1
|
Yao H, Kelley S, Zhou D, VanSickle S, Wang SP, Piesvaux J, Zhou H, Chen H, McKenney D, McLaren DG, Ballard JE, Previs SF. Quantifying protein kinetics in vivo: influence of precursor dynamics on product labeling. Am J Physiol Endocrinol Metab 2025; 328:E173-E185. [PMID: 39540778 DOI: 10.1152/ajpendo.00323.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Protein kinetics can be quantified by coupling stable isotope tracer methods with mass spectrometry readouts; however, interconnected decision points in the experimental design affect the complexity of the workflow and impact data interpretations. For example, choosing between a single bolus (pulse-chase) or a continuous exposure protocol influences subsequent decisions regarding when to measure and how to model the temporal labeling of a target protein. Herein, we examine the merits of in vivo tracer protocols, and we direct attention toward stable isotope tracer experiments that rely on administering a single bolus since these are generally more practical to use as compared with continuous administration protocols. We demonstrate how the interplay between precursor and product kinetics impacts downstream analytics and calculations by contrasting fast versus slow turnover precursors (e.g., 13C-leucine vs. 2H-water, respectively). Although the data collected here underscore certain advantages of using longer-lived precursors (e.g., 2H- or 18O-water), the results also highlight the influence of tracer recycling on measures of protein turnover. We discuss the impact of tracer recycling and consider how the sampling interval is critical for interpreting studies. Finally, we demonstrate that tracer recycling does not limit the ability to perform back-to-back studies of protein kinetics. It is possible to run experiments in which subjects are used as their own controls even though the precursor and product remain labeled following an initial tracer dosing.NEW & NOTEWORTHY We demonstrate a simple and robust protocol for measuring protein synthesis, the work considers problems encountered in experimental design. The logic can enable biologists with limited resources and/or can facilitate scenarios where higher throughput experiments are needed.
Collapse
Affiliation(s)
- Huifang Yao
- Discovery, Preclinical, and Translational Medicine, Merck & Co., Inc., Rahway, New Jersey, United States
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, United States
| | - Seamus Kelley
- Discovery, Preclinical, and Translational Medicine, Merck & Co., Inc., Rahway, New Jersey, United States
| | - Dan Zhou
- Discovery, Preclinical, and Translational Medicine, Merck & Co., Inc., Rahway, New Jersey, United States
| | - Sophie VanSickle
- Discovery, Preclinical, and Translational Medicine, Merck & Co., Inc., Rahway, New Jersey, United States
| | - Sheng-Ping Wang
- Discovery, Preclinical, and Translational Medicine, Merck & Co., Inc., Rahway, New Jersey, United States
| | - Jennifer Piesvaux
- Discovery, Preclinical, and Translational Medicine, Merck & Co., Inc., Rahway, New Jersey, United States
| | - Haihong Zhou
- Discovery, Preclinical, and Translational Medicine, Merck & Co., Inc., Rahway, New Jersey, United States
| | - Hao Chen
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, United States
| | - David McKenney
- Discovery, Preclinical, and Translational Medicine, Merck & Co., Inc., Rahway, New Jersey, United States
| | - David G McLaren
- Discovery, Preclinical, and Translational Medicine, Merck & Co., Inc., Rahway, New Jersey, United States
| | - Jeanine E Ballard
- Discovery, Preclinical, and Translational Medicine, Merck & Co., Inc., Rahway, New Jersey, United States
| | - Stephen F Previs
- Discovery, Preclinical, and Translational Medicine, Merck & Co., Inc., Rahway, New Jersey, United States
| |
Collapse
|
2
|
Kugler BA, Maurer A, Fu X, Franczak E, Ernst N, Schwartze K, Allen J, Li T, Crawford PA, Koch LG, Britton SL, Burgess SC, Thyfault JP. Aerobic capacity and exercise mediate protection against hepatic steatosis via enhanced bile acid metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619494. [PMID: 39484384 PMCID: PMC11526936 DOI: 10.1101/2024.10.21.619494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
High cardiorespiratory fitness and exercise show evidence of altering bile acid (BA) metabolism and are known to protect or treat diet-induced hepatic steatosis, respectively. Here, we tested the hypothesis that high intrinsic aerobic capacity and exercise both increase hepatic BA synthesis measured by the incorporation of 2H2O. We also leveraged mice with inducible liver-specific deletion of Cyp7a1 (LCyp7a1KO), which encodes the rate-limiting enzyme for BA synthesis, to test if exercise-induced BA synthesis is critical for exercise to reduce hepatic steatosis. The synthesis of hepatic BA, cholesterol, and de novo lipogenesis was measured in rats bred for either high (HCR) vs. low (LCR) aerobic capacity consuming acute and chronic high-fat diets. HCR rats had increased synthesis of cholesterol and certain BA species in the liver compared to LCR rats. We also found that chronic exercise with voluntary wheel running (VWR) (4 weeks) increased newly synthesized BAs of specific species in male C57BL/6J mice compared to sedentary mice. Loss of Cyp7a1 resulted in fewer new BAs and increased liver triglycerides compared to controls after a 10-week high-fat diet. Additionally, exercise via VWR for 4 weeks effectively reduced hepatic triglycerides in the high-fat diet-fed control male and female mice as expected; however, exercise in LCyp7a1KO mice did not lower liver triglycerides in either sex. These results show that aerobic capacity and exercise increase hepatic BA metabolism, which may be critical for combatting hepatic steatosis.
Collapse
Affiliation(s)
- Benjamin A. Kugler
- Departments of Cell Biology and Physiology
- Internal Medicine, Division of Endocrinology and Clinical Pharmacology and KU Diabetes Institute
| | | | - Xiaorong Fu
- Center for Human Nutrition and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Edziu Franczak
- Departments of Cell Biology and Physiology
- Internal Medicine, Division of Endocrinology and Clinical Pharmacology and KU Diabetes Institute
| | - Nick Ernst
- Departments of Cell Biology and Physiology
| | | | | | - Tiangang Li
- Department of Biochemistry and Physiology, and Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter A. Crawford
- Division of Molecular Medicine, Department of Medicine, and Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN
| | - Lauren G. Koch
- Dept of Physiology and Pharmacology, The University of Toledo, Toledo, OH, USA
| | | | - Shawn C. Burgess
- Center for Human Nutrition and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John P. Thyfault
- Departments of Cell Biology and Physiology
- Internal Medicine, Division of Endocrinology and Clinical Pharmacology and KU Diabetes Institute
- Kansas Center for Metabolism and Obesity Research, Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
3
|
Li C, Tian J, Liu N, Song D, Steer CJ, Han Q, Song G. MicroRNA-206 as a potential cholesterol-lowering drug is superior to statins in mice. J Lipid Res 2024; 65:100576. [PMID: 38866328 PMCID: PMC11292365 DOI: 10.1016/j.jlr.2024.100576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024] Open
Abstract
Hypercholesterolemia is frequently intertwined with hepatosteatosis, hypertriglyceridemia, and hyperglycemia. This study is designed to assess the therapeutic efficacy of miR-206 in contrast to statins in the context of managing hypercholesterolemia in mice. We previously showed that miR-206 is a potent inhibitor of de novo lipogenesis (DNL), cholesterol synthesis, and gluconeogenesis in mice. Given that these processes occur within hepatocytes, we employed a mini-circle (MC) system to deliver miR-206 specifically to hepatocytes (designated as MC-miR-206). A single intravenous injection of MC-miR-206 maintained high levels of miR-206 in the liver for at least two weeks, thereby maintaining suppression of hepatic DNL, cholesterol synthesis, and gluconeogenesis. MC-miR-206 significantly reduced DNA damage, endoplasmic reticulum and oxidative stress, and hepatic toxicity. Therapeutically, both MC-miR-206 and statins significantly reduced total serum cholesterol and triglycerides as well as LDL cholesterol and VLDL cholesterol in mice maintained on the normal chow and high-fat high-cholesterol diet. MC-miR-206 reduced liver weight, hepatic triglycerides and cholesterol, and blood glucose, while statins slightly increased hepatic cholesterol and blood glucose and failed to affect levels of liver weight and hepatic triglycerides. Mechanistically, miR-206 alleviated hypercholesterolemia by inhibiting hepatic cholesterol synthesis, while statins increased HMGCR activity, hepatic cholesterol synthesis, and fecal-neutral steroid excretion. MiR-206 facilitates the regression of hypercholesterolemia, hypertriglyceridemia, hyperglycemia, and hepatosteatosis. MiR-206 outperforms statins by reducing hyperglycemia, hepatic cholesterol levels, and hepatic toxicity.
Collapse
Affiliation(s)
- Chao Li
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan City, China; The First College of Clinical Medicine, Shanxi Medical University, Taiyuan City, China
| | - Jing Tian
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan City, China
| | - Ningning Liu
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - David Song
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Clifford J Steer
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Qinghua Han
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan City, China.
| | - Guisheng Song
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
4
|
Kim J, Seo S, Kim TY. Metabolic deuterium oxide (D 2O) labeling in quantitative omics studies: A tutorial review. Anal Chim Acta 2023; 1242:340722. [PMID: 36657897 DOI: 10.1016/j.aca.2022.340722] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/25/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Mass spectrometry (MS) is an invaluable tool for sensitive detection and characterization of individual biomolecules in omics studies. MS combined with stable isotope labeling enables the accurate and precise determination of quantitative changes occurring in biological samples. Metabolic isotope labeling, wherein isotopes are introduced into biomolecules through biosynthetic metabolism, is one of the main labeling strategies. Among the precursors employed in metabolic isotope labeling, deuterium oxide (D2O) is cost-effective and easy to implement in any biological systems. This tutorial review aims to explain the basic principle of D2O labeling and its applications in omics research. D2O labeling incorporates D into stable C-H bonds in various biomolecules, including nucleotides, proteins, lipids, and carbohydrates. Typically, D2O labeling is performed at low enrichment of 1%-10% D2O, which causes subtle changes in the isotopic distribution of a biomolecule, instead of the complete separation between labeled and unlabeled samples in a mass spectrum. D2O labeling has been employed in various omics studies to determine the metabolic flux, turnover rate, and relative quantification. Moreover, the advantages and challenges of D2O labeling and its future prospects in quantitative omics are discussed. The economy, versatility, and convenience of D2O labeling will be beneficial for the long-term omics studies for higher organisms.
Collapse
Affiliation(s)
- Jonghyun Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Seungwoo Seo
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Tae-Young Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea.
| |
Collapse
|
5
|
Simonato M, Ricci F, Catozzi C, Storti M, Giambelluca S, Correani A, Salomone F, Cogo P, Carnielli V. Deuterium-depleted water: A new tracer to label pulmonary surfactant lipids in adult rabbits. JOURNAL OF MASS SPECTROMETRY : JMS 2022; 57:e4808. [PMID: 35060656 PMCID: PMC9285457 DOI: 10.1002/jms.4808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Stable isotope tracing can be safely used for metabolic studies in animals and humans. The endogenous biosynthesis of lipids (lipogenesis) is a key process throughout the entire life but especially during brain and lung growth. Adequate synthesis of pulmonary surfactant lipids is indispensable for life. With this study, we report the use of deuterium-depleted water (DDW), suitable for human consumption, as metabolic precursor for lipogenesis. We studied 13 adult rabbits for 5 days. Four rabbits drank tap water (TW) and served as controls; in four animals, DDW was substituted to drinking water, whereas five drank deuterium-enriched water (DEW). After 5 days, a blood sample and a bronchoalveolar lavage (BAL) sample were collected. The 2 H/1 H (δ2 H) of BAL palmitic acid (PA) desaturated phosphatidylcholine (DSPC), the major phospholipid of pulmonary surfactant, and of plasma water was determined by high-resolution mass spectrometry. We found that the δ2 H values of DDW, DEW and TW were -984 ± 2‰, +757 ± 2‰ and -58 ± 1‰, respectively. After 5 days, plasma water values were -467 ± 87‰, +377 ± 56‰ and -53 ± 6‰, and BAL DSPC-PA was -401 ± 27‰, -96 ± 38‰ and -249 ± 9‰ in the DDW, DEW and TW, respectively. With this preliminary study, we demonstrated the feasibility of using DDW to label pulmonary surfactant lipids. This novel approach can be used in animals and in humans, and we speculate that it could be associated with more favourable study compliance than DEW in human studies.
Collapse
Affiliation(s)
- Manuela Simonato
- PCare LaboratoryFondazione Istituto di Ricerca Pediatrica, ‘Città della Speranza’PaduaItaly
- Department of Women's and Children's HealthUniversity of PaduaPaduaItaly
| | - Francesca Ricci
- Neonatology and Pulmonary Rare Disease Unit, Pharmacology & Toxicology Department Corporate Preclinical R&DChiesiParmaItaly
| | - Chiara Catozzi
- Neonatology and Pulmonary Rare Disease Unit, Pharmacology & Toxicology Department Corporate Preclinical R&DChiesiParmaItaly
| | - Matteo Storti
- Department of Chemical & Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Sonia Giambelluca
- PCare LaboratoryFondazione Istituto di Ricerca Pediatrica, ‘Città della Speranza’PaduaItaly
- Department of Women's and Children's HealthUniversity of PaduaPaduaItaly
| | - Alessio Correani
- Division of NeonatologyPolytechnic University of Marche and ‘G. Salesi’ Children's HospitalAnconaItaly
| | - Fabrizio Salomone
- Neonatology and Pulmonary Rare Disease Unit, Pharmacology & Toxicology Department Corporate Preclinical R&DChiesiParmaItaly
| | - Paola Cogo
- Department of Medicine, University Hospital Santa Maria della MisericordiaUniversity of UdineUdineItaly
| | - Virgilio Carnielli
- Division of NeonatologyPolytechnic University of Marche and ‘G. Salesi’ Children's HospitalAnconaItaly
| |
Collapse
|
6
|
Violante S, Berisa M, Thomas TH, Cross JR. Stable Isotope Tracers for Metabolic Pathway Analysis. Methods Mol Biol 2019; 1978:269-283. [PMID: 31119669 DOI: 10.1007/978-1-4939-9236-2_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stable isotope tracing allows a metabolic substrate to be followed through downstream biochemical reactions, thereby providing unparalleled insights into the metabolic wiring of cells. This approach stops short of modeling absolute fluxes but is relatively straightforward and has become increasingly accessible due to the widespread adoption of high-resolution mass spectrometers. Analysis of both dynamic and steady-state labeling patterns in downstream metabolites provides valuable qualitative information as to their origin and relative rates of production. Stable isotope tracing is, therefore, a powerful way to understand the impact of genetic alterations and defined perturbations on metabolism. In this chapter, we describe a liquid chromatography-mass spectrometry (LC-MS) protocol for stable isotope tracing using 13C-L-arginine in a macrophage cell line. A similar approach can be used to follow other stable isotope tracers, and notes are provided with advice on how this protocol can be generalized for use in other settings.
Collapse
Affiliation(s)
- Sara Violante
- Donald B. and Catherine C. Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mirela Berisa
- Donald B. and Catherine C. Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tiffany H Thomas
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Justin R Cross
- Donald B. and Catherine C. Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
7
|
Previs SF, Herath K, Nawrocki AR, Rodriguez CG, Slipetz D, Singh SB, Kang L, Bhat G, Roddy TP, Conarello S, Terebetski J, Erion MD, Kelley DE. Using [ 2H]water to quantify the contribution of de novo palmitate synthesis in plasma: enabling back-to-back studies. Am J Physiol Endocrinol Metab 2018; 315:E63-E71. [PMID: 29351479 DOI: 10.1152/ajpendo.00010.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An increased contribution of de novo lipogenesis (DNL) may play a role in cases of dyslipidemia and adipose accretion; this suggests that inhibition of fatty acid synthesis may affect clinical phenotypes. Since it is not clear whether modulation of one step in the lipogenic pathway is more important than another, the use of tracer methods can provide a deeper level of insight regarding the control of metabolic activity. Although [2H]water is generally considered a reliable tracer for quantifying DNL in vivo (it yields a homogenous and quantifiable precursor labeling), the relatively long half-life of body water is thought to limit the ability of performing repeat studies in the same subjects; this can create a bottleneck in the development and evaluation of novel therapeutics for inhibiting DNL. Herein, we demonstrate the ability to perform back-to-back studies of DNL using [2H]water. However, this work uncovered special circumstances that affect the data interpretation, i.e., it is possible to obtain seemingly negative values for DNL. Using a rodent model, we have identified a physiological mechanism that explains the data. We show that one can use [2H]water to test inhibitors of DNL by performing back-to-back studies in higher species [i.e., treat nonhuman primates with platensimycin, an inhibitor of fatty acid synthase]; studies also demonstrate the unsuitability of [13C]acetate.
Collapse
Affiliation(s)
- Stephen F Previs
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Kithsiri Herath
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Andrea R Nawrocki
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Carlos G Rodriguez
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Deborah Slipetz
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Sheo B Singh
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Ling Kang
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Gowri Bhat
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Thomas P Roddy
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Stacey Conarello
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Jenna Terebetski
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Mark D Erion
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - David E Kelley
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| |
Collapse
|
8
|
Dimova LG, Lohuis MAM, Bloks VW, Tietge UJF, Verkade HJ. Milk cholesterol concentration in mice is not affected by high cholesterol diet- or genetically-induced hypercholesterolaemia. Sci Rep 2018; 8:8824. [PMID: 29891894 PMCID: PMC5995842 DOI: 10.1038/s41598-018-27115-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 05/15/2018] [Indexed: 12/02/2022] Open
Abstract
Breast milk cholesterol content may imply to affect short- and long-term cholesterol homeostasis in the offspring. However, mechanisms of regulating milk cholesterol concentration are only partly understood. We used different mouse models to assess the impact of high cholesterol diet (HC)- or genetically-induced hypercholesterolaemia on milk cholesterol content. At day 14 postpartum we determined milk, plasma and tissue lipids in wild type (WT), LDL receptor knockout (Ldlr−/−), and ATP-binding cassette transporter G8 knockout (Abcg8−/−) mice fed either low- or 0.5% HC diet. In chow-fed mice, plasma cholesterol was higher in Ldlr−/− dams compared to WT. HC-feeding increased plasma cholesterol in all three models compared to chow diet. Despite the up to 5-fold change in plasma cholesterol concentration, the genetic and dietary conditions did not affect milk cholesterol levels. To detect possible compensatory changes, we quantified de novo cholesterol synthesis in mammary gland and liver, which was strongly reduced in the various hypercholesterolaemic conditions. Together, these data suggest that milk cholesterol concentration in mice is not affected by conditions of maternal hypercholesterolaemia and is maintained at stable levels via ABCG8- and LDLR-independent mechanisms. The robustness of milk cholesterol levels might indicate an important physiological function of cholesterol supply to the offspring.
Collapse
Affiliation(s)
- Lidiya G Dimova
- Department of Pediatrics, Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mirjam A M Lohuis
- Department of Pediatrics, Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Vincent W Bloks
- Department of Pediatrics, Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Uwe J F Tietge
- Department of Pediatrics, Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Henkjan J Verkade
- Department of Pediatrics, Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Analysis of Mammalian Cell Proliferation and Macromolecule Synthesis Using Deuterated Water and Gas Chromatography-Mass Spectrometry. Metabolites 2016; 6:metabo6040034. [PMID: 27754354 PMCID: PMC5192440 DOI: 10.3390/metabo6040034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/10/2016] [Accepted: 10/10/2016] [Indexed: 11/16/2022] Open
Abstract
Deuterated water (²H₂O), a stable isotopic tracer, provides a convenient and reliable way to label multiple cellular biomass components (macromolecules), thus permitting the calculation of their synthesis rates. Here, we have combined ²H₂O labelling, GC-MS analysis and a novel cell fractionation method to extract multiple biomass components (DNA, protein and lipids) from the one biological sample, thus permitting the simultaneous measurement of DNA (cell proliferation), protein and lipid synthesis rates. We have used this approach to characterize the turnover rates and metabolism of a panel of mammalian cells in vitro (muscle C2C12 and colon cancer cell lines). Our data show that in actively-proliferating cells, biomass synthesis rates are strongly linked to the rate of cell division. Furthermore, in both proliferating and non-proliferating cells, it is the lipid pool that undergoes the most rapid turnover when compared to DNA and protein. Finally, our data in human colon cancer cell lines reveal a marked heterogeneity in the reliance on the de novo lipogenic pathway, with the cells being dependent on both 'self-made' and exogenously-derived fatty acid.
Collapse
|
10
|
Jensen KK, Tadin-Strapps M, Wang SP, Hubert J, Kan Y, Ma Y, McLaren DG, Previs SF, Herath KB, Mahsut A, Liaw A, Wang S, Stout SJ, Keohan C, Forrest G, Coelho D, Yendluri S, Williams S, Koser M, Bartz S, Akinsanya KO, Pinto S. Dose-dependent effects of siRNA-mediated inhibition of SCAP on PCSK9, LDLR, and plasma lipids in mouse and rhesus monkey. J Lipid Res 2016; 57:2150-2162. [PMID: 27707816 PMCID: PMC5321219 DOI: 10.1194/jlr.m071498] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/01/2016] [Indexed: 01/03/2023] Open
Abstract
SREBP cleavage-activating protein (SCAP) is a key protein in the regulation of lipid metabolism and a potential target for treatment of dyslipidemia. SCAP is required for activation of the transcription factors SREBP-1 and -2. SREBPs regulate the expression of genes involved in fatty acid and cholesterol biosynthesis, and LDL-C clearance through the regulation of LDL receptor (LDLR) and PCSK9 expression. To further test the potential of SCAP as a novel target for treatment of dyslipidemia, we used siRNAs to inhibit hepatic SCAP expression and assess the effect on PCSK9, LDLR, and lipids in mice and rhesus monkeys. In mice, robust liver Scap mRNA knockdown (KD) was achieved, accompanied by dose-dependent reduction in SREBP-regulated gene expression, de novo lipogenesis, and plasma PCSK9 and lipids. In rhesus monkeys, over 90% SCAP mRNA KD was achieved resulting in approximately 75, 50, and 50% reduction of plasma PCSK9, TG, and LDL-C, respectively. Inhibition of SCAP function was demonstrated by reduced expression of SREBP-regulated genes and de novo lipogenesis. In conclusion, siRNA-mediated inhibition of SCAP resulted in a significant reduction in circulating PCSK9 and LDL-C in rodent and primate models supporting SCAP as a novel target for the treatment of dyslipidemia.
Collapse
Affiliation(s)
| | | | | | - James Hubert
- Cardiometabolic Disease Merck & Co. Inc., Kenilworth, NJ
| | - Yanqing Kan
- Cardiometabolic Disease Merck & Co. Inc., Kenilworth, NJ
| | - Yong Ma
- Sirna Therapeutics Merck & Co. Inc., San Francisco, CA
| | | | | | | | - Ablatt Mahsut
- Cardiometabolic Disease Merck & Co. Inc., Kenilworth, NJ
| | - Andy Liaw
- Biostatistics, Merck & Co. Inc., Rahway, NJ
| | | | - Steven J Stout
- Cardiometabolic Disease Merck & Co. Inc., Kenilworth, NJ
| | | | | | - David Coelho
- Sirna Therapeutics Merck & Co. Inc., San Francisco, CA
| | | | | | - Martin Koser
- RNA Therapeutics, Merck & Co. Inc., West Point, PA
| | - Steven Bartz
- Business Development and Licensing, Merck & Co. Inc., San Francisco, CA
| | | | - Shirly Pinto
- Cardiometabolic Disease Merck & Co. Inc., Kenilworth, NJ
| |
Collapse
|
11
|
Monnerie H, Romer M, Jensen BK, Millar JS, Jordan-Sciutto KL, Kim SF, Grinspan JB. Reduced sterol regulatory element-binding protein (SREBP) processing through site-1 protease (S1P) inhibition alters oligodendrocyte differentiation in vitro. J Neurochem 2016; 140:53-67. [PMID: 27385127 DOI: 10.1111/jnc.13721] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/24/2016] [Accepted: 06/28/2016] [Indexed: 01/09/2023]
Abstract
The formation of the myelin membrane of the oligodendrocyte in the CNS is a fundamental process requiring the coordinated synthesis of many different components. The myelin membrane is particularly rich in lipids, however, the regulation of this lipid synthesis is not understood. In other cell types, including Schwann cells, the myelin-forming cells of the PNS, lipid synthesis is tightly regulated by the sterol regulatory element-binding protein (SREBP) family of transcription factors, but this has not been previously shown in oligodendrocytes. We investigated SREBPs' role during oligodendrocyte differentiation in vitro. Both SREBP-1 and SREBP-2 were expressed in oligodendrocyte precursor cells and differentiating oligodendrocytes. Using the selective site-1 protease (S1P) inhibitor PF-429242, which inhibits the cleavage of SREBP precursor forms into mature forms, we found that preventing SREBP processing inhibited process growth and reduced the expression level of myelin basic protein, a major component of myelin. Further, process extension deficits could be rescued by the addition of exogenous cholesterol. Blocking SREBP processing reduced mRNA transcription and protein levels of SREBP target genes involved in both the fatty acid and the cholesterol synthetic pathways. Furthermore, de novo levels and total levels of cholesterol synthesis were greatly diminished when SREBP processing was inhibited. Together these results indicate that SREBPs are important regulators of oligodendrocyte maturation and that perturbation of their activity may affect myelin formation and integrity. Cover Image for this issue: doi: 10.1111/jnc.13781.
Collapse
Affiliation(s)
- Hubert Monnerie
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Micah Romer
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Brigid K Jensen
- Department of Neuroscience, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John S Millar
- Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kelly L Jordan-Sciutto
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sangwon F Kim
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Judith B Grinspan
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Monnerie H, Romer M, Jensen BK, Millar JS, Jordan-Sciutto KL, Kim SF, Grinspan JB. Reduced sterol regulatory element-binding protein (SREBP) processing through site-1 protease (S1P) inhibition alters oligodendrocyte differentiation in vitro. J Neurochem 2016. [PMID: 27385127 DOI: 10.1111/jnc.13781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The formation of the myelin membrane of the oligodendrocyte in the CNS is a fundamental process requiring the coordinated synthesis of many different components. The myelin membrane is particularly rich in lipids, however, the regulation of this lipid synthesis is not understood. In other cell types, including Schwann cells, the myelin-forming cells of the PNS, lipid synthesis is tightly regulated by the sterol regulatory element-binding protein (SREBP) family of transcription factors, but this has not been previously shown in oligodendrocytes. We investigated SREBPs' role during oligodendrocyte differentiation in vitro. Both SREBP-1 and SREBP-2 were expressed in oligodendrocyte precursor cells and differentiating oligodendrocytes. Using the selective site-1 protease (S1P) inhibitor PF-429242, which inhibits the cleavage of SREBP precursor forms into mature forms, we found that preventing SREBP processing inhibited process growth and reduced the expression level of myelin basic protein, a major component of myelin. Further, process extension deficits could be rescued by the addition of exogenous cholesterol. Blocking SREBP processing reduced mRNA transcription and protein levels of SREBP target genes involved in both the fatty acid and the cholesterol synthetic pathways. Furthermore, de novo levels and total levels of cholesterol synthesis were greatly diminished when SREBP processing was inhibited. Together these results indicate that SREBPs are important regulators of oligodendrocyte maturation and that perturbation of their activity may affect myelin formation and integrity. Cover Image for this issue: doi: 10.1111/jnc.13781.
Collapse
Affiliation(s)
- Hubert Monnerie
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Micah Romer
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Brigid K Jensen
- Department of Neuroscience, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John S Millar
- Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kelly L Jordan-Sciutto
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sangwon F Kim
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Judith B Grinspan
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Schonewille M, de Boer JF, Mele L, Wolters H, Bloks VW, Wolters JC, Kuivenhoven JA, Tietge UJF, Brufau G, Groen AK. Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice. J Lipid Res 2016; 57:1455-64. [PMID: 27313057 DOI: 10.1194/jlr.m067488] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Indexed: 12/19/2022] Open
Abstract
Statins are competitive inhibitors of HMG-CoA reductase, the rate-limiting enzyme of cholesterol synthesis. Statins reduce plasma cholesterol levels, but whether this is actually caused by inhibition of de novo cholesterol synthesis has not been clearly established. Using three different statins, we investigated the effects on cholesterol metabolism in mice in detail. Surprisingly, direct measurement of whole body cholesterol synthesis revealed that cholesterol synthesis was robustly increased in statin-treated mice. Measurement of organ-specific cholesterol synthesis demonstrated that the liver is predominantly responsible for the increase in cholesterol synthesis. Excess synthesized cholesterol did not accumulate in the plasma, as plasma cholesterol decreased. However, statin treatment led to an increase in cholesterol removal via the feces. Interestingly, enhanced cholesterol excretion in response to rosuvastatin and lovastatin treatment was mainly mediated via biliary cholesterol secretion, whereas atorvastatin mainly stimulated cholesterol removal via the transintestinal cholesterol excretion pathway. Moreover, we show that plasma cholesterol precursor levels do not reflect cholesterol synthesis rates during statin treatment in mice. In conclusion, cholesterol synthesis is paradoxically increased upon statin treatment in mice. However, statins potently stimulate the excretion of cholesterol from the body, which sheds new light on possible mechanisms underlying the cholesterol-lowering effects of statins.
Collapse
Affiliation(s)
- Marleen Schonewille
- Department of Pediatrics University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Freark de Boer
- Department of Pediatrics, Section Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Laura Mele
- Department of Pediatrics University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Henk Wolters
- Department of Pediatrics University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Vincent W Bloks
- Department of Pediatrics University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Justina C Wolters
- Department of Pediatrics, Section Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan A Kuivenhoven
- Department of Pediatrics, Section Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Uwe J F Tietge
- Department of Pediatrics University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gemma Brufau
- Department of Pediatrics University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Albert K Groen
- Department of Pediatrics University Medical Center Groningen, University of Groningen, Groningen, The Netherlands Department of Laboratory Medicine, Center for Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands Amsterdam Diabetes Center, Department of Vascular Medicine, Academic Medical Center, The Netherlands
| |
Collapse
|
14
|
Guan HP, Yang X, Lu K, Wang SP, Castro-Perez JM, Previs S, Wright M, Shah V, Herath K, Xie D, Szeto D, Forrest G, Xiao JC, Palyha O, Sun LP, Andryuk PJ, Engel SS, Xiong Y, Lin S, Kelley DE, Erion MD, Davis HR, Wang L. Glucagon receptor antagonism induces increased cholesterol absorption. J Lipid Res 2015; 56:2183-95. [PMID: 26373568 DOI: 10.1194/jlr.m060897] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Indexed: 12/26/2022] Open
Abstract
Glucagon and insulin have opposing action in governing glucose homeostasis. In type 2 diabetes mellitus (T2DM), plasma glucagon is characteristically elevated, contributing to increased gluconeogenesis and hyperglycemia. Therefore, glucagon receptor (GCGR) antagonism has been proposed as a pharmacologic approach to treat T2DM. In support of this concept, a potent small-molecule GCGR antagonist (GRA), MK-0893, demonstrated dose-dependent efficacy to reduce hyperglycemia, with an HbA1c reduction of 1.5% at the 80 mg dose for 12 weeks in T2DM. However, GRA treatment was associated with dose-dependent elevation of plasma LDL-cholesterol (LDL-c). The current studies investigated the cause for increased LDL-c. We report findings that link MK-0893 with increased glucagon-like peptide 2 and cholesterol absorption. There was not, however, a GRA-related modulation of cholesterol synthesis. These findings were replicated using structurally diverse GRAs. To examine potential pharmacologic mitigation, coadministration of ezetimibe (a potent inhibitor of cholesterol absorption) in mice abrogated the GRA-associated increase of LDL-c. Although the molecular mechanism is unknown, our results provide a novel finding by which glucagon and, hence, GCGR antagonism govern cholesterol metabolism.
Collapse
Affiliation(s)
- Hong-Ping Guan
- Departments of Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, NJ 07033
| | - Xiaodong Yang
- Departments of Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, NJ 07033
| | - Ku Lu
- Departments of Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, NJ 07033
| | - Sheng-Ping Wang
- Departments of Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, NJ 07033
| | - Jose M Castro-Perez
- Departments of Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, NJ 07033
| | - Stephen Previs
- Departments of Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, NJ 07033
| | - Michael Wright
- Late Stage In Vitro Pharmacology, Merck Research Laboratories, Kenilworth, NJ 07033
| | - Vinit Shah
- Departments of Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, NJ 07033
| | - Kithsiri Herath
- Departments of Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, NJ 07033
| | - Dan Xie
- Departments of Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, NJ 07033
| | - Daphne Szeto
- Late Stage In Vivo Pharmacology, Merck Research Laboratories, Kenilworth, NJ 07033
| | - Gail Forrest
- Late Stage In Vivo Pharmacology, Merck Research Laboratories, Kenilworth, NJ 07033
| | - Jing Chen Xiao
- Departments of Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, NJ 07033
| | - Oksana Palyha
- Departments of Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, NJ 07033
| | - Li-Ping Sun
- Departments of Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, NJ 07033
| | - Paula J Andryuk
- Clinical Research Department, Merck Research Laboratories, Rahway, NJ 07065
| | - Samuel S Engel
- Clinical Research Department, Merck Research Laboratories, Rahway, NJ 07065
| | - Yusheng Xiong
- Discovery Chemistry, Merck Research Laboratories, Kenilworth, NJ 07033
| | - Songnian Lin
- Discovery Chemistry, Merck Research Laboratories, Kenilworth, NJ 07033
| | - David E Kelley
- Departments of Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, NJ 07033
| | - Mark D Erion
- Departments of Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, NJ 07033
| | - Harry R Davis
- Departments of Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, NJ 07033
| | - Liangsu Wang
- Departments of Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, NJ 07033
| |
Collapse
|
15
|
Previs SF, Herath K, Castro-Perez J, Mahsut A, Zhou H, McLaren DG, Shah V, Rohm RJ, Stout SJ, Zhong W, Wang SP, Johns DG, Hubbard BK, Cleary MA, Roddy TP. Effect of Error Propagation in Stable Isotope Tracer Studies: An Approach for Estimating Impact on Apparent Biochemical Flux. Methods Enzymol 2015; 561:331-58. [PMID: 26358910 DOI: 10.1016/bs.mie.2015.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Stable isotope tracers are widely used to quantify metabolic rates, and yet a limited number of studies have considered the impact of analytical error on estimates of flux. For example, when estimating the contribution of de novo lipogenesis, one typically measures a minimum of four isotope ratios, i.e., the precursor and product labeling pre- and posttracer administration. This seemingly simple problem has 1 correct solution and 80 erroneous outcomes. In this report, we outline a methodology for evaluating the effect of error propagation on apparent physiological endpoints. We demonstrate examples of how to evaluate the influence of analytical error in case studies concerning lipid and protein synthesis; we have focused on (2)H2O as a tracer and contrast different mass spectrometry platforms including GC-quadrupole-MS, GC-pyrolysis-IRMS, LC-quadrupole-MS, and high-resolution FT-ICR-MS. The method outlined herein can be used to determine how to minimize variations in the apparent biology by altering the dose and/or the type of tracer. Likewise, one can facilitate biological studies by estimating the reduction in the noise of an outcome that is expected for a given increase in the number of replicate injections.
Collapse
Affiliation(s)
| | | | | | - Ablatt Mahsut
- Merck Research Laboratories, Kenilworth, New Jersey, USA
| | - Haihong Zhou
- Merck Research Laboratories, Kenilworth, New Jersey, USA
| | | | - Vinit Shah
- Merck Research Laboratories, Kenilworth, New Jersey, USA
| | - Rory J Rohm
- Merck Research Laboratories, Kenilworth, New Jersey, USA
| | - Steven J Stout
- Merck Research Laboratories, Kenilworth, New Jersey, USA
| | - Wendy Zhong
- Merck Research Laboratories, Kenilworth, New Jersey, USA
| | | | | | | | | | - Thomas P Roddy
- Merck Research Laboratories, Kenilworth, New Jersey, USA
| |
Collapse
|
16
|
Kasumov T, Li L, Li M, Gulshan K, Kirwan JP, Liu X, Previs S, Willard B, Smith JD, McCullough A. Ceramide as a mediator of non-alcoholic Fatty liver disease and associated atherosclerosis. PLoS One 2015; 10:e0126910. [PMID: 25993337 PMCID: PMC4439060 DOI: 10.1371/journal.pone.0126910] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/09/2015] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease (CVD) is a serious comorbidity in nonalcoholic fatty liver disease (NAFLD). Since plasma ceramides are increased in NAFLD and sphingomyelin, a ceramide metabolite, is an independent risk factor for CVD, the role of ceramides in dyslipidemia was assessed using LDLR-/- mice, a diet-induced model of NAFLD and atherosclerosis. Mice were fed a standard or Western diet (WD), with or without myriocin, an inhibitor of ceramide synthesis. Hepatic and plasma ceramides were profiled and lipid and lipoprotein kinetics were quantified. Hepatic and intestinal expression of genes and proteins involved in insulin, lipid and lipoprotein metabolism were also determined. WD caused hepatic oxidative stress, inflammation, apoptosis, increased hepatic long-chain ceramides associated with apoptosis (C16 and C18) and decreased very-long-chain ceramide C24 involved in insulin signaling. The plasma ratio of ApoB/ApoA1 (proteins of VLDL/LDL and HDL) was increased 2-fold due to increased ApoB production. Myriocin reduced hepatic and plasma ceramides and sphingomyelin, and decreased atherosclerosis, hepatic steatosis, fibrosis, and apoptosis without any effect on oxidative stress. These changes were associated with decreased lipogenesis, ApoB production and increased HDL turnover. Thus, modulation of ceramide synthesis may lead to the development of novel strategies for the treatment of both NAFLD and its associated atherosclerosis.
Collapse
Affiliation(s)
- Takhar Kasumov
- Department of Gastroenterology& Hepatology, Cleveland Clinic, Cleveland, OH, United States of America
- * E-mail: (TK); (AM)
| | - Ling Li
- Department of Research Core Services, Cleveland Clinic, Cleveland, OH, United States of America
| | - Min Li
- Department of Pathobiology, Cleveland Clinic, Cleveland, OH, United States of America
| | - Kailash Gulshan
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, OH, United States of America
| | - John P. Kirwan
- Department of Pathobiology, Cleveland Clinic, Cleveland, OH, United States of America
| | - Xiuli Liu
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH, United States of America
| | - Stephen Previs
- Department of Nutrition & Medicine, Case Western Reserve University School of Medicine Cleveland Clinic, Cleveland, OH, United States of America
| | - Belinda Willard
- Department of Research Core Services, Cleveland Clinic, Cleveland, OH, United States of America
| | - Jonathan D. Smith
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, OH, United States of America
| | - Arthur McCullough
- Department of Gastroenterology& Hepatology, Cleveland Clinic, Cleveland, OH, United States of America
- Department of Pathobiology, Cleveland Clinic, Cleveland, OH, United States of America
- * E-mail: (TK); (AM)
| |
Collapse
|
17
|
Duarte JAG, Carvalho F, Pearson M, Horton JD, Browning JD, Jones JG, Burgess SC. A high-fat diet suppresses de novo lipogenesis and desaturation but not elongation and triglyceride synthesis in mice. J Lipid Res 2014; 55:2541-53. [PMID: 25271296 DOI: 10.1194/jlr.m052308] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Intracellular lipids and their synthesis contribute to the mechanisms and complications of obesity-associated diseases. We describe an NMR approach that provides an abbreviated lipidomic analysis with concurrent lipid biosynthetic fluxes. Following deuterated water administration, positional isotopomer analysis by deuterium NMR of specific lipid species was used to examine flux through de novo lipogenesis (DNL), FA elongation, desaturation, and TG-glycerol synthesis. The NMR method obviated certain assumptions regarding sites of enrichment and exchangeable hydrogens required by mass isotope methods. The approach was responsive to genetic and pharmacological gain or loss of function of DNL, elongation, desaturation, and glyceride synthesis. BDF1 mice consuming a high-fat diet (HFD) or matched low-fat diet for 35 weeks were examined across feeding periods to determine how flux through these pathways contributes to diet induced fatty liver and obesity. HFD mice had increased rates of FA elongation and glyceride synthesis. However DNL was markedly suppressed despite insulin resistance and obesity. We conclude that most hepatic TGs in the liver of HFD mice were formed from the reesterification of existing or ingested lipids, not DNL.
Collapse
Affiliation(s)
- Joao A G Duarte
- Advanced Imaging Research Center-Division of Metabolic Mechanisms of Disease, The University of Texas Southwestern Medical Center, Dallas, TX Center for Neurosciences and Cell Biology, Department of Zoology, University of Coimbra, Coimbra, Portugal
| | - Filipa Carvalho
- Center for Neurosciences and Cell Biology, Department of Zoology, University of Coimbra, Coimbra, Portugal
| | - Mackenzie Pearson
- Advanced Imaging Research Center-Division of Metabolic Mechanisms of Disease, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Jay D Horton
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Jeffrey D Browning
- Advanced Imaging Research Center-Division of Metabolic Mechanisms of Disease, The University of Texas Southwestern Medical Center, Dallas, TX Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX
| | - John G Jones
- Center for Neurosciences and Cell Biology, Department of Zoology, University of Coimbra, Coimbra, Portugal
| | - Shawn C Burgess
- Advanced Imaging Research Center-Division of Metabolic Mechanisms of Disease, The University of Texas Southwestern Medical Center, Dallas, TX Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
18
|
Davidson MH, Voogt J, Luchoomun J, Decaris J, Killion S, Boban D, Glass A, Mohammad H, Lu Y, Villegas D, Neese R, Hellerstein M, Neff D, Musliner T, Tomassini JE, Turner S. Inhibition of intestinal cholesterol absorption with ezetimibe increases components of reverse cholesterol transport in humans. Atherosclerosis 2013; 230:322-9. [DOI: 10.1016/j.atherosclerosis.2013.08.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 08/03/2013] [Accepted: 08/05/2013] [Indexed: 01/19/2023]
|
19
|
Wang SP, Daniels E, Chen Y, Castro-Perez J, Zhou H, Akinsanya KO, Previs SF, Roddy TP, Johns DG. In vivo effects of anacetrapib on preβ HDL: improvement in HDL remodeling without effects on cholesterol absorption. J Lipid Res 2013; 54:2858-65. [PMID: 23898048 DOI: 10.1194/jlr.m041541] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cholesteryl ester transfer protein (CETP) transfers cholesteryl ester and triglyceride between HDL and apoB-containing lipoproteins. Anacetrapib (ANA), a reversible inhibitor of CETP, raises HDL cholesterol and lowers LDL cholesterol in dyslipidemic patients. We previously demonstrated that ANA increases macrophage-to-feces reverse cholesterol transport and fecal cholesterol excretion in hamsters, and increased preβ HDL-dependent cholesterol efflux via ABCA1 in vitro. However, the effects of ANA on in vivo preβ HDL have not been characterized. In vitro, ANA inhibited the formation of preβ, however in ANA-treated dyslipidemic hamsters, preβ HDL levels (measured by two-dimensional gel electrophoresis) were increased, in contrast to in vitro findings. Because changes in plasma preβ HDL have been proposed to potentially affect markers of cholesterol absorption with other CETP inhibitors, a dual stable isotope method was used to directly measure cholesterol absorption in hamsters. ANA treatment of hamsters (on either dyslipidemic or normal diet) had no effect on cholesterol absorption, while dalcetrapib-treated hamsters displayed an increase in cholesterol absorption. Taken together, these data support the notion that ANA promotes preβ HDL functionality in vivo, with no effects on cholesterol absorption.
Collapse
Affiliation(s)
- Sheng-Ping Wang
- Department of Atherosclerosis, Merck Research Laboratories, Rahway, NJ 07065
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Previs SF, McLaren DG, Wang SP, Stout SJ, Zhou H, Herath K, Shah V, Miller PL, Wilsie L, Castro-Perez J, Johns DG, Cleary MA, Roddy TP. New methodologies for studying lipid synthesis and turnover: looking backwards to enable moving forwards. Biochim Biophys Acta Mol Basis Dis 2013; 1842:402-13. [PMID: 23707557 DOI: 10.1016/j.bbadis.2013.05.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/11/2013] [Accepted: 05/13/2013] [Indexed: 12/26/2022]
Abstract
Our ability to understand the pathogenesis of problems surrounding lipid accretion requires attention towards quantifying lipid kinetics. In addition, studies of metabolic flux should also help unravel mechanisms that lead to imbalances in inter-organ lipid trafficking which contribute to dyslipidemia and/or peripheral lipid accumulation (e.g. hepatic fat deposits). This review aims to outline the development and use of novel methods for studying lipid kinetics in vivo. Although our focus is directed towards some of the approaches that are currently reported in the literature, we include a discussion of the older literature in order to put "new" methods in better perspective and inform readers of valuable historical research. Presumably, future advances in understanding lipid dynamics will benefit from a careful consideration of the past efforts, where possible we have tried to identify seminal papers or those that provide clear data to emphasize essential points. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.
Collapse
Affiliation(s)
- Stephen F Previs
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| | - David G McLaren
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Sheng-Ping Wang
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Steven J Stout
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Haihong Zhou
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Kithsiri Herath
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Vinit Shah
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Paul L Miller
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Larissa Wilsie
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Jose Castro-Perez
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Douglas G Johns
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Michele A Cleary
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Thomas P Roddy
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| |
Collapse
|
21
|
Li L, Willard B, Rachdaoui N, Kirwan JP, Sadygov RG, Stanley WC, Previs S, McCullough AJ, Kasumov T. Plasma proteome dynamics: analysis of lipoproteins and acute phase response proteins with 2H2O metabolic labeling. Mol Cell Proteomics 2012; 11:M111.014209. [PMID: 22393261 PMCID: PMC3394944 DOI: 10.1074/mcp.m111.014209] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 02/16/2012] [Indexed: 11/06/2022] Open
Abstract
Understanding the pathologies related to the regulation of protein metabolism requires methods for studying the kinetics of individual proteins. We developed a (2)H(2)O metabolic labeling technique and software for protein kinetic studies in free living organisms. This approach for proteome dynamic studies requires the measurement of total body water enrichments by GC-MS, isotopic distribution of the tryptic peptide by LC-MS/MS, and estimation of the asymptotical number of deuterium incorporated into a peptide by software. We applied this technique to measure the synthesis rates of several plasma lipoproteins and acute phase response proteins in rats. Samples were collected at different time points, and proteins were separated by a gradient gel electrophoresis. (2)H labeling of tryptic peptides was analyzed by ion trap tandem mass spectrometry (LTQ MS/MS) for measurement of the fractional synthesis rates of plasma proteins. The high sensitivity of LTQ MS in zoom scan mode in combination with (2)H label amplification in proteolytic peptides allows detection of the changes in plasma protein synthesis related to animal nutritional status. Our results demonstrate that fasting has divergent effects on the rate of synthesis of plasma proteins, increasing synthesis of ApoB 100 but decreasing formation of albumin and fibrinogen. We conclude that this technique can effectively measure the synthesis of plasma proteins and can be used to study the regulation of protein homeostasis under physiological and pathological conditions.
Collapse
Affiliation(s)
- Ling Li
- From the Departments of ‡Research Core Services and
| | | | - Nadia Rachdaoui
- §School of Medicine, Case Western Reserve University, Cleveland, Ohio 44195
| | - John P. Kirwan
- ¶Gastroenterology & Hepatology, Cleveland Clinic, Cleveland, Ohio 44195
| | - Rovshan G. Sadygov
- the ‖Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas 77555, and
| | - William C. Stanley
- the **Division of Cardiology, Department of Medicine, University of Maryland Medical Center, Baltimore, Maryland 21201-1595
| | - Stephen Previs
- §School of Medicine, Case Western Reserve University, Cleveland, Ohio 44195
| | | | - Takhar Kasumov
- ¶Gastroenterology & Hepatology, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|