collapse
Affiliation(s)
- Jiezhuang Fang
- Department of Orthopedics, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jiankun Xu
- Department of Orthopedics, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yuantao Zhang
- Department of Orthopedics, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Hongjiang Chen
- Department of Orthopedics, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zebin Ma
- Department of Orthopedics, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhonglian Huang
- Department of Orthopedics, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jun Hu
- Department of Orthopedics, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
6
|
Yang J, Miao X, Yang FJ, Cao JF, Liu X, Fu JL, Su GF. Therapeutic potential of curcumin in diabetic retinopathy (Review). Int J Mol Med 2021; 47:75. [PMID: 33693955 PMCID: PMC7949626 DOI: 10.3892/ijmm.2021.4908] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetic retinopathy (DR) is a type of retinal microangiopathy caused by diabetes mellitus. It has become the leading cause of blindness among working individuals worldwide. DR is becoming increasingly common among younger diabetic patients and there is a need for lifelong treatment. The pathogenic mechanisms of DR are influenced by a number of factors, such as hyperglycemia, hyperlipidemia, inflammatory response and oxidative stress, among others. Currently, the treatment methods for DR mainly include retinal photocoagulation, vitrectomy, or anti‑vascular endothelial growth factor (VEGF) therapy. However, these methods have some disadvantages and limitations. Therefore, it is a matter of great interest and urgency to discover drugs that can target the pathogenesis of DR. Since ancient times, traditional Chinese medicine practitioners have accumulated extensive experiences in the use of Chinese herbal medicine for the prevention and treatment of diseases. In the theory of traditional Chinese medicine, curcumin has the effects of promoting blood circulation and relieving pain. A number of studies have also demonstrated that curcumin has multiple biological activities, including exerting anti‑apoptotic, anti‑inflammatory, antioxidant and antitumor properties. In recent years, studies have also confirmed that curcumin can prevent a variety of diabetic complications, including diabetic nephropathy (DN). However, the preventive and curative effects of curcumin on DR and its mechanisms of action have not yet been fully elucidated. The present review aimed to explore the therapeutic potential of curcumin in diabetes mellitus and DR.
Collapse
Affiliation(s)
- Jian Yang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Xiao Miao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Feng-Juan Yang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jin-Feng Cao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Xin Liu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jin-Ling Fu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Guan-Fang Su
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
7
|
Bösmüller H, Matter M, Fend F, Tzankov A. The pulmonary pathology of COVID-19. Virchows Arch 2021; 478:137-150. [PMID: 33604758 PMCID: PMC7892326 DOI: 10.1007/s00428-021-03053-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 01/08/2023]
Abstract
The lung is the main affected organ in severe coronavirus disease 2019 (COVID-19) caused by the novel coronavirus SARS-CoV-2, and lung damage is the leading cause of death in the vast majority of patients. Mainly based on results obtained by autopsies, the seminal features of fatal COVID-19 have been described by many groups worldwide. Early changes encompass edema, epithelial damage, and capillaritis/endothelialitis, frequently combined with microthrombosis. Subsequently, patients with manifest respiratory insufficiency exhibit exudative diffuse alveolar damage (DAD) with hyaline membrane formation and pneumocyte type 2 hyperplasia, variably complicated by superinfection, which may progress to organizing/fibrotic stage DAD. These features, however, are not specific for COVID-19 and can be found in other disorders including viral infections. Clinically, the early disease stage of severe COVID-19 is characterized by high viral load, lymphopenia, massive secretion of pro-inflammatory cytokines and hypercoagulability, documented by elevated D-dimers and an increased frequency of thrombotic and thromboembolic events, whereas virus loads and cytokine levels tend to decrease in late disease stages, when tissue repair including angiogenesis prevails. The present review describes the spectrum of lung pathology based on the current literature and the authors' personal experience derived from clinical autopsies, and tries to summarize our current understanding and open questions of the pathophysiology of severe pulmonary COVID-19.
Collapse
Affiliation(s)
- Hans Bösmüller
- Institute of Pathology and Neuropathology, University Hospital Tübingen and Eberhard Karls University Tübingen, Liebermeisterstraße 8, 72076, Tübingen, Germany
| | - Matthias Matter
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Falko Fend
- Institute of Pathology and Neuropathology, University Hospital Tübingen and Eberhard Karls University Tübingen, Liebermeisterstraße 8, 72076, Tübingen, Germany.
| | - Alexandar Tzankov
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland.
| |
Collapse
|
8
|
Jamali A, Harris DL, Blanco T, Lopez MJ, Hamrah P. Resident plasmacytoid dendritic cells patrol vessels in the naïve limbus and conjunctiva. Ocul Surf 2020; 18:277-285. [PMID: 32109562 PMCID: PMC7397780 DOI: 10.1016/j.jtos.2020.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/15/2020] [Accepted: 02/22/2020] [Indexed: 12/21/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) constitute a unique population of bone marrow-derived cells that play a pivotal role in linking innate and adaptive immune responses. While peripheral tissues are typically devoid of pDCs during steady state, few tissues do host resident pDCs. In the current study, we aim to assess presence and distribution of pDCs in naïve murine limbus and bulbar conjunctiva. Immunofluorescence staining followed by confocal microscopy revealed that the naïve bulbar conjunctiva of wild-type mice hosts CD45+ CD11clow PDCA-1+ pDCs. Flow cytometry confirmed the presence of resident pDCs in the bulbar conjunctiva through multiple additional markers, and showed that they express maturation markers, the T cell co-inhibitory molecules PD-L1 and B7-H3, and minor to negligible levels of T cell co-stimulatory molecules CD40, CD86, and ICAM-1. Epi-fluorescent microscopy of DPE-GFP×RAG1-/- transgenic mice with GFP-tagged pDCs indicated lower density of pDCs in the bulbar conjunctiva compared to the limbus. Further, intravital multiphoton microscopy revealed that resident pDCs accompany the limbal vessels and patrol the intravascular space. In vitro multiphoton microscopy showed that pDCs are attracted to human umbilical vein endothelial cells and interact with them during tube formation. In conclusion, our study shows that the limbus and bulbar conjunctiva are endowed with resident pDCs during steady state, which express maturation and classic T cell co-inhibitory molecules, engulf limbal vessels, and patrol intravascular spaces.
Collapse
Affiliation(s)
- Arsia Jamali
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Deshea L Harris
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Tomas Blanco
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Maria J Lopez
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Program in Immunology, School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA; Cornea Service, Tufts New England Eye Center, Boston, MA, USA.
| |
Collapse
|
9
|
Sánchez-Alonso S, Alcaraz-Serna A, Sánchez-Madrid F, Alfranca A. Extracellular Vesicle-Mediated Immune Regulation of Tissue Remodeling and Angiogenesis After Myocardial Infarction. Front Immunol 2018; 9:2799. [PMID: 30555478 PMCID: PMC6281951 DOI: 10.3389/fimmu.2018.02799] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 11/13/2018] [Indexed: 12/20/2022] Open
Abstract
Myocardial ischemia-related disorders constitute a major health problem, being a leading cause of death in the world. Upon ischemia, tissue remodeling processes come into play, comprising a series of inter-dependent stages, including inflammation, cell proliferation and repair. Neovessel formation during late phases of remodeling provides oxygen supply, together with cellular and soluble components necessary for an efficient myocardial reconstruction. Immune system plays a central role in processes aimed at repairing ischemic myocardium, mainly in inflammatory and angiogenesis phases. In addition to cellular components and soluble mediators as chemokines and cytokines, the immune system acts in a paracrine fashion through small extracellular vesicles (EVs) release. These vesicular structures participate in multiple biological processes, and transmit information through bioactive cargoes from one cell to another. Cell therapy has been employed in an attempt to improve the outcome of these patients, through the promotion of tissue regeneration and angiogenesis. However, clinical trials have shown variable results, which put into question the actual applicability of cell-based therapies. Paracrine factors secreted by engrafted cells partially mediate tissue repair, and this knowledge has led to the hypothesis that small EVs may become a useful tool for cell-free myocardial infarction therapy. Current small EVs engineering strategies allow delivery of specific content to selected cell types, thus revealing the singular properties of these vesicles for myocardial ischemia treatment.
Collapse
Affiliation(s)
- Santiago Sánchez-Alonso
- Immunology Service, Hospital de la Princesa, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana Alcaraz-Serna
- Immunology Service, Hospital de la Princesa, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Service, Hospital de la Princesa, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.,CIBER Cardiovascular, Madrid, Spain
| | - Arantzazu Alfranca
- Immunology Service, Hospital de la Princesa, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,CIBER Cardiovascular, Madrid, Spain
| |
Collapse
|
10
|
Li T, Peng M, Yang Z, Zhou X, Deng Y, Jiang C, Xiao M, Wang J. 3D-printed IFN-γ-loading calcium silicate-β-tricalcium phosphate scaffold sequentially activates M1 and M2 polarization of macrophages to promote vascularization of tissue engineering bone. Acta Biomater 2018; 71:96-107. [PMID: 29549051 DOI: 10.1016/j.actbio.2018.03.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 03/04/2018] [Accepted: 03/05/2018] [Indexed: 12/11/2022]
Abstract
To promote vascularization of tissue-engineered bone, IFN-γ polarizing macrophages to M1 was loaded on 5% calcium silicate/β-tricalcium phosphate (CaSiO3-β-TCP) scaffolds. IFN-γ and Si released from the scaffold were designed to polarize M1 and M2 macrophages, respectively. β-TCP, CaSiO3-β-TCP, and IFN-γ@CaSiO3-β-TCP were fabricated and biocompatibilities were evaluated. Polarizations of macrophages were detected by flow cytometry. Human umbilical vein endothelial cells with GFP were cultured and induced on Matrigel with conditioned culture medium extracted from culture of macrophages loaded on scaffolds for evaluating angiogenesis. Four weeks after the scaffolds were subcutaneously implanted into C57B1/6, vascularization was evaluated by visual observation, hematoxylin and eosin staining, as well as immunohistochemistry of CD31. The results showed that IFN-γ@CaSiO3-β-TCP scaffolds released IFN-γ in the early stage (1-3 days) to stimulate macrophages to M1 polarization, followed by release of Si inducing macrophages to M2 polarization while scaffolds degraded. The activation of M1/M2 allows macrophages to secrete more cytokines, including VEGF, CXCL12 and PDGF-BB. The IFN-γ@CaSiO3-β-TCP scaffolds formed more blood vessels in vitro and in vivo compared to the control groups. The study indicated that the design of tissue-engineered scaffolds with immunomodulatory function utilized host macrophages to increase vascularization of tissue-engineered bone, providing a new strategy for accelerating vascularization and osteogenesis of tissue-engineered scaffolds and showing the potential for treatment of major bone defects. STATEMENT OF SIGNIFICANCE A 3-D printed immunomodulatory scaffold was designed for repair of massive bone defects. Through the release of interferon γ and silicon ions, the new immunomodulatory scaffold promoted the M1 and M2 polarization of macrophages, boosting angiogenesis. This scaffold provided a new strategy for accelerating vascularization and osteogenesis of tissue-engineered scaffolds and showing the potential for treatment of major bone defects.
Collapse
|
11
|
Duran CL, Howell DW, Dave JM, Smith RL, Torrie ME, Essner JJ, Bayless KJ. Molecular Regulation of Sprouting Angiogenesis. Compr Physiol 2017; 8:153-235. [PMID: 29357127 DOI: 10.1002/cphy.c160048] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term angiogenesis arose in the 18th century. Several studies over the next 100 years laid the groundwork for initial studies performed by the Folkman laboratory, which were at first met with some opposition. Once overcome, the angiogenesis field has flourished due to studies on tumor angiogenesis and various developmental models that can be genetically manipulated, including mice and zebrafish. In addition, new discoveries have been aided by the ability to isolate primary endothelial cells, which has allowed dissection of various steps within angiogenesis. This review will summarize the molecular events that control angiogenesis downstream of biochemical factors such as growth factors, cytokines, chemokines, hypoxia-inducible factors (HIFs), and lipids. These and other stimuli have been linked to regulation of junctional molecules and cell surface receptors. In addition, the contribution of cytoskeletal elements and regulatory proteins has revealed an intricate role for mobilization of actin, microtubules, and intermediate filaments in response to cues that activate the endothelium. Activating stimuli also affect various focal adhesion proteins, scaffold proteins, intracellular kinases, and second messengers. Finally, metalloproteinases, which facilitate matrix degradation and the formation of new blood vessels, are discussed, along with our knowledge of crosstalk between the various subclasses of these molecules throughout the text. Compr Physiol 8:153-235, 2018.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - David W Howell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Rebecca L Smith
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melanie E Torrie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
12
|
Chaddad H, Kuchler-Bopp S, Fuhrmann G, Gegout H, Ubeaud-Sequier G, Schwinté P, Bornert F, Benkirane-Jessel N, Idoux-Gillet Y. Combining 2D angiogenesis and 3D osteosarcoma microtissues to improve vascularization. Exp Cell Res 2017; 360:138-145. [PMID: 28867479 DOI: 10.1016/j.yexcr.2017.08.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 12/12/2022]
Abstract
Angiogenesis is now well known for being involved in tumor progression, aggressiveness, emergence of metastases, and also resistance to cancer therapies. In this study, to better mimic tumor angiogenesis encountered in vivo, we used 3D culture of osteosarcoma cells (MG-63) that we deposited on 2D endothelial cells (HUVEC) grown in monolayer. We report that endothelial cells combined with tumor cells were able to form a well-organized network, and that tubule-like structures corresponding to new vessels infiltrate tumor spheroids. These vessels presented a lumen and expressed specific markers as CD31 and collagen IV. The combination of 2D endothelial cells and 3D microtissues of tumor cells also increased expression of angiogenic factors as VEGF, CXCR4 and ICAM1. The cell environment is the key point to develop tumor vascularization in vitro and to be closer to tumor encountered in vivo.
Collapse
Affiliation(s)
- Hassan Chaddad
- INSERM, UMR 1109, Osteoarticular and Dental Regenerative NanoMedicine Laboratory, FMTS, 11 rue Humann, Strasbourg, France; Université de Strasbourg, UMR CNRS 7213, EA7293, Faculté de Pharmacie, route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Sabine Kuchler-Bopp
- INSERM, UMR 1109, Osteoarticular and Dental Regenerative NanoMedicine Laboratory, FMTS, 11 rue Humann, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg F-67000, France
| | - Guy Fuhrmann
- INSERM, UMR 1109, Osteoarticular and Dental Regenerative NanoMedicine Laboratory, FMTS, 11 rue Humann, Strasbourg, France; Université de Strasbourg, UMR CNRS 7213, EA7293, Faculté de Pharmacie, route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Hervé Gegout
- INSERM, UMR 1109, Osteoarticular and Dental Regenerative NanoMedicine Laboratory, FMTS, 11 rue Humann, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg F-67000, France
| | - Geneviève Ubeaud-Sequier
- INSERM, UMR 1109, Osteoarticular and Dental Regenerative NanoMedicine Laboratory, FMTS, 11 rue Humann, Strasbourg, France; Université de Strasbourg, UMR CNRS 7213, EA7293, Faculté de Pharmacie, route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Pascale Schwinté
- INSERM, UMR 1109, Osteoarticular and Dental Regenerative NanoMedicine Laboratory, FMTS, 11 rue Humann, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg F-67000, France
| | - Fabien Bornert
- INSERM, UMR 1109, Osteoarticular and Dental Regenerative NanoMedicine Laboratory, FMTS, 11 rue Humann, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg F-67000, France
| | - Nadia Benkirane-Jessel
- INSERM, UMR 1109, Osteoarticular and Dental Regenerative NanoMedicine Laboratory, FMTS, 11 rue Humann, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg F-67000, France.
| | - Ysia Idoux-Gillet
- INSERM, UMR 1109, Osteoarticular and Dental Regenerative NanoMedicine Laboratory, FMTS, 11 rue Humann, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg F-67000, France.
| |
Collapse
|
13
|
LPS-Stimulated Human Skin-Derived Stem Cells Enhance Neo-Vascularization during Dermal Regeneration. PLoS One 2015; 10:e0142907. [PMID: 26565617 PMCID: PMC4643997 DOI: 10.1371/journal.pone.0142907] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/28/2015] [Indexed: 11/26/2022] Open
Abstract
High numbers of adult stem cells are still required to improve the formation of new vessels in scaffolds to accelerate dermal regeneration. Recent data indicate a benefit for vascularization capacity by stimulating stem cells with lipopolysaccharide (LPS). In this study, stem cells derived from human skin (SDSC) were activated with LPS and seeded in a commercially available dermal substitute to examine vascularization in vivo. Besides, in vitro assays were performed to evaluate angiogenic factor release and tube formation ability. Results showed that LPS-activated SDSC significantly enhanced vascularization of the scaffolds, compared to unstimulated stem cells in vivo. Further, in vitro assays confirmed higher secretion rates of proangiogenic as well as proinflammatoric factors in the presence of LPS-activated SDSC. Our results suggest that combining activated stem cells and a dermal substitute is a promising option to enhance vascularization in scaffold-mediated dermal regeneration.
Collapse
|
14
|
Döring Y, Pawig L, Weber C, Noels H. The CXCL12/CXCR4 chemokine ligand/receptor axis in cardiovascular disease. Front Physiol 2014; 5:212. [PMID: 24966838 PMCID: PMC4052746 DOI: 10.3389/fphys.2014.00212] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/15/2014] [Indexed: 12/18/2022] Open
Abstract
The chemokine receptor CXCR4 and its ligand CXCL12 play an important homeostatic function by mediating the homing of progenitor cells in the bone marrow and regulating their mobilization into peripheral tissues upon injury or stress. Although the CXCL12/CXCR4 interaction has long been regarded as a monogamous relation, the identification of the pro-inflammatory chemokine macrophage migration inhibitory factor (MIF) as an important second ligand for CXCR4, and of CXCR7 as an alternative receptor for CXCL12, has undermined this interpretation and has considerably complicated the understanding of CXCL12/CXCR4 signaling and associated biological functions. This review aims to provide insight into the current concept of the CXCL12/CXCR4 axis in myocardial infarction (MI) and its underlying pathologies such as atherosclerosis and injury-induced vascular restenosis. It will discuss main findings from in vitro studies, animal experiments and large-scale genome-wide association studies. The importance of the CXCL12/CXCR4 axis in progenitor cell homing and mobilization will be addressed, as will be the function of CXCR4 in different cell types involved in atherosclerosis. Finally, a potential translation of current knowledge on CXCR4 into future therapeutical application will be discussed.
Collapse
Affiliation(s)
- Yvonne Döring
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Germany
| | - Lukas Pawig
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Aachen, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Germany ; German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance Munich, Germany ; Cardiovascular Research Institute Maastricht, University of Maastricht Maastricht, Netherlands
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Aachen, Germany
| |
Collapse
|
15
|
Wu DJ, Ye BD, Hu ZP, Shen YP, Shen JP, Lin SY, Chen MT, Liu YL, Zhou YH. Bone marrow angiogenesis in patients presenting with differential Chinese medicine syndrome: Correlation with the clinico-pathological features of aplastic anemia. Chin J Integr Med 2013; 19:905-12. [DOI: 10.1007/s11655-013-1652-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Indexed: 10/25/2022]
|
16
|
Liu X, Liang F, Yang J, Li Z, Hou X, Wang Y, Gao C. Effects of stromal cell derived factor-1 and CXCR4 on the promotion of neovascularization by hyperbaric oxygen treatment in skin flaps. Mol Med Rep 2013; 8:1118-24. [PMID: 23969990 DOI: 10.3892/mmr.2013.1638] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 08/08/2013] [Indexed: 02/06/2023] Open
Abstract
Hyperbaric oxygen (HBO) is known to increase the survival of skin flaps by promoting neovascularization; however, the detailed mechanisms involved are not fully understood. In the present study, we aimed to characterize the effects of HBO treatment on neovascularization and skin flap survival. We also analyzed the mechanisms associated with the expression of angiogenic molecules, such as stromal cell derived factor-1 (SDF‑1) and its specific receptor CXCR4, to assess the effects of SDF-1 and CXCR4 on the promotion of neovascularization by HBO treatment in skin flaps. The epigastric pedicle skin flap model was established in rats that were randomly divided into the following groups: i) sham‑operated (SH group); ii) ischemia followed by reperfusion and analysis on the third and fifth day (IR3d and IR5d groups, respectively) postoperatively; iii) ischemia followed by reperfusion, HBO treatment and analysis on the third and fifth day (HBO3d and HBO5d groups, respectively) postoperatively. In the two HBO groups, animals received 1 h of HBO treatment in a 2.0 ATA chamber with 100% O2 twice per day for 3 days and then daily for 2 consecutive days following surgery. On the postoperative third and fifth day, skin flap survival measurement, histological analysis, immunohistochemical staining and western blotting for SDF‑1 and CXCR4 expression, were performed. Compared with those of the IR groups, skin flap survival, microvessel density (MVD) and expression of SDF‑1 and CXCR4 proteins were significantly increased in the HBO groups. Pearson's correlation analysis demonstrated a positive correlation between MVD and the high expression of SDF‑1 and CXCR4 following HBO treatment. Results of this study suggested that the effects of HBO treatment in promoting neovascularization may be explained by the upregulation of SDF‑1 and CXCR4 expression in the skin flaps of rats.
Collapse
Affiliation(s)
- Xuehua Liu
- Department of Hyperbaric Oxygen, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | | | | | | | | | | | | |
Collapse
|
17
|
Wang LL, Sun Y, Huang K, Zheng L. Curcumin, a potential therapeutic candidate for retinal diseases. Mol Nutr Food Res 2013; 57:1557-68. [DOI: 10.1002/mnfr.201200718] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/15/2012] [Accepted: 12/17/2012] [Indexed: 01/27/2023]
Affiliation(s)
- Lei-Lei Wang
- College of Life Sciences; Wuhan University; Wuhan; P. R. China
| | - Yue Sun
- College of Life Sciences; Wuhan University; Wuhan; P. R. China
| | | | - Ling Zheng
- College of Life Sciences; Wuhan University; Wuhan; P. R. China
| |
Collapse
|
18
|
Green LA, Kim C, Gupta SK, Rajashekhar G, Rehman J, Clauss M. Pentoxifylline reduces tumor necrosis factor-α and HIV-induced vascular endothelial activation. AIDS Res Hum Retroviruses 2012; 28:1207-15. [PMID: 22463742 DOI: 10.1089/aid.2011.0385] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Untreated HIV infection is associated with endothelial dysfunction and subsequent cardiovascular disease, likely due to both direct effects of the virus and to indirect effects of systemic inflammation on the vasculature. We have recently shown that treatment with the antiinflammatory agent pentoxifylline (PTX) improved in vivo endothelial function and reduced circulating levels of the inflammatory markers vascular cell adhesion molecule-1 (VCAM-1) and interferon-gamma-induced protein (IP-10) in HIV-infected patients. To delineate the mechanisms underlying this therapeutic effect, we tested whether clinically relevant concentrations of PTX suppress VCAM-1 or IP-10 release in cultivated human lung microvascular endothelial cells. Indeed, we found that tumor necrosis factor (TNF)-α-induced VCAM-1 was reduced with concentrations of PTX in the low nanomolar range, comparable to plasma levels in PTX-treated groups. We also investigated the effect of HIV proteins and found that HIV transactivator of transcription (HIV-Tat) and HIV-envelope-derived recombinant gp120 enhanced TNF-α-induced VCAM-1 gene expression in lung microvascular and coronary macrovascular endothelial cells, respectively. In addition, PTX and a NF-κB-specific inhibitor reduced this enhanced VCAM-1 gene induction in microvascular and macrovascular endothelial cells. These results provide novel insights in how the antiinflammatory agent PTX can directly reduce HIV-associated proinflammatory endothelial activation, which may underlie vascular dysfunction and coronary vascular diseases.
Collapse
Affiliation(s)
- Linden Ann Green
- Department of Cellular and Integrative Physiology and Indiana Center for Vascular Biology and Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Chul Kim
- Department of Cellular and Integrative Physiology and Indiana Center for Vascular Biology and Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Samir K. Gupta
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Gangaraju Rajashekhar
- Department of Cellular and Integrative Physiology and Indiana Center for Vascular Biology and Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Ophthalmology Indiana University School of Medicine, Indianapolis, Indiana
| | - Jalees Rehman
- Section of Cardiology, Departments of Medicine and Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Matthias Clauss
- Department of Cellular and Integrative Physiology and Indiana Center for Vascular Biology and Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
19
|
Abstract
BMP9 signaling has been implicated in hereditary hemorrhagic telangiectasia (HHT) and vascular remodeling, acting via the HHT target genes, endoglin and ALK1. This study sought to identify endothelial BMP9-regulated proteins that could affect the HHT phenotype. Gene ontology analysis of cDNA microarray data obtained after BMP9 treatment of primary human endothelial cells indicated regulation of chemokine, adhesion, and inflammation pathways. These responses included the up-regulation of the chemokine CXCL12/SDF1 and down-regulation of its receptor CXCR4. Quantitative mass spectrometry identified additional secreted proteins, including the chemokine CXCL10/IP10. RNA knockdown of endoglin and ALK1 impaired SDF1/CXCR4 regulation by BMP9. Because of the association of SDF1 with ischemia, we analyzed its expression under hypoxia in response to BMP9 in vitro, and during the response to hindlimb ischemia, in endoglin-deficient mice. BMP9 and hypoxia were additive inducers of SDF1 expression. Moreover, the data suggest that endoglin deficiency impaired SDF1 expression in endothelial cells in vivo. Our data implicate BMP9 in regulation of the SDF1/CXCR4 chemokine axis in endothelial cells and point to a role for BMP9 signaling via endoglin in a switch from an SDF1-responsive autocrine phenotype to an SDF1 nonresponsive paracrine state that represses endothelial cell migration and may promote vessel maturation.
Collapse
|
20
|
WANG Z, SU W, ZHOU XF, ZHANG K, LI S, MA XF, JIANG ZS. AMD3100 Aggravates Atherogenesis by Up-regulating Inflammatory Factor Expression and Down-regulating SDF-1/CXCR4 Axis*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Mitsui H, Shibata K, Suzuki S, Umezu T, Mizuno M, Kajiyama H, Kikkawa F. Functional interaction between peritoneal mesothelial cells and stem cells of ovarian yolk sac tumor (SC-OYST) in peritoneal dissemination. Gynecol Oncol 2012; 124:303-10. [DOI: 10.1016/j.ygyno.2011.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 10/05/2011] [Accepted: 10/06/2011] [Indexed: 11/27/2022]
|
22
|
Li SL, Lin W, Zhang Y, Zheng ZC, Liu LJ, Fu H, Liu J, Wang GD, Chen SY, Feng LH. Stromal Cell-Derived Factor-1α as a Novel Biomarker for Hyperlipidemia. TOHOKU J EXP MED 2012; 228:355-63. [PMID: 23149815 DOI: 10.1620/tjem.228.355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Shou-Lin Li
- Capital Medical University School of Rehabilitation Medicine
- Department of Cardiovasology, Beijing Bo'ai Hospital, China Rehabilitation Research Center
| | - Wei Lin
- Capital Medical University School of Rehabilitation Medicine
- Department of Cardiovasology, Beijing Bo'ai Hospital, China Rehabilitation Research Center
| | - Yan Zhang
- Capital Medical University School of Rehabilitation Medicine
- Department of Cardiovasology, Beijing Bo'ai Hospital, China Rehabilitation Research Center
| | - Zhi-Chang Zheng
- Capital Medical University School of Rehabilitation Medicine
- Department of Cardiovasology, Beijing Bo'ai Hospital, China Rehabilitation Research Center
| | - Li-Jun Liu
- Capital Medical University School of Rehabilitation Medicine
- Department of Cardiovasology, Beijing Bo'ai Hospital, China Rehabilitation Research Center
| | - Hao Fu
- Capital Medical University School of Rehabilitation Medicine
- Department of Cardiovasology, Beijing Bo'ai Hospital, China Rehabilitation Research Center
| | - Jie Liu
- Capital Medical University School of Rehabilitation Medicine
- Department of Cardiovasology, Beijing Bo'ai Hospital, China Rehabilitation Research Center
| | - Guo-Dong Wang
- Capital Medical University School of Rehabilitation Medicine
- Department of Cardiovasology, Beijing Bo'ai Hospital, China Rehabilitation Research Center
| | - Si-Yuan Chen
- Capital Medical University School of Rehabilitation Medicine
- Department of Cardiovasology, Beijing Bo'ai Hospital, China Rehabilitation Research Center
| | - Li-Hong Feng
- Capital Medical University School of Rehabilitation Medicine
- Department of Cardiovasology, Beijing Bo'ai Hospital, China Rehabilitation Research Center
| |
Collapse
|
23
|
Davis C, Price R, Acharya G, Baudino T, Borg T, Berger FG, Peña MMO. Hematopoietic derived cell infiltration of the intestinal tumor microenvironment in Apc Min/+ mice. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2011; 17:528-539. [PMID: 21473808 PMCID: PMC3362927 DOI: 10.1017/s1431927611000043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Tumors consist of a heterogeneous population of neoplastic cells infiltrated by an equally heterogeneous collection of nonneoplastic cells that comprise the tumor microenvironment. Tumor growth, invasion, and metastasis depend on multiple interactions between these cells. To assess their potential as therapeutic targets or vehicles for tumor specific delivery of therapeutic agents, we examined the contribution of bone marrow derived cells (BMDCs) to the intestinal tumor microenvironment. Hematopoietic stem cells expressing the enhanced green fluorescent protein (eGFP) were transplanted into lethally irradiated ApcMin/+ mice, and their engraftment was analyzed by confocal microscopy. The results showed abundant infiltration of eGFP cells into the small intestine, colon, and spleen compared to heart, muscle, liver, lung, and kidney. Within the intestine, there was a pronounced gradient of engraftment along the anterior to posterior axis, with enhanced infiltration into adenomas. Immunofluorescence analysis showed that osteopontin was expressed in tumor stromal cells but not in nontumor stromal populations, suggesting that gene expression in these cells is distinct. Tumor vasculature in ApcMin/+ mice was chaotic compared to normal intestinal regions. Our data suggest that BMDCs can be harnessed for tumor-targeted therapies to enhance antitumor efficacy.
Collapse
Affiliation(s)
- Celestia Davis
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Robert Price
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC 29208, USA
- Department of Cell and Developmental Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | - Grishma Acharya
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Troy Baudino
- Department of Cell and Developmental Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | - Thomas Borg
- Department of Cell and Developmental Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | - Franklin G. Berger
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC 29208, USA
| | - Maria Marjorette O. Peña
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
24
|
Hlawaty H, Suffee N, Sutton A, Oudar O, Haddad O, Ollivier V, Laguillier-Morizot C, Gattegno L, Letourneur D, Charnaux N. Low molecular weight fucoidan prevents intimal hyperplasia in rat injured thoracic aorta through the modulation of matrix metalloproteinase-2 expression. Biochem Pharmacol 2011; 81:233-43. [DOI: 10.1016/j.bcp.2010.09.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 09/20/2010] [Accepted: 09/22/2010] [Indexed: 10/19/2022]
|
25
|
Application of the Chemokine CXCL12 Expression Plasmid Restores Wound Healing to Near Normal in a Diabetic Mouse Model. ACTA ACUST UNITED AC 2010; 69:392-8. [DOI: 10.1097/ta.0b013e3181e772b0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
26
|
Huang M, Li Y, Zhang H, Nan F. Breast cancer stromal fibroblasts promote the generation of CD44+CD24- cells through SDF-1/CXCR4 interaction. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:80. [PMID: 20569497 PMCID: PMC2911413 DOI: 10.1186/1756-9966-29-80] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Accepted: 06/22/2010] [Indexed: 12/21/2022]
Abstract
Background Breast cancer stem cells (BCSCs) have been recently identified in breast carcinoma as CD44+CD24- cells, which exclusively retain tumorigenic activity and display stem cell-like properties. Using a mammosphere culture technique, MCF7 mammosphere cells are found to enrich breast cancer stem-like cells expressing CD44+CD24-. The stromal cells are mainly constituted by fibroblasts within a breast carcinoma, yet little is known of the contributions of the stromal cells to BCSCs. Methods Carcinoma-associated fibroblasts (CAFs) and normal fibroblasts (NFs) were isolated and identified by immunohistochemistry. MCF7 mammosphere cells were co-cultured with different stromal fibroblasts by a transwell cocultured system. Flow cytometry was used to measure CD44 and CD24 expression status on MCF7. ELISA (enzyme-linked immunosorbent assay) was performed to investigate the production of stromal cell-derived factor 1 (SDF-1) in mammosphere cultures subject to various treatments. Mammosphere cells were injected with CAFs and NFs to examine the efficiency of tumorigenity in NOD/SCID mice. Results CAFs derived from breast cancer patients were found to be positive for α-smooth muscle actin (α-SMA), exhibiting the traits of myofibroblasts. In addition, CAFs played a central role in promoting the proliferation of CD44+CD24- cells through their ability to secrete SDF-1, which may be mediated to SDF-1/CXCR4 signaling. Moreover, the tumorigenicity of mammosphere cells with CAFs significantly increased as compared to that of mammosphere cells alone or with NFs. Conclusion We for the first time investigated the effects of stromal fibroblasts on CD44+CD24- cells and our findings indicated that breast CAFs contribute to CD44+CD24- cell proliferation through the secretion of SDF-1, and which may be important target for therapeutic approaches.
Collapse
Affiliation(s)
- Mingzhu Huang
- Department of Oncology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | | | | | | |
Collapse
|
27
|
Voronkov MG, Nurbekov MK, Bobkova SN, Karaulova LK, Susova MI, Rasulov MM. Antisclerotic effect of Trekrezan and its possible mechanisms. DOKL BIOCHEM BIOPHYS 2010; 431:73-5. [PMID: 20514866 DOI: 10.1134/s1607672910020055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- M G Voronkov
- Favorskii Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, ul. Favorskogo 1, Irkutsk 664033, Russia
| | | | | | | | | | | |
Collapse
|
28
|
Hohensinner PJ, Kaun C, Rychli K, Niessner A, Pfaffenberger S, Rega G, Furnkranz A, Uhrin P, Zaujec J, Afonyushkin T, Bochkov VN, Maurer G, Huber K, Wojta J. The inflammatory mediator oncostatin M induces stromal derived factor‐1 in human adult cardiac cells. FASEB J 2008; 23:774-82. [DOI: 10.1096/fj.08-108035] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- P. J. Hohensinner
- Department of Internal Medicine II and and Thrombosis ResearchMedical University of ViennaViennaAustria
- Ludwig Boltzmann Cluster for Cardiovascular ResearchViennaAustria
| | - C. Kaun
- Department of Internal Medicine II and and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - K. Rychli
- Department of Internal Medicine II and and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - A. Niessner
- Department of Internal Medicine II and and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - S. Pfaffenberger
- Department of Internal Medicine II and and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - G. Rega
- Department of Internal Medicine II and and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - A. Furnkranz
- Third Department of MedicineWilhelminenhospitalViennaAustria
| | - P. Uhrin
- Department of Vascular Biology and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - J. Zaujec
- Department of Vascular Biology and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - T. Afonyushkin
- Department of Vascular Biology and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - V. N. Bochkov
- Department of Vascular Biology and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - G. Maurer
- Department of Internal Medicine II and and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - K. Huber
- Third Department of MedicineWilhelminenhospitalViennaAustria
| | - J. Wojta
- Department of Internal Medicine II and and Thrombosis ResearchMedical University of ViennaViennaAustria
- Ludwig Boltzmann Cluster for Cardiovascular ResearchViennaAustria
| |
Collapse
|
29
|
Mayhew TM, Jenkins H, Todd B, Clifton VL. Maternal asthma and placental morphometry: effects of severity, treatment and fetal sex. Placenta 2008; 29:366-73. [PMID: 18328557 DOI: 10.1016/j.placenta.2008.01.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 01/18/2008] [Accepted: 01/22/2008] [Indexed: 11/25/2022]
Abstract
Asthma is the most common respiratory disease to complicate pregnancy. Although adverse effects on the fetus have been documented, there is a paucity of information regarding the effects of asthma, and its treatment, on placental morphology. The aim of this study was to test for volumetric differences in placental composition between non-asthmatic pregnancies and those associated with maternal asthma grouped according to asthma severity and glucocorticoid (GC) treatment. Each placenta was weighed and random samples of tissue were fixed in formalin-saline, embedded in wax and analysed by design-based stereology. Volume densities of parenchymal compartments (peripheral villi and maternal intervillous space) and residual non-parenchyma were estimated by test point counting and converted to absolute volumes by taking into account placental size. Relative and absolute lengths of villi and capillaries were also estimated and used to derive secondary quantities related to villous capillarization and maturation. Between-group comparisons were drawn by two-way analysis of variance with group and fetal sex as the principal factors. Compared to non-asthmatic controls, asthmatics had reduced absolute volumes of fetal capillaries which was most marked in those with moderate/severe asthma and those using low and high doses of inhaled GCs. Changes in the total length and mean cross-sectional area of capillaries and peripheral villi were also observed. Lengths were greater in mild asthmatics and lowest in those with high GC usage. Calibre areas were lower in mild asthmatics and villous calibres in the high GC group were greater than those in asthmatics not taking GCs. Those making greatest use of inhaled GCs also had villi which were hypovascularized in terms of capillary:villus length ratios. The findings suggest that the morphometric differences in fetoplacental vascularity are likely to be due to the effects of asthma and use of inhaled GCs rather than the effects of maternal or fetal hypoxic stress.
Collapse
Affiliation(s)
- T M Mayhew
- Centre for Integrated Systems Biology & Medicine, School of Biomedical Sciences, E Floor, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | | | | | | |
Collapse
|
30
|
Mayhew TM. A stereological perspective on placental morphology in normal and complicated pregnancies. J Anat 2008; 215:77-90. [PMID: 19141109 DOI: 10.1111/j.1469-7580.2008.00994.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Stereology applied to randomly-generated thin sections allows minimally-biased and economical quantitation of the 3D structure of the placenta from molecular to whole-organ levels. With these sampling and estimation tools, it is possible to derive global quantities (tissue volumes, interface surface areas, tubule lengths and particle numbers), average values (e.g. mean cell size or membrane thickness), spatial relationships (e.g. between compartments and immunoprobes) and functional potential (e.g. diffusive conductance). This review indicates ways in which stereology has been used to interpret the morphology of human and murine placentas including the processes of villous growth, trophoblast differentiation, vascular morphogenesis and diffusive transport. In human placenta, global quantities have shown that villous maturation involves differential growth of fetal capillaries and increases in endothelial cell number. Villous trophoblast is a continuously renewing epithelium and, through much of gestation, exhibits a steady state between increasing numbers of nuclei in cytotrophoblast (CT) and syncytiotrophoblast (ST). The epithelium gradually becomes thinner because its surface expands at a faster rate than its volume. These changes help to ensure that placental diffusing capacity matches the growth in fetal mass. Comparable events occur in the murine placenta. Some of these processes are perturbed in complicated pregnancies: 1) fetoplacental vascular growth is compromised in pregnancies accompanied by maternal asthma, 2) changes in trophoblast turnover occur in pre-eclampsia and intrauterine growth restriction, and 3) uteroplacental vascular development is impoverished, but diffusive transport increases, in pregnant mice exposed to particulate urban air pollution. Finally, quantitative immunoelectron microscopy now permits more rigorous analysis of the spatial distributions of interesting molecules between subcellular compartments or shifts in distributions following experimental manipulation.
Collapse
Affiliation(s)
- Terry M Mayhew
- Centre for Integrated Systems Biology & Medicine, School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, UK.
| |
Collapse
|
31
|
Yano T, Liu Z, Donovan J, Thomas MK, Habener JF. Stromal cell derived factor-1 (SDF-1)/CXCL12 attenuates diabetes in mice and promotes pancreatic beta-cell survival by activation of the prosurvival kinase Akt. Diabetes 2007; 56:2946-57. [PMID: 17878289 DOI: 10.2337/db07-0291] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Diabetes is caused by a deficiency of pancreatic beta-cells that produce insulin. Approaches to enhance beta-cell mass by increasing proliferation and survival are desirable. We determined whether stromal cell-derived factor (SDF)-1/CXCL12 and its receptor, CX chemokine receptor (CXCR)4, are important for the survival of beta-cells. RESEARCH DESIGN AND METHODS Mouse pancreata and clonal beta-cells were examined for expression of SDF-1 and CXCR4, activation of AKT and downstream signaling pathways by SDF-1, and protection against apoptosis and diabetes induced by streptozotocin (STZ). RESULTS CXCR4 is expressed in beta-cells, and SDF-1 is expressed in microvascular endothelial cells within the islets and in surrounding interstitial stromal tissue. Transgenic mice overexpressing SDF-1 within their beta-cells (RIP-SDF-1 mice) are resistant to STZ-induced beta-cell apoptosis and diabetes. In MIN6 beta-cells, a CXCR4 antagonist (AMD3100) induces apoptosis, increases reactive oxygen species, decreases expression levels of the anti-apoptotic protein Bcl-2, and reduces phosphorylation of the proapoptotic protein Bad. Active phosphorylated prosurvival kinase Akt is increased both in the beta-cells of RIP-SDF-1 mice and in INS-1 cells treated with SDF-1 and sensitive to AMD3100. Inhibition of AKT expression by small interfering RNA attenuates the ameliorative effects of SDF-1 on caspase-dependent apoptosis induced by thapsigargin or glucose deprivation in INS-1 beta-cells. Specific inhibition of Akt activation by a soluble inhibitor (SH-5) reverses the anti-apoptotic effects of SDF-1 in INS-1 cells and mouse islets. CONCLUSIONS SDF-1 promotes pancreatic beta-cell survival via activation of Akt, suggesting that SDF-1 agonists may prove beneficial for treatment of diabetes.
Collapse
Affiliation(s)
- Tatsuya Yano
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
32
|
Rajashekhar G, Grow M, Willuweit A, Patterson CE, Clauss M. Divergent and convergent effects on gene expression and function in acute versus chronic endothelial activation. Physiol Genomics 2007; 31:104-13. [PMID: 17566077 DOI: 10.1152/physiolgenomics.00157.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Activation of the vascular endothelium with cytokines such as TNF is widely used to study the role of the vasculature in proinflammatory disease. To gain insight into mechanisms of prolonged vascular endothelial activation we compared changes in gene expression induced by continuous activation in stable tmTNF-expressing cells with changes due to acute TNF challenge in vitro. Affymetrix Genechip analysis was performed on RNA from control, acute and continuous TNF-activated endothelial cells. Only 36% of the significant changes in gene expression were convergent between the acute and continuously activated endothelial cells compared with the control. From the divergently regulated genes, for example the cytokine ENA-78 was specifically induced in chronically activated cells, while E-selectin, a cell adhesion molecule, was upregulated only in acutely activated endothelial cells. Antioxidant SOD gene induction was noted in acute activation, while a regulatory NADPH oxidase subunit was selectively upregulated in continuously activated endothelium in accordance with significant reactive oxygen species induction occurred only in these cells. Accordingly, p38 and ERK1/2, two MAP kinases downstream of reactive oxygen species, were activated in stable transmembrane-spanning precursor (tm) TNF-expressing cells and were refractory to activation with soluble TNF or VEGF. In consequence, the increased p38 MAP kinase activity contributed to increased endothelial cell migration in tmTNF-expressing cells. These data suggest that continuous activation of endothelial cells leads to specific expression and functional changes, consistent with alterations observed in dysfunctional endothelium exposed to or involved in chronic inflammation.
Collapse
Affiliation(s)
- Gangaraju Rajashekhar
- Departments of Cellular and Integrative Physiology, Indiana Center of Vascular Biology and Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | | | | | |
Collapse
|
33
|
Chen T, Bai H, Shao Y, Arzigian M, Janzen V, Attar E, Xie Y, Scadden DT, Wang ZZ. Stromal cell-derived factor-1/CXCR4 signaling modifies the capillary-like organization of human embryonic stem cell-derived endothelium in vitro. Stem Cells 2006; 25:392-401. [PMID: 17038674 DOI: 10.1634/stemcells.2006-0145] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The molecular mechanisms that regulate human blood vessel formation during early development are largely unknown. Here we used human ESCs (hESCs) as an in vitro model to explore early human vasculogenesis. We demonstrated that stromal cell-derived factor-1 (SDF-1) and CXCR4 were expressed concurrently with hESC-derived embryonic endothelial differentiation. Human ESC-derived embryonic endothelial cells underwent dose-dependent chemotaxis to SDF-1, which enhanced vascular network formation in Matrigel. Blocking of CXCR4 signaling abolished capillary-like structures induced by SDF-1. Inhibition of the SDF-1/CXCR4 signaling pathway by AMD3100, a CXCR4 antagonist, disrupted the endothelial sprouting outgrowth from human embryoid bodies, suggesting that the SDF-1/CXCR4 axis plays a critical role in regulating initial vessel formation, and may function as a morphogen during human embryonic vascular development.
Collapse
MESH Headings
- Animals
- Antigens, CD34
- Benzylamines
- Capillaries/drug effects
- Cell Differentiation/drug effects
- Chemokine CXCL12
- Chemokines, CXC/metabolism
- Chemotaxis/drug effects
- Cyclams
- Embryonic Stem Cells/cytology
- Embryonic Stem Cells/drug effects
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Gene Expression Regulation/drug effects
- Heterocyclic Compounds/pharmacology
- Humans
- Mice
- Neovascularization, Physiologic/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, CXCR4/antagonists & inhibitors
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Signal Transduction/drug effects
- Vascular Endothelial Growth Factor Receptor-2/genetics
- Vascular Endothelial Growth Factor Receptor-2/metabolism
Collapse
Affiliation(s)
- Tong Chen
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ohira S, Sasaki M, Harada K, Sato Y, Zen Y, Isse K, Kozaka K, Ishikawa A, Oda K, Nimura Y, Nakanuma Y. Possible regulation of migration of intrahepatic cholangiocarcinoma cells by interaction of CXCR4 expressed in carcinoma cells with tumor necrosis factor-alpha and stromal-derived factor-1 released in stroma. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:1155-68. [PMID: 16565491 PMCID: PMC1606561 DOI: 10.2353/ajpath.2006.050204] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is highly fatal because of early invasion, widespread metastasis, and lack of an effective therapy. We examined roles of CXCR4 and its ligand, stromal cell-derived factor (SDF)-1, in migration of ICC with respect to tumor-stromal interaction by using two ICC cell lines, a fibroblast cell line (WI-38), and 28 human ICC tissues. The two ICC cell lines expressed CXCR4 mRNA and protein, and WI-38 fibroblasts expressed SDF-1 mRNA and protein. Migration of cultured ICC cells in Matrigel was induced by co-culture with WI-38 fibroblasts and by incubation with SDF-1. Anti-SDF-1 antibody suppressed migration, demonstrating that SDF-1 released from WI-38 fibroblasts was responsible for this migration. Tumor necrosis factor (TNF)-alpha pretreatment of ICC cells up-regulated CXCR4 mRNA and protein expression in a concentration-dependent manner. Administration of SDF-1 and TNF-alpha increased synergistically ICC cell migration, which was suppressed by the CXCR4 antagonist AMD3100. In ICC tissue, TNF-alpha was mainly expressed in infiltrated macrophages, CXCR4 in ICC cells, and SDF-1 in stromal fibroblasts. In conclusion, the interaction of SDF-1 released from fibroblasts and CXCR4 expressed on ICC cells may be actively involved in ICC migration, and TNF-alpha may enhance ICC cell migration by increasing CXCR4 expression. CXCR4 could be a therapeutic target to prevent ICC invasion.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Benzylamines
- Bile Duct Neoplasms/metabolism
- Bile Duct Neoplasms/pathology
- Bile Ducts, Intrahepatic/metabolism
- Bile Ducts, Intrahepatic/pathology
- Cell Line
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Chemokine CXCL12
- Chemokines, CXC/metabolism
- Cholangiocarcinoma/metabolism
- Cholangiocarcinoma/pathology
- Cyclams
- Female
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Heterocyclic Compounds/pharmacology
- Humans
- Liver/metabolism
- Liver/pathology
- Macrophages/metabolism
- Male
- Middle Aged
- Neoplasm Invasiveness
- Receptors, CXCR4/antagonists & inhibitors
- Receptors, CXCR4/metabolism
- Stromal Cells/metabolism
- Stromal Cells/pathology
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Shusaku Ohira
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa 920-8640, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Newman MB, Willing AE, Manresa JJ, Sanberg CD, Sanberg PR. Cytokines produced by cultured human umbilical cord blood (HUCB) cells: Implications for brain repair. Exp Neurol 2006; 199:201-8. [PMID: 16730351 DOI: 10.1016/j.expneurol.2006.04.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 04/04/2006] [Indexed: 12/24/2022]
Abstract
The potential therapeutic benefits from human umbilical cord blood (HUCB) cells for the treatment of injuries, diseases, and neurodegeneration are becoming increasingly recognized. The transplantation or infusion of cord blood cells in various animal models, such as ischemia/stroke, traumatic brain injury, myocardial infarction, Parkinson's disease, and amyotropic lateral sclerosis, has resulted in amelioration of behavioral deficits, and with some diseases, a prolonged lifespan decreased neuropathology. Previously, we reported the migration of HUCB cells to ischemic brain supernatant (tissue extracts) is time-dependent, and the expression of specific chemokines responds to this migration pattern. The mechanism(s) responsible for these effects are unknown. The expression of cytokines and chemokines produced by HUCB cells (under various culturing conditions) was investigated in this study. IL-8, MCP-1, and IL-1alpha were consistently expressed by the HUCB mononuclear cells regardless of the culture condition. These results provide insights to factors that may be partially responsible for the functional improvements seen in the animal models of injury investigating the therapeutic use of HUCB cells.
Collapse
Affiliation(s)
- Mary B Newman
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine and College of Arts and Science, Tampa, FL 33612, USA.
| | | | | | | | | |
Collapse
|
36
|
Cox CM, D'Agostino SL, Miller MK, Heimark RL, Krieg PA. Apelin, the ligand for the endothelial G-protein-coupled receptor, APJ, is a potent angiogenic factor required for normal vascular development of the frog embryo. Dev Biol 2006; 296:177-89. [PMID: 16750822 DOI: 10.1016/j.ydbio.2006.04.452] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 04/06/2006] [Accepted: 04/19/2006] [Indexed: 10/24/2022]
Abstract
The peptide growth factor apelin is the high affinity ligand for the G-protein-coupled receptor APJ. During embryonic development of mouse and frog, APJ receptor is expressed at high levels in endothelial precursor cells and in nascent vascular structures. Characterization of Xenopus apelin shows that the sequence of the bioactive region of the peptide is perfectly conserved between frogs and mammals. Embryonic expression studies indicate that apelin is expressed in, or immediately adjacent to, a subset of the developing vascular structures, particularly the intersegmental vessels. Experimental inhibition of either apelin or APJ expression, using antisense morpholino oligos, results in elimination or disruption of intersegmental vessels in a majority of embryos. In gain of function experiments, apelin peptide is a potent angiogenic factor when tested using two in vivo angiogenesis assays, the frog embryo and the chicken chorioallantoic membrane. Furthermore, studies using the mouse brain microvascular cell line bEnd.3 show that apelin acts as a mitogenic, chemotactic and anti-apoptotic agent for endothelial cells in culture. Finally, we show that, similar to a number of other angiogenic factors, expression of the apelin gene is increased under conditions of hypoxia. Taken together, these studies indicate that apelin is required for normal vascular development in the frog embryo and has properties consistent with a role during normal and pathological angiogenesis.
Collapse
Affiliation(s)
- Christopher M Cox
- Department of Cell Biology and Anatomy, University of Arizona Health Sciences Center, 1501 N. Campbell Avenue, Tucson, AZ 85724-5044, USA
| | | | | | | | | |
Collapse
|
37
|
Paley EL, Smelyanski L, Malinovskii V, Subbarayan PR, Berdichevsky Y, Posternak N, Gershoni JM, Sokolova O, Denisova G. Mapping and molecular characterization of novel monoclonal antibodies to conformational epitopes on NH2 and COOH termini of mammalian tryptophanyl-tRNA synthetase reveal link of the epitopes to aggregation and Alzheimer's disease. Mol Immunol 2006; 44:541-57. [PMID: 16616781 DOI: 10.1016/j.molimm.2006.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 02/07/2006] [Accepted: 02/09/2006] [Indexed: 11/17/2022]
Abstract
Tryptophanyl-tRNA synthetase (TrpRS) is an interferon-induced phosphoprotein with autoantigenic and cytokine activities detected in addition to its canonical function in tRNA aminoacylation. The availability of monoclonal antibodies (mAbs) specific for TrpRS is important for development of tools for TrpRS monitoring. A molecular characterization of two mAbs raised in mice, using purified, enzymatically active bovine TrpRS as the inoculating antigen, is presented in this report. These IgG1 antibodies are specific for bovine, human and rabbit but not E. coli TrpRS. Immunoreactivity and specificity of mAbs were verified with purified recombinant hTrpRS expressed in E. coli and TrpRS-derived synthetic peptides. One of the mAbs, 9D7 is able to disaggregate fibrils formed by Ser32-Tyr50 TrpRS-peptide. Epitope mapping revealed that disaggregation ability correlates with binding of 9D7 to this peptide in ELISA and immunocytochemistry. This epitope covers a significant part of N-terminal extension that suggested to be proteolytically deleted in vivo from the full-length TrpRS whereas remaining COOH-fragment possesses a cytokine activity. For epitope mapping of mAb 6C10, the affinity selected phage-displayed peptides were used as a database for prediction of conformational discontinuous epitopes within hTrpRS crystal structure. Using computer algorithm, this epitope is attributed to COOH-terminal residues Asp409-Met425. In immunoblotting, the 6C10 mAb reacts preferably with (i) oligomer than monomer, and (ii) bound than free TrpRS forms. The hTrpRS expression was shown to correlate with growth rates of neuroblastoma and pancreatic cancer cells. Immunohistochemically both mAbs revealed extracellular plaque-like aggregates in hippocampus of Alzheimer's disease brain.
Collapse
Affiliation(s)
- Elena L Paley
- Department of Urology, Northwestern University Feinberg School of Medicine, Tarry Research Building 16/759, 303 E. Chicago Avenue, Chicago, IL 60611, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kwon M, Libutti SK. Advances in understanding angiogenesis through molecular studies. Int J Radiat Oncol Biol Phys 2006; 64:26-32. [PMID: 16377412 DOI: 10.1016/j.ijrobp.2005.03.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 03/10/2005] [Accepted: 03/11/2005] [Indexed: 10/25/2022]
Abstract
Tumors, in most cases, need angiogenesis for their sustained growth. A great deal of evidence has suggested that the process of angiogenesis is regulated by the balance between proangiogenic and antiangiogenic factors. Thus, the inhibition of tumor angiogenesis has been considered to be one of the key targets in anticancer therapy, and more than 60 antiangiogenic compounds are currently under clinical evaluation in cancer patients. However, the molecular mechanisms responsible for the activity of many of these antiangiogenic compounds are still not well understood. The recent development of microarray technology has allowed us to investigate the mechanism of action of these inhibitors more rapidly and extensively. With the use of microarray technology, novel molecules and pathways are shown to play a role in angiogenesis. This article also reviews new experimental approaches combined with microarray analysis to identify the molecular pathways involved in tumor-host interactions. Elucidation of the pathways that mediate both angiogenic and antiangiogenic responses will help us to develop better anticancer therapies.
Collapse
Affiliation(s)
- Mijung Kwon
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1201, USA
| | | |
Collapse
|
39
|
Tzima E, Schimmel P. Inhibition of tumor angiogenesis by a natural fragment of a tRNA synthetase. Trends Biochem Sci 2005; 31:7-10. [PMID: 16297628 DOI: 10.1016/j.tibs.2005.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 07/27/2005] [Accepted: 11/07/2005] [Indexed: 11/17/2022]
Abstract
Human tyrosyl- and tryptophanyl-tRNA synthetases (TyrRS and TrpRS, respectively) link protein synthesis to signal-transduction pathways, including angiogenesis. Fragments of TyrRS stimulate angiogenesis, whereas those of TrpRS (T2-TrpRS) inhibit angiogenesis. Thus, these two synthetases acquired opposing activities during evolution, possibly as a coordinated mechanism for regulating angiogenesis. The recent identification of the cellular target of T2-TrpRS sheds light into the mechanism of angiogenesis inhibition. This mechanism provides a molecular basis for the lack of effect of T2-TrpRS on the normal vasculature. With these features, we suggest that this fragment of a tRNA synthetase might safely be used to arrest neovascularization of tumors. In particular, an anti-angiogenesis agent that stops the growth of tumor vessels without affecting normal vessels might serve as an adjunct to cytotoxic therapy.
Collapse
Affiliation(s)
- Ellie Tzima
- Skaggs Institute for Chemical Biology, Departments of Chemistry and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
40
|
Abstract
The chemokine system controls leukocyte trafficking during homeostasis as well as during inflammation and is necessary for the linkage between innate and adaptive immunity. Tissue regulation outside the hematopoietic compartment, for instance, angiogenesis, organogenesis and tumor development, growth and metastasis, is another important function of the chemokine system. The chemokine-mediated regulation of angiogenesis is highly sophisticated and fine tuned, and involves pro-angiogenic chemokines, for instance, CXCL8/IL8 interacting with the CXCR2 receptor, and anti-angiogenic (i.e. angiostatic) chemokines, for instance, CXCL10/IP10 interacting with the CXCR3 receptor. Chemokines also regulate angiogenesis in a receptor-independent manner by means of a perturbation of bFGF and VEGF function. The current review focuses on the influence of the chemokine system in angiogenesis. Examples of the delicate angiogenesis regulation by the chemokine system in, for instance, wound healing and of the dysregulation in, for instance, tumor development are provided along with the interesting phenomenon of molecular piracy of host-encoded genes within the chemokine system. This phenomenon is a general strategy to circumvent and exploit the immune system -- and thereby improve survival -- for many viruses. Yet, a certain group of herpesviruses -- the gamma2-herpesviruses -- encode a functional CXCR2 receptor homolog that is activated by angiogenic chemokines and antagonized by angiostatic chemokines, and this particular gene seems to cause the development of a vascular tumor -- Kaposi's sarcoma -- in the host.
Collapse
Affiliation(s)
- Mette M Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Pharmacology, The Panum Institute, Copenhagen, Denmark.
| | | |
Collapse
|
41
|
Abstract
Activation of an innate immune response is among the first lines of defense after tissue injury. Restoring blood flow to the site of injured tissue is often a necessary prerequisite for mounting an initial immune response to pathogens and for subsequent initiation of a successful repair of wounded tissue. The multiple links among pathogen recognition and suppression, increased angiogenesis, and tissue repair are the topics of this review, which examines of the roles of antimicrobial peptides, mammalian toll-like receptors (TLRs), inflammatory cytokines, and putative "danger" signals, among other signaling pathways, in triggering, sustaining, and then terminating an angiogenic response.
Collapse
Affiliation(s)
- Stefan Frantz
- Genzyme Corporation, Cambridge, Mass 01701-9322, USA
| | | | | | | |
Collapse
|
42
|
Tzima E, Reader JS, Irani-Tehrani M, Ewalt KL, Schwartz MA, Schimmel P. VE-cadherin links tRNA synthetase cytokine to anti-angiogenic function. J Biol Chem 2004; 280:2405-8. [PMID: 15579907 DOI: 10.1074/jbc.c400431200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A natural fragment of an enzyme that catalyzes the first step of protein synthesis-human tryptophanyl-tRNA synthetase (T2-TrpRS) has potent anti-angiogenic activity. A cellular receptor through which T2-TrpRS exerts its anti-angiogenic activity has not previously been identified. Here T2-TrpRS was shown to bind at intercellular junctions of endothelial cells (ECs). Using genetic knock-outs, binding was established to depend on VE-cadherin, a calcium-dependent adhesion molecule, which is selectively expressed in ECs, concentrated at adherens junctions, and is essential for normal vascular development. In contrast, T2-TrpRS binding to EC junctions was not dependent on platelet endothelial cell adhesion molecule type-1, another adhesion molecule found at EC junctions. Pull-down assays confirmed direct complex formation between T2-TrpRS and VE-cadherin. Binding of T2-TrpRS inhibited VEGF-induced ERK activation and EC migration. Thus, a VE-cadherin-dependent pathway is proposed to link T2-TrpRS to inhibition of new blood vessel formation.
Collapse
Affiliation(s)
- Eleni Tzima
- Skaggs Institute for Chemical Biology, Department of Chemistry and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | | | | | | | |
Collapse
|