1
|
Chen Z, Ding H, Zhu H, Huang S, Yan C, Chen ZY. Additional mechanism for selective absorption of cholesterol and phytosterols. Food Chem 2024; 458:140300. [PMID: 38964108 DOI: 10.1016/j.foodchem.2024.140300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/16/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
Phytosterols are structurally similar to cholesterol but they are much less absorbed (<2%) than cholesterol (>50%) in the intestine. We hypothesize that phytosterols are poor substrates of intestinal acyl-CoA: cholesterol acyltransferase 2 (ACAT2), and thus minimal phytosterol esters are formed and packed into chylomicrons, leading to their low absorption. Two isotope tracing models, including a radioactive hamster microsomal ACAT2 reaction model and a differentiated Caco-2 cell model, were established to examine the specificity of ACAT2 to various sterols, including cholesterol, sitosterol, stigmasterol, and campesterol. Both models consistently demonstrated that only cholesterol but not phytosterols could be efficiently esterified by ACAT2 in a time- and dose-dependent manner. Molecular docking further suggested that unfavorable interactions existed between ACAT2 and phytosterols. In conclusion, phytosterols are poor substrates of ACAT2 and thus minimally absorbed. This work provides a theoretical basis for the use of phytosterol-based supplements in treating dyslipidemia and preventing heart diseases.
Collapse
Affiliation(s)
- Zixing Chen
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China..
| | - Huafang Ding
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China..
| | - Hanyue Zhu
- School of Food Science and Engineering / Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong, China
| | - Shouhe Huang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China..
| | - Chi Yan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China..
| | - Zhen-Yu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China..
| |
Collapse
|
2
|
Khallouki F, Zennouhi W, Hajji L, Bourhia M, Benbacer L, El Bouhali B, Rezig L, Poirot M, Lizard G. Current advances in phytosterol free forms and esters: Classification, biosynthesis, chemistry, and detection. Steroids 2024; 212:109520. [PMID: 39378976 DOI: 10.1016/j.steroids.2024.109520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Phytosterols are plant sterols that are important secondary plant metabolites with significant pharmacological properties. Their presence in the plant kingdom concerns many unrelated botanical families such as oleageneous plants and cereals. The structures of phytosterols evoke those of cholesterol. These molecules are composed of a sterane ring, also known as perhydrocyclopentanophenanthrene, along with a methyl or ethyl group at C-24 in their side chains, a hydroxyl group at C-3 on ring A, and one or two double bonds in the B ring. Phytosterols display different oxidation degrees at the sterane ring and at the side chain as well as varying numbers of carbons with complex stereochemistries. Fats and water solubilities of phytosterols have been achieved by physical, chemical and enzymatic esterifications to favor their bioavailability and to improve the sensory quality of food, and the efficiency of pharmaceutic and cosmetic products. This review aims to provide comprehensive information starting from the definition and structural classification of phytosterols, and exposes an update of their biogenic relationships. Next, the synthesis of phytosterol esters and their applications as well as their effective roles as hormone precursors are discussed. Finally, a concise exploration of the latest advancements in phytosterol / oxyphytosterols analysis techniques is provided, with a particular focus on modern hyphenated techniques.
Collapse
Affiliation(s)
- Farid Khallouki
- Team of Ethnopharmacology and Pharmacognosy, Department of Biology, FSTE, Moulay Ismail University of Meknes, BP 609, 52000 Errachidia, Morocco.
| | - Wafa Zennouhi
- Team of Ethnopharmacology and Pharmacognosy, Department of Biology, FSTE, Moulay Ismail University of Meknes, BP 609, 52000 Errachidia, Morocco
| | - Lhoussain Hajji
- Department of Biology, FSM, Moulay Ismail University of Meknes, Meknes, Morocco
| | - Mohamed Bourhia
- Faculty of Medicine and Pharmacy, Ibn Zohr University, 70000 Laayoune, Morocco
| | - Laila Benbacer
- Unité de Biologie et Recherches Moléculaires Département Sciences du Vivant, Centre National de l'Energie, des Sciences et Techniques Nucléaires (CNESTEN), Rabat, Morocco
| | - Bachir El Bouhali
- Department of Biology, FSM, Moulay Ismail University of Meknes, Meknes, Morocco
| | - Leila Rezig
- University of Carthage, National Institute of Applied Sciences and Technology, LR11ES24, LIP-MB 'Laboratory of Protein Engineering and Bioactive Molecules', Tunis, Tunisia; High Institute of Food Industries, University of Carthage, Tunis, Tunisia
| | - Marc Poirot
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse III, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France
| | - Gérard Lizard
- Laboratoiry Bio-PeroxIL / EA7270, Université de Bourgogne / Inserm, 21000 Dijon, France; PHYNOHA Consulting, 21121 Fontaine-lès-Dijon, France.
| |
Collapse
|
3
|
Downham RP, Vane CH, Gannon B, Olaka LA, Barrow MP. Sewage and Organic Pollution Compounds in Nairobi River Urban Sediments Characterized by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2376-2389. [PMID: 39226373 PMCID: PMC11450967 DOI: 10.1021/jasms.4c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024]
Abstract
Nairobi River sediments from locations adjacent to the Kawangware and Kiambio slums were analyzed via Fourier transform ion cyclotron resonance mass spectrometry with atmospheric pressure photoionization (APPI-FT-ICR-MS). The data from these ultrahigh resolution, untargeted measurements provided new insights into the impacts of local anthropogenic activity, which included likely benzo- and dibenzothiophene pollution with a suspected petrogenic origin, and prominent surfactant-like compositions. Other features in the data included highly abundant tetra-oxygenated compounds, and oxygenated nitrogen compounds with sphingolipid interpretations. Most notably, several hydrocarbon and oxygenated compound classes in the sediment data featured intensity patterns consistent with steroid molecular formulas, including those associated with sewage contamination investigatory work. In support of this interpretation, standards of cholesterol, β-sitosterol, stigmasterol, coprostanol, cholestanol, and 5α-sitostanol were analyzed via APPI, to explore steroid ionization behavior. Generally, these analytes produced radical molecular ions ([M]•+), and water-loss pseudo molecular ion species ([M-H2O]•+ and [M+H-H2O]+), among various other less intense contributions. The absence of pseudo molecular protonated species ([M+H]+) was notable for these compounds, because these are often assumed to form with APPI. The standard measurements demonstrated how steroids can create the observed intensity patterns in FT-ICR-MS data, and hence these patterns have the potential to indicate sewage contamination in the analysis of other complex environmental samples. The steroid interpretation for the Kawangware and Kiambio data was further verified by subjecting the steroid standard radical molecular ions to collision-induced dissociation and comparing the detected fragments to those for the corresponding isolated ions from a Kawangware sediment sample.
Collapse
Affiliation(s)
- Rory P. Downham
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Christopher H. Vane
- British
Geological Survey, Organic Geochemistry
Facility, Keyworth, Nottingham, NG12 5GG, United Kingdom
| | - Benedict Gannon
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Lydia A. Olaka
- Technical
University of Kenya, Department of Geoscience
and Environment, P.O. Box 52428-00200, Nairobi, Kenya
| | - Mark P. Barrow
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
4
|
Kwon GE, Son HH, Moon JY, Lee A, Jung MK, Rhie S, Park MJ, Garg A, Yoo EG, Choi MH. Dried blood spot-based free sterol signatures in sitosterolemia diagnostics. Clin Chim Acta 2024; 562:119886. [PMID: 39053727 DOI: 10.1016/j.cca.2024.119886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Sitosterolemia is a rare inherited lipid metabolic disorder characterized by increased levels of plant sterols and accelerated atherosclerosis. Although early detection is beneficial for the prevention of disease progression, it is largely underdiagnosed by routine screening based on conventional lipid profiles. MATERIALS AND METHODS A gas chromatography-mass spectrometry (GC-MS)-based profiling has been developed and validated to measure the levels of biologically active free sterols, including five endogenous sterols and three plant sterols (sitosterol, campesterol, and stigmasterol) in dried blood spot (DBS). RESULTS Within- and between-run precisions were 1.4-11.1 % and 2.2-14.1 %, respectively, while the accuracies were all 86.3 ∼ 121.9 % with the correlation coefficients (r2) > 0.988 for all the sterols. In the patients (four girls and two boys, 6.5 ± 2.8 years), sitosterol levels were significantly increased, with an optimal cut-off value of 2.5 µg/mL distinguishing them from ninety-three age-matched healthy children. A cut-off value of 31.9 µg/mL differentiated the patients from six ABCG5/ABCG8 heterozygous carriers. In addition, the molecular ratios of sitosterol to cholesterol, desmosterol, and 7-dehydrocholesterol provided excellent cut-off values of 26.3, 67.6, and 21.6, respectively, to distinguish patients from both healthy controls and heterozygous carriers. CONCLUSIONS The novel DBS-based GC-MS profiling of free sterols accurately identified patients with sitosterolemia, with a performance comparable to that of a serum assay. The DBS profiling could be more feasible method in clinical practice as well as population screening programs, and it can provide diagnostic cut-off values for individual plant sterols.
Collapse
MESH Headings
- Humans
- Lipid Metabolism, Inborn Errors/blood
- Lipid Metabolism, Inborn Errors/diagnosis
- Female
- Male
- Intestinal Diseases/blood
- Intestinal Diseases/diagnosis
- Gas Chromatography-Mass Spectrometry
- Child
- Phytosterols/blood
- Phytosterols/adverse effects
- Dried Blood Spot Testing/methods
- Hypercholesterolemia/blood
- Hypercholesterolemia/diagnosis
- Child, Preschool
- ATP Binding Cassette Transporter, Subfamily G, Member 5/blood
- ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics
- Sterols/blood
- ATP Binding Cassette Transporter, Subfamily G, Member 8/blood
- ATP Binding Cassette Transporter, Subfamily G, Member 8/genetics
- Lipoproteins/blood
Collapse
Affiliation(s)
- Go Eun Kwon
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Hyun-Hwa Son
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Ju-Yeon Moon
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Ayoung Lee
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Mo Kyung Jung
- Department of Pediatrics, CHA Bundang Medical Center, Gyeonggi-do 13496, Republic of Korea
| | - Seonkyeong Rhie
- Department of Pediatrics, CHA Bundang Medical Center, Gyeonggi-do 13496, Republic of Korea
| | - Mi Jung Park
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul 01757, Republic of Korea
| | - Abhimanyu Garg
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eun-Gyong Yoo
- Department of Pediatrics, CHA Bundang Medical Center, Gyeonggi-do 13496, Republic of Korea.
| | - Man Ho Choi
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
5
|
Teng YC, Gielen MC, de Gruijter NM, Ciurtin C, Rosser EC, Karu K. Phytosterols in human serum as measured using a liquid chromatography tandem mass spectrometry. J Steroid Biochem Mol Biol 2024; 241:106519. [PMID: 38614432 DOI: 10.1016/j.jsbmb.2024.106519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
Phytosterols are lipophilic compounds found in plants with structural similarity to mammalian cholesterol. They cannot be endogenously produced by mammals and therefore always originate from diet. There has been increased interest in dietary phytosterols over the last few decades due to their association with a variety of beneficial health effects including low-density lipoprotein cholesterol lowering, anti-inflammatory and anti-cancerous effects. They are proposed as potential moderators for diseases associated with the central nervous system where cholesterol homeostasis is found to be imperative (multiple sclerosis, dementia, etc.) due to their ability to reach the brain. Here we utilised an enzyme-assisted derivatisation for sterol analysis (EADSA) in combination with a liquid chromatography tandem mass spectrometry (LC-MSn) to characterise phytosterol content in human serum. As little as 100 fg of plant sterol was injected on a reversed phase LC column. The method allows semi-quantitative measurements of phytosterols and their derivatives simultaneously with measurement of cholesterol metabolites. The identification of phytosterols in human serum was based on comparison of their LC retention times and MS2, MS3 spectra with a library of authentic standards. Free campesterol serum concentration was in the range from 0.30-4.10 µg/mL, β-sitosterol 0.16-3.37 µg/mL and fucosterol was at lowest concentration range from 0.05-0.38 µg/mL in ten individuals. This analytical methodology could be applied to the analysis of other biological fluids and tissues.
Collapse
Affiliation(s)
- Yu Chun Teng
- UCL Chemistry Mass Spectrometry Facility, 20 Gordon Street, University College London, London, United Kingdom
| | - Marie Claire Gielen
- UCL Chemistry Mass Spectrometry Facility, 20 Gordon Street, University College London, London, United Kingdom
| | - Nina M de Gruijter
- UCL Chemistry Mass Spectrometry Facility, 20 Gordon Street, University College London, London, United Kingdom; Centre for Adolescent Rheumatology Versus Arthritis at University College London, University College London Hospital and Great Ormond Street Hospital, London, United Kingdom; Centre for Rheumatology Research, Division of Medicine, University College London, London, United Kingdom
| | - Coziana Ciurtin
- Centre for Adolescent Rheumatology Versus Arthritis at University College London, University College London Hospital and Great Ormond Street Hospital, London, United Kingdom; Centre for Rheumatology Research, Division of Medicine, University College London, London, United Kingdom
| | - Elizabeth C Rosser
- Centre for Adolescent Rheumatology Versus Arthritis at University College London, University College London Hospital and Great Ormond Street Hospital, London, United Kingdom; Centre for Rheumatology Research, Division of Medicine, University College London, London, United Kingdom
| | - Kersti Karu
- UCL Chemistry Mass Spectrometry Facility, 20 Gordon Street, University College London, London, United Kingdom.
| |
Collapse
|
6
|
Evtyugin DD, Evtuguin DV, Casal S, Domingues MR. Advances and Challenges in Plant Sterol Research: Fundamentals, Analysis, Applications and Production. Molecules 2023; 28:6526. [PMID: 37764302 PMCID: PMC10535520 DOI: 10.3390/molecules28186526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Plant sterols (PS) are cholesterol-like terpenoids widely spread in the kingdom Plantae. Being the target of extensive research for more than a century, PS have topped with evidence of having beneficial effects in healthy subjects and applications in food, cosmetic and pharmaceutical industries. However, many gaps in several fields of PS's research still hinder their widespread practical applications. In fact, many of the mechanisms associated with PS supplementation and their health benefits are still not fully elucidated. Furthermore, compared to cholesterol data, many complex PS chemical structures still need to be fully characterized, especially in oxidized PS. On the other hand, PS molecules have also been the focus of structural modifications for applications in diverse areas, including not only the above-mentioned but also in e.g., drug delivery systems or alternative matrixes for functional foods and fats. All the identified drawbacks are also superimposed by the need of new PS sources and technologies for their isolation and purification, taking into account increased environmental and sustainability concerns. Accordingly, current and future trends in PS research warrant discussion.
Collapse
Affiliation(s)
- Dmitry D. Evtyugin
- CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (D.D.E.); (D.V.E.)
- LAQV-REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Dmitry V. Evtuguin
- CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (D.D.E.); (D.V.E.)
| | - Susana Casal
- LAQV-REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
7
|
Begcevic Brkovic I, Reinicke M, Chey S, Bechmann I, Ceglarek U. Characterization of Non-Cholesterol Sterols in Microglia Cell Membranes Using Targeted Mass Spectrometry. Cells 2023; 12:cells12070974. [PMID: 37048046 PMCID: PMC10093698 DOI: 10.3390/cells12070974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Non-cholesterol sterols, as well as plant sterols, cross the blood-brain barrier and, thus, can be incorporated into cell membranes, affecting the cell's inflammatory response. The aim of our work was to develop an analytical protocol for a quantitative assessment of the sterol composition within the membrane microdomains of microglia. METHODS A protocol for cell membrane isolation using OptiPrepTM gradient ultracentrifugation, in combination with a targeted mass spectrometry (LC-MS/MS)-based assay, was developed and validated for the quantitative analysis of free sterols in microglia cell membranes. RESULTS Utilizing an established LC-MS/MS assay, cholesterol and seven non-cholesterol sterols were analyzed with a limit of detection from 0.001 to 0.05 mg/L. Applying the detergent-free isolation of SIM-A9 microglia cell membranes, cholesterol (CH), desmosterol (DE), lanosterol (LA) stigmasterol (ST), beta-sitosterol (SI) and campesterol (CA) were quantified with coefficients of variations between 6 and 29% (fractions 4-6, n = 5). The highest concentrations of non-CH sterols within the microglia plasma membranes were found in the microdomain region (DE>LA>SI>ST>CA), with ratios to CH ranging from 2.3 to 435 lower abundancies. CONCLUSION By applying our newly developed and validated analytical protocol, we show that the non-CH sterol concentration is about 38% of the total sterol content in microglia membrane microdomains. Further investigations must clarify how changes in the non-sterol composition influence membrane fluidity and cell signaling.
Collapse
Affiliation(s)
- Ilijana Begcevic Brkovic
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Madlen Reinicke
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Soroth Chey
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Ingo Bechmann
- Institute of Anatomy, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| |
Collapse
|
8
|
Genome-wide meta-analysis of phytosterols reveals five novel loci and a detrimental effect on coronary atherosclerosis. Nat Commun 2022; 13:143. [PMID: 35013273 PMCID: PMC8748632 DOI: 10.1038/s41467-021-27706-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 11/22/2021] [Indexed: 12/29/2022] Open
Abstract
Phytosterol serum concentrations are under tight genetic control. The relationship between phytosterols and coronary artery disease (CAD) is controversially discussed. We perform a genome-wide meta-analysis of 32 phytosterol traits reflecting resorption, cholesterol synthesis and esterification in six studies with up to 9758 subjects and detect ten independent genome-wide significant SNPs at seven genomic loci. We confirm previously established associations at ABCG5/8 and ABO and demonstrate an extended locus heterogeneity at ABCG5/8 with different functional mechanisms. New loci comprise HMGCR, NPC1L1, PNLIPRP2, SCARB1 and APOE. Based on these results, we perform Mendelian Randomization analyses (MR) revealing a risk-increasing causal relationship of sitosterol serum concentrations and CAD, which is partly mediated by cholesterol. Here we report that phytosterols are polygenic traits. MR add evidence of both, direct and indirect causal effects of sitosterol on CAD.
Collapse
|
9
|
Hu C, Luo W, Xu J, Han X. RECOGNITION AND AVOIDANCE OF ION SOURCE-GENERATED ARTIFACTS IN LIPIDOMICS ANALYSIS. MASS SPECTROMETRY REVIEWS 2022; 41:15-31. [PMID: 32997818 PMCID: PMC8287896 DOI: 10.1002/mas.21659] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 05/04/2023]
Abstract
Lipid research is attracting more and more attention as various key roles and novel biological functions of lipids have been demonstrated and discovered in the organism. Mass spectrometry (MS)-based lipidomics approaches are the most powerful and effective tools for analysis of cellular lipidomes with very high sensitivity and specificity. However, the artifacts generated from in-source fragmentation are always present in all kinds of ion sources, even soft ionization techniques (i.e., electrospray ionization and matrix-assisted laser desorption/ionization [MALDI]). These artifacts can cause many problems for lipidomics, especially when the fragment ions correspond to/are isomeric species of other endogenous lipid species in complex biological samples. These commonly observed artifacts could lead to misannotation, false identification, and consequently, incorrect attribution of phenotypes, and will have negative impact on any MS-based lipidomics research including but not limited to biomarker discovery, drug development, etc. Liquid chromatography-MS, shotgun lipidomics, and MALDI-MS imaging are three representative lipidomics approaches in which ion source-generated artifacts are all manifested and are comprehensively summarized in this article. The strategies on how to avoid/reduce the artifacts of in-source fragmentation on lipidomics analysis are also discussed in detail. We believe that with the recognition and avoidance of ion source-generated artifacts, MS-based lipidomics approaches will provide better accuracy on comprehensive analysis of biological samples and will make greater contribution to the research on metabolism and translational/precision medicine (collectively termed functional lipidomics). © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Changfeng Hu
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, 548 Bingwen Road, Hangzhou, Zhejiang 310053, China
| | - Wenqing Luo
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, 548 Bingwen Road, Hangzhou, Zhejiang 310053, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003 China
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229 USA
- Department of Medicine – Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229 USA
| |
Collapse
|
10
|
Reinicke M, Leyh J, Zimmermann S, Chey S, Brkovic IB, Wassermann C, Landmann J, Lütjohann D, Isermann B, Bechmann I, Ceglarek U. Plant Sterol-Poor Diet Is Associated with Pro-Inflammatory Lipid Mediators in the Murine Brain. Int J Mol Sci 2021; 22:ijms222413207. [PMID: 34948003 PMCID: PMC8707069 DOI: 10.3390/ijms222413207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
Plant sterols (PSs) cannot be synthesized in mammals and are exclusively diet-derived. PSs cross the blood-brain barrier and may have anti-neuroinflammatory effects. Obesity is linked to lower intestinal uptake and blood levels of PSs, but its effects in terms of neuroinflammation—if any—remain unknown. We investigated the effect of high-fat diet-induced obesity on PSs in the brain and the effects of the PSs campesterol and β-sitosterol on in vitro microglia activation. Sterols (cholesterol, precursors, PSs) and polyunsaturated fatty acid-derived lipid mediators were measured in the food, blood, liver and brain of C57BL/6J mice. Under a PSs-poor high-fat diet, PSs levels decreased in the blood, liver and brain (>50%). This effect was reversible after 2 weeks upon changing back to a chow diet. Inflammatory thromboxane B2 and prostaglandin D2 were inversely correlated to campesterol and β-sitosterol levels in all brain regions. PSs content was determined post mortem in human cortex samples as well. In vitro, PSs accumulate in lipid rafts isolated from SIM-A9 microglia cell membranes. In summary, PSs levels in the blood, liver and brain were associated directly with PSs food content and inversely with BMI. PSs dampen pro-inflammatory lipid mediators in the brain. The identification of PSs in the human cortex in comparable concentration ranges implies the relevance of our findings for humans.
Collapse
Affiliation(s)
- Madlen Reinicke
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103 Leipzig, Germany; (M.R.); (S.Z.); (S.C.); (I.B.B.); (C.W.); (B.I.)
| | - Judith Leyh
- Institute of Anatomy, Leipzig University, Liebigstr. 13, 04103 Leipzig, Germany; (J.L.); (J.L.); (I.B.)
| | - Silke Zimmermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103 Leipzig, Germany; (M.R.); (S.Z.); (S.C.); (I.B.B.); (C.W.); (B.I.)
| | - Soroth Chey
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103 Leipzig, Germany; (M.R.); (S.Z.); (S.C.); (I.B.B.); (C.W.); (B.I.)
| | - Ilijana Begcevic Brkovic
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103 Leipzig, Germany; (M.R.); (S.Z.); (S.C.); (I.B.B.); (C.W.); (B.I.)
| | - Christin Wassermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103 Leipzig, Germany; (M.R.); (S.Z.); (S.C.); (I.B.B.); (C.W.); (B.I.)
| | - Julia Landmann
- Institute of Anatomy, Leipzig University, Liebigstr. 13, 04103 Leipzig, Germany; (J.L.); (J.L.); (I.B.)
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany;
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103 Leipzig, Germany; (M.R.); (S.Z.); (S.C.); (I.B.B.); (C.W.); (B.I.)
| | - Ingo Bechmann
- Institute of Anatomy, Leipzig University, Liebigstr. 13, 04103 Leipzig, Germany; (J.L.); (J.L.); (I.B.)
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, Leipzig University, Liebigstr. 27, 04103 Leipzig, Germany; (M.R.); (S.Z.); (S.C.); (I.B.B.); (C.W.); (B.I.)
- Correspondence: ; Tel.: +0049-341-97-2-2200
| |
Collapse
|
11
|
Ibold B, Tiemann J, Faust I, Ceglarek U, Dittrich J, Gorgels TGMF, Bergen AAB, Vanakker O, Van Gils M, Knabbe C, Hendig D. Genetic deletion of Abcc6 disturbs cholesterol homeostasis in mice. Sci Rep 2021; 11:2137. [PMID: 33483533 PMCID: PMC7822913 DOI: 10.1038/s41598-021-81573-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/22/2020] [Indexed: 02/05/2023] Open
Abstract
Genetic studies link adenosine triphosphate-binding cassette transporter C6 (ABCC6) mutations to pseudoxanthoma elasticum (PXE). ABCC6 sequence variations are correlated with altered HDL cholesterol levels and an elevated risk of coronary artery diseases. However, the role of ABCC6 in cholesterol homeostasis is not widely known. Here, we report reduced serum cholesterol and phytosterol levels in Abcc6-deficient mice, indicating an impaired sterol absorption. Ratios of cholesterol precursors to cholesterol were increased, confirmed by upregulation of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase (Hmgcr) expression, suggesting activation of cholesterol biosynthesis in Abcc6-/- mice. We found that cholesterol depletion was accompanied by a substantial decrease in HDL cholesterol mediated by lowered ApoA-I and ApoA-II protein levels and not by inhibited lecithin-cholesterol transferase activity. Additionally, higher proprotein convertase subtilisin/kexin type 9 (Pcsk9) serum levels in Abcc6-/- mice and PXE patients and elevated ApoB level in knockout mice were observed, suggesting a potentially altered very low-density lipoprotein synthesis. Our results underline the role of Abcc6 in cholesterol homeostasis and indicate impaired cholesterol metabolism as an important pathomechanism involved in PXE manifestation.
Collapse
Affiliation(s)
- Bettina Ibold
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, 32545, Bad Oeynhausen, Germany
| | - Janina Tiemann
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, 32545, Bad Oeynhausen, Germany
| | - Isabel Faust
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, 32545, Bad Oeynhausen, Germany
| | - Uta Ceglarek
- Institut für Laboratoriumsmedizin, Klinische Chemie und Molekulare Diagnostik, Universitätsklinikum Leipzig, 04103, Leipzig, Germany
| | - Julia Dittrich
- Institut für Laboratoriumsmedizin, Klinische Chemie und Molekulare Diagnostik, Universitätsklinikum Leipzig, 04103, Leipzig, Germany
| | - Theo G M F Gorgels
- University Eye Clinic Maastricht, Maastricht University Medical Center, 6202 AZ, Maastricht, The Netherlands
- Netherlands Institute for Neurosciences (NIN-KNAW), Amsterdam, The Netherlands
| | - Arthur A B Bergen
- Netherlands Institute for Neurosciences (NIN-KNAW), Amsterdam, The Netherlands
- Academic Medical Centre, University of Amsterdam, 1100 DD, Amsterdam, The Netherlands
| | - Olivier Vanakker
- Center for Medical Genetics, Ghent University Hospital, 9000, Ghent, Belgium
| | - Matthias Van Gils
- Center for Medical Genetics, Ghent University Hospital, 9000, Ghent, Belgium
| | - Cornelius Knabbe
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, 32545, Bad Oeynhausen, Germany
| | - Doris Hendig
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, 32545, Bad Oeynhausen, Germany.
| |
Collapse
|
12
|
Scholz M, Henger S, Beutner F, Teren A, Baber R, Willenberg A, Ceglarek U, Pott J, Burkhardt R, Thiery J. Cohort Profile: The Leipzig Research Center for Civilization Diseases–Heart Study (LIFE-Heart). Int J Epidemiol 2020; 49:1439-1440h. [DOI: 10.1093/ije/dyaa075] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Markus Scholz
- Institute for Medical Informatics, Statistic and Epidemiology, University of Leipzig, Leipzig, Germany
- Leipzig Research Center for Civilization Diseases (LIFE), University of Leipzig, Leipzig, Germany
| | - Sylvia Henger
- Institute for Medical Informatics, Statistic and Epidemiology, University of Leipzig, Leipzig, Germany
- Leipzig Research Center for Civilization Diseases (LIFE), University of Leipzig, Leipzig, Germany
| | - Frank Beutner
- Leipzig Research Center for Civilization Diseases (LIFE), University of Leipzig, Leipzig, Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
- Heart Center Leipzig, Leipzig, Germany
| | - Andrej Teren
- Leipzig Research Center for Civilization Diseases (LIFE), University of Leipzig, Leipzig, Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
- Heart Center Leipzig, Leipzig, Germany
| | - Ronny Baber
- Leipzig Research Center for Civilization Diseases (LIFE), University of Leipzig, Leipzig, Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Anja Willenberg
- Leipzig Research Center for Civilization Diseases (LIFE), University of Leipzig, Leipzig, Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Uta Ceglarek
- Leipzig Research Center for Civilization Diseases (LIFE), University of Leipzig, Leipzig, Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Janne Pott
- Institute for Medical Informatics, Statistic and Epidemiology, University of Leipzig, Leipzig, Germany
- Leipzig Research Center for Civilization Diseases (LIFE), University of Leipzig, Leipzig, Germany
| | - Ralph Burkhardt
- Leipzig Research Center for Civilization Diseases (LIFE), University of Leipzig, Leipzig, Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Joachim Thiery
- Leipzig Research Center for Civilization Diseases (LIFE), University of Leipzig, Leipzig, Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
13
|
Gylling H, Simonen P, Kaipiainen L, Wester I. Methodological Aspects of Phytosterol Measurements in Biological Samples. Curr Med Chem 2020; 26:6776-6785. [PMID: 30009697 DOI: 10.2174/0929867325666180713160330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/09/2018] [Accepted: 06/28/2018] [Indexed: 01/21/2023]
Abstract
Phytosterol measurement has gained a lot of interest during the last two decades after foods and supplements with added 4-desmethyl phytosterols were recognized and used as effective and safe non-pharmacologic hypocholesterolemic agents, and also after the mechanisms of intestinal absorption and hepatic excretion of sterols were unraveled. In addition, the wide use of serum phytosterols as biomarkers of cholesterol absorption has increased the interest in their measurement. In this review, the basic methods are discussed without going into details of the practical operations. The analysis includes first lipid extraction and saponification from various biologic matrices such as serum/plasma, feces, or tissues, after which the individual sterols are separated by adsorption chromatography (gas-liquid or liquid or high performance liquid chromatography) based on the polarity of the various sterols. We also deal with some specific aspects of phytosterol measurements in biological samples such as the need of harmonization of their analysis in biological samples, the discrepancies in the results of sitosterol and campesterol concentrations between different studies, and what is known about their biological day-to-day fluctuation. Phytosterols have a remarkable role in human health, so that their complicated and time consuming measurements call attention to routine ways of standardization between the sterol research laboratories.
Collapse
Affiliation(s)
- Helena Gylling
- University of Helsinki and Helsinki University Hospital, Internal Medicine, Helsinki, Finland
| | - Piia Simonen
- University of Helsinki and Helsinki University Hospital, Heart and Lung Center, Cardiology, Helsinki, Finland
| | - Leena Kaipiainen
- University of Helsinki and Helsinki University Hospital, Abdominal Center, Gastroenterology, Helsinki, Finland
| | | |
Collapse
|
14
|
Poudel A, Gachumi G, Badea I, Bashi ZD, El-Aneed A. The simultaneous quantification of phytosterols and tocopherols in liposomal formulations using validated atmospheric pressure chemical ionization- liquid chromatography -tandem mass spectrometry. J Pharm Biomed Anal 2020; 183:113104. [PMID: 32058287 DOI: 10.1016/j.jpba.2020.113104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/04/2019] [Accepted: 01/08/2020] [Indexed: 12/16/2022]
Abstract
A novel liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed and validated to simultaneously quantify phytosterols (brassicasterol, campesterol, stigmasterol and β-sitosterol) and tocopherols (alpha, beta, gamma and delta) entrapped in the lipid bilayer of a liposomal formulation. Apart from liposomes (a pharmaceutical product), the developed method was able to quantify target analytes in agricultural products, thus showing wide applications. Atmospheric pressure chemical ionization (APCI) was employed due to the enhanced ionization of phytosterols and tocopherols in comparison to electrospray ionization. Unlike published work, the chromatographic conditions were modified to simplify the analytical approach. For the first time, a simple isocratic elution (acetonitrile:methanol 99:1 v/v) was utilized for the separation of four phytosterols and four tocopherols in a single run. A substantially better baseline separation of phytosterols were obtained in comparison to reported methods by using poroshell C18 column. The method has a total run time of 7 min, which is the shortest run time among all reported quantitative methods for the simultaneous determination of four phytosterols and four tocopherols. Calibration curves for all phytosterols were linear in the range of 0.05-10 μg/mL. In the case of tocopherols, alpha tocopherol showed linear response in the range of 0.25-10 μg/mL. However, gamma and delta tocopherols exhibited quadratic relationship in the same concentration range (0.25-10 μg/mL). Validation parameters met the International Conference on Harmonization (ICH) guidelines in terms of selectivity, accuracy, precision, repeatability, sensitivity, matrix effects, dilution integrity and stability. The method was, for the first time, successfully applied for the quantifying phytosterols and tocopherols entrapped inside liposomes. An interesting chromatographic phenomenon was observed during sample analysis. Alpha tocopherol (entrapped in the liposomal lipid bilayer) was found to elute at two retention times, 2.53 min and 3.60 min. Such dual separation was not observed in calibration standards and quality controls. It was concluded that the chiral recognition ability of liposomes made up of phosphatidylcholine separated the enantiomers of alpha tocopherol, giving rise to two peaks at two different retention time. To sum, the reported novel LC-MS/MS method addresses three major analytical shortcomings, namely i)longer run time, ii)complex gradient elution and iii)poor baseline separation of phytosterols and tocopherols.
Collapse
Affiliation(s)
- Asmita Poudel
- Drug Design and Discovery Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - George Gachumi
- Drug Design and Discovery Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Ildiko Badea
- Drug Design and Discovery Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Zafer Dallal Bashi
- Drug Design and Discovery Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Anas El-Aneed
- Drug Design and Discovery Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
15
|
Ceglarek U, Dittrich J, Leopold J, Helmschrodt C, Becker S, Staab H, Richter O, Rohm S, Aust G. Free cholesterol, cholesterol precursor and plant sterol levels in atherosclerotic plaques are independently associated with symptomatic advanced carotid artery stenosis. Atherosclerosis 2019; 295:18-24. [PMID: 31981947 DOI: 10.1016/j.atherosclerosis.2019.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/11/2019] [Accepted: 12/19/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIMS Circulating sterols result either from cholesterol (CH) synthesis or intestinal uptake. They are mainly esterified and can be oxygenated. Sterols accumulate in atherosclerotic plaques whereby their clinical impact is uncertain. Here, we determined associations between circulating and plaque sterol levels in patients with advanced carotid artery stenosis in respect to a prior ischemic event and statin treatment. METHODS Free and esterified CH, CH precursors and plant sterols as well as oxysterols were quantified by liquid chromatography-tandem mass spectrometry in 63 consecutive patients undergoing carotid endarterectomy. RESULTS CH, CH precursors, plant sterols and oxysterols accumulated in carotid artery plaques. Absolute circulating sterol levels were not predictive for their corresponding plaque levels. After normalisation to CH, plant sterol but not oxysterol levels correlated between plasma and plaques. Among the circulating sterols, oxysterols occurred proportionally less in plaques. Furthermore, CH and plant sterols were less esterified in plaques than in plasma. Patients who experienced a prior ischemic event (n = 29) and asymptomatic patients had, except for lanosterol, comparable circulating sterol levels. In contrast, the absolute plaque levels of free CH, CH precursors and plant sterols as well as oxysterols were increased in symptomatic compared to asymptomatic patients. These differences remained significant for free CH, precursors and 3 out of 4 analyzed plant sterols after adjustment to the most influencing covariates - statin treatment, type 2 diabetes and age. CONCLUSIONS Increased absolute plaque levels of free CH, precursors and plant sterols predict an ischemic event in patients with advanced carotid artery stenosis.
Collapse
Affiliation(s)
- Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany
| | - Julia Dittrich
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany
| | - Jenny Leopold
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany
| | - Christin Helmschrodt
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany
| | - Susen Becker
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany
| | - Holger Staab
- Research Laboratories and Clinic of Visceral, Transplantation, Thoracic, and Vascular Surgery, Leipzig University and University Hospital Leipzig, Germany
| | - Olaf Richter
- Research Laboratories and Clinic of Visceral, Transplantation, Thoracic, and Vascular Surgery, Leipzig University and University Hospital Leipzig, Germany
| | - Silvio Rohm
- Research Laboratories and Clinic of Visceral, Transplantation, Thoracic, and Vascular Surgery, Leipzig University and University Hospital Leipzig, Germany
| | - Gabriela Aust
- Research Laboratories and Clinic of Visceral, Transplantation, Thoracic, and Vascular Surgery, Leipzig University and University Hospital Leipzig, Germany.
| |
Collapse
|
16
|
Kunz S, Matysik S. A comprehensive method to determine sterol species in human faeces by GC-triple quadrupole MS. J Steroid Biochem Mol Biol 2019; 190:99-103. [PMID: 30923016 DOI: 10.1016/j.jsbmb.2019.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/23/2019] [Indexed: 01/12/2023]
Abstract
The human gut microbiome plays a crucial role in both health and disease. Metabolites in human faeces related to microbial activity might therefore be attractive surrogate markers to track changes of microbiota induced by diet or disease. The hyphenation of gas chromatography with triple quadrupole mass spectrometry is a promising approach to increase sensitivity and selectivity as compared to single quad MS instruments. The versatility of gas chromatography-tandem mass spectrometry (GC-MS/MS) can be advantageously exploited in clinical laboratory medicine, e.g. for quantification of sterols in biological material. In this paper, we present the application of GC-MS/MS for determination of sterol components in human faeces. A serious problem of analysis of faeces is preanalytics. Uncontrolled degradation of metabolites during transport and storage of faeces before entering the clinical laboratory might occur. In our experiments we did not observe any increasing or decreasing concentration after storage of native faeces material even at room temperature. Furthermore, we answer the question of how personal metabolic responses with respect to sterols are and address the importance of sampling strategies. From a pilot study it is concluded that differentiation between high and low metabolizers is independent of the type of sampling and constant over several days.
Collapse
Affiliation(s)
- Sonja Kunz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Silke Matysik
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| |
Collapse
|
17
|
Liu Y, Wang Y, Xia Z, Wang Y, Wu Y, Gong Z. Rapid determination of phytosterols by NIRS and chemometric methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 211:336-341. [PMID: 30583164 DOI: 10.1016/j.saa.2018.12.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/10/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
Phytosterols have been extensively studied because it plays essential roles in the physiology of plants and can be used as nutritional supplement to promote human health. We use a rapid method by coupling near-infrared spectroscopy (NIRS) and chemometric techniques to quickly and efficiently determine three essential phytosterols (β-sitosterol, campesterol and stigmasterol) in vegetable oils. Continuous wavelet transform (CWT) method was adopted to remove the baseline shift in the spectra. The quantitative analysis models were constructed by partial least squares (PLS) regression and randomization test (RT) method was used to further improve the models. The optimized models were used to calculate the phytosterol contents in prediction set in order to evaluate their predictability. We have found that the phytosterol contents obtained by the optimized models and Gas Chromatography/Mass Spectrometry (GC/MS) analysis are almost consistent. The root mean square error of prediction (RMSEP) and ratio of prediction to deviation (RPD) for the three phytosterols are 525.7590, 212.2245, 65.1611 and 4.0060, 4.7195 and 3.5441, respectively. The results have proved the feasibility of the proposed method for rapid and non-destructive analysis of phytosterols in edible oils.
Collapse
Affiliation(s)
- Yan Liu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Yixin Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Zhenzhen Xia
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Science, Wuhan 430064, PR China
| | - Yingjie Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yongning Wu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Zhiyong Gong
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| |
Collapse
|
18
|
Saleh KA, Albinhassan TH, Elbehairi SEI, Alshehry MA, Alfaifi MY, Al-Ghazzawi AM, Al-Kahtani MA, Alasmari ADA. Cell Cycle Arrest in Different Cancer Cell Lines (Liver, Breast, and Colon) Induces Apoptosis under the Influence of the Chemical Content of Aeluropus lagopoides Leaf Extracts. Molecules 2019; 24:E507. [PMID: 30708938 PMCID: PMC6384719 DOI: 10.3390/molecules24030507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 01/25/2023] Open
Abstract
Natural products, especially secondary metabolites produced by plants under stressed conditions, are shown to have different pharmacological impacts from one to another. Aeluropus lagopoides is one of the common halophyte plants that survive under stressed conditions, and has been used for healing wounds and as a painkiller. The bioactivity and the chemical composition of this plant have been poorly investigated. Consequently, the chemical components of A. lagopoides leaves were extracted using hexane (nonpolar), ethyl acetate (semi-polar), and n-butanol (polar) to extract the most extensive variety of metabolites. The cytotoxicity and anticancer impact of extracted secondary metabolites were evaluated against breast (MCF-7), colon (HCT-116), and liver (HepG2) cancer cell lines using a SulphoRhodamine-B (SRB) test. Their mechanisms of action were verified by observing the appearance of apoptotic bodies using the fluorescent microscope, while their antiproliferative impacts were evaluated using a flow cytometer. Results revealed that secondary metabolites extracted using hexane and ethyl acetate had the highest cytotoxicity and thus the greatest anticancer activity effect on HepG2 with IC50 (24.29 ± 0.85 and 11.22 ± 0.679 µg/mL, respectively). On the other hand, flow cytometer results showed that secondary metabolites could inhibit the cell cycle in the G0/G1 phase. To ascertain the chemical composition⁻function relationship, the extracts were analyzed using LC-MS/MS. Accordingly, A. lagopoides hexane and ethyl acetate extracts may contain agents with anticancer potential.
Collapse
Affiliation(s)
- Kamel A Saleh
- Department of Biology, Science College, King Khalid University, P.O. Box 9004 Abha, Saudi Arabia.
| | - Tahani H Albinhassan
- Department of Biology, Science College, King Khalid University, P.O. Box 9004 Abha, Saudi Arabia.
| | - Serage Eldin I Elbehairi
- Department of Biology, Science College, King Khalid University, P.O. Box 9004 Abha, Saudi Arabia.
| | - Mohammed A Alshehry
- Department of Biology, Science College, King Khalid University, P.O. Box 9004 Abha, Saudi Arabia.
| | - Mohammad Y Alfaifi
- Department of Biology, Science College, King Khalid University, P.O. Box 9004 Abha, Saudi Arabia.
| | - Adel M Al-Ghazzawi
- Department of Chemistry, Science College, King Khalid University, P.O. Box 9004 Abha, Saudi Arabia.
| | - Mohamed A Al-Kahtani
- Department of Biology, Science College, King Khalid University, P.O. Box 9004 Abha, Saudi Arabia.
| | - Abdullah D A Alasmari
- Asser Toxicology Center, King Abduallah Street, 61441, P.O. Box 1988 Abha, Saudi Arabia.
| |
Collapse
|
19
|
Simultaneous Quantification of Ten Oxysterols Based on LC–MS/MS and its Application in Atherosclerosis Human Serum Samples. Chromatographia 2018. [DOI: 10.1007/s10337-018-3654-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Phytosterols and their derivatives: Structural diversity, distribution, metabolism, analysis, and health-promoting uses. Prog Lipid Res 2018; 70:35-61. [DOI: 10.1016/j.plipres.2018.04.001] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 01/08/2023]
|
21
|
Gachumi G, El-Aneed A. Mass Spectrometric Approaches for the Analysis of Phytosterols in Biological Samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10141-10156. [PMID: 29058915 DOI: 10.1021/acs.jafc.7b03785] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Plant sterols (phytosterols) are important structural components of plant cellular membranes, and they play a major role during development and metabolism. They have health-associated benefits, especially in lowering blood cholesterol levels. Because of their many health claims, there is a growing interest in their analysis. Although various analytical strategies have been employed in analyzing phytosterols, chromatography linked to mass spectrometry (MS) is superior due to its sensitivity. Furthermore, specificity and selectivity are enhanced by utilizing tandem mass spectrometry (MS/MS). This article reviews the various mass spectrometric strategies used for the analysis of phytosterols. It highlights the applications and limitations associated with each MS strategy in various sample matrixes such as plant, human, animal, food, and dietary supplements. GC-MS was historically the method of choice for analysis; however, the derivatization step rendered it tedious and time-consuming. On the other hand, liquid chromatography coupled to MS (LC-MS) simplifies the analysis. Many ionization techniques have been used, namely, electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and atmospheric pressure photoionization (APPI). APCI showed superiority in terms of ion intensity and consistency in ion formation, primarily forming [M + H - H2O]+ ions rather than [M + H]+. In addition, matrix assisted laser desorption ionization (MALDI) as well as ambient mass spectrometry such as direct analysis in real time (DART) have also been evaluated.
Collapse
Affiliation(s)
- George Gachumi
- College of Pharmacy and Nutrition, University of Saskatchewan , Saskatoon, Saskatchewan, Canada , S7N 5E5
| | - Anas El-Aneed
- College of Pharmacy and Nutrition, University of Saskatchewan , Saskatoon, Saskatchewan, Canada , S7N 5E5
| |
Collapse
|
22
|
Matos Cordeiro Borges M, Leijoto de Oliveira H, Bastos Borges K. Molecularly imprinted solid-phase extraction coupled with LC-APCI-MS-MS for the selective determination of serum cholesterol. Electrophoresis 2017; 38:2150-2159. [DOI: 10.1002/elps.201600489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 05/04/2017] [Accepted: 05/12/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Marcella Matos Cordeiro Borges
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei (UFSJ), Campus Dom Bosco; Fábricas; São João del-Rei minas Gerais Brazil
| | - Hanna Leijoto de Oliveira
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei (UFSJ), Campus Dom Bosco; Fábricas; São João del-Rei minas Gerais Brazil
| | - Keyller Bastos Borges
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei (UFSJ), Campus Dom Bosco; Fábricas; São João del-Rei minas Gerais Brazil
| |
Collapse
|
23
|
Weingärtner O, Lütjohann D, Plösch T, Elsässer A. Individualized lipid-lowering therapy to further reduce residual cardiovascular risk. J Steroid Biochem Mol Biol 2017; 169:198-201. [PMID: 27215141 DOI: 10.1016/j.jsbmb.2016.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 11/24/2022]
Abstract
Hypercholesterolemia is a major risk factor for cardiovascular diseases. Serum cholesterol concentrations are regulated by enteral absorption, biliary secretion, and hepatic synthesis. Statins inhibit the rate-limiting enzyme of cholesterol synthesis, HMG-CoA-reductase, and reduce serum cholesterol concentrations as well as cardiovascular morbidity and mortality. Some studies indicate that patients with high baseline cholesterol absorption may show only a small response to statin treatment in terms of cholesterol lowering. Data from genetic association studies and from the IMPROVE-IT trial show that reducing intestinal cholesterol absorption via NCP1L1 further reduces cardiovascular risk. However, some patients do not attain LDL-cholesterol targets on combination therapy. For these patients PCSK9-antibody treatment and lipid-apheresis are options to be considered. This article reviews the current literature on this issue and suggests 'individualized lipid-lowering therapy' as an approach to optimize and personalize lipid-lowering treatment of patients with hypercholesterolemia to further reduce residual cardiovascular risk.
Collapse
Affiliation(s)
- Oliver Weingärtner
- Department of Cardiology, University Hospital Oldenburg, European Medical School Oldenburg-Groningen, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.
| | - Dieter Lütjohann
- Institute for Clinical Chemistry and Clinical Pharmacology, University Clinics Bonn, Bonn, Germany
| | - Torsten Plösch
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Albrecht Elsässer
- Department of Cardiology, University Hospital Oldenburg, European Medical School Oldenburg-Groningen, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
24
|
Moon JY, Choi MH, Kim J. Metabolic profiling of cholesterol and sex steroid hormones to monitor urological diseases. Endocr Relat Cancer 2016; 23:R455-67. [PMID: 27580660 PMCID: PMC5064754 DOI: 10.1530/erc-16-0285] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 08/04/2016] [Indexed: 12/30/2022]
Abstract
Cholesterol and sex steroid hormones including androgens and estrogens play a critical role in the development and progression of urological diseases such as prostate cancer. This disease remains the most commonly diagnosed malignant tumor in men and is the leading cause of death from different cancers. Attempts to understand the role of cholesterol and steroid metabolism in urological diseases have been ongoing for many years, but despite this, our mechanistic and translational understanding remains elusive. In order to further evaluate the problem, we have taken an interest in metabolomics; a discipline dedicated to the systematic study of biologically active metabolites in cells, tissues, hair and biofluids. Recently, we provided evidence that a quantitative measurement of cholesterol and sex steroid metabolites can be successfully achieved using hair of human and mouse models. The overall goal of this short review article is to introduce current metabolomic technologies for the quantitative biomarker assay development and also to provide new insight into understanding the underlying mechanisms that trigger the pathological condition. Furthermore, this review will place a particular emphasis on how to prepare biospecimens (e.g., hair fiber), quantify molecular profiles and assess their clinical significance in various urological diseases.
Collapse
Affiliation(s)
- Ju-Yeun Moon
- Molecular Recognition Research CenterKorea Institute of Science and Technology, Seoul, Korea
| | - Man Ho Choi
- Molecular Recognition Research CenterKorea Institute of Science and Technology, Seoul, Korea
| | - Jayoung Kim
- Departments of Surgery and Biomedical SciencesCedars-Sinai Medical Center, Los Angeles, California, USA Department of MedicineUniversity of California, Los Angeles, California, USA
| |
Collapse
|
25
|
Kim D, Park JB, Choi WK, Lee SJ, Lim I, Bae SK. Simultaneous determination of β-sitosterol, campesterol, and stigmasterol in rat plasma by using LC-APCI-MS/MS: Application in a pharmacokinetic study of a titrated extract of the unsaponifiable fraction ofZea mays L. J Sep Sci 2016; 39:4060-4070. [DOI: 10.1002/jssc.201600589] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Doyun Kim
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences; The Catholic University of Korea; Bucheon Republic of Korea
| | - Jung Bae Park
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences; The Catholic University of Korea; Bucheon Republic of Korea
| | - Woong-Kee Choi
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences; The Catholic University of Korea; Bucheon Republic of Korea
| | - Seung Jun Lee
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences; The Catholic University of Korea; Bucheon Republic of Korea
| | - Ilho Lim
- College of Pharmacy; Chungbuk National University; Cheongju Chungbuk Republic of Korea
| | - Soo Kyung Bae
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences; The Catholic University of Korea; Bucheon Republic of Korea
| |
Collapse
|
26
|
Phytosterol Esterification is Markedly Decreased in Preterm Infants Receiving Routine Parenteral Nutrition. Lipids 2016; 51:1353-1361. [DOI: 10.1007/s11745-016-4197-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 09/07/2016] [Indexed: 10/21/2022]
|
27
|
A rapid method for the simultaneous quantification of the major tocopherols, carotenoids, free and esterified sterols in canola (Brassica napus) oil using normal phase liquid chromatography. Food Chem 2016; 214:147-155. [PMID: 27507459 DOI: 10.1016/j.foodchem.2016.07.059] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/01/2016] [Accepted: 07/09/2016] [Indexed: 11/20/2022]
Abstract
A normal phase high performance liquid chromatography (HPLC) method was developed to simultaneously quantify several prominent bioactive compounds in canola oil vis. α-tocopherol, γ-tocopherol, δ-tocopherol, β-carotene, lutein, β-sitosterol, campesterol and brassicasterol. The use of sequential diode array detection (DAD) and tandem mass spectrometry (MS/MS) allowed direct injection of oils, diluted in hexane without derivatisation or saponification, greatly reducing sample preparation time, and permitting the quantification of both free sterols and intact sterol esters. Further advantages over existing methods included increased analytical selectivity, and a chromatographic run time substantially less than other reported normal phase methods. The HPLC-DAD-MS/MS method was applied to freshly extracted canola oil samples as well as commercially available canola, palm fruit, sunflower and olive oils.
Collapse
|
28
|
Quantification of Sterol and Triterpenol Biomarkers in Sediments of the Cananéia-Iguape Estuarine-Lagoonal System (Brazil) by UHPLC-MS/MS. Int J Anal Chem 2016; 2016:8361375. [PMID: 27087811 PMCID: PMC4819115 DOI: 10.1155/2016/8361375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/06/2016] [Indexed: 12/04/2022] Open
Abstract
Sterols and triterpenols present in sedimentary cores from 12 stations along the Cananéia-Iguape estuarine-lagoonal system were investigated by ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Ten sterols and three triterpenols were identified and quantified, indicating both natural and anthropogenic sources. The relative distributions of sterol and triterpenol showed that the study area is submitted to organic matter (OM) from the Ribeira de Iguape River, seawater, surrounding vegetation, and plankton production. The contribution of these sources depends on the region of the estuarine-lagoonal system and the depth of sediment. Regarding anthropogenic sources, only the samples submitted to freshwater flow from the Ribeira de Iguape River presented concentration of coprostanol higher than the threshold value and diagnostic ratios, coprostanol/(coprostanol + cholestanol) and coprostanol/cholesterol, that indicate moderate contamination by domestic sewage in that area of the estuarine-lagoonal system. Therefore, the approach used herein identified the OM sources and its transport along the Cananéia-Iguape estuarine-lagoonal system (Brazil), which is a complex of lagoonal channels located in a United Nations Educational, Scientific and Cultural Organization (UNESCO) Biosphere Reserve.
Collapse
|
29
|
Grün CH, Besseau S. Normal-phase liquid chromatography–atmospheric-pressure photoionization–mass spectrometry analysis of cholesterol and phytosterol oxidation products. J Chromatogr A 2016; 1439:74-81. [DOI: 10.1016/j.chroma.2015.12.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/02/2015] [Accepted: 12/16/2015] [Indexed: 10/22/2022]
|
30
|
Frena M, Bataglion GA, Tonietto AE, Eberlin MN, Alexandre MR, Madureira LAS. Assessment of anthropogenic contamination with sterol markers in surface sediments of a tropical estuary (Itajaí-Açu, Brazil). THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 544:432-438. [PMID: 26657388 DOI: 10.1016/j.scitotenv.2015.11.137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 11/18/2015] [Accepted: 11/23/2015] [Indexed: 06/05/2023]
Abstract
The Itajaí-Açu estuarine region is one of the most important estuarine systems of south Brazil, due to the location of the Itajaí Harbor, which is the major route of international trading of the state and the largest national fishing pole landing. In addition, industries as well as urban and tourism activities are potential sources of pollution in this area. In the present study, sediment samples from 12 stations along the estuarine system were collected and extracted followed by ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) analysis. Eight sterols were identified and quantified, indicating natural and anthropogenic sources. Coprostanol concentrations ranged from <4 up to 8930 ng g(-1) of dry weight sediment with higher values being observed in the area next to the Itajaí Harbor and under influence of Itajaí-Mirim River flow, which receives wastewater from several cities. Concentrations and selected sterol ratios were useful tools used to distinguish anthropogenic and biogenic organic matter (OM) sources in the studied area, where coprostanol concentrations higher than 500 ng g(-1) were observed in 42% of the stations analyzed, indicating strong sewage contamination. Factor analysis with principal component analysis (FA/PCA) has distinguished two different groups of samples, with high and low total sterol concentrations. FA/PCA results revealed that the stations located in the estuary were separated by PC1 because they are clearly contaminated by sewage, also pointed by coprostanol/(coprostanol+cholestanol) and coprostanol/cholesterol ratios and by the higher concentrations of fecal sterols.
Collapse
Affiliation(s)
- Morgana Frena
- Universidade Federal de Santa Catarina, Departamento de Química, Campus Universitário Trindade, Florianópolis, Santa Catarina SC 88040-900, Brazil.
| | - Giovana A Bataglion
- Universidade Estadual de Campinas, Instituto de Química, Laboratório ThoMSon de Espectrometria de Massas, Campinas, São Paulo SP 13083-970, Brazil
| | - Alessandra E Tonietto
- Universidade Federal de São Carlos, Departamento de Botânica, Rodovia Washington Luis km 235, São Carlos, São Paulo 13565-905, Brazil
| | - Marcos N Eberlin
- Universidade Estadual de Campinas, Instituto de Química, Laboratório ThoMSon de Espectrometria de Massas, Campinas, São Paulo SP 13083-970, Brazil
| | - Marcelo R Alexandre
- Universidade Federal de Sergipe, Departamento de Química, São Cristóvão, Sergipe SE 49100-000, Brazil
| | - Luiz A S Madureira
- Universidade Federal de Santa Catarina, Departamento de Química, Campus Universitário Trindade, Florianópolis, Santa Catarina SC 88040-900, Brazil
| |
Collapse
|
31
|
Ceglarek U, Kresse K, Becker S, Fiedler GM, Thiery J, Quante M, Wieland R, Bartels M, Aust G. Circulating sterols as predictors of early allograft dysfunction and clinical outcome in patients undergoing liver transplantation. Metabolomics 2016; 12:182. [PMID: 27840599 PMCID: PMC5078158 DOI: 10.1007/s11306-016-1129-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 10/15/2016] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Sensitive and specific assessment of the hepatic graft metabolism after liver transplantation (LTX) is essential for early detection of postoperative dysfunction implying the need for consecutive therapeutic interventions. OBJECTIVES Here, we assessed circulating liver metabolites of the cholesterol pathway, amino acids and acylcarnitines and evaluated their predictive value on early allograft dysfunction (EAD) and clinical outcome in the context of LTX. METHODS The metabolites were quantified in the plasma of 40 liver graft recipients one day pre- and 10 days post-LTX by liquid chromatography/tandem mass spectrometry (LC-MS/MS). Plant sterols as well as cholesterol and its precursors were determined in the free and esterified form; lanosterol in the free form only. Metabolites and esterification ratios were compared to the model for early allograft function scoring (MEAF) which is calculated at day 3 post-LTX from routine parameters defining EAD. RESULTS The hepatic esterification ratio of all sterols, but not amino acids and acylcarnitine concentrations, showed substantial metabolic disturbances post-LTX and correlated to the MEAF. In ROC analysis, the low esterification ratio of β-sitosterol and stigmasterol from day 1 and of the other sterols from day 3 were predictive for a high MEAF, i.e. EAD. Additionally, the ratio of esterified β-sitosterol and free lanosterol were predictive for all days and the esterification ratio of the other sterols at day 3 or 4 post-LTX for 3-month mortality. CONCLUSION Low ratios of circulating esterified sterols are associated with a high risk of EAD and impaired clinical outcome in the early postoperative phase following LTX.
Collapse
Affiliation(s)
- Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, University of Leipzig, 04103 Leipzig, Germany
- LIFE–Leipzig Research Center for Civilization Diseases, University Leipzig, Philipp-Rosenthal-Strasse 27, 04103 Leipzig, Germany
| | - Kathleen Kresse
- Research Laboratories and Clinic of Visceral, Transplantation, Thoracic, and Vascular Surgery, University Hospital Leipzig, University of Leipzig, Liebigstraße 19, 04103 Leipzig, Germany
| | - Susen Becker
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, University of Leipzig, 04103 Leipzig, Germany
- LIFE–Leipzig Research Center for Civilization Diseases, University Leipzig, Philipp-Rosenthal-Strasse 27, 04103 Leipzig, Germany
| | - Georg Martin Fiedler
- Department of Laboratory Medicine, Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Joachim Thiery
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, University of Leipzig, 04103 Leipzig, Germany
- LIFE–Leipzig Research Center for Civilization Diseases, University Leipzig, Philipp-Rosenthal-Strasse 27, 04103 Leipzig, Germany
| | - Markus Quante
- Research Laboratories and Clinic of Visceral, Transplantation, Thoracic, and Vascular Surgery, University Hospital Leipzig, University of Leipzig, Liebigstraße 19, 04103 Leipzig, Germany
| | - Robert Wieland
- Research Laboratories and Clinic of Visceral, Transplantation, Thoracic, and Vascular Surgery, University Hospital Leipzig, University of Leipzig, Liebigstraße 19, 04103 Leipzig, Germany
| | - Michael Bartels
- Research Laboratories and Clinic of Visceral, Transplantation, Thoracic, and Vascular Surgery, University Hospital Leipzig, University of Leipzig, Liebigstraße 19, 04103 Leipzig, Germany
| | - Gabriela Aust
- Research Laboratories and Clinic of Visceral, Transplantation, Thoracic, and Vascular Surgery, University Hospital Leipzig, University of Leipzig, Liebigstraße 19, 04103 Leipzig, Germany
| |
Collapse
|
32
|
van Agthoven MA, Barrow MP, Chiron L, Coutouly MA, Kilgour D, Wootton CA, Wei J, Soulby A, Delsuc MA, Rolando C, O'Connor PB. Differentiating Fragmentation Pathways of Cholesterol by Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:2105-14. [PMID: 26184984 DOI: 10.1007/s13361-015-1226-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 05/21/2023]
Abstract
Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry is a data-independent analytical method that records the fragmentation patterns of all the compounds in a sample. This study shows the implementation of atmospheric pressure photoionization with two-dimensional (2D) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated. This study shows the use of fragment ion lines, precursor ion lines, and neutral loss lines in the 2D mass spectrum to determine fragmentation mechanisms of known compounds and to gain information on unknown ion species in the spectrum. In concert with high resolution mass spectrometry, 2D Fourier transform ion cyclotron resonance mass spectrometry can be a useful tool for the structural analysis of small molecules. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
| | - Mark P Barrow
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Lionel Chiron
- NMRTEC, Bld. Sébastien Brandt, Bioparc - Bat. B, 67400, Illkirch-Graffenstaden, France
| | - Marie-Aude Coutouly
- NMRTEC, Bld. Sébastien Brandt, Bioparc - Bat. B, 67400, Illkirch-Graffenstaden, France
| | - David Kilgour
- School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | | | - Juan Wei
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Andrew Soulby
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Marc-André Delsuc
- NMRTEC, Bld. Sébastien Brandt, Bioparc - Bat. B, 67400, Illkirch-Graffenstaden, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, U596; CNRS, UMR7104, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch-Graffenstaden, France
| | - Christian Rolando
- Miniaturisation pour la Synthèse, l'Analyse & la Protéomique (MSAP), USR CNRS 3290, and Protéomique, Modifications Post-traductionnelles et Glycobiologie, IFR 147 and Institut Eugène-Michel Chevreul, FR CNRS 2638, Université de Lille 1 Sciences et Technologies, 59655, Villeneuve d'Ascq Cedex, France
| | - Peter B O'Connor
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
33
|
Bataglion GA, Meurer E, de Albergaria-Barbosa ACR, Bícego MC, Weber RR, Eberlin MN. Determination of Geochemically Important Sterols and Triterpenols in Sediments Using Ultrahigh-Performance Liquid Chromatography Tandem Mass Spectrometry (UHPLC-MS/MS). Anal Chem 2015; 87:7771-8. [PMID: 26132310 DOI: 10.1021/acs.analchem.5b01517] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A fast, sensitive, and selective ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method that is able to quantify geochemical biomarkers in sediment is described. A pool of 10 sterols, which can be used as biomarkers of autochthonous (cholesterol, cholestanol, brassicasterol, ergosterol), allochthonous (stigmasterol, β-sitosterol, campesterol, and stigmastanol) and anthropogenic (coprostanol and epicoprostanol) organic matter (OM), and three triterpenols (lupeol, α-amyrin, and β-amyrin) were chosen as the analytes. The method showed excellent analytical parameters, and, compared with the traditional GC-MS methods that are commonly applied for the analysis of sterols, this method requires no sample cleanup or derivatization and presents improved values for the LOD and LOQ. UHPLC can separate the diastereoisomers (epicoprostanol, coprostanol, and cholestanol) and the isomers (lupeol, α-amyrin, and β-amyrin). The method was successfully applied for the quantification of the biomarkers, and thus, it was applied to assess the OM sources and the impacts of anthropogenic activities in sediments from different environments, such as Antarctica and other Brazilian systems (Continental Shelf, São Sebastião Channel, and Santos Estuary). Unique profiles of the biomarkers were observed for the contrasting environments, and β-amyrin and cholesterol were more predominant in the Santos Estuary and Antarctica samples, respectively. The sterol ratios indicated a higher level of sewage contamination in the Santos Estuary.
Collapse
Affiliation(s)
- Giovana Anceski Bataglion
- †ThoMSon Mass Spectrometry Laboratory, Chemistry Institute, University of Campinas (Unicamp), 13083-970, Campinas, SP, Brazil
| | - Eduardo Meurer
- †ThoMSon Mass Spectrometry Laboratory, Chemistry Institute, University of Campinas (Unicamp), 13083-970, Campinas, SP, Brazil
| | | | - Márcia Caruso Bícego
- ‡Marine Organic Chemistry Laboratory, Oceanography Institute, University of São Paulo (USP), 05508-120, São Paulo, SP, Brazil
| | - Rolf Roland Weber
- ‡Marine Organic Chemistry Laboratory, Oceanography Institute, University of São Paulo (USP), 05508-120, São Paulo, SP, Brazil
| | - Marcos Nogueira Eberlin
- †ThoMSon Mass Spectrometry Laboratory, Chemistry Institute, University of Campinas (Unicamp), 13083-970, Campinas, SP, Brazil
| |
Collapse
|
34
|
Karuna R, Christen I, Sailer AW, Bitsch F, Zhang J. Detection of dihydroxycholesterols in human plasma using HPLC-ESI-MS/MS. Steroids 2015; 99:131-8. [PMID: 25683891 DOI: 10.1016/j.steroids.2015.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/27/2015] [Accepted: 02/02/2015] [Indexed: 11/21/2022]
Abstract
We report a straightforward sample preparation procedure and a direct liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) method for the analysis of 7alpha,25-dihydroxycholesterol (7α25-OHC) and 7alpha,27-dihydroxycholesterol (7α27-OHC). By applying a slow protein precipitation approach using cold ethanol, we were able to detect and quantify 7α25-OHC and 7α27-OHC in a fast and reliable manner. The average concentrations from 20 healthy individuals were determined to be 0.21±0.05nM for 7α25-OHC and 3.4±0.1nM for 7α27-OHC. In addition, we are the first to report the average degrees of esterification (n=8) to be 73.8% and 82% for 7α25-OHC and 7α27-OHC, respectively. Using the established method, we achieved the sensitivity sufficient for detecting low abundant dihydroxylated oxysterols in healthy individuals. This result should enable extension of these studies towards a comprehensive analysis of oxysterol levels under disease conditions.
Collapse
Affiliation(s)
- Ratna Karuna
- Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland.
| | - Isabelle Christen
- Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Andreas W Sailer
- Developmental & Molecular Pathways, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Francis Bitsch
- Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Juan Zhang
- Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland.
| |
Collapse
|
35
|
LC–MS/MS-based quantification of cholesterol and related metabolites in dried blood for the screening of inborn errors of sterol metabolism. Anal Bioanal Chem 2015; 407:5227-33. [DOI: 10.1007/s00216-015-8731-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/17/2015] [Accepted: 04/21/2015] [Indexed: 10/23/2022]
|
36
|
Rathee D, Rathee S, Rathee P, Deep A, Anandjiwala S, Rathee D. HPTLC densitometric quantification of stigmasterol and lupeol from Ficus religiosa. ARAB J CHEM 2015. [DOI: 10.1016/j.arabjc.2011.01.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
37
|
Zander J, Bruegel M, Kleinhempel A, Becker S, Petros S, Kortz L, Dorow J, Kratzsch J, Baber R, Ceglarek U, Thiery J, Teupser D. Effect of biobanking conditions on short-term stability of biomarkers in human serum and plasma. Clin Chem Lab Med 2014; 52:629-39. [PMID: 24327528 DOI: 10.1515/cclm-2013-0705] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/06/2013] [Indexed: 11/15/2022]
Abstract
BACKGROUND Liquid biobanking is an important tool for laboratory diagnostics in routine settings and clinical studies. However, the current knowledge about adequate storage conditions for different classes of biomarkers is incomplete and, in part, contradictory. Here, we performed a comprehensive study on the effects of different storage conditions on the stability of various biomarkers in human serum and plasma. METHODS Serum and citrated plasma were aliquoted and stored at 4 °C, -20 °C, -80 °C, and <-130 °C for 0, 7, 30, and 90 days, respectively (5-10 pools/condition). Additionally, frozen aliquots were temporarily exposed to higher temperatures during storage to simulate removing individual samples. Stability was tested for 32 biomarkers from 10 different parameter classes (electrolytes, enzymes, metabolites, inert proteins, complement factors, ketone bodies, hormones, cytokines, coagulation factors, and sterols). RESULTS Biobanking at -80 °C and <-130 °C for up to 90 days did not lead to substantial changes (defined as >3 interassay coefficients of variation and p<0.01) of any biomarker concentration. In contrast, storage at 4 °C and -20 °C induced substantial changes in single biomarker concentrations in most classes. Such substantial changes were increases (<20%) in electrolytes, metabolites, and proteins, and decreases (<96%) in enzymes, ketone bodies, cytokines, and coagulation factors. Biomarker stability was minimally affected by occasional short-term thermal exposure. CONCLUSIONS Based on these results, we provide recommendations for storage conditions of up to 90 days for several biomarkers. Generally, storage at ≤-80 °C for at least 90 days including occasional short-term thermal exposure is an excellent storage condition for most biomarkers.
Collapse
|
38
|
Sander M, Becker S, Thiery J, Ceglarek U. Simultaneous Identification and Quantification of Triacyglycerol Species in Human Plasma by Flow-Injection Electrospray Ionization Tandem Mass Spectrometry. Chromatographia 2014. [DOI: 10.1007/s10337-014-2782-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
39
|
Fredenhagen A, Kühnöl J. Evaluation of the optimization space for atmospheric pressure photoionization (APPI) in comparison with APCI. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:727-736. [PMID: 25044900 DOI: 10.1002/jms.3401] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/21/2014] [Accepted: 05/21/2014] [Indexed: 06/03/2023]
Abstract
The usefulness of atmospheric pressure photoionization (APPI) is difficult to evaluate for unknowns due to the fragmented literature. Specifically, the variation of dopants with a wide set of compounds or the use of APPI in the negative mode have rarely been explored. Thirty compounds were selected that were not suitable for ESI with a wide variety of functional groups and investigated with atmospheric pressure chemical ionization (APCI) and APPI in the positive and negative ion modes. The influence of the mobile phase (eluents containing acetonitrile or methanol) and--for APPI--four different dopants (acetone, chlorobenzene, toluene, and toluene/anisole) were explored. Stepwise variation of the organic mobile phase allowed to elucidate the ionization mechanism. Atmospheric pressure photoionization was especially useful for compounds, where the M(●+) and not the [M + H](+) was formed. The dopants chlorobenzene and anisole promoted the formation of molecular ions M(●+) for about half of the compounds, and its formation was also positively influenced by the use of mobile phases containing methanol. In the negative ion mode, APPI offered no advantage toward APCI. Best results were generally achieved with the dopant chlorobenzene, establishing that this dopant is suitable for a wide set of compounds. For one quarter of the compounds, significantly better results were achieved with mobile phases containing methanol for both APPI and APCI than those with acetonitrile, but only in the positive mode. With either of the methods--APPI or APCI--about 10% of the compounds were not detected. Strategies to get results quickly with difficult unknowns will be discussed.
Collapse
Affiliation(s)
- Andreas Fredenhagen
- Novartis Institutes for BioMedical Research, Global Discovery Chemistry, WKL-121.P.37, CH-4002, Basel, Switzerland
| | | |
Collapse
|
40
|
Julien-David D, Zhao M, Geoffroy P, Miesch M, Raul F, Aoude-Werner D, Ennahar S, Marchioni E. Analysis of sitosteryl oleate esters in phytosterols esters enriched foods by HPLC-ESI-MS(2.). Steroids 2014; 84:84-91. [PMID: 24686208 DOI: 10.1016/j.steroids.2014.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 03/06/2014] [Accepted: 03/15/2014] [Indexed: 10/25/2022]
Abstract
Phytosteryl esters (PE)-enriched spreads are marketed for eating and cooking purposes. Temperature and also light exposure are the major factors leading to the formation of PE oxides in food matrix. In this study a high-speed HPLC-MS(2) method was developed to analyze the major PE present in PE-enriched spreads: sitosteryl oleate (SO) and its oxidation products, by using synthesized compounds as standards. This analytical method was used to quantify seven SO oxides formed in PE-enriched spreads after heating at different temperatures for varying time periods and after prolonged exposure to sunlight. Quantification of remaining native SO was also performed after these different treatments. It was found that under specific heating conditions the decrease of the SO amount was much more important compared to the formation of SO oxides showing that many other products are formed. In contrast to heating, sunlight radiation did not result in the degradation of SO and very few oxides were formed.
Collapse
Affiliation(s)
- Diane Julien-David
- IPHC, UMR 7178, Equipe de Chimie Analytique des Molécules BioActives-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67400 Illkirch, France.
| | - Minjie Zhao
- IPHC, UMR 7178, Equipe de Chimie Analytique des Molécules BioActives-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67400 Illkirch, France
| | - Philippe Geoffroy
- Institut de Chimie, UMR 7177, Laboratoire de Chimie Organique Synthétique-Université de Strasbourg, 1 rue de Blaise Pascal, BP 296/R8, 67008 Strasbourg cedex, France
| | - Michel Miesch
- Institut de Chimie, UMR 7177, Laboratoire de Chimie Organique Synthétique-Université de Strasbourg, 1 rue de Blaise Pascal, BP 296/R8, 67008 Strasbourg cedex, France
| | - Francis Raul
- IRCAD, INSERM U682, Université de Strasbourg, Faculté de Médecine, 1 place de l'hôpital, BP406, 67091 Strasbourg cedex, France
| | - Dalal Aoude-Werner
- Aérial, Parc d'innovation, rue Laurent Fries-BP40443, 67412 Illkirch cedex, France
| | - Saïd Ennahar
- IPHC, UMR 7178, Equipe de Chimie Analytique des Molécules BioActives-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67400 Illkirch, France
| | - Eric Marchioni
- IPHC, UMR 7178, Equipe de Chimie Analytique des Molécules BioActives-Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67400 Illkirch, France
| |
Collapse
|
41
|
A new method for immediate derivatization of hydroxyl groups by fluoroalkyl chloroformates and its application for the determination of sterols and tocopherols in human serum and amniotic fluid by gas chromatography–mass spectrometry. J Chromatogr A 2014; 1339:154-67. [DOI: 10.1016/j.chroma.2014.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/13/2014] [Accepted: 03/03/2014] [Indexed: 01/02/2023]
|
42
|
Matysik S, Schmitz G, Bauer S, Kiermaier J, Matysik FM. Potential of gas chromatography–atmospheric pressure chemical ionization–time-of-flight mass spectrometry for the determination of sterols in human plasma. Biochem Biophys Res Commun 2014; 446:751-5. [DOI: 10.1016/j.bbrc.2014.01.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 01/12/2014] [Indexed: 11/26/2022]
|
43
|
Mackay DS, Jones PJH, Myrie SB, Plat J, Lütjohann D. Methodological considerations for the harmonization of non-cholesterol sterol bio-analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 957:116-22. [PMID: 24674990 DOI: 10.1016/j.jchromb.2014.02.052] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/15/2014] [Accepted: 02/10/2014] [Indexed: 12/26/2022]
Abstract
Non-cholesterol sterols (NCS) are used as surrogate markers of cholesterol metabolism which can be measured from a single blood sample. Cholesterol precursors are used as markers of endogenous cholesterol synthesis and plant sterols are used as markers of cholesterol absorption. However, most aspects of NCS analysis show wide variability among researchers within the area of biomedical research. This variability in methodology is a significant contributor to variation between reported NCS values and hampers the confidence in comparing NCS values across different research groups, as well as the ability to conduct meta-analyses. This paper summarizes the considerations and conclusions of a workshop where academic and industrial experts met to discuss NCS measurement. Highlighted is why each step in the analysis of NCS merits critical consideration, with the hopes of moving toward more standardized and comparable NCS analysis methodologies. Alkaline hydrolysis and liquid-liquid extraction of NCS followed by parallel detection on GC-FID and GC-MS is proposed as an ideal methodology for the bio-analysis of NCS. Furthermore the importance of cross-comparison or round robin testing between various groups who measure NCS is critical to the standardization of NCS measurement.
Collapse
Affiliation(s)
- Dylan S Mackay
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Peter J H Jones
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada; Department of Food Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | - Semone B Myrie
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jogchum Plat
- Department of Human Biology, Maastricht University, Maastricht, The Netherlands
| | - Dieter Lütjohann
- Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| |
Collapse
|
44
|
Hailat I, Helleur RJ. Direct analysis of sterols by derivatization matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:149-158. [PMID: 24338962 DOI: 10.1002/rcm.6766] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 10/08/2013] [Accepted: 10/14/2013] [Indexed: 06/03/2023]
Abstract
RATIONALE Free sterols are neutral molecules that are difficult to analyze by MALDI or ESI and their molecular ions easily fragment. In order to increase their ionization efficiency and selectivity, sterols were derivatized by different reagents. METHODS Selected sterols were converted into their corresponding picolinyl esters, N-methylpyridyl ethers and sulphated esters. The derivatives were optimized for MALDI-TOFMS analysis through proper selection of the matrix. MALDI-TOF/TOF experiments were carried out to study the fragmentation pathways of the derivatives and their use in structural elucidation. Lipid extracts from mussels were used as test samples for MALDI analysis of sterols in biological samples also analyzed by GC/MS for comparison. RESULTS Sterol picolinyl esters were identified as sodiated adducts [M+Na](+) and the signal significantly enhanced after addition of sodium acetate (20 mM). Sterol N-methylpyridyl ethers were easily detected as [M](+) while sulphated sterols were best detected as [M-H](-). The ester bonds of picolinyl and sulphated esters easily cleaved in MS/MS resulting in diagnostic derivative fragments at m/z 146.03 and 96.89, respectively. Cleavage of the ether bond of N-methylpyridyl ethers gave a diagnostic fragment ion at m/z 110.04. Sterol profiles in mussels obtained by MALDI-TOFMS were in close agreement with those obtained by GC/MS. Two sterols (cholesterol and β-sitosterol) were selected for quantification as their sulphated and picolinyl esters. Calibration curves gave excellent correlation coefficients. CONCLUSIONS Suitable matrices for picolinyl esters are DHB and THAP, for N-methylpyridyl ethers THAP, and for sulphated esters p-nitroaniline and dithranol. Using cholesterol, the limits of detection (LODs) for sulphated esters were 0.2 µg/mL and for picolinyl esters, 1.5 µg/mL. N-Methylpyridyl ethers were found unsuitable for sterol quantitation.
Collapse
Affiliation(s)
- Iyad Hailat
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, Canada, A1B 3X7
| | | |
Collapse
|
45
|
Helmschrodt C, Becker S, Schröter J, Hecht M, Aust G, Thiery J, Ceglarek U. Fast LC–MS/MS analysis of free oxysterols derived from reactive oxygen species in human plasma and carotid plaque. Clin Chim Acta 2013; 425:3-8. [DOI: 10.1016/j.cca.2013.06.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/23/2013] [Accepted: 06/24/2013] [Indexed: 02/06/2023]
|
46
|
Araújo LB, Silva SL, Galvão MA, Ferreira MR, Araújo EL, Randau KP, Soares LA. Total phytosterol content in drug materials and extracts from roots of Acanthospermum hispidum by UV-VIS spectrophotometry. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2013. [DOI: 10.1590/s0102-695x2013000500004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Mo S, Dong L, Hurst WJ, van Breemen RB. Quantitative analysis of phytosterols in edible oils using APCI liquid chromatography-tandem mass spectrometry. Lipids 2013; 48:949-56. [PMID: 23884629 DOI: 10.1007/s11745-013-3813-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 06/11/2013] [Indexed: 01/11/2023]
Abstract
Previous methods for the quantitative analysis of phytosterols have usually used GC-MS and require elaborate sample preparation including chemical derivatization. Other common methods such as HPLC with absorbance detection do not provide information regarding the identity of the analytes. To address the need for an assay that utilizes mass selectivity while avoiding derivatization, a quantitative method based on LC-tandem mass spectrometry (LC-MS-MS) was developed and validated for the measurement of six abundant dietary phytosterols and structurally related triterpene alcohols including brassicasterol, campesterol, cycloartenol, β-sitosterol, stigmasterol, and lupeol in edible oils. Samples were saponified, extracted with hexane and then analyzed using reversed phase HPLC with positive ion atmospheric pressure chemical ionization tandem mass spectrometry and selected reaction monitoring. The utility of the LC-MS-MS method was demonstrated by analyzing 14 edible oils. All six compounds were present in at least some of the edible oils. The most abundant phytosterol in all samples was β-sitosterol, which was highest in corn oil at 4.35 ± 0.03 mg/g, followed by campesterol in canola oil at 1.84 ± 0.01 mg/g. The new LC-MS-MS method for the quantitative analysis of phytosterols provides a combination of speed, selectivity and sensitivity that exceed those of previous assays.
Collapse
Affiliation(s)
- Shunyan Mo
- Department of Medicinal Chemistry and Pharmacognosy, UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois College of Pharmacy, 833 South Wood Street, M/C 781, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
48
|
Trushina E, Dutta T, Persson XMT, Mielke MM, Petersen RC. Identification of altered metabolic pathways in plasma and CSF in mild cognitive impairment and Alzheimer's disease using metabolomics. PLoS One 2013; 8:e63644. [PMID: 23700429 PMCID: PMC3658985 DOI: 10.1371/journal.pone.0063644] [Citation(s) in RCA: 311] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/04/2013] [Indexed: 01/21/2023] Open
Abstract
Alzheimer's Disease (AD) currently affects more than 5 million Americans, with numbers expected to grow dramatically as the population ages. The pathophysiological changes in AD patients begin decades before the onset of dementia, highlighting the urgent need for the development of early diagnostic methods. Compelling data demonstrate that increased levels of amyloid-beta compromise multiple cellular pathways; thus, the investigation of changes in various cellular networks is essential to advance our understanding of early disease mechanisms and to identify novel therapeutic targets. We applied a liquid chromatography/mass spectrometry-based non-targeted metabolomics approach to determine global metabolic changes in plasma and cerebrospinal fluid (CSF) from the same individuals with different AD severity. Metabolic profiling detected a total of significantly altered 342 plasma and 351 CSF metabolites, of which 22% were identified. Based on the changes of >150 metabolites, we found 23 altered canonical pathways in plasma and 20 in CSF in mild cognitive impairment (MCI) vs. cognitively normal (CN) individuals with a false discovery rate <0.05. The number of affected pathways increased with disease severity in both fluids. Lysine metabolism in plasma and the Krebs cycle in CSF were significantly affected in MCI vs. CN. Cholesterol and sphingolipids transport was altered in both CSF and plasma of AD vs. CN. Other 30 canonical pathways significantly disturbed in MCI and AD patients included energy metabolism, Krebs cycle, mitochondrial function, neurotransmitter and amino acid metabolism, and lipid biosynthesis. Pathways in plasma that discriminated between all groups included polyamine, lysine, tryptophan metabolism, and aminoacyl-tRNA biosynthesis; and in CSF involved cortisone and prostaglandin 2 biosynthesis and metabolism. Our data suggest metabolomics could advance our understanding of the early disease mechanisms shared in progression from CN to MCI and to AD.
Collapse
Affiliation(s)
- Eugenia Trushina
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA.
| | | | | | | | | |
Collapse
|
49
|
Andrade I, Santos L, Ramos F. Advances in analytical methods to study cholesterol metabolism: the determination of serum noncholesterol sterols. Biomed Chromatogr 2012; 27:1234-42. [DOI: 10.1002/bmc.2840] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 10/12/2012] [Accepted: 10/12/2012] [Indexed: 11/10/2022]
Affiliation(s)
| | - Lèlita Santos
- Internal Medicine Department; Coimbra University Hospitals; Medicine Faculty; 3000-075; Coimbra; Portugal
| | - Fernando Ramos
- CEF-Center for Pharmaceutical Studies, Health Sciences Campus, Azinhaga de Santa Comba, Pharmacy Faculty; Coimbra University; 3000-548; Coimbra; Portugal
| |
Collapse
|
50
|
Matysik S, Klünemann HH, Schmitz G. Gas Chromatography–Tandem Mass Spectrometry Method for the Simultaneous Determination of Oxysterols, Plant Sterols, and Cholesterol Precursors. Clin Chem 2012; 58:1557-64. [DOI: 10.1373/clinchem.2012.189605] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND
Cholesterol precursors and plant sterols have considerable potential as plasma biomarkers in several disorders of sterol metabolism and intestinal sterol absorption. Oxysterols are associated with atherogenesis, neurodegeneration, and inflammation. We developed a GC-MS method for the simultaneous analysis of these species in human plasma, including 24-, 25-, 27-hydroxycholesterol; 7-ketocholesterol; lanosterol; lathosterol; 7-dehydrocholesterol; desmosterol; stigmasterol; sitosterol; and campesterol.
METHODS
Sterols were hydrolyzed with ethanolic potassium hydroxide solution, extracted by liquid/liquid extraction with n-hexane, and derivatized with N-methyl-N-trimethylsilyl-trifluoracetamide. Positive chemical ionization with ammonia, as reagent gas, was applied to generate high abundant precursor ions.
RESULTS
The definition of highly sensitive precursor/product ion transitions, especially for coeluting substances, allowed fast gas chromatography run times of under 8.5 min. Using the multiple reaction monitoring mode, detection limits in the picogram per milliliter range could be achieved for most compounds. The method was validated for precision and recovery. Intraassay and interassay CVs were mostly <15% for serum and plasma samples. The recoveries of supplemented plasma samples in different concentrations were 88%–117%. The method was applied to stratification of patients with disorders in cholesterol biosynthesis and/or cholesterol absorption in hypercholesterolemia. The method revealed associations of sterol species with thyroid dysfunction and type 2 diabetes.
CONCLUSIONS
This method allows high-throughput sterol profiling in various diseases.
Collapse
Affiliation(s)
- S Matysik
- University Hospital Regensburg, Regensburg, Germany
| | - HH Klünemann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - G Schmitz
- University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|