1
|
Dora D, Szőcs E, Soós Á, Halasy V, Somodi C, Mihucz A, Rostás M, Mógor F, Lohinai Z, Nagy N. From bench to bedside: an interdisciplinary journey through the gut-lung axis with insights into lung cancer and immunotherapy. Front Immunol 2024; 15:1434804. [PMID: 39301033 PMCID: PMC11410641 DOI: 10.3389/fimmu.2024.1434804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
This comprehensive review undertakes a multidisciplinary exploration of the gut-lung axis, from the foundational aspects of anatomy, embryology, and histology, through the functional dynamics of pathophysiology, to implications for clinical science. The gut-lung axis, a bidirectional communication pathway, is central to understanding the interconnectedness of the gastrointestinal- and respiratory systems, both of which share embryological origins and engage in a continuous immunological crosstalk to maintain homeostasis and defend against external noxa. An essential component of this axis is the mucosa-associated lymphoid tissue system (MALT), which orchestrates immune responses across these distant sites. The review delves into the role of the gut microbiome in modulating these interactions, highlighting how microbial dysbiosis and increased gut permeability ("leaky gut") can precipitate systemic inflammation and exacerbate respiratory conditions. Moreover, we thoroughly present the implication of the axis in oncological practice, particularly in lung cancer development and response to cancer immunotherapies. Our work seeks not only to synthesize current knowledge across the spectrum of science related to the gut-lung axis but also to inspire future interdisciplinary research that bridges gaps between basic science and clinical application. Our ultimate goal was to underscore the importance of a holistic understanding of the gut-lung axis, advocating for an integrated approach to unravel its complexities in human health and disease.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Emőke Szőcs
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Ádám Soós
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Viktória Halasy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Csenge Somodi
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| | - Anna Mihucz
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Melinda Rostás
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Fruzsina Mógor
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Zoltan Lohinai
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| | - Nándor Nagy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
2
|
Bondeelle L, Salmona M, Houdouin V, Diaz E, Dutrieux J, Mercier-Delarue S, Constant S, Huang S, Bergeron A, LeGoff J. Inefficient antiviral response in reconstituted small-airway epithelium from chronic obstructive pulmonary disease patients following human parainfluenza virus type 3 infection. Virol J 2024; 21:78. [PMID: 38566231 PMCID: PMC10988791 DOI: 10.1186/s12985-024-02353-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) affects over 250 million individuals globally and stands as the third leading cause of mortality. Respiratory viral infections serve as the primary drivers of acute exacerbations, hastening the decline in lung function and worsening the prognosis. Notably, Human Parainfluenza Virus type 3 (HPIV-3) is responsible for COPD exacerbations with a frequency comparable to that of Respiratory Syncytial Virus and Influenza viruses. However, the impact of HPIV-3 on respiratory epithelium within the context of COPD remains uncharacterized.In this study, we employed in vitro reconstitution of lower airway epithelia from lung tissues sourced from healthy donors (n = 4) and COPD patients (n = 5), maintained under air-liquid interface conditions. Through a next-generation sequencing-based transcriptome analysis, we compared the cellular response to HPIV-3 infection.Prior to infection, COPD respiratory epithelia exhibited a pro-inflammatory profile, notably enriched in canonical pathways linked to antiviral response, B cell signaling, IL-17 signaling, and epithelial-mesenchymal transition, in contrast to non-COPD epithelia. Intriguingly, post HPIV-3 infection, only non-COPD epithelia exhibited significant enrichment in interferon signaling, pattern recognition receptors of viruses and bacteria, and other pathways involved in antiviral responses. This deficiency could potentially hinder immune cell recruitment essential for controlling viral infections, thus fostering prolonged viral presence and persistent inflammation.
Collapse
Affiliation(s)
- Louise Bondeelle
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Maud Salmona
- Virology Department, AP-HP, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, Paris, F-75010, France
| | - Véronique Houdouin
- Service de Pneumologie, APHP, Hôpital Robert-Debré, Paris, F-75010, France
| | - Elise Diaz
- Université Paris Cité, Inserm U976, INSIGHT Team, Paris, F-75010, France
| | - Jacques Dutrieux
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, F-75014, France
| | - Séverine Mercier-Delarue
- Virology Department, AP-HP, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, Paris, F-75010, France
| | | | - Song Huang
- Epithelix Sarl, Geneva, 1228, Switzerland
| | - Anne Bergeron
- Pneumology Department, Geneva University Hospitals, Geneva, Switzerland
| | - Jérôme LeGoff
- Virology Department, AP-HP, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, Paris, F-75010, France.
- Université Paris Cité, Inserm U976, INSIGHT Team, Paris, F-75010, France.
| |
Collapse
|
3
|
Thio CLP, Chang YJ. The modulation of pulmonary group 2 innate lymphoid cell function in asthma: from inflammatory mediators to environmental and metabolic factors. Exp Mol Med 2023; 55:1872-1884. [PMID: 37696890 PMCID: PMC10545775 DOI: 10.1038/s12276-023-01021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 09/13/2023] Open
Abstract
A dysregulated type 2 immune response is one of the fundamental causes of allergic asthma. Although Th2 cells are undoubtedly central to the pathogenesis of allergic asthma, the discovery of group 2 innate lymphoid cells (ILC2s) has added another layer of complexity to the etiology of this chronic disease. Through their inherent innate type 2 responses, ILC2s not only contribute to the initiation of airway inflammation but also orchestrate the recruitment and activation of other members of innate and adaptive immunity, further amplifying the inflammatory response. Moreover, ILC2s exhibit substantial cytokine plasticity, as evidenced by their ability to produce type 1- or type 17-associated cytokines under appropriate conditions, underscoring their potential contribution to nonallergic, neutrophilic asthma. Thus, understanding the mechanisms of ILC2 functions is pertinent. In this review, we present an overview of the current knowledge on ILC2s in asthma and the regulatory factors that modulate lung ILC2 functions in various experimental mouse models of asthma and in humans.
Collapse
Affiliation(s)
| | - Ya-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, 115, Taiwan.
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung City, 404, Taiwan.
| |
Collapse
|
4
|
McIntyre AP, Viswanathan RK. Phenotypes and Endotypes in Asthma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1426:119-142. [PMID: 37464119 DOI: 10.1007/978-3-031-32259-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Asthma is a broadly encompassing diagnosis of airway inflammation with significant variability in presentation and response. Advances in molecular techniques and imaging have unraveled the delicate mechanistic tapestry responsible for the underlying inflammatory pathways in asthma. The elucidation of biomarkers and cellular components specific to these inflammatory pathways allowed for the categorization of asthma from generic phenotypes to more specific mechanistic endotypes, with two prominent subgroups emerging based on the level of Type 2 inflammation present - T2 high and T2 low (or non-T2). Sophisticated modeling and cluster analyses using a combination of clinical, physiologic, and biomarker parameters have permitted the identification of subendotypes within the broader T2 umbrella. This mechanistic-driven classification schema for asthma has dramatically altered the landscape of asthma management with the discovery and approval of targeted biologic therapies and has ushered in a new era of personalized precision medicine in asthma.
Collapse
Affiliation(s)
- Amanda P McIntyre
- Division of Allergy, Pulmonary & Critical Care, Department of Medicine, University of Wisconsin School of Medicine & Public Health, Madison, WI, USA
| | - Ravi K Viswanathan
- Division of Allergy, Pulmonary & Critical Care, Department of Medicine, University of Wisconsin School of Medicine & Public Health, Madison, WI, USA.
| |
Collapse
|
5
|
Lin YC, Lin YC, Tsai ML, Liao WT, Hung CH. TSLP regulates mitochondrial ROS-induced mitophagy via histone modification in human monocytes. Cell Biosci 2022; 12:32. [PMID: 35292112 PMCID: PMC8925056 DOI: 10.1186/s13578-022-00767-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 03/01/2022] [Indexed: 11/24/2022] Open
Abstract
Background Thymic stromal lymphopoietin (TSLP) is a Th2-like cytokine involved in asthma pathogenesis. Excessive reactive oxygen species (ROS) production can lead to airway inflammation, hyperresponsiveness and remodeling. Mitophagy, followed by ROS production, is the selective degradation of mitochondria by autophagy and often occurs in defective mitochondria. In the present study, we aimed to examine the effects of TSLP on ROS production and mitophagy in human monocytes and to investigate the underlying mechanisms, including epigenetic regulation. Results TSLP induced ROS generation, and the effects were reversed by the antioxidant N-acetylcysteine (NAC) in THP-1 cells. Transmission electron microscopy images showed donut-shaped mitochondria that lost the cristae ultrastructure after TSLP stimulation. A decrease in mitochondrial membrane potential, decreased MTCO2 expression, and increased mitochondrial DNA release after TSLP stimulation were found. TSLP enhanced mitochondrial complex I and complex II/III activity and increased mitochondrial copy numbers and the expression of the complex II SHDA gene. TSLP-induced SHDA expression was inhibited by the histone acetyltransferase inhibitor anacardic acid (AA) and the histone methyltransferase inhibitor methylthioadenosine (MTA), and chromatin immunoprecipitation assays revealed that TSLP enhanced H3 acetylation, H4 acetylation, and H3K4 and H3K36 trimethylation in the SHDA promoter. Confocal laser microscopy showed that TSLP treatment increased the signals of the mitophagy-related proteins PINK1, LC3, phospho-parkin and phospho-ubiquitin, and pretreatment with AA and MTA reduced TSLP-induced PINK1 and LC3 accumulation in mitochondria. Western blot analysis showed that TSLP significantly increased phosphor-AMPK signal intensity, and the effects were inhibited by the antioxidant NAC. The increased signal intensities of the mitophagy-related proteins PINK1, Parkin and LC3 I/II were decreased by dorsomorphin, an AMPK inhibitor. TSLP decreased M1-related cytokine CXCL-10 production and increased M2-related cytokine CCL-1 and CCL-22 production, which was suppressed by the mitophagy inhibitor Mdivi-1 and PINK1 gene knockdown. Conclusions Epithelial-derived TSLP regulates ROS production and mitophagy through AMPK activation and histone modification and alters M1/M2 chemokine expression in human monocytes. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00767-w.
Collapse
|
6
|
McIntyre A, Busse WW. Asthma exacerbations: the Achilles heel of asthma care. Trends Mol Med 2022; 28:1112-1127. [PMID: 36208987 PMCID: PMC10519281 DOI: 10.1016/j.molmed.2022.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 01/21/2023]
Abstract
Asthma exacerbations significantly impact millions of patients worldwide to pose large disease burdens on affected patients, families, and health-care systems. Although numerous environmental factors cause asthma exacerbations, viral respiratory infections are the principal triggers. Advances in the pathophysiology of asthma have elucidated dysregulated protective immune responses and upregulated inflammation that create susceptibility and risks for exacerbation. Biologics for the treatment of severe asthma reduce rates of exacerbations and identify specific pathways of inflammation that contribute to altered pathophysiology, novel therapeutic targets, and informative biomarkers. Major steps to prevent exacerbations include the identification of molecular pathways whose blockage will prevent asthma attacks safely, predictably, and effectively.
Collapse
Affiliation(s)
- Amanda McIntyre
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - William W Busse
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
7
|
Paris O, Mennechet FJD, Kremer EJ. Human innate lymphoid cell activation by adenoviruses is modified by host defense proteins and neutralizing antibodies. Front Immunol 2022; 13:975910. [PMID: 36275713 PMCID: PMC9579290 DOI: 10.3389/fimmu.2022.975910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Innate lymphoid cells (ILCs), the complements of diverse CD4 T helper cells, help maintain tissue homeostasis by providing a link between innate and adaptive immune responses. While pioneering studies over the last decade have advanced our understanding how ILCs influence adaptive immune responses to pathogens, far less is known about whether the adaptive immune response feeds back into an ILC response. In this study, we isolated ILCs from blood of healthy donors, fine-tuned culture conditions, and then directly challenged them with human adenoviruses (HAdVs), with HAdVs and host defense proteins (HDPs) or neutralizing antibodies (NAbs), to mimic interactions in a host with pre-existing immunity. Additionally, we developed an ex vivo approach to identify how bystander ILCs respond to the uptake of HAdVs ± neutralizing antibodies by monocyte-derived dendritic cells. We show that ILCs take up HAdVs, which induces phenotypic maturation and cytokine secretion. Moreover, NAbs and HDPs complexes modified the cytokine profile generated by ILCs, consistent with a feedback loop for host antiviral responses and potential to impact adenovirus-based vaccine efficacy.
Collapse
|
8
|
Lin YC, Lin YC, Tsai ML, Tsai YG, Kuo CH, Hung CH. IL-33 regulates M1/M2 chemokine expression via mitochondrial redox-related mitophagy in human monocytes. Chem Biol Interact 2022; 359:109915. [PMID: 35339432 DOI: 10.1016/j.cbi.2022.109915] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/12/2022] [Accepted: 03/21/2022] [Indexed: 11/27/2022]
Abstract
Interleukin (IL)-33 is an epithelial-derived cytokine that enhances T helper (Th) 2 responses. Allergens and other agents induce IL-33 in asthma. Excessive production of reactive oxygen species (ROS) leads to airway inflammation. Mitophagy is the selective degradation of mitochondria by autophagy and often occurs in defective mitochondria, followed by ROS production. In the present study, we examined the effects of IL-33 on ROS production and mitophagy in human monocytes, and the detailed mechanisms were investigated. Human monocyte cell line THP-1 was pretreated with different concentrations of IL-33. ROS production was measured by flow cytometry. Mitochondrial involvement and the mitophagy and intercellular pathway activation were evaluated by quantitative real-time PCR, western blotting, and confocal microscopy, and cytokine/chemokine concentrations were detected by ELISA. The data showed that IL-33 alone could induce ROS expression in THP-1 cells. The expression of complex II and V mRNA was increased in the presence of IL-33. The mitophagy-related proteins PINK1, Parkin, and LC3 were regulated by IL-33 through the AMPK pathway. IL-33 significantly decreased M1-related cytokines CXCL-10 and TNF-α production and significantly increased M2-related cytokine CCL-22 production. In conclusion, IL-33 induces ROS production and subsequently influences mitophagy through AMPK activation, altering the macrophage-polarization phenotype of monocytes.
Collapse
Affiliation(s)
- Yi-Ching Lin
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Doctoral Degree Program of Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Laboratory Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Chih Lin
- Department of Medical Humanities and Education, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Allergology, Immunology and Rheumatology, Department of Internal Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Lan Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Pediatrics, Faculty of Pediatrics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Giien Tsai
- Department of Pediatrics, Changhua Christian Children Hospital, Changhua, Taiwan; School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| | - Chao-Hung Kuo
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan; Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chih-Hsing Hung
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Pediatrics, Faculty of Pediatrics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
9
|
Espinoza C, Alarcón M. The Immune Response to SARS-CoV-2: Mechanisms, Aging, Sequelae and Vaccines. Mini Rev Med Chem 2022; 22:2166-2185. [PMID: 35249484 DOI: 10.2174/1389557522666220304231537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/28/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022]
Abstract
This review seeks to clarify the factors involved in the various immune responses to SARS-CoV-2 infection and the mechanisms that influence the development of COVID-19 with severe evolution. The innate immune response that evolves against SARS-CoV-2 in a complex way is highlighted, integrating multiple pathways by coronaviruses to evade it, in addition to characterizing the adaptive immune response, which can lead to an effective immune response or can contribute to immunopathological imbalance. In turn, host-dependent biomarkers such as age, gender, ABO blood group, and risk factors that contribute to the critical and varied progress of COVID-19 immunopathogenesis were analyzed. Finally, the potential vaccine candidates are presented, capable of generating immune protection with humoral and/or cellular neutralizing responses, in favor of blocking and destroying both the new human coronavirus and its variants, which cause the current pandemic.
Collapse
Affiliation(s)
- Carolina Espinoza
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
- Thrombosis Research Center, Universidad de Talca, Talca, Chile
| | - Marcelo Alarcón
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
- Thrombosis Research Center, Universidad de Talca, Talca, Chile
| |
Collapse
|
10
|
de Boer GM, Braunstahl G, van der Ploeg EK, van Zelst CM, van Bruggen A, Epping G, van Nimwegen M, Verhoeven G, Birnie E, Boxma‐de Klerk BM, de Bruijn MJW, Stadhouders R, Hendriks RW, Tramper‐Stranders GA. Bacterial lysate add-on therapy to reduce exacerbations in severe asthma: A double-blind placebo-controlled trial. Clin Exp Allergy 2021; 51:1172-1184. [PMID: 34289183 PMCID: PMC9292626 DOI: 10.1111/cea.13990] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 04/28/2021] [Accepted: 07/19/2021] [Indexed: 11/26/2022]
Abstract
Background Asthma exacerbations are frequently induced by respiratory tract infections (RTIs). Bacterial lysates have been described to possess immune‐modulatory effects and reduce RTIs as well as asthma symptoms in children. However, whether bacterial lysates have similar effects in adult asthma patients is unknown. Aims To reduce asthma exacerbations by add‐on bacterial lysate therapy in adults with severe asthma and to characterize the clinical and immune‐modulatory effects of this treatment. Methods Asthma patients (GINA 4) with ≥2 annual exacerbations in the previous year were included. The intervention regimen consisted of OM‐85/placebo for 10 consecutive days per month for 6 months during two winter seasons. Primary end‐point was the number of severe asthma exacerbations within 18 months. The study was approved by the national and local ethical review board and registered in the Dutch Trial Registry (NL5752). All participants provided written informed consent. Results Seventy‐five participants were included (38 OM‐85; 37 placebo). Exacerbation frequencies were not different between the groups after 18 months (incidence rate ratio 1.07, 95%CI [0.68–1.69], p = 0.77). With the use of OM‐85, FEV1% increased by 3.81% (p = 0.04) compared with placebo. Nasopharyngeal swabs taken during RTIs detected a virus less frequently in patients using OM‐85 compared to placebo (30.5% vs. 48.0%, p = 0.02). In subjects with type 2 inflammation adherent to the protocol (22 OM‐85; 20 placebo), a non‐statistically significant decrease in exacerbations in the OM‐85 group was observed (IRR = 0.71, 95%CI [0.39–1.26], p = 0.25). Immune‐modulatory effects included an increase in several plasma cytokines in the OM‐85 group, especially IL‐10 and interferons. Peripheral blood T‐ and B cell subtyping, including regulatory T cells, did not show differences between the groups. Conclusion Although OM‐85 may have immune‐modulatory effects, it did not reduce asthma exacerbations in this heterogeneous severe adult asthma group. Post hoc analysis showed a potential clinical benefit in patients with type 2 inflammation.
Collapse
Affiliation(s)
- Geertje M. de Boer
- Department of Pulmonary MedicineFranciscus Gasthuis & VlietlandRotterdamThe Netherlands
- Department of Pulmonary MedicineErasmus University Medical CenterRotterdamThe Netherlands
| | - Gert‐Jan Braunstahl
- Department of Pulmonary MedicineFranciscus Gasthuis & VlietlandRotterdamThe Netherlands
- Department of Pulmonary MedicineErasmus University Medical CenterRotterdamThe Netherlands
| | - Esmee K. van der Ploeg
- Department of Pulmonary MedicineErasmus University Medical CenterRotterdamThe Netherlands
- Department of Cell BiologyErasmus University Medical CenterRotterdamThe Netherlands
| | - Cathelijne M. van Zelst
- Department of Pulmonary MedicineFranciscus Gasthuis & VlietlandRotterdamThe Netherlands
- Department of Pulmonary MedicineErasmus University Medical CenterRotterdamThe Netherlands
| | - Alie van Bruggen
- Department of Pulmonary MedicineFranciscus Gasthuis & VlietlandRotterdamThe Netherlands
| | - Guido Epping
- Department of Pulmonary MedicineFranciscus Gasthuis & VlietlandRotterdamThe Netherlands
| | - Menno van Nimwegen
- Department of Pulmonary MedicineErasmus University Medical CenterRotterdamThe Netherlands
| | - Gert Verhoeven
- Department of Pulmonary MedicineMaasstad hospitalRotterdamThe Netherlands
| | - Erwin Birnie
- Department of Scientific EducationFranciscus Gasthuis & VlietlandRotterdamThe Netherlands
| | | | | | - Ralph Stadhouders
- Department of Pulmonary MedicineErasmus University Medical CenterRotterdamThe Netherlands
- Department of Cell BiologyErasmus University Medical CenterRotterdamThe Netherlands
| | - Rudi W. Hendriks
- Department of Pulmonary MedicineErasmus University Medical CenterRotterdamThe Netherlands
| | - Gerdien A. Tramper‐Stranders
- Department of Pulmonary MedicineErasmus University Medical CenterRotterdamThe Netherlands
- Department of PediatricsFranciscus Gasthuis & VlietlandRotterdamThe Netherlands
| |
Collapse
|
11
|
Fonseca W, Lukacs NW, Elesela S, Malinczak CA. Role of ILC2 in Viral-Induced Lung Pathogenesis. Front Immunol 2021; 12:675169. [PMID: 33953732 PMCID: PMC8092393 DOI: 10.3389/fimmu.2021.675169] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
Abstract
Innate lymphoid type-2 cells (ILC2) are a population of innate cells of lymphoid origin that are known to drive strong Type 2 immunity. ILC2 play a key role in lung homeostasis, repair/remodeling of lung structures following injury, and initiation of inflammation as well as more complex roles during the immune response, including the transition from innate to adaptive immunity. Remarkably, dysregulation of this single population has been linked with chronic lung pathologies, including asthma, chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrotic diseases (IPF). Furthermore, ILC2 have been shown to increase following early-life respiratory viral infections, such as respiratory syncytial virus (RSV) and rhinovirus (RV), that may lead to long-term alterations of the lung environment. The detrimental roles of increased ILC2 following these infections may include pathogenic chronic inflammation and/or alterations of the structural, repair, and even developmental processes of the lung. Respiratory viral infections in older adults and patients with established chronic pulmonary diseases often lead to exacerbated responses, likely due to previous exposures that leave the lung in a dysregulated functional and structural state. This review will focus on the role of ILC2 during respiratory viral exposures and their effects on the induction and regulation of lung pathogenesis. We aim to provide insight into ILC2-driven mechanisms that may enhance lung-associated diseases throughout life. Understanding these mechanisms will help identify better treatment options to limit not only viral infection severity but also protect against the development and/or exacerbation of other lung pathologies linked to severe respiratory viral infections.
Collapse
Affiliation(s)
- Wendy Fonseca
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States.,Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
| | - Srikanth Elesela
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States.,Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
| | | |
Collapse
|
12
|
Early-life EV-A71 infection augments allergen-induced airway inflammation in asthma through trained macrophage immunity. Cell Mol Immunol 2021; 18:472-483. [PMID: 33441966 PMCID: PMC8027667 DOI: 10.1038/s41423-020-00621-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
Virus-induced asthma is prevalent among children, but its underlying mechanisms are unclear. Accumulated evidence indicates that early-life respiratory virus infection increases susceptibility to allergic asthma. Nonetheless, the relationship between systemic virus infections, such as enterovirus infection, and the ensuing effects on allergic asthma development is unknown. Early-life enterovirus infection was correlated with higher risks of allergic diseases in children. Adult mice exhibited exacerbated mite allergen-induced airway inflammation following recovery from EV-A71 infection in the neonatal period. Bone marrow-derived macrophages (BMDMs) from recovered EV-A71-infected mice showed sustained innate immune memory (trained immunity) that could drive naïve T helper cells toward Th2 and Th17 cell differentiation when in contact with mites. Adoptive transfer of EV-A71-trained BMDMs induced augmented allergic inflammation in naïve recipient mice, which was inhibited by 2-deoxy-D-glucose (2-DG) pretreatment, suggesting that trained macrophages following enterovirus infection are crucial in the progression of allergic asthma later in life.
Collapse
|
13
|
Mosayyebi S, Sarac BE, Akel Bilgic H, Sahiner UM, Sackesen C, Kalayci O, Karaaslan C. The Genetic Variants of Interferon Regulatory Factor-3 in Children with Asthma. J Interferon Cytokine Res 2020; 40:570-577. [PMID: 33337935 DOI: 10.1089/jir.2020.0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interferon Regulatory Factor-3 (IRF-3) is one of the key players in the inflammatory response mediated by the innate immune system. Although many studies have implicated a role for IRF-3 in the pathogenesis of inflammatory airway diseases, information about the possible association of IRF-3 genetic variants with asthma is scarce. We aimed to investigate the potential effects of IRF-3 polymorphisms in childhood asthma and asthma-related phenotypes. IRF-3 polymorphisms were first determined by sequencing 25 asthmatic and 25 healthy children. For further analysis, 609 asthmatic children and 191 healthy controls were screened for the genetic variants, such as rs2304204, rs2304205, rs320440, rs34739574, and rs7251. In addition, the relationship between these polymorphisms and asthma-related phenotypic features, including forced expiratory volume in one second values, eosinophil counts, and IgE levels was determined. rs7251 was associated with asthma in the codominant (P = 0.049) and G dominant (P = 0.025) model, however this significance was lost after False Discovery Rate analysis. Other investigated single nucleotide polymorphisms (SNPs) showed no significant association with asthma or asthma-related phenotypes. In conclusion, the seven SNPs of IRF-3 gene are not associated with asthma or asthma-related phenotypes in Turkish asthmatic children.
Collapse
Affiliation(s)
- Solmaz Mosayyebi
- Department of Biology, Molecular Biology Section, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Basak Ezgi Sarac
- Department of Biology, Molecular Biology Section, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Hayriye Akel Bilgic
- Department of Biology, Molecular Biology Section, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Umit Murat Sahiner
- Department of Pediatric Allergy, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Cansın Sackesen
- Department of Pediatric Allergy, Faculty of Medicine, Hacettepe University, Ankara, Turkey.,Division of Pediatric Allergy, School of Medicine, Koc University, Istanbul, Turkey
| | - Omer Kalayci
- Department of Pediatric Allergy, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Cagatay Karaaslan
- Department of Biology, Molecular Biology Section, Faculty of Science, Hacettepe University, Ankara, Turkey
| |
Collapse
|
14
|
Virus-Induced Asthma Exacerbations: SIRT1 Targeted Approach. J Clin Med 2020; 9:jcm9082623. [PMID: 32823491 PMCID: PMC7464235 DOI: 10.3390/jcm9082623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
The prevalence of asthma has increased worldwide. Asthma exacerbations triggered by upper respiratory tract viral infections remain a major clinical problem and account for hospital admissions and time lost from work. Virus-induced asthma exacerbations cause airway inflammation, resulting in worsening asthma and deterioration in the patients’ quality of life, which may require systemic corticosteroid therapy. Despite recent advances in understanding the cellular and molecular mechanisms underlying asthma exacerbations, current therapeutic modalities are inadequate for complete prevention and treatment of these episodes. The pathological role of cellular senescence, especially that involving the silent information regulator 2 homolog sirtuin (SIRT) protein family, has recently been demonstrated in stable and exacerbated chronic respiratory disease states. This review discusses the role of SIRT1 in the pathogenesis of bronchial asthma. It also discusses the role of SIRT1 in inflammatory cells that play an important role in virus-induced asthma exacerbations. Recent studies have hypothesized that SIRT1 is one of major contributors to cellular senescence. SIRT1 levels decrease in Th2 and non-Th2-related airway inflammation, indicating the role of SIRT1 in several endotypes and phenotypes of asthma. Moreover, several models have demonstrated relationships between viral infection and SIRT1. Therefore, targeting SIRT1 is a novel strategy that may be effective for treating virus-induced asthma exacerbations in the future.
Collapse
|
15
|
Lommatzsch M. Immune Modulation in Asthma: Current Concepts and Future Strategies. Respiration 2020; 99:566-576. [PMID: 32512570 DOI: 10.1159/000506651] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 12/20/2022] Open
Abstract
Asthma treatment concepts have profoundly changed over the last 20 years, from standard therapeutic regimens for all patients with asthma towards individually tailored interventions targeting treatable traits ("precision medicine"). A precise and highly effective immune modulation with minimal adverse effects plays a central role in this new concept. Recently, there have been major advances in the treatment of asthma with immune-modulatory compounds. One example is the approval of several highly potent biologics for the treatment of severe asthma. New immune-modulatory strategies are expected to enter clinical practice in the future; these innovations will be especially important for patients with treatment-resistant asthma.
Collapse
Affiliation(s)
- Marek Lommatzsch
- Abteilung für Pneumologie/Interdisziplinäre Internistische Intensivstation, Medizinische Klinik I, Zentrum für Innere Medizin, Universitätsmedizin Rostock, Rostock, Germany,
| |
Collapse
|
16
|
Ding Q, Xu L, Zhu Y, Xu B, Chen X, Duan Y, Xie Z, Shen K. Comparison of clinical features of acute lower respiratory tract infections in infants with RSV/HRV infection, and incidences of subsequent wheezing or asthma in childhood. BMC Infect Dis 2020; 20:387. [PMID: 32473625 PMCID: PMC7260463 DOI: 10.1186/s12879-020-05094-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
Background To compare the clinical characteristics of acute lower respiratory tract infections (ALRTIs) caused by respiratory syncytial virus (RSV) and human rhinovirus (HRV) and to explore the relationship between the development of recurrent wheezing/asthma and RSV/ HRV infections in infancy. Methods Retrospective study was conducted to compare the clinical characteristics of acute lower respiratory tract infections (ALRTIs). Hospitalized patients with ALRTIs from March 2007 to December 2016 were screened. Single RSV cases (s-RSV), single HRV cases (s-HRV), and cases who had co-infection with the two viruses were enrolled. Follow-up was performed to determine whether either specific respiratory virus infection was related to subsequent development of recurrent wheezing/asthma. Results The s-RSV children were the youngest (P = 0.021), they experienced the most serious condition (P < 0.001) and respiratory failure (P < 0.001), they also required highest demand of oxygen therapy (P < 0.001). And in s-RSV group, the incidence of development of recurrent wheezing was significantly higher in subgroup with the family history of wheezing than that without (P < 0.001). Conclusion The s-RSV cases suffered from the worst severity of illness, respiratory failure and required highest demand of oxygen therapy. Recurrent wheezing was more common in s-RSV group with family history of wheezing than those without.
Collapse
Affiliation(s)
- Qin Ding
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Lili Xu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yun Zhu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Baoping Xu
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xiangpeng Chen
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yali Duan
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| | - Kunling Shen
- Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
17
|
Sugita K, Kabashima K. Tight junctions in the development of asthma, chronic rhinosinusitis, atopic dermatitis, eosinophilic esophagitis, and inflammatory bowel diseases. J Leukoc Biol 2020; 107:749-762. [PMID: 32108379 DOI: 10.1002/jlb.5mr0120-230r] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/12/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
This review focuses on recent developments related to asthma, chronic rhinosinusitis, atopic dermatitis (AD), eosinophilic esophagitis, and inflammatory bowel diseases (IBD), with a particular focus on tight junctions (TJs) and their role in the pathogenetic mechanisms of these diseases. Lung, skin, and intestinal surfaces are lined by epithelial cells that interact with environmental factors and immune cells. Therefore, together with the cellular immune system, the epithelium performs a pivotal role as the first line physical barrier against external antigens. Paracellular space is almost exclusively sealed by TJs and is maintained by complex protein-protein interactions. Thus, TJ dysfunction increases paracellular permeability, resulting in enhanced flux across TJs. Epithelial TJ dysfunction also causes immune cell activation and contributes to the pathogenesis of chronic lung, skin, and intestinal inflammation. Characterization of TJ protein alteration is one of the key factors for enhancing our understanding of allergic diseases as well as IBDs. Furthermore, TJ-based epithelial disturbance can promote immune cell behaviors, such as those in dendritic cells, Th2 cells, Th17 cells, and innate lymphoid cells (ILCs), thereby offering new insights into TJ-based targets. The purpose of this review is to illustrate how TJ dysfunction can lead to the disruption of the immune homeostasis in barrier tissues and subsequent inflammation. This review also highlights the various TJ barrier dysfunctions across different organ sites, which would help to develop future drugs to target allergic diseases and IBD.
Collapse
Affiliation(s)
- Kazunari Sugita
- Division of Dermatology, Department of Medicine of Sensory and Motor Organs, Tottori University Faculty of Medicine, Yonago, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
18
|
Tseng JJ, Lin CH, Lin MC. Long-Term Outcomes of Pediatric Enterovirus Infection in Taiwan: A Population-Based Cohort Study. Front Pediatr 2020; 8:285. [PMID: 32596191 PMCID: PMC7303813 DOI: 10.3389/fped.2020.00285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction: The major burden of diseases in childhood has shifted from infectious diseases to chronic health conditions in recent decades. Although the rates of infectious diseases have decreased, the incidence of chronic diseases stemming from infectious agents continues to grow. Enterovirus is a major infectious disease of childhood and has been linked to numerous chronic diseases. We analyzed population-based data from Taiwan's National Health Insurance Research Database (NHIRD) to investigate the correlations between enterovirus infection and major chronic health conditions in children. Method: Children diagnosed with enterovirus (EV) infection during 1999-2003 were identified from the Longitudinal Health Insurance Database 2000 (LHID 2000), a subdataset of Taiwan's National Health Insurance Research Database (NHIRD). A total of 14,168 patients were selected after excluding patients with existing chronic diseases and missing data. Another 14,168 children matched by age and sex were selected as the control group. Five primary outcomes, including attention deficit and hyperactivity disorder (ADHD), epilepsy, asthma, allergic rhinitis, and atopic dermatitis, were recorded. Results: The risks of ADHD, asthma, allergic rhinitis, and epilepsy were significantly increased in the EV group compared with the control group. The risk of atopic dermatitis was significantly increased in the crude model. However, there were no significant differences in the adjusted model. The risks of ADHD, asthma, allergic rhinitis, and epilepsy were also significantly increased in patients with severe EV infection compared with patients with non-severe EV infection. Conclusion: Chronic diseases, such as ADHD, epilepsy, asthma, allergic rhinitis, and atopic dermatitis were shown to be associated with enterovirus infection during childhood. EV infection during early childhood might have long-term public health implications and thus prevention strategies should be implemented.
Collapse
Affiliation(s)
- Jui-Ju Tseng
- Children's Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chien-Heng Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ming-Chih Lin
- Children's Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Food and Nutrition, Providence University, Taichung, Taiwan
| |
Collapse
|
19
|
Jha A, Dunning J, Tunstall T, Thwaites RS, Hoang LT, Kon OM, Zambon MC, Hansel TT, Openshaw PJ. Patterns of systemic and local inflammation in patients with asthma hospitalised with influenza. Eur Respir J 2019; 54:13993003.00949-2019. [PMID: 31391224 DOI: 10.1183/13993003.00949-2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Patients with asthma are at risk of hospitalisation with influenza, but the reasons for this predisposition are unknown. STUDY SETTING A prospective observational study of adults with PCR-confirmed influenza in 11 UK hospitals, measuring nasal, nasopharyngeal and systemic immune mediators and whole-blood gene expression. RESULTS Of 133 admissions, 40 (30%) had previous asthma; these were more often female (70% versus 38.7%, OR 3.69, 95% CI 1.67-8.18; p=0.0012), required less mechanical ventilation (15% versus 37.6%, Chi-squared 6.78; p=0.0338) and had shorter hospital stays (mean 8.3 versus 15.3 days, p=0.0333) than those without. In patients without asthma, severe outcomes were more frequent in those given corticosteroids (OR 2.63, 95% CI 1.02-6.96; p=0.0466) or presenting >4 days after disease onset (OR 5.49, 95% CI 2.28-14.03; p=0.0002). Influenza vaccination in at-risk groups (including asthma) were lower than intended by national policy and the early use of antiviral medications were less than optimal. Mucosal immune responses were equivalent between groups. Those with asthma had higher serum interferon (IFN)-α, but lower serum tumour necrosis factor, interleukin (IL)-5, IL-6, CXCL8, CXCL9, IL-10, IL-17 and CCL2 levels (all p<0.05); both groups had similar serum IL-13, total IgE, periostin and blood eosinophil gene expression levels. Asthma diagnosis was unrelated to viral load, IFN-α, IFN-γ, IL-5 or IL-13 levels. CONCLUSIONS Asthma is common in those hospitalised with influenza, but may not represent classical type 2-driven disease. Those admitted with influenza tend to be female with mild serum inflammatory responses, increased serum IFN-α levels and good clinical outcomes.
Collapse
Affiliation(s)
- Akhilesh Jha
- National Heart and Lung Institute, Imperial College London, St Mary's Campus, London, UK.,Dept of Medicine, University of Cambridge, Cambridge, UK
| | - Jake Dunning
- National Heart and Lung Institute, Imperial College London, St Mary's Campus, London, UK.,Public Health England (formerly Health Protection Agency), London, UK
| | - Tanushree Tunstall
- National Heart and Lung Institute, Imperial College London, St Mary's Campus, London, UK
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, St Mary's Campus, London, UK
| | - Long T Hoang
- National Heart and Lung Institute, Imperial College London, St Mary's Campus, London, UK
| | | | - Onn Min Kon
- National Heart and Lung Institute, Imperial College London, St Mary's Campus, London, UK
| | - Maria C Zambon
- Public Health England (formerly Health Protection Agency), London, UK
| | - Trevor T Hansel
- National Heart and Lung Institute, Imperial College London, St Mary's Campus, London, UK
| | - Peter J Openshaw
- National Heart and Lung Institute, Imperial College London, St Mary's Campus, London, UK
| |
Collapse
|
20
|
Abstract
Asthma is a genetically and phenotypically complex disease that has a major impact on global health. Signs and symptoms of asthma are caused by the obstruction of airflow through the airways. The epithelium that lines the airways plays a major role in maintaining airway patency and in host defense. The epithelium initiates responses to inhaled or aspirated substances, including allergens, viruses, and bacteria, and epithelial-derived cytokines are important in the recruitment and activation of immune cells in the airway. Changes in the structure and function of the airway epithelium are a prominent feature of asthma. Approximately half of individuals with asthma have evidence of active type 2 immune responses in the airway. In these individuals, epithelial cytokines promote type 2 responses, and responses to type 2 cytokines result in increased epithelial mucus production and other effects that cause airway obstruction. Recent work also implicates other epithelial responses, including interleukin-17, interferon and ER stress responses, that may contribute to asthma pathogenesis and provide new targets for therapy.
Collapse
Affiliation(s)
- Luke R Bonser
- Lung Biology Center, University of California San Francisco, San Francisco, CA, United States
| | - David J Erle
- Lung Biology Center, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
21
|
Dutot M, Grassin-Delyle S, Salvator H, Brollo M, Rat P, Fagon R, Naline E, Devillier P. A marine-sourced fucoidan solution inhibits Toll-like-receptor-3-induced cytokine release by human bronchial epithelial cells. Int J Biol Macromol 2019; 130:429-436. [PMID: 30797011 PMCID: PMC7112488 DOI: 10.1016/j.ijbiomac.2019.02.113] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/08/2019] [Accepted: 02/19/2019] [Indexed: 12/28/2022]
Abstract
Fucoidans are sulfated polysaccharides from brown algae, known to have immunomodulatory activity. Their effects on the response of airway epithelial cells to Toll-like receptor 3 (TLR3) stimulation have not been characterized. Our objective was to evaluate the effects of a marine-sourced fucoidan solution (MFS) on the TLR3-induced expression and/or production of cytokines and prostaglandin by human primary bronchial epithelial cells as a model of the airway epithelium. The cells were incubated with MFS in the presence or absence of Poly(I:C) (a TLR3 agonist that mimics viral RNA). Cytokine expression and production were assessed using RT-qPCR and ELISA. The expression of cyclooxygenase-2 and the production of prostaglandin E2 were also measured. Relative to control, exposure to MFS was associated with lower Poly(I:C)-induced mRNA expression of various cytokines and chemokines, and lower COX-2 production. The MFS inhibited the production of some cytokines (IL-1α, IL-1β, TNFα, and IL-6), chemokines (CCL5, CCL22, CXCL1, CXCL5 and CXCL8) and prostaglandin E2 but did not alter the production of IL-12/25, CCL2 and CCL20. At clinically relevant concentrations, the MFS inhibited the TLR3-mediated production of inflammatory mediators by human primary bronchial epithelial cells - suggesting that locally applied MFS might help to reduce airway inflammation in viral infections.
Collapse
Affiliation(s)
- M Dutot
- Yslab, F-29000 Quimper, France; CNRS UMR 8038, Laboratoire de Chimie-Toxicologie Analytique et Cellulaire, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie de Paris, F-75006 Paris, France.
| | - S Grassin-Delyle
- INSERM UMR 1173 et Plateforme de spectrométrie de masse MasSpecLab, UFR des Sciences de la Santé Simone Veil, Université Versailles Saint Quentin, Université Paris Saclay, Montigny-le-Bretonneux, France; Département des Maladies Respiratoires, Hôpital Foch, F-92150 Suresnes, France
| | - H Salvator
- Département des Maladies Respiratoires, Hôpital Foch, F-92150 Suresnes, France; Laboratoire de Pharmacologie Respiratoire, UPRES EA 220, UFR Sciences de la Santé Simone Veil, Université Versailles Saint Quentin en Yvelines, Université Paris-Saclay, F-92150 Suresnes, France
| | - M Brollo
- Département des Maladies Respiratoires, Hôpital Foch, F-92150 Suresnes, France
| | - P Rat
- CNRS UMR 8038, Laboratoire de Chimie-Toxicologie Analytique et Cellulaire, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie de Paris, F-75006 Paris, France
| | - R Fagon
- Yslab, F-29000 Quimper, France
| | - E Naline
- Département des Maladies Respiratoires, Hôpital Foch, F-92150 Suresnes, France; Laboratoire de Pharmacologie Respiratoire, UPRES EA 220, UFR Sciences de la Santé Simone Veil, Université Versailles Saint Quentin en Yvelines, Université Paris-Saclay, F-92150 Suresnes, France
| | - P Devillier
- Département des Maladies Respiratoires, Hôpital Foch, F-92150 Suresnes, France; Laboratoire de Pharmacologie Respiratoire, UPRES EA 220, UFR Sciences de la Santé Simone Veil, Université Versailles Saint Quentin en Yvelines, Université Paris-Saclay, F-92150 Suresnes, France
| |
Collapse
|
22
|
Kubo F, Ariestanti DM, Oki S, Fukuzawa T, Demizu R, Sato T, Sabirin RM, Hirose S, Nakamura N. Loss of the adhesion G-protein coupled receptor ADGRF5 in mice induces airway inflammation and the expression of CCL2 in lung endothelial cells. Respir Res 2019; 20:11. [PMID: 30654796 PMCID: PMC6337809 DOI: 10.1186/s12931-019-0973-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 01/02/2019] [Indexed: 01/09/2023] Open
Abstract
Background Adhesion G-protein coupled receptor F5 (ADGRF5) was recently identified as an essential regulator of pulmonary surfactant homeostasis in alveolar type II cells. We previously showed that in addition to abnormal surfactant accumulation, Adgrf5-deficient (Adgrf5−/−) mice exhibit emphysema-like signs, suggesting a possible role for ADGRF5 in immune regulation. Here, we extended the phenotypic analysis of Adgrf5−/− mice to help understand its biological role in the lung, and especially in immune regulation. Methods Histological features of lungs were evaluated by Alcian blue and Masson’s trichrome staining. Quantitative real-time PCR (qPCR) and western blot analyses were performed to analyze the differential expression of genes/proteins related to airway inflammation in lungs between wildtype and Adgrf5−/− mice. Acid–base status was assessed by performing blood gas tests and urine pH measurements. Inflammatory cell counting was performed using Giemsa-stained bronchoalveolar lavage cells. Serum IgE concentrations were determined by enzyme-linked immunosorbent assay. The expression of Ccl2, S100a8, S100a9, and Saa3 in primary lung endothelial cells (ECs) was determined by qPCR and/or western blotting. Finally, the effect of administrating RS504393 to 2-week-old Adgrf5−/− mice on gene expression in the lungs was analyzed by qPCR. Results Adgrf5−/− mice exhibited several features of chronic airway inflammation (mucous cell metaplasia, mucus hyperproduction, subepithelial fibrosis, respiratory acidosis, high serum IgE, mast cell accumulation, and neutrophilia) in parallel with elevated expression of genes involved in mucous cell metaplasia (Muc5ac, Muc5b, Slc26a4, and Clca1), fibrosis (Tgfb1, Col1a1, Fn1, and Tnc), and type 2 immune response (Il4, Il5, Il13, IL-25, and IL-33) at 12 and/or 30 weeks of age. In contrast, mRNA expression of Ccl2, S100a8, and S100a9 was upregulated in embryonic or neonatal Adgrf5−/− lungs as well as in lung ECs of Adgrf5−/− mice at 1 week of age. RS504393 treatment suppressed the upregulation of S100a8, S100a9, Slc26a4, and Il5 in Adgrf5−/− lungs. Conclusions Targeted disruption of ADGRF5 results in the development of airway inflammation, which is likely mediated by the type 2 immune response and possibly CCL2-mediated inflammation. ADGRF5 also has a potential role in the regulation of genes encoding CCL2 in lung ECs, thereby maintaining immune homeostasis. Electronic supplementary material The online version of this article (10.1186/s12931-019-0973-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fumimasa Kubo
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Donna Maretta Ariestanti
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Souta Oki
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Taku Fukuzawa
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Ryotaro Demizu
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Tomoya Sato
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Rahmaningsih Mara Sabirin
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.,Department of Physiology, Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, JI.Farmako Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Shigehisa Hirose
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Nobuhiro Nakamura
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259-B13 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.
| |
Collapse
|
23
|
Girkin J, Maltby S, Singanayagam A, Bartlett N, Mallia P. In vivo experimental models of infection and disease. RHINOVIRUS INFECTIONS 2019. [PMCID: PMC7149593 DOI: 10.1016/b978-0-12-816417-4.00008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human and animal models continue to play a crucial role in research to understand host immunity to rhinovirus (RV) and identify disease mechanisms. Human models have provided direct evidence that RV infection is capable of exacerbating chronic respiratory diseases and identified immunological processes that correlate with clinical disease outcomes. Mice are the most commonly used nonhuman experimental RV infection model. Although semipermissive, under defined experimental conditions sufficient replication occurs to induce host immune responses that recapitulate immunity and disease during human infection. The capacity to use genetically modified mouse strains and drug interventions has shown the mouse model to be an invaluable research tool defining causal relationships between host immunity and disease and supporting development of new treatments. Used in combination the insights achieved from human and animal experimental infection models provide complementary insights into RV biology and yield novel therapeutic options to reduce the burden of RV-induced disease.
Collapse
|
24
|
Farahnak S, Chronopoulos J, Martin JG. Nucleic Acid Sensing in Allergic Disorders. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 345:1-33. [PMID: 30904191 DOI: 10.1016/bs.ircmb.2018.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent advances indicate that there is crosstalk between allergic disorders and nucleic acid sensing. Triggers that activate inflammatory mechanisms via nucleic acid sensors affect both allergic phenotypes and anti-viral responses, depending on the timing and the order of exposure. Viral respiratory infections, such as those caused by the rhinovirus, influenza, and respiratory syncytial virus, are the most frequent cause of significant asthma exacerbations through effects mediated predominantly by TLR3. However, agonists of other nucleic acid sensors, such as TLR7/8 and TLR9 agonists, may inhibit allergic inflammation and reduce clinical manifestations of disease. The allergic state can predispose the immune system to both exaggerated responses to viral infections or protection from anti-viral inflammatory responses. TH2 cytokines appear to alter the epithelium, leading to defective viral clearance or exaggerated responses to viral infections. However, a TH2 skewed allergic response may be protective against a TH1-dependent inflammatory anti-viral response. This review briefly introduces the receptors involved in nucleic acid sensing, addresses mechanisms by which nucleic acid sensing and allergic responses can counteract one another, and discusses the strategies in experimental settings, both in animal and human studies, to harness the nucleic acid sensing machinery for the intervention of allergic disorders.
Collapse
Affiliation(s)
- Soroor Farahnak
- Meakins Christie Laboratories, Research Institute of the McGill University Health Centre and McGill University, Montreal, QC, Canada
| | - Julia Chronopoulos
- Meakins Christie Laboratories, Research Institute of the McGill University Health Centre and McGill University, Montreal, QC, Canada
| | - James G Martin
- Meakins Christie Laboratories, Research Institute of the McGill University Health Centre and McGill University, Montreal, QC, Canada.
| |
Collapse
|
25
|
Targeting of the Nasal Mucosa by Japanese Encephalitis Virus for Non-Vector-Borne Transmission. J Virol 2018; 92:JVI.01091-18. [PMID: 30282716 PMCID: PMC6258954 DOI: 10.1128/jvi.01091-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/28/2018] [Indexed: 12/31/2022] Open
Abstract
JEV, a main cause of severe viral encephalitis in humans, has a complex ecology composed of a mosquito-waterbird cycle and a cycle involving pigs, which amplifies virus transmission to mosquitoes, leading to increased human cases. JEV can be transmitted between pigs by contact in the absence of arthropod vectors. Moreover, virus or viral RNA is found in oronasal secretions and the nasal epithelium. Using nasal mucosa tissue explants and three-dimensional porcine nasal epithelial cells cultures and macrophages as ex vivo and in vitro models, we determined that the nasal epithelium could be a route of entry as well as exit for the virus. Infection of nasal epithelial cells resulted in apical and basolateral virus shedding and release of monocyte recruiting chemokines and therefore infection and replication in macrophages, which is favored by epithelial-cell-derived cytokines. The results are relevant to understand the mechanism of non-vector-borne direct transmission of JEV. The mosquito-borne Japanese encephalitis virus (JEV) causes severe central nervous system diseases and cycles between Culex mosquitoes and different vertebrates. For JEV and some other flaviviruses, oronasal transmission is described, but the mode of infection is unknown. Using nasal mucosal tissue explants and primary porcine nasal epithelial cells (NEC) at the air-liquid interface (ALI) and macrophages as ex vivo and in vitro models, we determined that the nasal epithelium could represent the route of entry and exit for JEV in pigs. Porcine NEC at the ALI exposed to with JEV resulted in apical and basolateral virus shedding and release of monocyte recruiting chemokines, indicating infection and replication in macrophages. Moreover, macrophages stimulated by alarmins, including interleukin-25, interleukin-33, and thymic stromal lymphopoietin, were more permissive to the JEV infection. Altogether, our data are important to understand the mechanism of non-vector-borne direct transmission of Japanese encephalitis virus in pigs. IMPORTANCE JEV, a main cause of severe viral encephalitis in humans, has a complex ecology composed of a mosquito-waterbird cycle and a cycle involving pigs, which amplifies virus transmission to mosquitoes, leading to increased human cases. JEV can be transmitted between pigs by contact in the absence of arthropod vectors. Moreover, virus or viral RNA is found in oronasal secretions and the nasal epithelium. Using nasal mucosa tissue explants and three-dimensional porcine nasal epithelial cells cultures and macrophages as ex vivo and in vitro models, we determined that the nasal epithelium could be a route of entry as well as exit for the virus. Infection of nasal epithelial cells resulted in apical and basolateral virus shedding and release of monocyte recruiting chemokines and therefore infection and replication in macrophages, which is favored by epithelial-cell-derived cytokines. The results are relevant to understand the mechanism of non-vector-borne direct transmission of JEV.
Collapse
|
26
|
Cheon IS, Son YM, Jiang L, Goplen NP, Kaplan MH, Limper AH, Kita H, Paczesny S, Prakash YS, Tepper R, Ahlfeld SK, Sun J. Neonatal hyperoxia promotes asthma-like features through IL-33-dependent ILC2 responses. J Allergy Clin Immunol 2018; 142:1100-1112. [PMID: 29253513 PMCID: PMC6003836 DOI: 10.1016/j.jaci.2017.11.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 11/06/2017] [Accepted: 11/24/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Premature infants often require oxygen supplementation and, therefore, are exposed to oxidative stress. Following oxygen exposure, preterm infants frequently develop chronic lung disease and have a significantly increased risk of asthma. OBJECTIVE We sought to identify the underlying mechanisms by which neonatal hyperoxia promotes asthma development. METHODS Mice were exposed to neonatal hyperoxia followed by a period of room air recovery. A group of mice was also intranasally exposed to house dust mite antigen. Assessments were performed at various time points for evaluation of airway hyperresponsiveness, eosinophilia, mucus production, inflammatory gene expression, and TH and group 2 innate lymphoid cell (ILC2) responses. Sera from term- and preterm-born infants were also collected and levels of IL-33 and type 2 cytokines were measured. RESULTS Neonatal hyperoxia induced asthma-like features including airway hyperresponsiveness, mucus hyperplasia, airway eosinophilia, and type 2 pulmonary inflammation. In addition, neonatal hyperoxia promoted allergic TH responses to house dust mite exposure. Elevated IL-33 levels and ILC2 responses were observed in the lungs most likely due to oxidative stress caused by neonatal hyperoxia. IL-33 receptor signaling and ILC2s were vital for the induction of asthma-like features following neonatal hyperoxia. Serum IL-33 levels correlated significantly with serum levels of IL-5 and IL-13 but not IL-4 in preterm infants. CONCLUSIONS These data demonstrate that an axis involving IL-33 and ILC2s is important for the development of asthma-like features following neonatal hyperoxia and suggest therapeutic potential for targeting IL-33, ILC2s, and oxidative stress to prevent and/or treat asthma development related to prematurity.
Collapse
Affiliation(s)
- In Su Cheon
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Ind; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minn
| | - Young Min Son
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Ind; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minn
| | - Li Jiang
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Ind; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minn
| | - Nicholas P Goplen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minn
| | - Mark H Kaplan
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Ind
| | - Andrew H Limper
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minn
| | - Hirohito Kita
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minn
| | - Sophie Paczesny
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Ind
| | - Y S Prakash
- Department of Anesthesiology, Mayo Clinic College of Medicine and Science, Rochester, Minn; Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minn
| | - Robert Tepper
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Ind
| | - Shawn K Ahlfeld
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Ind; Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Jie Sun
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Ind; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minn; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minn.
| |
Collapse
|
27
|
Haag P, Sharma H, Rauh M, Zimmermann T, Vuorinen T, Papadopoulos NG, Weiss ST, Finotto S. Soluble ST2 regulation by rhinovirus and 25(OH)-vitamin D3 in the blood of asthmatic children. Clin Exp Immunol 2018; 193:207-220. [PMID: 29645082 PMCID: PMC6046486 DOI: 10.1111/cei.13135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2018] [Indexed: 12/27/2022] Open
Abstract
Paediatric asthma exacerbations are often caused by rhinovirus (RV). Moreover, 25(OH)-vitamin D3 (VitD3) deficiency during infancy was found associated with asthma. Here, we investigated the innate immune responses to RV and their possible modulation by 25(OH)-VitD3 serum levels in a preschool cohort of children with and without asthma. The innate lymphoid cell type 2 (ILC2)-associated marker, ST2, was found up-regulated in the blood cells of asthmatic children with low serum levels of 25(OH)-VitD3 in the absence of RV in their airways. Furthermore, in blood cells from control and asthmatic children with RV in their airways, soluble (s) ST2 (sST2) protein was found reduced. Asthmatic children with low 25(OH)-VitD3 in serum and with RV in vivo in their airways at the time of the analysis had the lowest sST2 protein levels in the peripheral blood compared to control children without RV and high levels of 25(OH)-VitD3. Amphiregulin (AREG), another ILC2-associated marker, was found induced in the control children with RV in their airways and low serum levels of 25(OH)-VitD3. In conclusion, the anti-inflammatory soluble form of ST2, also known as sST2, in serum correlated directly with interleukin (IL)-33 in the airways of asthmatic children. Furthermore, RV colonization in the airways and low serum levels of 25(OH)-VitD3 were found to be associated with down-regulation of sST2 in serum in paediatric asthma. These data indicate a counter-regulatory role of 25(OH)-VitD3 on RV-induced down-regulation of serum sST2 in paediatric asthma, which is relevant for the therapy of this disease.
Collapse
Affiliation(s)
- P. Haag
- Department of Molecular PneumologyFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg, Universitätsklinikum ErlangenErlangenGermany
| | - H. Sharma
- Translational Genomics Core, Partners Biobank, Partners HealthCare, Personalized MedicineCambridgeMAUSA
| | - M. Rauh
- Department of Allergy and Pneumology, Children's HospitalFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg, Universitätsklinikum ErlangenErlangenGermany
| | - T. Zimmermann
- Department of Allergy and Pneumology, Children's HospitalFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg, Universitätsklinikum ErlangenErlangenGermany
| | - T. Vuorinen
- Department of VirologyUniversity of TurkuTurkuFinland
| | - N. G. Papadopoulos
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and KapodistriaUniversity of AthensAthensGreece
| | - S. T. Weiss
- Translational Genomics Core, Partners Biobank, Partners HealthCare, Personalized MedicineCambridgeMAUSA
| | - S. Finotto
- Department of Molecular PneumologyFriedrich‐Alexander‐Universität (FAU) Erlangen‐Nürnberg, Universitätsklinikum ErlangenErlangenGermany
| |
Collapse
|
28
|
Ma M, Redes JL, Percopo CM, Druey KM, Rosenberg HF. Alternaria alternata challenge at the nasal mucosa results in eosinophilic inflammation and increased susceptibility to influenza virus infection. Clin Exp Allergy 2018; 48:691-702. [PMID: 29473965 PMCID: PMC5992052 DOI: 10.1111/cea.13123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/17/2018] [Accepted: 02/05/2018] [Indexed: 01/14/2023]
Abstract
BACKGROUND Eosinophils in the nasal mucosa are an elemental feature of allergic rhinitis. OBJECTIVE Our objective was to explore eosinophilic inflammation and its impact on respiratory virus infection at the nasal mucosa. METHODS Inflammation in the nasal mucosae of mice was evaluated in response to repetitive stimulation with strict intranasal volumes of a filtrate of Alternaria alternata. Mice were then challenged with influenza virus. RESULTS Repetitive stimulation with A. alternata resulted in eosinophil recruitment to the nasal passages in association with elevated levels of IL-5, IL-13 and eotaxin-1; eosinophil recruitment was diminished in eotaxin-1-/- mice, and abolished in Rag1-/- mice. A. alternata also resulted in elevated levels of nasal wash IgA in both wild-type and eosinophil-deficient ∆dblGATA mice. Interestingly, A. alternata-treated mice responded to an influenza virus infection with profound weight loss and mortality compared to mice that received diluent alone (0% vs 100% survival, ***P < .001); the lethal response was blunted when A. alternata was heat-inactivated. Minimal differences in virus titre were detected, and eosinophils present in the nasal passages at the time of virus inoculation provided no protection against the lethal sequelae. Interestingly, nasal wash fluids from mice treated with A. alternata included more neutrophils and higher levels of pro-inflammatory mediators in response to virus challenge, among these, IL-6, a biomarker for disease severity in human influenza. CONCLUSIONS AND CLINICAL RELEVANCE Repetitive administration of A. alternata resulted in inflammation of the nasal mucosae and unanticipated morbidity and mortality in response to subsequent challenge with influenza virus. Interestingly, and in contrast to findings in the lower airways, eosinophils recruited to the nasal passages provided no protection against lethal infection. As increased susceptibility to influenza virus among individuals with rhinitis has been the subject of several clinical reports, this model may be used for further exploration of these observations.
Collapse
Affiliation(s)
- Michelle Ma
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Jamie L. Redes
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Caroline M. Percopo
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Kirk M. Druey
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Helene F. Rosenberg
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
29
|
Foster PS, Maltby S, Rosenberg HF, Tay HL, Hogan SP, Collison AM, Yang M, Kaiko GE, Hansbro PM, Kumar RK, Mattes J. Modeling T H 2 responses and airway inflammation to understand fundamental mechanisms regulating the pathogenesis of asthma. Immunol Rev 2018; 278:20-40. [PMID: 28658543 DOI: 10.1111/imr.12549] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 02/25/2017] [Indexed: 12/12/2022]
Abstract
In this review, we highlight experiments conducted in our laboratories that have elucidated functional roles for CD4+ T-helper type-2 lymphocytes (TH 2 cells), their associated cytokines, and eosinophils in the regulation of hallmark features of allergic asthma. Notably, we consider the complexity of type-2 responses and studies that have explored integrated signaling among classical TH 2 cytokines (IL-4, IL-5, and IL-13), which together with CCL11 (eotaxin-1) regulate critical aspects of eosinophil recruitment, allergic inflammation, and airway hyper-responsiveness (AHR). Among our most important findings, we have provided evidence that the initiation of TH 2 responses is regulated by airway epithelial cell-derived factors, including TRAIL and MID1, which promote TH 2 cell development via STAT6-dependent pathways. Further, we highlight studies demonstrating that microRNAs are key regulators of allergic inflammation and potential targets for anti-inflammatory therapy. On the background of TH 2 inflammation, we have demonstrated that innate immune cells (notably, airway macrophages) play essential roles in the generation of steroid-resistant inflammation and AHR secondary to allergen- and pathogen-induced exacerbations. Our work clearly indicates that understanding the diversity and spatiotemporal role of the inflammatory response and its interactions with resident airway cells is critical to advancing knowledge on asthma pathogenesis and the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Paul S Foster
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Steven Maltby
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Helene F Rosenberg
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Hock L Tay
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Simon P Hogan
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Adam M Collison
- Paediatric Respiratory and Sleep Medicine Unit, Priority Research Centre for Healthy Lungs and GrowUpWell, University of Newcastle and Hunter Medical Research Institute, John Hunter Children's Hospital, Newcastle, NSW, Australia
| | - Ming Yang
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Gerard E Kaiko
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW, Australia
| | - Rakesh K Kumar
- Pathology, UNSW Sydney, School of Medical Sciences, Sydney, NSW, Australia
| | - Joerg Mattes
- Paediatric Respiratory and Sleep Medicine Unit, Priority Research Centre for Healthy Lungs and GrowUpWell, University of Newcastle and Hunter Medical Research Institute, John Hunter Children's Hospital, Newcastle, NSW, Australia
| |
Collapse
|
30
|
Porsbjerg C, Sverrild A, Baines KJ, Searles A, Maltby S, Foster PS, Brightling C, Gibson PG. Advancing the management of obstructive airways diseases through translational research. Clin Exp Allergy 2018; 48:493-501. [PMID: 29412485 DOI: 10.1111/cea.13112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Obstructive airways diseases (OAD) represent a huge burden of illness world-wide, and in spite of the development of effective therapies, significant morbidity and mortality related to asthma and COPD still remains. Over the past decade, our understanding of OAD has improved vastly, and novel treatments have evolved. This evolution is the result of successful translational research, which has connected clinical presentations of OAD and underlying disease mechanisms, thereby enabling the development of targeted treatments. The next challenge of translational research will be to position these novel treatments for OAD for optimal clinical use. At the same time, there is great potential in these treatments providing even better insights into disease mechanisms in OAD by studying the effects of blocking individual immunological pathways. To optimize this potential, there is a need to ensure that translational aspects are added to randomized clinical trials, as well as real-world studies, but also to use other trial designs such as platform studies, which allow for simultaneous assessment of different interventions. Furthermore, demonstrating clinical impact, that is research translation, is an increasingly important component of successful translational research. This review outlines concepts of translational research, exemplifying how translational research has moved management of obstructive airways diseases into the next century, with the introduction of targeted, individualized therapy. Furthermore, the review describes how these therapies may be used as research tools to further our understanding of disease mechanisms in OAD, through translational, mechanistic studies. We underline the current need for implementing basic immunological concepts into clinical care in order to optimize the use of novel targeted treatments and to further the clinical understanding of disease mechanisms. Finally, potential barriers to adoption of novel targeted therapies into routine practice and how these may be overcome are described.
Collapse
Affiliation(s)
- C Porsbjerg
- Department of Respiratory Medicine, Respiratory Research Unit, Bispebjerg University Hospital, Copenhagen, Denmark
| | - A Sverrild
- Department of Respiratory Medicine, Respiratory Research Unit, Bispebjerg University Hospital, Copenhagen, Denmark
| | - K J Baines
- Centre for Asthma and Respiratory Disease Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - A Searles
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - S Maltby
- Centre for Asthma and Respiratory Disease Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - P S Foster
- Centre for Asthma and Respiratory Diseases, and Hunter Medical Research Institute, The University of Newcastle/Royal Newcastle Hospital, Newcastle, Australia
| | - C Brightling
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, NIHR BRU Respiratory Medicine, University of Leicester, Leicester, UK
| | - P G Gibson
- Department of Respiratory and Sleep Medicine, Hunter Medical Research Institute, John Hunter Hospital, The University of Newcastle, Newcastle, Australia
| |
Collapse
|
31
|
New Insights Contributing to the Development of Effective Vaccines and Therapies to Reduce the Pathology Caused by hRSV. Int J Mol Sci 2017; 18:ijms18081753. [PMID: 28800119 PMCID: PMC5578143 DOI: 10.3390/ijms18081753] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/28/2017] [Accepted: 08/07/2017] [Indexed: 12/12/2022] Open
Abstract
Human Respiratory Syncytial Virus (hRSV) is one of the major causes of acute lower respiratory tract infections (ALRTI) worldwide, leading to significant levels of immunocompromisation as well as morbidity and mortality in infants. Its main target of infection is the ciliated epithelium of the lungs and the host immune responses elicited is ineffective at achieving viral clearance. It is thought that the lack of effective immunity against hRSV is due in part to the activity of several viral proteins that modulate the host immune response, enhancing a Th2-like pro-inflammatory state, with the secretion of cytokines that promote the infiltration of immune cells to the lungs, with consequent damage. Furthermore, the adaptive immunity triggered by hRSV infection is characterized by weak cytotoxic T cell responses and secretion of low affinity antibodies by B cells. These features of hRSV infection have meant that, to date, no effective and safe vaccines have been licensed. In this article, we will review in detail the information regarding hRSV characteristics, pathology, and host immune response, along with several prophylactic treatments and vaccine prototypes. We will also expose significant data regarding the newly developed BCG-based vaccine that promotes protective cellular and humoral response against hRSV infection, which is currently undergoing clinical evaluation.
Collapse
|
32
|
Rowe RK, Gill MA. Effects of Allergic Sensitization on Antiviral Immunity: Allergen, Virus, and Host Cell Mechanisms. Curr Allergy Asthma Rep 2017; 17:9. [PMID: 28233152 DOI: 10.1007/s11882-017-0677-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Multiple clinical and epidemiological studies demonstrate links between allergic sensitization and virus-induced atopic disease exacerbations. This review summarizes the recent findings regarding allergen, viral, and host cellular mechanisms relevant to these observations. RECENT FINDINGS Recent studies have focused on the molecular pathways and genetic influences involved in allergen-mediated inhibition of innate antiviral immune responses. Multiple tissue and cell types from atopic individuals across the atopy spectrum exhibit deficient interferon responses to a variety of virus infections. Impairment in barrier function, viral RNA and DNA recognition by intracellular sensing molecules, and dysregulation of signaling components are broadly affected by allergic sensitization. Finally, genetic predisposition by numerous nucleotide polymorphisms also impacts immune pathways and potentially contributes to virus-associated atopic disease pathogenesis. Allergen-virus interactions in the setting of atopy involve complex tissue and cellular mechanisms. Future studies defining the pathways underlying these interactions could uncover potential therapeutic targets. Available data suggest that therapies tailored to restore specific components of antiviral responses will likely lead to improved clinical outcomes in allergic disease.
Collapse
Affiliation(s)
- Regina K Rowe
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA
| | - Michelle A Gill
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA. .,Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
33
|
Deckers J, De Bosscher K, Lambrecht BN, Hammad H. Interplay between barrier epithelial cells and dendritic cells in allergic sensitization through the lung and the skin. Immunol Rev 2017; 278:131-144. [DOI: 10.1111/imr.12542] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Julie Deckers
- Department of Internal Medicine; Ghent University; Ghent Belgium
- Laboratory of Immunoregulation and Mucosal Immunology; VIB Center for Inflammation Research; Ghent Belgium
- Department of Biochemistry; Ghent University; Ghent Belgium
- Receptor Research Laboratories; Nuclear Receptor Lab; VIB Center for Medical Biotechnology; Ghent Belgium
| | - Karolien De Bosscher
- Department of Biochemistry; Ghent University; Ghent Belgium
- Receptor Research Laboratories; Nuclear Receptor Lab; VIB Center for Medical Biotechnology; Ghent Belgium
| | - Bart N Lambrecht
- Department of Internal Medicine; Ghent University; Ghent Belgium
- Laboratory of Immunoregulation and Mucosal Immunology; VIB Center for Inflammation Research; Ghent Belgium
- Department of Pulmonary Medicine; Erasmus University Medical Center; Rotterdam The Netherlands
| | - Hamida Hammad
- Department of Internal Medicine; Ghent University; Ghent Belgium
- Laboratory of Immunoregulation and Mucosal Immunology; VIB Center for Inflammation Research; Ghent Belgium
| |
Collapse
|
34
|
Amin K, Janson C, Bystrom J. Role of Eosinophil Granulocytes in Allergic Airway Inflammation Endotypes. Scand J Immunol 2017; 84:75-85. [PMID: 27167590 DOI: 10.1111/sji.12448] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/05/2016] [Indexed: 12/22/2022]
Abstract
Eosinophil granulocytes are intriguing members of the innate immunity system that have been considered important defenders during parasitic diseases as well as culprits during allergy-associated inflammatory diseases. Novel studies have, however, found new homoeostasis-maintaining roles for the cell. Recent clinical trials blocking different Th2 cytokines have uncovered that asthma is heterogeneous entity and forms different characteristic endotypes. Although eosinophils are present in allergic asthma with early onset, the cells may not be essential for the pathology. The cells are, however, likely disease causing in asthma with a late onset, which is often associated with chronic rhinosinusitis. Assessment of eosinophilia, fraction exhaled nitric oxide (FeNO) and periostin are markers that have emerged useful in assessing and monitoring asthma severity and endotype. Current scientific knowledge suggests that eosinophils are recruited by the inflammatory environment, activated by the innate interleukin (IL)-33 and prevented from apoptosis by both lymphocytes and innate immune cells such as type two innate immune cells. Eosinophils contain four specific granule proteins that exhibit an array of toxic and immune-modulatory activates. The granule proteins can be released by different mechanisms. Additionally, eosinophils contain a number of inflammatory cytokines and lipid mediators as well as radical oxygen species that might contribute to the disease both by the recruitment of other cells and the direct damage to supporting cells, leading to exacerbations and tissue fibrosis. This review aimed to outline current knowledge how eosinophils are recruited, activated and mediate damage to tissues and therapies used to control the cells.
Collapse
Affiliation(s)
- K Amin
- Department of Medical Science, Respiratory Medicine and Allergology, Clinical Chemistry and Asthma Research Centre, Uppsala University and University Hospital, Uppsala, Sweden.,Department of Microbiology/Immunology, Faculty of Medical Sciences, School of Medicine, University of Sulaimani, Sulaimani, Iraq
| | - C Janson
- Department of Medical Science, Respiratory Medicine and Allergology, Clinical Chemistry and Asthma Research Centre, Uppsala University and University Hospital, Uppsala, Sweden
| | - J Bystrom
- Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts & the London, Queen Mary, University of London, London, UK
| |
Collapse
|
35
|
Lee ZM, Huang YH, Ho SC, Kuo HC. Correlation of symptomatic enterovirus infection and later risk of allergic diseases via a population-based cohort study. Medicine (Baltimore) 2017; 96:e5827. [PMID: 28121929 PMCID: PMC5287953 DOI: 10.1097/md.0000000000005827] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Infants who are exposed to the rhinovirus or respiratory syncytial virus are at a higher risk of subsequently developing wheezing or asthma. This study aims to determine whether preschoolers with a history of symptomatic enterovirus infection are at an increased risk of developing allergic diseases or not.We used data from the Taiwan National Health Insurance Research Database from 1999 to 2006 for this nationwide population-based cohort study. The subsequent risks for allergic diseases, which included asthma (International Classification of Diseases [ICD]-9: 493.X), allergic rhinitis (AR; ICD-9 CM code 477.X), and atopic dermatitis (AD; ICD-9-CM code 691.X), were compared between herpangina (ICD-9: 074.0) and hand, foot, and mouth disease (HFMD; ICD-9: 074.3) throughout the follow-up period using the Cox proportional hazards model.In this database, 12,016 neonates were born between January 1999 and December 1999. Among them, we further evaluated 8337 subjects; 3267 children infected with either herpangina or HFMD served as the study cohort, and the other 5070 children made up the comparison cohort. Children in the herpangina group had a higher risk of developing AR and AD, with adjusted hazard ratios of 1.15 (1.02-1.30, 95% CI) and 1.38 (1.17-1.63. 95% CI), respectively, while children suffered from HFMD had decreased risks of asthma, with an adjusted hazard ratio of 0.76 (0.63-0.93, 95% CI).Children who previously suffered from herpangina experienced an increased risk of subsequently developing AD and AR. Meanwhile, children who had suffered from HFMD experienced a decrease in the subsequent occurrence of asthma compared to the general population.
Collapse
Affiliation(s)
- Zon-Min Lee
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Taiwan
| | - Ying-Hsien Huang
- Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taiwan
| | - Shu-Chen Ho
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ho-Chang Kuo
- Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taiwan
| |
Collapse
|
36
|
Cahill KN, Laidlaw TM. Pathogenesis of Aspirin-Induced Reactions in Aspirin-Exacerbated Respiratory Disease. Immunol Allergy Clin North Am 2016; 36:681-691. [DOI: 10.1016/j.iac.2016.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
37
|
Okuma Y, Okamoto Y, Yonekura S, Iinuma T, Sakurai T, Hamasaki S, Ohki Y, Yamamoto H, Sakurai D. Persistent nasal symptoms and mediator release after continuous pollen exposure in an environmental challenge chamber. Ann Allergy Asthma Immunol 2016; 117:150-7. [PMID: 27263086 DOI: 10.1016/j.anai.2016.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/15/2016] [Accepted: 05/17/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND Immediate- and late-phase reactions are associated with nasal symptoms of patients with allergic rhinitis. OBJECTIVE To examine the symptoms and mediators released after continuous allergen exposure in an environmental challenge chamber (ECC). METHODS Fifteen patients with Japanese cedar pollinosis were enrolled in this study and continuously exposed to cedar pollen at a concentration of 8,000 grains/m(3) for 3 hours in an ECC. Nasal function tests were performed, and nasal secretions were collected before pollen exposure (0 hour), immediately after exiting the ECC (3 hours), and 6 hours after exiting the ECC (9 hours). Symptom scores were recorded every 30 minutes in the ECC and every 3 hours after exiting the ECC. The frequency of sneezing and nose blowing also was monitored. RESULTS The severity of symptoms in the ECC peaked approximately 2 hours after the beginning of pollen exposure and continued more than 6 hours after leaving the ECC. Concentrations of histamine, tryptase, interleukins 5, 3, 33, and 31, and substance P increased over time, whereas that of nasal fractional exhaled nitric oxide decreased. CONCLUSION Various mediators are released during continuous allergen exposure, which subsequently induce persistent nasal symptoms. Effective treatment is required to control the intense inflammation observed after allergen exposure.
Collapse
Affiliation(s)
- Yusuke Okuma
- Department of Otolaryngology, Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yoshitaka Okamoto
- Department of Otolaryngology, Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan.
| | - Syuji Yonekura
- Department of Otolaryngology, Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tomohisa Iinuma
- Department of Otolaryngology, Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Toshioki Sakurai
- Department of Head and Neck Surgery, Chiba Cancer Center, Chiba, Japan
| | - Sawako Hamasaki
- Department of Otolaryngology, Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yuji Ohki
- Department of Otolaryngology, Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | | | - Daiju Sakurai
- Department of Otolaryngology, Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
38
|
Moss RB. Enterovirus 68 Infection--Association with Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2016; 4:226-8. [PMID: 26843407 DOI: 10.1016/j.jaip.2015.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/24/2015] [Accepted: 12/31/2015] [Indexed: 11/15/2022]
Abstract
A previously sporadic virus called enterovirus 68 (EV-D68) appears to have been associated with asthma-like illness with a predisposition for asthmatics after an outbreak that occurred in North America in 2014. Clinicians should be aware of the clinical associations with EV-D68 particularly its predilection with pre-existing asthma or asthma-like illness as well as the potential association with acute flaccid myelitis. Further elucidation and development of diagnostic and treatments modalities are warranted to better understand and limit the potential public health impact of future outbreaks of EV-D68 infection.
Collapse
|
39
|
Donovan C, Bourke JE, Vlahos R. Targeting the IL-33/IL-13 Axis for Respiratory Viral Infections. Trends Pharmacol Sci 2016; 37:252-261. [PMID: 26833119 DOI: 10.1016/j.tips.2016.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 01/13/2023]
Abstract
Lung diseases, such as asthma and chronic obstructive pulmonary disease (COPD), are highly prevalent worldwide. One of the major factors that limits the efficacy of current medication in these patients are viral infections, leading to exacerbations of symptoms and decreased quality of life. Current pharmacological strategies targeting virus-induced lung disease are problematic due to antiviral resistance and the requirement for strain-specific vaccination. Thus, new therapeutic strategies are urgently required. In this Opinion article, we provide state-of-the-art evidence from humans and preclinical animal models implicating the interleukin (IL)-33/IL-13 axis in virus-induced lung disease. Thus, targeting the IL-33/IL-13 axis may be a feasible way to overcome the limitations of current therapy used to treat virus-induced exacerbations of lung disease.
Collapse
Affiliation(s)
- Chantal Donovan
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Victoria, Australia; Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria, Australia
| | - Jane E Bourke
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Victoria, Australia; Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria, Australia
| | - Ross Vlahos
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Victoria, Australia; School of Health and Biomedical Sciences, RMIT University, Victoria, Australia.
| |
Collapse
|
40
|
Percopo CM, Rice TA, Brenner TA, Dyer KD, Luo JL, Kanakabandi K, Sturdevant DE, Porcella SF, Domachowske JB, Keicher JD, Rosenberg HF. Immunobiotic Lactobacillus administered post-exposure averts the lethal sequelae of respiratory virus infection. Antiviral Res 2015; 121:109-19. [PMID: 26145728 PMCID: PMC4536168 DOI: 10.1016/j.antiviral.2015.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/28/2015] [Accepted: 07/01/2015] [Indexed: 01/08/2023]
Abstract
We reported previously that priming of the respiratory tract with immunobiotic Lactobacillus prior to virus challenge protects mice against subsequent lethal infection with pneumonia virus of mice (PVM). We present here the results of gene microarray which document differential expression of proinflammatory mediators in response to PVM infection alone and those suppressed in response to Lactobacillus plantarum. We also demonstrate for the first time that intranasal inoculation with live or heat-inactivated L. plantarum or Lactobacillus reuteri promotes full survival from PVM infection when administered within 24h after virus challenge. Survival in response to L. plantarum administered after virus challenge is associated with suppression of proinflammatory cytokines, limited virus recovery, and diminished neutrophil recruitment to lung tissue and airways. Utilizing this post-virus challenge protocol, we found that protective responses elicited by L. plantarum at the respiratory tract were distinct from those at the gastrointestinal mucosa, as mice devoid of the anti-inflammatory cytokine, interleukin (IL)-10, exhibit survival and inflammatory responses that are indistinguishable from those of their wild-type counterparts. Finally, although L. plantarum interacts specifically with pattern recognition receptors TLR2 and NOD2, the respective gene-deleted mice were fully protected against lethal PVM infection by L. plantarum, as are mice devoid of type I interferon receptors. Taken together, L. plantarum is a versatile and flexible agent that is capable of averting the lethal sequelae of severe respiratory infection both prior to and post-virus challenge via complex and potentially redundant mechanisms.
Collapse
Affiliation(s)
- Caroline M Percopo
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tyler A Rice
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Todd A Brenner
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kimberly D Dyer
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Janice L Luo
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kishore Kanakabandi
- Genomics Unit, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Daniel E Sturdevant
- Genomics Unit, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Stephen F Porcella
- Genomics Unit, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Joseph B Domachowske
- Department of Pediatrics, Upstate Medical University, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Jesse D Keicher
- Infectious Disease, Drug Discovery, Glaxo Smith Kline, Inc., Research Triangle Park, NC, USA
| | - Helene F Rosenberg
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
41
|
Eosinophil-Derived Neurotoxin (EDN/RNase 2) and the Mouse Eosinophil-Associated RNases (mEars): Expanding Roles in Promoting Host Defense. Int J Mol Sci 2015; 16:15442-55. [PMID: 26184157 PMCID: PMC4519907 DOI: 10.3390/ijms160715442] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/18/2015] [Accepted: 06/30/2015] [Indexed: 12/30/2022] Open
Abstract
The eosinophil-derived neurotoxin (EDN/RNase2) and its divergent orthologs, the mouse eosinophil-associated RNases (mEars), are prominent secretory proteins of eosinophilic leukocytes and are all members of the larger family of RNase A-type ribonucleases. While EDN has broad antiviral activity, targeting RNA viruses via mechanisms that may require enzymatic activity, more recent studies have elucidated how these RNases may generate host defense via roles in promoting leukocyte activation, maturation, and chemotaxis. This review provides an update on recent discoveries, and highlights the versatility of this family in promoting innate immunity.
Collapse
|
42
|
|
43
|
Kim SH, Lim KH, Park HK, Lee SY, Kim SH, Kang HR, Park HW, Chang YS, Cho SH. Reduced IRF7 response to rhinovirus unrelated with DNA methylation in peripheral mononuclear cells of adult asthmatics. Asia Pac Allergy 2015; 5:114-22. [PMID: 25938076 PMCID: PMC4415177 DOI: 10.5415/apallergy.2015.5.2.114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 04/12/2015] [Indexed: 02/04/2023] Open
Abstract
Background Human rhinoviruses are the major cause of asthma exacerbation in both children and adults. Recently, impaired antiviral interferon (IFN) response in asthmatics has been indicated as a primary reason of the susceptibility to respiratory virus, but the mechanism of defective IFN production is little understood to date. The expression of IFN regulatory factor 7 (IRF7), a transcriptional factor for virus-induced type I IFN production is known to be regulated epigenetically by DNA methylation. Objective We aimed to investigate the expression of IFN-α, IFN-β, and IRF7 in response to rhinovirus infection in the adult asthmatics and evaluate DNA methylation status of IRF7 gene promotor. Methods Twenty symptomatic adult asthmatics and 10 healthy subjects were enrolled and peripheral blood was collected from each subject. Peripheral blood mononuclear cells (PBMCs) were isolated, cultured, and ex vivo stimulated with rhinovirus-16. The mRNA expressions of IFN-α, IFN-β, and IRF7 were analyzed using real time quantitative polymerase chain reaction. Genomic DNA was isolated from untreated PBMCs and the methylation status of IRF7 gene promotor was investigated using bisulfite pyrosequencing. Results The mean age of asthmatics was 45.4 ± 15.7 years and 40% was male, which were not different with those of control group. Asthmatics showed significantly decreased mRNA expressions (relative expression to beta-actin) of IFN-α and IFN-β compared with normal control. The mRNA expression of IRF7 in the asthmatics was also significantly lower than those in the normal control. No significant difference of DNA methylation was observed between asthmatics and controls in all analyzed positions of IRF7 promotor CpG loci. Conclusion The mRNA expression of type I IFN in response to rhinovirus was impaired in the PBMCs of adult asthmatics. The mRNA expression of IRF7, transcriptional factor inducing type I IFN was also reduced, but not caused by altered DNA methylation in the IRF7 gene promotor.
Collapse
Affiliation(s)
- Sae-Hoon Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-899, Korea. ; Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 110-899, Korea. ; Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 463-707, Korea
| | - Kyung-Hwan Lim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-899, Korea. ; Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 110-899, Korea
| | - Han-Ki Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-899, Korea. ; Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 110-899, Korea
| | - Suh-Young Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-899, Korea. ; Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 110-899, Korea. ; Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 463-707, Korea
| | - Soon-Hee Kim
- Biomedical Research Institute, Seoul National University Bundang Hospital, Seongnam 463-707, Korea
| | - Hye-Ryun Kang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-899, Korea. ; Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 110-899, Korea
| | - Heung-Woo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-899, Korea. ; Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 110-899, Korea
| | - Yoon-Seok Chang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-899, Korea. ; Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 110-899, Korea. ; Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 463-707, Korea
| | - Sang-Heon Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-899, Korea. ; Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 110-899, Korea
| |
Collapse
|
44
|
Jarjour NN, Esnault S. Interleukin-33: a potential link between rhinovirus infections and asthma exacerbation. Am J Respir Crit Care Med 2015; 190:1336-7. [PMID: 25496100 DOI: 10.1164/rccm.201411-1949ed] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Nizar N Jarjour
- 1 Department of Medicine University of Wisconsin School of Medicine and Public Health Madison, Wisconsin
| | | |
Collapse
|
45
|
Jackson DJ, Makrinioti H, Rana BMJ, Shamji BWH, Trujillo-Torralbo MB, Footitt J, Jerico Del-Rosario, Telcian AG, Nikonova A, Zhu J, Aniscenko J, Gogsadze L, Bakhsoliani E, Traub S, Dhariwal J, Porter J, Hunt D, Hunt T, Hunt T, Stanciu LA, Khaitov M, Bartlett NW, Edwards MR, Kon OM, Mallia P, Papadopoulos NG, Akdis CA, Westwick J, Edwards MJ, Cousins DJ, Walton RP, Johnston SL. IL-33-dependent type 2 inflammation during rhinovirus-induced asthma exacerbations in vivo. Am J Respir Crit Care Med 2015; 190:1373-82. [PMID: 25350863 DOI: 10.1164/rccm.201406-1039oc] [Citation(s) in RCA: 457] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Rhinoviruses are the major cause of asthma exacerbations; however, its underlying mechanisms are poorly understood. We hypothesized that the epithelial cell-derived cytokine IL-33 plays a central role in exacerbation pathogenesis through augmentation of type 2 inflammation. OBJECTIVES To assess whether rhinovirus induces a type 2 inflammatory response in asthma in vivo and to define a role for IL-33 in this pathway. METHODS We used a human experimental model of rhinovirus infection and novel airway sampling techniques to measure IL-4, IL-5, IL-13, and IL-33 levels in the asthmatic and healthy airways during a rhinovirus infection. Additionally, we cultured human T cells and type 2 innate lymphoid cells (ILC2s) with the supernatants of rhinovirus-infected bronchial epithelial cells (BECs) to assess type 2 cytokine production in the presence or absence of IL-33 receptor blockade. MEASUREMENTS AND MAIN RESULTS IL-4, IL-5, IL-13, and IL-33 are all induced by rhinovirus in the asthmatic airway in vivo and relate to exacerbation severity. Further, induction of IL-33 correlates with viral load and IL-5 and IL-13 levels. Rhinovirus infection of human primary BECs induced IL-33, and culture of human T cells and ILC2s with supernatants of rhinovirus-infected BECs strongly induced type 2 cytokines. This induction was entirely dependent on IL-33. CONCLUSIONS IL-33 and type 2 cytokines are induced during a rhinovirus-induced asthma exacerbation in vivo. Virus-induced IL-33 and IL-33-responsive T cells and ILC2s are key mechanistic links between viral infection and exacerbation of asthma. IL-33 inhibition is a novel therapeutic approach for asthma exacerbations.
Collapse
Affiliation(s)
- David J Jackson
- 1 Airway Disease Infection Section, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Herbert C, Zeng QX, Shanmugasundaram R, Garthwaite L, Oliver BG, Kumar RK. Response of airway epithelial cells to double-stranded RNA in an allergic environment. TRANSLATIONAL RESPIRATORY MEDICINE 2014; 2:11. [PMID: 25264520 PMCID: PMC4173067 DOI: 10.1186/s40247-014-0011-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/21/2014] [Indexed: 01/10/2023]
Abstract
Background Respiratory viral infections are the most common trigger of acute exacerbations in patients with allergic asthma. The anti-viral response of airway epithelial cells (AEC) may be impaired in asthmatics, while cytokines produced by AEC may drive the inflammatory response. We investigated whether AEC cultured in the presence of Th2 cytokines associated with an allergic environment exhibited altered responses to double-stranded RNA, a virus-like stimulus. Methods We undertook preliminary studies using the MLE-12 cell line derived from mouse distal respiratory epithelial cells, then confirmed and extended our findings using low-passage human AEC. Cells were cultured in the absence or presence of the Th2 cytokines IL-4 and IL-13 for 48 hours, then stimulated with poly I:C for 4 hours. Expression of relevant anti-viral response and cytokine genes was assessed by quantitative real-time PCR. Secretion of cytokine proteins was assessed by immunoassay. Results Following stimulation with poly I:C, MLE-12 cells pre-treated with Th2 cytokines exhibited significantly higher levels of expression of mRNA for the cytokine genes Cxcl10 and Cxcl11, as well as a trend towards increased expression of Cxcl9 and Il6. Expression of anti-viral response genes was mostly unchanged, although Stat1, Ifit1 and Ifitm3 were significantly increased in Th2 cytokine pre-treated cells. Human AEC pre-treated with IL-4 and IL-13, then stimulated with poly I:C, similarly exhibited significantly higher expression of IL8, CXCL9, CXCL10, CXCL11 and CCL5 genes. In parallel, there was significantly increased secretion of CXCL8 and CCL5, as well as a trend towards increased secretion of CXCL10 and IL-6. Again, expression of anti-viral response genes was not decreased. Rather, there was significantly enhanced expression of mRNA for type III interferons, RNA helicases and other interferon-stimulated genes. Conclusion The Th2 cytokine environment appears to promote increased production of pro-inflammatory chemokines by AEC in response to double-stranded RNA, which could help explain the exaggerated inflammatory response to respiratory viral infection in allergic asthmatics. However, any impairment of anti-viral host defences in asthmatics appears unlikely to be a consequence of Th2 cytokine-induced downregulation of the expression of viral response genes by AEC. Electronic supplementary material The online version of this article (doi:10.1186/s40247-014-0011-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cristan Herbert
- Department of Pathology, School of Medical Sciences, UNSW Australia, Sydney, 2052 Australia
| | - Qing-Xiang Zeng
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, University of Sydney, Sydney, 2037 Australia ; Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | | | - Linda Garthwaite
- Department of Pathology, School of Medical Sciences, UNSW Australia, Sydney, 2052 Australia
| | - Brian G Oliver
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, University of Sydney, Sydney, 2037 Australia ; School of Medical & Molecular Biosciences, University of Technology Sydney, Sydney, 2007 Australia
| | - Rakesh K Kumar
- Department of Pathology, School of Medical Sciences, UNSW Australia, Sydney, 2052 Australia
| |
Collapse
|
47
|
Glineur SF, Bowen AB, Percopo CM, Garcia-Crespo KE, Dyer KD, Ochkur SI, Lee NA, Lee JJ, Domachowske JB, Rosenberg HF. Sustained inflammation and differential expression of interferons type I and III in PVM-infected interferon-gamma (IFNγ) gene-deleted mice. Virology 2014; 468-470:140-149. [PMID: 25173090 DOI: 10.1016/j.virol.2014.07.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 05/30/2014] [Accepted: 07/21/2014] [Indexed: 12/24/2022]
Abstract
Interferon gamma (IFNγ) has complex immunomodulatory and antiviral properties. While IFNγ is detected in the airways in response to infection with the pneumovirus pathogen, pneumonia virus of mice (PVM; Family Paramyxoviridae), its role in promoting disease has not been fully explored. Here, we evaluate PVM infection in IFNγ(-/-) mice. Although the IFNγ gene-deletion has no impact on weight loss, survival or virus kinetics, expression of IFNβ, IFNλ2/3 and IFN-stimulated 2-5' oligoadenylate synthetases was significantly diminished compared to wild-type counterparts. Furthermore, PVM infection in IFNγ(-/-) mice promoted prominent inflammation, including eosinophil and neutrophil infiltration into the airways and lung parenchyma, observed several days after peak virus titer. Potential mechanisms include over-production of chemoattractant and eosinophil-active cytokines (CXCL1, CCL11, CCL3 and IL5) in PVM-infected IFNγ(-/-) mice; likewise, IFNγ actively antagonized IL5-dependent eosinophil survival ex vivo. Our results may have clinical implications for pneumovirus infection in individuals with IFNγ signaling defects.
Collapse
Affiliation(s)
- Stephanie F Glineur
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aaron B Bowen
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Caroline M Percopo
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katia E Garcia-Crespo
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kimberly D Dyer
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sergei I Ochkur
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA
| | - Nancy A Lee
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA
| | - James J Lee
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA
| | - Joseph B Domachowske
- Department of Pediatrics, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Helene F Rosenberg
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|