1
|
Kol M, Novak AJE, Morstein J, Schröer C, Sokoya T, Mensing S, Korneev SM, Trauner D, Holthuis JCM. Optical control of sphingolipid biosynthesis using photoswitchable sphingosines. J Lipid Res 2024:100724. [PMID: 39672331 DOI: 10.1016/j.jlr.2024.100724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024] Open
Abstract
Sphingolipid metabolism comprises a complex interconnected web of enzymes, metabolites and modes of regulation that influence a wide range of cellular and physiological processes. Deciphering the biological relevance of this network is challenging as numerous intermediates of sphingolipid metabolism are short-lived molecules with often opposing biological activities. Here, we introduce clickable, azobenzene-containing sphingosines, termed caSphs, as light-sensitive substrates for sphingolipid biosynthesis. Photo-isomerization of the azobenzene moiety enables reversible switching between a straight trans- and curved cis-form of the lipid's hydrocarbon tail. Combining in vitro enzyme assays with metabolic labeling studies, we demonstrate that trans-to-cis isomerization of caSphs profoundly stimulates their metabolic conversion by ceramide synthases and downstream sphingomyelin synthases. These light-induced changes in sphingolipid production rates are acute, reversible, and can be implemented with great efficiency in living cells. Our findings establish caSphs as versatile tools with unprecedented opportunities to manipulate sphingolipid biosynthesis and function with the spatiotemporal precision of light.
Collapse
Affiliation(s)
- Matthijs Kol
- Molecular Cell Biology Division, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany; Center for Cellular Nanoanalytics, Osnabrück University, Artilleriestraße 77, 49076 Osnabrück, Germany.
| | - Alexander J E Novak
- Department of Chemistry, New York University 100 Washington Square East, New York, NY, 10003, USA
| | - Johannes Morstein
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Christian Schröer
- Molecular Cell Biology Division, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany; Center for Cellular Nanoanalytics, Osnabrück University, Artilleriestraße 77, 49076 Osnabrück, Germany
| | - Tolulope Sokoya
- Molecular Cell Biology Division, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany; Center for Cellular Nanoanalytics, Osnabrück University, Artilleriestraße 77, 49076 Osnabrück, Germany
| | - Svenja Mensing
- Molecular Cell Biology Division, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany; Center for Cellular Nanoanalytics, Osnabrück University, Artilleriestraße 77, 49076 Osnabrück, Germany
| | - Sergei M Korneev
- Molecular Cell Biology Division, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany; Center for Cellular Nanoanalytics, Osnabrück University, Artilleriestraße 77, 49076 Osnabrück, Germany
| | - Dirk Trauner
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA.
| | - Joost C M Holthuis
- Molecular Cell Biology Division, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany; Center for Cellular Nanoanalytics, Osnabrück University, Artilleriestraße 77, 49076 Osnabrück, Germany.
| |
Collapse
|
2
|
Kol M, Novak AJ, Morstein J, Schröer C, Sokoya T, Mensing S, Korneev SM, Trauner D, Holthuis JC. Optical control of sphingolipid biosynthesis using photoswitchable sphingosines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.619506. [PMID: 39484495 PMCID: PMC11527141 DOI: 10.1101/2024.10.24.619506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Sphingolipid metabolism comprises a complex interconnected web of enzymes, metabolites and modes of regulation that influence a wide range of cellular and physiological processes. Deciphering the biological relevance of this network is challenging as numerous intermediates of sphingolipid metabolism are short-lived molecules with often opposing biological activities. Here, we introduce clickable, azobenzene-containing sphingosines, termed caSphs, as light-sensitive substrates for sphingolipid biosynthesis. Photo-isomerization of the azobenzene moiety enables reversible switching between a straight trans- and curved cis-form of the lipid's hydrocarbon tail. Combining in vitro enzyme assays with metabolic labeling studies, we demonstrate that trans-to-cis isomerization of caSphs profoundly stimulates their metabolic conversion by ceramide synthases and downstream sphingomyelin synthases. These light-induced changes in sphingolipid production rates are acute, reversible, and can be implemented with great efficiency in living cells. Our findings establish caSphs as versatile tools with unprecedented opportunities to manipulate sphingolipid biosynthesis and function with the spatiotemporal precision of light.
Collapse
Affiliation(s)
- Matthijs Kol
- Molecular Cell Biology Division, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany
- Center for Cellular Nanoanalytics, Osnabrück University, Artilleriestraße 77, 49076 Osnabrück, Germany
| | - Alexander J.E. Novak
- Department of Chemistry, New York University 100 Washington Square East, New York, NY, 10003, USA
| | - Johannes Morstein
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Christian Schröer
- Molecular Cell Biology Division, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany
- Center for Cellular Nanoanalytics, Osnabrück University, Artilleriestraße 77, 49076 Osnabrück, Germany
| | - Tolulope Sokoya
- Molecular Cell Biology Division, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany
- Center for Cellular Nanoanalytics, Osnabrück University, Artilleriestraße 77, 49076 Osnabrück, Germany
| | - Svenja Mensing
- Molecular Cell Biology Division, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany
- Center for Cellular Nanoanalytics, Osnabrück University, Artilleriestraße 77, 49076 Osnabrück, Germany
| | - Sergei M. Korneev
- Molecular Cell Biology Division, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany
- Center for Cellular Nanoanalytics, Osnabrück University, Artilleriestraße 77, 49076 Osnabrück, Germany
| | - Dirk Trauner
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Joost C.M. Holthuis
- Molecular Cell Biology Division, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany
- Center for Cellular Nanoanalytics, Osnabrück University, Artilleriestraße 77, 49076 Osnabrück, Germany
| |
Collapse
|
3
|
von Hegedus JH, de Jong AJ, Hoekstra AT, Spronsen E, Zhu W, Cabukusta B, Kwekkeboom JC, Heijink M, Bos E, Berkers CR, Giera MA, Toes REM, Ioan-Facsinay A. Oleic acid enhances proliferation and calcium mobilization of CD3/CD28 activated CD4 + T cells through incorporation into membrane lipids. Eur J Immunol 2024; 54:e2350685. [PMID: 38890809 DOI: 10.1002/eji.202350685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 06/20/2024]
Abstract
Unsaturated fatty acids (UFA) are crucial for T-cell effector functions, as they can affect the growth, differentiation, survival, and function of T cells. Nonetheless, the mechanisms by which UFA affects T-cell behavior are ill-defined. Therefore, we analyzed the processing of oleic acid, a prominent UFA abundantly present in blood, adipocytes, and the fat pads surrounding lymph nodes, in CD4+ T cells. We found that exogenous oleic acid increases proliferation and enhances the calcium flux response upon CD3/CD28 activation. By using a variety of techniques, we found that the incorporation of oleic acid into membrane lipids, rather than regulation of cellular metabolism or TCR expression, is essential for its effects on CD4+ T cells. These results provide novel insights into the mechanism through which exogenous oleic acid enhances CD4+ T-cell function.
Collapse
Affiliation(s)
- Johannes Hendrick von Hegedus
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Anja J de Jong
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anna T Hoekstra
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric Spronsen
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Wahwah Zhu
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Birol Cabukusta
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Joanneke C Kwekkeboom
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marieke Heijink
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Erik Bos
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Celia R Berkers
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Martin A Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rene E M Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andreea Ioan-Facsinay
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
4
|
Farley SE, Hashimoto R, Evangelista J, Stein F, Haberkant P, Kikuchi K, Tafesse FG, Schultz C. Trifunctional fatty acid derivatives: the impact of diazirine placement. Chem Commun (Camb) 2024; 60:6651-6654. [PMID: 38856656 DOI: 10.1039/d4cc00974f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Functionalized lipid probes are a critical new tool to interrogate the function of individual lipid species, but the structural parameters that constrain their utility have not been thoroughly described. Here, we synthesize three palmitic acid derivatives with a diazirine at different positions on the acyl chain and examine their metabolism, subcellular localization, and protein interactions. We demonstrate that while they produce very similar metabolites and subcellular distributions, probes with the diazirine at either end pulldown distinct subsets of proteins after photo-crosslinking. This highlights the importance of thoughtful diazirine placement when developing probes based on biological molecules.
Collapse
Affiliation(s)
- Scotland E Farley
- Oregon Health & Science University, Department of Chemical Physiology and Biochemistry, USA.
- Oregon Health & Science University, Department of Molecular Microbiology and Immunology, Portland, OR, 97239, USA.
| | - Ryu Hashimoto
- Oregon Health & Science University, Department of Chemical Physiology and Biochemistry, USA.
- Osaka University, Department of Applied Chemistry, Graduate School of Engineering, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Judah Evangelista
- Oregon Health & Science University, Department of Chemical Physiology and Biochemistry, USA.
- Oregon Health & Science University, Department of Molecular Microbiology and Immunology, Portland, OR, 97239, USA.
| | - Frank Stein
- European Molecular Biology Laboratory, Proteomics Core Facility, 69117, Heidelberg, Germany
| | - Per Haberkant
- European Molecular Biology Laboratory, Proteomics Core Facility, 69117, Heidelberg, Germany
| | - Kazuya Kikuchi
- Osaka University, Department of Applied Chemistry, Graduate School of Engineering, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Fikadu G Tafesse
- Oregon Health & Science University, Department of Molecular Microbiology and Immunology, Portland, OR, 97239, USA.
| | - Carsten Schultz
- Oregon Health & Science University, Department of Chemical Physiology and Biochemistry, USA.
| |
Collapse
|
5
|
Farley SE, Hashimoto R, Evangelista J, Stein F, Haberkant P, Kikuchi K, Tafesse FG, Schultz C. Trifunctional fatty acid derivatives demonstrate the impact of diazirine placement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594383. [PMID: 38798378 PMCID: PMC11118520 DOI: 10.1101/2024.05.15.594383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Functionalized lipid probes are a critical new tool to interrogate the function of individual lipid species, but the structural parameters that constrain their utility have not been thoroughly described. Here, we synthesize three palmitic acid derivatives with a diazirine at different positions on the acyl chain and examine their metabolism, subcellular localization, and protein interactions. We demonstrate that while they produce very similar metabolites and subcellular distributions, probes with the diazirine at either end pulldown distinct subsets of proteins after photo-crosslinking. This highlights the importance of thoughtful diazirine placement when developing probes based on biological molecules.
Collapse
|
6
|
Waqif H, Munir N, Farrukh MA, Hasnain M, Sohail M, Abideen Z. Algal macromolecular mediated synthesis of nanoparticles for their application against citrus canker for food security. Int J Biol Macromol 2024; 263:130259. [PMID: 38382793 DOI: 10.1016/j.ijbiomac.2024.130259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024]
Abstract
Citrus canker is a disease of economic importance and there are limited biocontrol agents available to mitigate it in an integrated manner. This study was conducted to combat citrus canker disease using biologically active nanoparticles (Ag, Cu and ZnO and 300, 900, 1200, and 1500 ppm) synthesized from macromolecules extracted from alga, Oedogonium sp. The synthesis of the nanoparticles was confirmed by UV-Vis Spectroscopy, FTIR, SEM, XRD, and DLS Zeta sizer while their efficacy was tested against Xanthomonas citri by measuring zone of inhibition. Results indicated that Ag and Cu nanoparticles at 1200 ppm exhibit the highest activity against Xanthomonas citri, followed by ZnO at 1500 ppm. The minimum inhibitory concentrations (MIC) of Ag, Cu and ZnO NPs were 1, 2 and 10 mg mL-1, respectively while minimum bactericidal concentrations (MBC) were for Ag and Cu 2, 4 mg mL-1 and for ZnO NPs more then 10 mg mL-1, were required to kill the X. citri. Bacterial growth respectively. Macromolecules extracted from algal sources can produce nanoparticles with bactericidal potential, in the order of Ag > Cu > ZnO to mitigate citrus canker disease and ensuring sustainable food production amid the growing human population.
Collapse
Affiliation(s)
- Huma Waqif
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Neelma Munir
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan.
| | - Muhammad Akhyar Farrukh
- Department of Basic and Applied Chemistry, University of Central Punjab, Khayaban-e-Jinnah Road, Johar Town Lahore 54782, Pakistan
| | - Maria Hasnain
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Muhammed Sohail
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan
| | - Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, 75270, Pakistan.
| |
Collapse
|
7
|
Jamecna D, Höglinger D. The use of click chemistry in sphingolipid research. J Cell Sci 2024; 137:jcs261388. [PMID: 38488070 DOI: 10.1242/jcs.261388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Sphingolipid dysregulation is involved in a range of rare and fatal diseases as well as common pathologies including cancer, infectious diseases or neurodegeneration. Gaining insights into how sphingolipids are involved in these diseases would contribute much to our understanding of human physiology, as well as the pathology mechanisms. However, scientific progress is hampered by a lack of suitable tools that can be used in intact systems. To overcome this, efforts have turned to engineering modified lipids with small clickable tags and to harnessing the power of click chemistry to localize and follow these minimally modified lipid probes in cells. We hope to inspire the readers of this Review to consider applying existing click chemistry tools for their own aspects of sphingolipid research. To this end, we focus here on different biological applications of clickable lipids, mainly to follow metabolic conversions, their visualization by confocal or superresolution microscopy or the identification of their protein interaction partners. Finally, we describe recent approaches employing organelle-targeted and clickable lipid probes to accurately follow intracellular sphingolipid transport with organellar precision.
Collapse
Affiliation(s)
- Denisa Jamecna
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69118 Heidelberg, Germany
| | - Doris Höglinger
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69118 Heidelberg, Germany
| |
Collapse
|
8
|
Hwang HG, Ye DY, Jung GY. Biosensor-guided discovery and engineering of metabolic enzymes. Biotechnol Adv 2023; 69:108251. [PMID: 37690614 DOI: 10.1016/j.biotechadv.2023.108251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
A variety of chemicals have been produced through metabolic engineering approaches, and enhancing biosynthesis performance can be achieved by using enzymes with high catalytic efficiency. Accordingly, a number of efforts have been made to discover enzymes in nature for various applications. In addition, enzyme engineering approaches have been attempted to suit specific industrial purposes. However, a significant challenge in enzyme discovery and engineering is the efficient screening of enzymes with the desired phenotype from extensive enzyme libraries. To overcome this bottleneck, genetically encoded biosensors have been developed to specifically detect target molecules produced by enzyme activity at the intracellular level. Especially, the biosensors facilitate high-throughput screening (HTS) of targeted enzymes, expanding enzyme discovery and engineering strategies with advances in systems and synthetic biology. This review examines biosensor-guided HTS systems and highlights studies that have utilized these tools to discover enzymes in diverse areas and engineer enzymes to enhance their properties, such as catalytic efficiency, specificity, and stability.
Collapse
Affiliation(s)
- Hyun Gyu Hwang
- Institute of Environmental and Energy Technology, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Dae-Yeol Ye
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Gyoo Yeol Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea.
| |
Collapse
|
9
|
McLelland GL, Lopez-Osias M, Verzijl CRC, Ellenbroek BD, Oliveira RA, Boon NJ, Dekker M, van den Hengel LG, Ali R, Janssen H, Song JY, Krimpenfort P, van Zutphen T, Jonker JW, Brummelkamp TR. Identification of an alternative triglyceride biosynthesis pathway. Nature 2023; 621:171-178. [PMID: 37648867 PMCID: PMC10482677 DOI: 10.1038/s41586-023-06497-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
Triacylglycerols (TAGs) are the main source of stored energy in the body, providing an important substrate pool for mitochondrial beta-oxidation. Imbalances in the amount of TAGs are associated with obesity, cardiac disease and various other pathologies1,2. In humans, TAGs are synthesized from excess, coenzyme A-conjugated fatty acids by diacylglycerol O-acyltransferases (DGAT1 and DGAT2)3. In other organisms, this activity is complemented by additional enzymes4, but whether such alternative pathways exist in humans remains unknown. Here we disrupt the DGAT pathway in haploid human cells and use iterative genetics to reveal an unrelated TAG-synthesizing system composed of a protein we called DIESL (also known as TMEM68, an acyltransferase of previously unknown function) and its regulator TMX1. Mechanistically, TMX1 binds to and controls DIESL at the endoplasmic reticulum, and loss of TMX1 leads to the unconstrained formation of DIESL-dependent lipid droplets. DIESL is an autonomous TAG synthase, and expression of human DIESL in Escherichia coli endows this organism with the ability to synthesize TAG. Although both DIESL and the DGATs function as diacylglycerol acyltransferases, they contribute to the cellular TAG pool under specific conditions. Functionally, DIESL synthesizes TAG at the expense of membrane phospholipids and maintains mitochondrial function during periods of extracellular lipid starvation. In mice, DIESL deficiency impedes rapid postnatal growth and affects energy homeostasis during changes in nutrient availability. We have therefore identified an alternative TAG biosynthetic pathway driven by DIESL under potent control by TMX1.
Collapse
Affiliation(s)
- Gian-Luca McLelland
- Oncode Institute, Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Marta Lopez-Osias
- Oncode Institute, Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Cristy R C Verzijl
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Brecht D Ellenbroek
- Oncode Institute, Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Rafaela A Oliveira
- Oncode Institute, Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Nicolaas J Boon
- Oncode Institute, Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marleen Dekker
- Oncode Institute, Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lisa G van den Hengel
- Oncode Institute, Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Rahmen Ali
- Animal Modeling Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hans Janssen
- Electron Microscope Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ji-Ying Song
- Animal Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Paul Krimpenfort
- Animal Modeling Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tim van Zutphen
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Faculty Campus Fryslân, University of Groningen, Leeuwarden, The Netherlands
| | - Johan W Jonker
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Thijn R Brummelkamp
- Oncode Institute, Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Liu T, Wang Q, Gao C, Long S, He T, Wu Z, Chen Z. Drinking Warm Water Promotes Performance by Regulating Ruminal Microbial Composition and Serum Metabolites in Yak Calves. Microorganisms 2023; 11:2092. [PMID: 37630652 PMCID: PMC10459242 DOI: 10.3390/microorganisms11082092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Yaks live in the harsh environment of the Qinghai-Tibet Plateau, and the cold climate causes lower growth efficiency. The aim of this experiment was to explore the effects of drinking warm water on the growth performance in yak calves and investigate the underlying physiological mechanisms. A total of 24 Datong yak calves were selected and randomly assigned into the cold water group (group C, water temperature around 0-10 °C without any heating; 58.03 ± 3.111 kg) and the warm water group (group W, water constantly heated at 2 °C; 59.62 ± 2.771 kg). After the 60-day experiment, body weight was measured, and rumen fluid and blood serum samples were collected for analysis. The results show that the body weight and average daily gain of yaks that drank warm water were higher compared to those that drank cold water (p < 0.05). The acetic, propionic, isobutyric, valeric, and isovaleric acid concentrations were higher in group W than in group C (p < 0.05). Additionally, warm water changed the ruminal microbes at different levels. At the phylum level, the relative abundance of Tenericutes, Kiritimatiellaeota, and Elusimicrobiota was higher in group C (p < 0.05). At the genus level, three genera were increased by warm water, including Ruminococcoides and Eubacteriales Family XIII. Incertae Sedis, and 12 genera were decreased, including Ruminococcus (p < 0.05). At the species level, unclassified Prevotellaceae and Ruminococcoides bili were increased by warm water compared to cold water (p < 0.05). According to the metabolomics results, metabolites, including valine, isoleucine, PC (15:0/22:2(13Z,16Z)), and LysoPC (18:0/0:0), were increased in the warm water group compared to the cold water group (p < 0.05), and were enriched in glycerophospholipid and amino acid metabolism pathways. This study analyzed the differences in ruminal microbes and metabolomes of yak calves provided with water at different temperatures and revealed the potential mechanism for better performance promoted by warm drinking water.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhaohui Chen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.L.); (Q.W.); (C.G.); (S.L.); (T.H.); (Z.W.)
| |
Collapse
|
11
|
Abstract
Lipids are essential cellular components forming membranes, serving as energy reserves, and acting as chemical messengers. Dysfunction in lipid metabolism and signaling is associated with a wide range of diseases including cancer and autoimmunity. Heterogeneity in cell behavior including lipid signaling is increasingly recognized as a driver of disease and drug resistance. This diversity in cellular responses as well as the roles of lipids in health and disease drive the need to quantify lipids within single cells. Single-cell lipid assays are challenging due to the small size of cells (∼1 pL) and the large numbers of lipid species present at concentrations spanning orders of magnitude. A growing number of methodologies enable assay of large numbers of lipid analytes, perform high-resolution spatial measurements, or permit highly sensitive lipid assays in single cells. Covered in this review are mass spectrometry, Raman imaging, and fluorescence-based assays including microscopy and microseparations.
Collapse
Affiliation(s)
- Ming Yao
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; , ,
| | | | - Nancy L Allbritton
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; , ,
| |
Collapse
|
12
|
Abstract
Lipids are key components of all organisms. We are well educated in their use as fuel and their essential role to form membranes. We also know much about their biosynthesis and metabolism. We are also aware that most lipids have signaling character meaning that a change in their concentration or location constitutes a signal that helps a living cell to respond to changes in the environment or to fulfill its specific function ranging from secretion to cell division. What is much less understood is how lipids change location in cells over time and what other biomolecules they interact with at each stage of their lifetime. Due to the large number of often quite similar lipid species and the sometimes very short lifetime of signaling lipids, we need highly specific tools to manipulate and visualize lipids and lipid-protein interactions. If successfully applied, these tools provide fabulous opportunities for discovery.In this Account, I summarize the development of synthetic tools from our lab that were designed to address crucial properties that allow them to function as tools in live cell experiments. Techniques to change the concentration of lipids by adding a small molecule or by light are described and complemented by examples of biological findings made when applying the tools. This ranges from chemical dimerizer-based systems to synthetic "caged" lipid derivatives. Furthermore, I discuss the problem of locating a lipid in an intact cell. Synthetic molecular probes are described that help to unravel the lipid location and to determine their binding proteins. These location studies require in-cell lipid tagging by click chemistry, photo-cross-linking to prevent further movement and the "caging" groups to avoid premature metabolism. The combination of these many technical features in a single tool allows for the analysis of not only lipid fluxes through metabolism but also lipid transport from one membrane to another as well as revealing the lipid interactome in a cell-dependent manner. This latter point is crucial because with these multifunctional tools in combination with lipidomics we can now address differences in healthy versus diseased cells and ultimately find the changes that are essential for disease development and new therapeutics that prevent these changes.
Collapse
Affiliation(s)
- Carsten Schultz
- Department of Chemical Physiology and
Biochemistry, Oregon Health & Science
University, Portland, Oregon 97239, United States
| |
Collapse
|
13
|
Benedyk TH, Connor V, Caroe ER, Shamin M, Svergun DI, Deane JE, Jeffries CM, Crump CM, Graham SC. Herpes simplex virus 1 protein pUL21 alters ceramide metabolism by activating the interorganelle transport protein CERT. J Biol Chem 2022; 298:102589. [PMID: 36243114 PMCID: PMC9668737 DOI: 10.1016/j.jbc.2022.102589] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Herpes simplex virus (HSV)-1 dramatically alters the architecture and protein composition of cellular membranes during infection, but its effects upon membrane lipid composition remain unclear. HSV-1 pUL21 is a virus-encoded protein phosphatase adaptor that promotes dephosphorylation of multiple cellular and virus proteins, including the cellular ceramide (Cer) transport protein CERT. CERT mediates nonvesicular Cer transport from the endoplasmic reticulum to the trans-Golgi network, whereupon Cer is converted to sphingomyelin (SM) and other sphingolipids that play important roles in cellular proliferation, signaling, and membrane trafficking. Here, we use click chemistry to profile the kinetics of sphingolipid metabolism, showing that pUL21-mediated dephosphorylation activates CERT and accelerates Cer-to-SM conversion. Purified pUL21 and full-length CERT interact with submicromolar affinity, and we solve the solution structure of the pUL21 C-terminal domain in complex with the CERT Pleckstrin homology and steroidogenic acute regulatory-related lipid transfer domains using small-angle X-ray scattering. We identify a single amino acid mutation on the surface of pUL21 that disrupts CERT binding in vitro and in cultured cells. This residue is highly conserved across the genus Simplexvirus. In addition, we identify a pUL21 residue essential for binding to HSV-1 pUL16. Sphingolipid profiling demonstrates that Cer-to-SM conversion is severely diminished in the context of HSV-1 infection, a defect that is compounded when infecting with a virus encoding the mutated form of pUL21 that lacks the ability to activate CERT. However, virus replication and spread in cultured keratinocytes or epithelial cells is not significantly altered when pUL21-mediated CERT dephosphorylation is abolished. Collectively, we demonstrate that HSV-1 modifies sphingolipid metabolism via specific protein-protein interactions.
Collapse
Affiliation(s)
| | - Viv Connor
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Eve R Caroe
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Maria Shamin
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Dmitri I Svergun
- European Molecular Biology Laboratory (EMBL) Hamburg Site, Hamburg, Germany
| | - Janet E Deane
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Cy M Jeffries
- European Molecular Biology Laboratory (EMBL) Hamburg Site, Hamburg, Germany
| | - Colin M Crump
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Stephen C Graham
- Department of Pathology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
14
|
Schultz C, Farley SE, Tafesse FG. "Flash & Click": Multifunctionalized Lipid Derivatives as Tools To Study Viral Infections. J Am Chem Soc 2022; 144:13987-13995. [PMID: 35900117 PMCID: PMC9377334 DOI: 10.1021/jacs.2c02705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this perspective article, we describe the current status of lipid tools for studying host lipid-virus interactions at the cellular level. We discuss the potential lipidomic changes that viral infections impose on host cells and then outline the tools available and the resulting options to investigate the host cell lipid interactome. The future outcome will reveal new targets for treating virus infections.
Collapse
Affiliation(s)
- Carsten Schultz
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University; 3181 S.W. Sam Jackson Park Road, Portland, Oregon 97239-3098, United States
| | - Scotland E Farley
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University; 3181 S.W. Sam Jackson Park Road, Portland, Oregon 97239-3098, United States.,Department of Molecular Microbiology and Immunology, Oregon Health & Science University; 3181 S.W. Sam Jackson Park Road, Portland, Oregon 97239-3098, United States
| | - Fikadu G Tafesse
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University; 3181 S.W. Sam Jackson Park Road, Portland, Oregon 97239-3098, United States
| |
Collapse
|
15
|
Bartolacci C, Andreani C, Vale G, Berto S, Melegari M, Crouch AC, Baluya DL, Kemble G, Hodges K, Starrett J, Politi K, Starnes SL, Lorenzini D, Raso MG, Solis Soto LM, Behrens C, Kadara H, Gao B, Wistuba II, Minna JD, McDonald JG, Scaglioni PP. Targeting de novo lipogenesis and the Lands cycle induces ferroptosis in KRAS-mutant lung cancer. Nat Commun 2022; 13:4327. [PMID: 35882862 PMCID: PMC9325712 DOI: 10.1038/s41467-022-31963-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/06/2022] [Indexed: 12/22/2022] Open
Abstract
Mutant KRAS (KM), the most common oncogene in lung cancer (LC), regulates fatty acid (FA) metabolism. However, the role of FA in LC tumorigenesis is still not sufficiently characterized. Here, we show that KMLC has a specific lipid profile, with high triacylglycerides and phosphatidylcholines (PC). We demonstrate that FASN, the rate-limiting enzyme in FA synthesis, while being dispensable in EGFR-mutant or wild-type KRAS LC, is required for the viability of KMLC cells. Integrating lipidomic, transcriptomic and functional analyses, we demonstrate that FASN provides saturated and monounsaturated FA to the Lands cycle, the process remodeling oxidized phospholipids, such as PC. Accordingly, blocking either FASN or the Lands cycle in KMLC, promotes ferroptosis, a reactive oxygen species (ROS)- and iron-dependent cell death, characterized by the intracellular accumulation of oxidation-prone PC. Our work indicates that KM dictates a dependency on newly synthesized FA to escape ferroptosis, establishing a targetable vulnerability in KMLC.
Collapse
Affiliation(s)
- Caterina Bartolacci
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Cristina Andreani
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Gonçalo Vale
- Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Stefano Berto
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Margherita Melegari
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Anna Colleen Crouch
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dodge L Baluya
- Tissue Imaging and Proteomics Laboratory, Washington State University, Pullman, WA, 99164, USA
| | | | - Kurt Hodges
- Department of Pathology, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | | | - Katerina Politi
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Sandra L Starnes
- Department of Surgery, Division of Thoracic Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Daniele Lorenzini
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, via Venezian 1, 20133, Milan, Italy
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luisa M Solis Soto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carmen Behrens
- Department of Thoracic H&N Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boning Gao
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jeffrey G McDonald
- Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Pier Paolo Scaglioni
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA.
| |
Collapse
|
16
|
Mekhail K, Lee M, Sugiyama M, Astori A, St-Germain J, Latreille E, Khosraviani N, Wei K, Li Z, Rini J, Lee WL, Antonescu C, Raught B, Fairn GD. Fatty Acid Synthase inhibitor TVB-3166 prevents S-acylation of the Spike protein of human coronaviruses. J Lipid Res 2022; 63:100256. [PMID: 35921881 PMCID: PMC9339154 DOI: 10.1016/j.jlr.2022.100256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/24/2022] Open
Abstract
The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other coronaviruses mediates host cell entry and is S-acylated on multiple phylogenetically conserved cysteine residues. Multiple protein acyltransferase enzymes have been reported to post-translationally modify spike proteins; however, strategies to exploit this modification are lacking. Using resin-assisted capture MS, we demonstrate that the spike protein is S-acylated in SARS-CoV-2-infected human and monkey epithelial cells. We further show that increased abundance of the acyltransferase ZDHHC5 associates with increased S-acylation of the spike protein, whereas ZDHHC5 knockout cells had a 40% reduction in the incorporation of an alkynyl-palmitate using click chemistry detection. We also found that the S-acylation of the spike protein is not limited to palmitate, as clickable versions of myristate and stearate were also labelled the protein. Yet, we observed that ZDHHC5 was only modified when incubated with alkyne-palmitate, suggesting it has specificity for this acyl-CoA, and that other ZDHHC enzymes may use additional fatty acids to modify the spike protein. Since multiple ZDHHC isoforms may modify the spike protein, we also examined the ability of the FASN inhibitor TVB-3166 to prevent S-acylation of the spike proteins of SARS-CoV-2 and human CoV-229E. We show that treating cells with TVB-3166 inhibited S-acylation of expressed spike proteins and attenuated the ability of SARS-CoV-2 and human CoV-229E to spread in vitro. Our findings further substantiate the necessity of CoV spike protein S-acylation and demonstrate that de novo fatty acid synthesis is critical for the proper S-acylation of the spike protein.
Collapse
Affiliation(s)
- Katrina Mekhail
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Keenan Research Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Minhyoung Lee
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Keenan Research Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Michael Sugiyama
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Audrey Astori
- Princess Margaret Cancer Centre, University Health Network, Ontario, Canada
| | | | - Elyse Latreille
- Keenan Research Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Negar Khosraviani
- Keenan Research Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Kuiru Wei
- Keenan Research Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Zhijie Li
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - James Rini
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Warren L Lee
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Keenan Research Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Costin Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | - Gregory D Fairn
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Keenan Research Centre, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
17
|
Kuerschner L, Thiele C. Tracing Lipid Metabolism by Alkyne Lipids and Mass Spectrometry: The State of the Art. Front Mol Biosci 2022; 9:880559. [PMID: 35669564 PMCID: PMC9163959 DOI: 10.3389/fmolb.2022.880559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/19/2022] [Indexed: 01/22/2023] Open
Abstract
Lipid tracing studies are a key method to gain a better understanding of the complex metabolic network lipids are involved in. In recent years, alkyne lipid tracers and mass spectrometry have been developed as powerful tools for such studies. This study aims to review the present standing of the underlying technique, highlight major findings the strategy allowed for, summarize its advantages, and discuss some limitations. In addition, an outlook on future developments is given.
Collapse
|
18
|
Gallion LA, Wang Y, Massaro A, Yao M, Petersen BV, Zhang Q, Huang W, Carr AJ, Zhang Q, Allbritton NL. "Fix and Click" for Assay of Sphingolipid Signaling in Single Primary Human Intestinal Epithelial Cells. Anal Chem 2022; 94:1594-1600. [PMID: 35020354 PMCID: PMC8931668 DOI: 10.1021/acs.analchem.1c03503] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Capillary electrophoresis with fluorescence detection (CE-F) is a powerful method to measure enzyme activation in single cells. However, cellular enzymatic assays used in CE-F routinely utilize reporter substrates that possess a bulky fluorophore that may impact enzyme kinetics. To address these challenges, we describe a "fix and click" method utilizing an alkyne-terminated enzyme activation reporter, aldehyde-based fixation, and a click chemistry reaction to attach a fluorophore prior to analysis by single-cell CE-F. The "fix and click" strategy was utilized to investigate sphingolipid signaling in both immortalized cell lines and primary human colonic epithelial cells. When the sphingosine alkyne reporter was loaded into cells, this reporter was metabolized to ceramide (31.6 ± 3.3% peak area) without the production of sphingosine-1-phosphate. In contrast, when the reporter sphingosine fluorescein was introduced into cells, sphingosine fluorescein was converted to sphingosine-1-phosphate and downstream products (32.8 ± 5.7% peak area) without the formation of ceramide. Sphingolipid metabolism was measured in single cells from both differentiated and stem/proliferative human colonic epithelium using "fix and click" paired with CE-F to highlight the diversity of sphingosine metabolism in single cells from primary human colonic epithelium. This novel method will find widespread utility for the performance of single-cell enzyme assays by virtue of its ability to temporally and spatially separate cellular reactions with alkyne-terminated reporters, followed by the assay of enzyme activation at a later time and place.
Collapse
Affiliation(s)
- Luke A. Gallion
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, 27514, United States of America
- Department of Bioengineering, University of Washington, Seattle, Washington, 98105, United States of America
| | - Yuli Wang
- Department of Bioengineering, University of Washington, Seattle, Washington, 98105, United States of America
| | - Angelo Massaro
- Department of Bioengineering, University of Washington, Seattle, Washington, 98105, United States of America
| | - Ming Yao
- Department of Bioengineering, University of Washington, Seattle, Washington, 98105, United States of America
| | - Brae V. Petersen
- Department of Bioengineering, University of Washington, Seattle, Washington, 98105, United States of America
| | - Quanzheng Zhang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, Chapel Hill, North Carolina, 27514, United States of America
| | - Weigang Huang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, Chapel Hill, North Carolina, 27514, United States of America
| | - Adam J. Carr
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, Chapel Hill, North Carolina, 27514, United States of America
| | - Qisheng Zhang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, Chapel Hill, North Carolina, 27514, United States of America
| | - Nancy L. Allbritton
- Department of Bioengineering, University of Washington, Seattle, Washington, 98105, United States of America
| |
Collapse
|
19
|
Lauterbach MA, Saavedra V, Mangan MSJ, Penno A, Thiele C, Latz E, Kuerschner L. 1-Deoxysphingolipids cause autophagosome and lysosome accumulation and trigger NLRP3 inflammasome activation. Autophagy 2021; 17:1947-1961. [PMID: 32835606 PMCID: PMC8386713 DOI: 10.1080/15548627.2020.1804677] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 02/08/2023] Open
Abstract
1-Deoxysphingolipids (deoxySLs) are atypical sphingolipids of clinical relevance as they are elevated in plasma of patients suffering from hereditary sensory and autonomic neuropathy (HSAN1) or type 2 diabetes. Their neurotoxicity is described best but they inflict damage to various cell types by an uncertain pathomechanism. Using mouse embryonic fibroblasts and an alkyne analog of 1-deoxysphinganine (doxSA), the metabolic precursor of all deoxySLs, we here study the impact of deoxySLs on macroautophagy/autophagy, the regulated degradation of dysfunctional or expendable cellular components. We find that deoxySLs induce autophagosome and lysosome accumulation indicative of an increase in autophagic flux. The autophagosomal machinery targets damaged mitochondria that have accumulated N-acylated doxSA metabolites, presumably deoxyceramide and deoxydihydroceramide, and show aberrant swelling and tubule formation. Autophagosomes and lysosomes also interact with cellular lipid aggregates and crystals that occur upon cellular uptake and N-acylation of monomeric doxSA. As crystals entering the lysophagosomal apparatus in phagocytes are known to trigger the NLRP3 inflammasome, we also treated macrophages with doxSA. We demonstrate the activation of the NLRP3 inflammasome by doxSLs, prompting the release of IL1B from primary macrophages. Taken together, our data establish an impact of doxSLs on autophagy and link doxSL pathophysiology to inflammation and the innate immune system.Abbreviations: alkyne-doxSA: (2S,3R)-2-aminooctadec-17yn-3-ol; alkyne-SA: (2S,3R)-2- aminooctadec-17yn-1,3-diol; aSA: alkyne-sphinganine; ASTM-BODIPY: azido-sulfo-tetramethyl-BODIPY; CerS: ceramide synthase; CMR: clonal macrophage reporter; deoxySLs: 1-deoxysphingolipids; dox(DH)Cer: 1-deoxydihydroceramide; doxCer: 1-deoxyceramide; doxSA: 1-deoxysphinganine; FB1: fumonisin B1; HSAN1: hereditary sensory and autonomic neuropathy type 1; LC3: MAP1LC3A and MAP1LC3B; LPS: lipopolysaccharide; MEF: mouse embryonal fibroblasts; MS: mass spectrometry; N3635P: azido-STAR635P; N3Cy3: azido-cyanine 3; N3picCy3: azido-picolylcyanine 3; NLRP3: NOD-like receptor pyrin domain containing protein 3; P4HB: prolyl 4-hydroxylase subunit beta; PINK1: PTEN induced putative kinase 1; PYCARD/ASC: PYD and CARD domain containing; SPTLC1: serine palmitoyltransferase long chain base subunit 1; SQSTM1: sequestosome 1; TLC: thin layer chromatography.
Collapse
Affiliation(s)
| | - Victor Saavedra
- LIMES Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Matthew S J Mangan
- Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Anke Penno
- LIMES Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Christoph Thiele
- LIMES Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Infectious Diseases and Immunology, UMass Medical School, Worcester, MA, USA
| | - Lars Kuerschner
- LIMES Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
20
|
Fink J, Schumacher F, Schlegel J, Stenzel P, Wigger D, Sauer M, Kleuser B, Seibel J. Azidosphinganine enables metabolic labeling and detection of sphingolipid de novo synthesis. Org Biomol Chem 2021; 19:2203-2212. [PMID: 33496698 DOI: 10.1039/d0ob02592e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here were report the combination of biocompatible click chemistry of ω-azidosphinganine with fluorescence microscopy and mass spectrometry as a powerful tool to elaborate the sphingolipid metabolism. The azide probe was efficiently synthesized over 13 steps starting from l-serine in an overall yield of 20% and was used for live-cell fluorescence imaging of the endoplasmic reticulum in living cells by bioorthogonal click reaction with a DBCO-labeled fluorophore revealing that the incorporated analogue is mainly localized in the endoplasmic membrane like the endogenous species. A LC-MS(/MS)-based microsomal in vitro assay confirmed that ω-azidosphinganine mimics the natural species enabling the identification and analysis of metabolic breakdown products of sphinganine as a key starting intermediate in the complex sphingolipid biosynthetic pathways. Furthermore, the sphinganine-fluorophore conjugate after click reaction was enzymatically tolerated to form its dihydroceramide and ceramide metabolites. Thus, ω-azidosphinganine represents a useful biofunctional tool for metabolic investigations both by in vivo fluorescence imaging of the sphingolipid subcellular localization in the ER and by in vitro high-resolution mass spectrometry analysis. This should reveal novel insights of the molecular mechanisms sphingolipids and their processing enzymes have e.g. in infection.
Collapse
Affiliation(s)
- Julian Fink
- Institute of Organic Chemistry, Julius-Maximilians University Würzburg, Am Hubland C1, 97074 Würzburg, Germany.
| | - Fabian Schumacher
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany. and Institute of Nutritional Science, Department of Toxicology, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Jan Schlegel
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians University Würzburg, 97074 Würzburg, Germany.
| | - Philipp Stenzel
- Institute of Organic Chemistry, Julius-Maximilians University Würzburg, Am Hubland C1, 97074 Würzburg, Germany.
| | - Dominik Wigger
- Institute of Nutritional Science, Department of Toxicology, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians University Würzburg, 97074 Würzburg, Germany.
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany. and Institute of Nutritional Science, Department of Toxicology, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Jürgen Seibel
- Institute of Organic Chemistry, Julius-Maximilians University Würzburg, Am Hubland C1, 97074 Würzburg, Germany.
| |
Collapse
|
21
|
Bos AV, Erkelens MN, Koenders STA, van der Stelt M, van Egmond M, Mebius RE. Clickable Vitamins as a New Tool to Track Vitamin A and Retinoic Acid in Immune Cells. Front Immunol 2021; 12:671283. [PMID: 34305901 PMCID: PMC8298001 DOI: 10.3389/fimmu.2021.671283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/02/2021] [Indexed: 01/24/2023] Open
Abstract
The vitamin A derivative, retinoid acid (RA) is key player in guiding adaptive mucosal immune responses. However, data on the uptake and metabolism of vitamin A within human immune cells has remained largely elusive because retinoids are small, lipophilic molecules which are difficult to detect. To overcome this problem and to be able to study the effect of vitamin A metabolism in human immune cell subsets, we have synthesized novel bio-orthogonal retinoid-based probes (clickable probes), which are structurally and functionally indistinguishable from vitamin A. The probes contain a functional group (an alkyne) to conjugate to a fluorogenic dye to monitor retinoid molecules in real-time in immune cells. We demonstrate, by using flow cytometry and microscopy, that multiple immune cells have the capacity to internalize retinoids to varying degrees, including human monocyte-derived dendritic cells (DCs) and naïve B lymphocytes. We observed that naïve B cells lack the enzymatic machinery to produce RA, but use exogenous retinoic acid to enhance CD38 expression. Furthermore, we showed that human DCs metabolize retinal into retinoic acid, which in co-culture with naïve B cells led to of the induction of CD38 expression. These data demonstrate that in humans, DCs can serve as an exogenous source of RA for naïve B cells. Taken together, through the use of clickable vitamins our data provide valuable insight in the mechanism of vitamin A metabolism and its importance for human adaptive immunity.
Collapse
Affiliation(s)
- Amelie V Bos
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, location VUmc, Amsterdam, Netherlands
| | - Martje N Erkelens
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, location VUmc, Amsterdam, Netherlands
| | - Sebastiaan T A Koenders
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, location VUmc, Amsterdam, Netherlands.,Department of Surgery, Amsterdam University Medical Center, location VUmc, Amsterdam, Netherlands
| | - Reina E Mebius
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, location VUmc, Amsterdam, Netherlands
| |
Collapse
|
22
|
Suazo KF, Park KY, Distefano MD. A Not-So-Ancient Grease History: Click Chemistry and Protein Lipid Modifications. Chem Rev 2021; 121:7178-7248. [PMID: 33821625 PMCID: PMC8820976 DOI: 10.1021/acs.chemrev.0c01108] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein lipid modification involves the attachment of hydrophobic groups to proteins via ester, thioester, amide, or thioether linkages. In this review, the specific click chemical reactions that have been employed to study protein lipid modification and their use for specific labeling applications are first described. This is followed by an introduction to the different types of protein lipid modifications that occur in biology. Next, the roles of click chemistry in elucidating specific biological features including the identification of lipid-modified proteins, studies of their regulation, and their role in diseases are presented. A description of the use of protein-lipid modifying enzymes for specific labeling applications including protein immobilization, fluorescent labeling, nanostructure assembly, and the construction of protein-drug conjugates is presented next. Concluding remarks and future directions are presented in the final section.
Collapse
Affiliation(s)
- Kiall F. Suazo
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Keun-Young Park
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Mark D. Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
23
|
Yaghmour MH, Thiele C, Kuerschner L. An advanced method for propargylcholine phospholipid detection by direct-infusion MS. J Lipid Res 2021; 62:100022. [PMID: 33453218 PMCID: PMC7900581 DOI: 10.1016/j.jlr.2021.100022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/22/2020] [Accepted: 01/06/2021] [Indexed: 01/16/2023] Open
Abstract
Phospholipids with a choline head group are an abundant component of cellular membranes and are involved in many important biological functions. For studies on the cell biology and metabolism of these lipids, traceable analogues where propargylcholine replaces the choline head group have proven useful. We present a novel method to analyze propargylcholine phospholipids by MS. The routine employs 1-radyl-2-lyso-sn-glycero-3-phosphopropargylcholines as labeled lysophosphatidylcholine precursors, which upon cellular conversion direct the traceable tag with superb specificity and efficiency to the primary target lipid class. Using azidopalmitate as a click-chemistry reporter, we introduce a highly specific, sensitive, and robust MS detection procedure for the propargylcholine phospholipids. In a first study, we apply the new technique to investigate choline phospholipid metabolism in brain endothelial cells. These experiments reveal differences in the metabolism of phosphatidylcholine and its pendant, ether phosphatidylcholine. The novel method described here opens a new, quantitative, and detailed view on propargylcholine phospholipid metabolism and will greatly facilitate future studies on choline phospholipid metabolism.
Collapse
Affiliation(s)
- Mohamed H Yaghmour
- LIMES Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Christoph Thiele
- LIMES Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Lars Kuerschner
- LIMES Life and Medical Sciences Institute, University of Bonn, Bonn, Germany.
| |
Collapse
|
24
|
Spannl S, Buhl T, Nellas I, Zeidan SA, Iyer KV, Khaliullina H, Schultz C, Nadler A, Dye NA, Eaton S. Glycolysis regulates Hedgehog signalling via the plasma membrane potential. EMBO J 2020; 39:e101767. [PMID: 33021744 PMCID: PMC7604625 DOI: 10.15252/embj.2019101767] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 01/04/2023] Open
Abstract
Changes in cell metabolism and plasma membrane potential have been linked to shifts between tissue growth and differentiation, and to developmental patterning. How such changes mediate these effects is poorly understood. Here, we use the developing wing of Drosophila to investigate the interplay between cell metabolism and a key developmental regulator-the Hedgehog (Hh) signalling pathway. We show that reducing glycolysis both lowers steady-state levels of ATP and stabilizes Smoothened (Smo), the 7-pass transmembrane protein that transduces the Hh signal. As a result, the transcription factor Cubitus interruptus accumulates in its full-length, transcription activating form. We show that glycolysis is required to maintain the plasma membrane potential and that plasma membrane depolarization blocks cellular uptake of N-acylethanolamides-lipoprotein-borne Hh pathway inhibitors required for Smo destabilization. Similarly, pharmacological inhibition of glycolysis in mammalian cells induces ciliary translocation of Smo-a key step in pathway activation-in the absence of Hh. Thus, changes in cell metabolism alter Hh signalling through their effects on plasma membrane potential.
Collapse
Affiliation(s)
- Stephanie Spannl
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Present address:
Department of BiochemistryFaculty of MedicineUniversity of TorontoTorontoONCanada
| | - Tomasz Buhl
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Biotechnologisches ZentrumTechnische Universität DresdenDresdenGermany
| | - Ioannis Nellas
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Biotechnologisches ZentrumTechnische Universität DresdenDresdenGermany
| | - Salma A Zeidan
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Biotechnologisches ZentrumTechnische Universität DresdenDresdenGermany
| | - K Venkatesan Iyer
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Max Planck Institute for the Physics of Complex SystemsDresdenGermany
| | - Helena Khaliullina
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Present address:
Department of PhysiologyDevelopment and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Carsten Schultz
- Cell Biology and Biophysics UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Department of Chemical Physiology and BiochemistryOregon Health and Science UniversityPortlandORUSA
| | - André Nadler
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Natalie A Dye
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Suzanne Eaton
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Biotechnologisches ZentrumTechnische Universität DresdenDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| |
Collapse
|
25
|
Samuel AZ, Miyaoka R, Ando M, Gaebler A, Thiele C, Takeyama H. Molecular profiling of lipid droplets inside HuH7 cells with Raman micro-spectroscopy. Commun Biol 2020; 3:372. [PMID: 32651434 PMCID: PMC7351753 DOI: 10.1038/s42003-020-1100-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Raman imaging has become an attractive technology in molecular biology because of its ability to detect multiple molecular components simultaneously without labeling. Two major limitations in accurately accounting for spectral features, viz., background removal and spectral unmixing, have been overcome by employing a modified and effective routine in multivariate curve resolution (MCR). With our improved strategy, we have spectrally isolated seven structurally specific biomolecules without any post-acquisition spectral treatments. Consequently, the isolated intensity profiles reflected concentrations of corresponding biomolecules with high statistical accuracy. Our study reveals the changes in the molecular composition of lipid droplets (LDs) inside HuH7 cells and its relation to the physiological state of the cell. Further, we show that the accurate separation of spectral components permits analysis of structural modification of molecules after cellular uptake. A detailed discussion is presented to highlight the potential of Raman spectroscopy with MCR in semi-quantitative molecular profiling of living cells. Samuel, Miyaoka et al. investigate the changes in the molecular composition of lipid droplets inside HuH7 cells and its relation to the physiological state of the cell, using Raman spectroscopy and multivariate curve resolution. This study underscores the importance of separation of spectral components in semi-quantitative molecular profiling of living cells.
Collapse
Affiliation(s)
- Ashok Zachariah Samuel
- Research Organization for Nano & Life Innovation, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
| | - Rimi Miyaoka
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Masahiro Ando
- Research Organization for Nano & Life Innovation, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan.,JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Anne Gaebler
- LIMES Life and Medical Sciences Institute, University of Bonn, Carl-Troll-Strasse 31, 53115, Bonn, Germany
| | - Christoph Thiele
- LIMES Life and Medical Sciences Institute, University of Bonn, Carl-Troll-Strasse 31, 53115, Bonn, Germany
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan. .,Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology and Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan. .,Insituture for Advances Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Tokyo, Japan.
| |
Collapse
|
26
|
Ticho AL, Malhotra P, Manzella CR, Dudeja PK, Saksena S, Gill RK, Alrefai WA. S-acylation modulates the function of the apical sodium-dependent bile acid transporter in human cells. J Biol Chem 2020; 295:4488-4497. [PMID: 32071081 DOI: 10.1074/jbc.ra119.011032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/06/2020] [Indexed: 01/16/2023] Open
Abstract
The ileal apical sodium-dependent bile acid transporter (ASBT) is crucial for the enterohepatic circulation of bile acids. ASBT function is rapidly regulated by several posttranslational modifications. One reversible posttranslational modification is S-acylation, involving the covalent attachment of fatty acids to cysteine residues in proteins. However, whether S-acylation affects ASBT function and membrane expression has not been determined. Using the acyl resin-assisted capture method, we found that the majority of ASBT (∼80%) was S-acylated in ileal brush border membrane vesicles from human organ donors, as well as in HEK293 cells stably transfected with ASBT (2BT cells). Metabolic labeling with alkyne-palmitic acid (100 μm for 15 h) also showed that ASBT is S-acylated in 2BT cells. Incubation with the acyltransferase inhibitor 2-bromopalmitate (25 μm for 15 h) significantly reduced ASBT S-acylation, function, and levels on the plasma membrane. Treatment of 2BT cells with saturated palmitic acid (100 μm for 15 h) increased ASBT function, whereas treatment with unsaturated oleic acid significantly reduced ASBT function. Metabolic labeling with alkyne-oleic acid (100 μm for 15 h) revealed that oleic acid attaches to ASBT, suggesting that unsaturated fatty acids may decrease ASBT's function via a direct covalent interaction with ASBT. We also identified Cys-314 as a potential S-acylation site. In conclusion, these results provide evidence that S-acylation is involved in the modulation of ASBT function. These findings underscore the potential for unsaturated fatty acids to reduce ASBT function, which may be useful in disorders in which bile acid toxicity is implicated.
Collapse
Affiliation(s)
- Alexander L Ticho
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Illinois 60612-7332
| | - Pooja Malhotra
- Division of Gastroenterology and Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Illinois 60612-7332
| | - Christopher R Manzella
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Illinois 60612-7332
| | - Pradeep K Dudeja
- Division of Gastroenterology and Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Illinois 60612-7332.,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| | - Seema Saksena
- Division of Gastroenterology and Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Illinois 60612-7332.,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| | - Ravinder K Gill
- Division of Gastroenterology and Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Illinois 60612-7332
| | - Waddah A Alrefai
- Division of Gastroenterology and Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Illinois 60612-7332 .,Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| |
Collapse
|
27
|
Koenders SA, Wijaya LS, Erkelens MN, Bakker AT, van der Noord VE, van Rooden EJ, Burggraaff L, Putter PC, Botter E, Wals K, van den Elst H, den Dulk H, Florea BI, van de Water B, van Westen GJP, Mebius RE, Overkleeft HS, Le Dévédec SE, van der Stelt M. Development of a Retinal-Based Probe for the Profiling of Retinaldehyde Dehydrogenases in Cancer Cells. ACS CENTRAL SCIENCE 2019; 5:1965-1974. [PMID: 31893226 PMCID: PMC6936097 DOI: 10.1021/acscentsci.9b01022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Indexed: 05/13/2023]
Abstract
Retinaldehyde dehydrogenases belong to a superfamily of enzymes that regulate cell differentiation and are responsible for detoxification of anticancer drugs. Chemical tools and methods are of great utility to visualize and quantify aldehyde dehydrogenase (ALDH) activity in health and disease. Here, we present the discovery of a first-in-class chemical probe based on retinal, the endogenous substrate of retinal ALDHs. We unveil the utility of this probe in quantitating ALDH isozyme activity in a panel of cancer cells via both fluorescence and chemical proteomic approaches. We demonstrate that our probe is superior to the widely used ALDEFLUOR assay to explain the ability of breast cancer (stem) cells to produce all-trans retinoic acid. Furthermore, our probe revealed the cellular selectivity profile of an advanced ALDH1A1 inhibitor, thereby prompting us to investigate the nature of its cytotoxicity. Our results showcase the application of substrate-based probes in interrogating pathologically relevant enzyme activities. They also highlight the general power of chemical proteomics in driving the discovery of new biological insights and its utility to guide drug discovery efforts.
Collapse
Affiliation(s)
- Sebastiaan
T. A. Koenders
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
- Oncode Institute, Utrecht 3521 AL, The Netherlands
| | - Lukas S. Wijaya
- Cancer
Therapeutics and Drug Safety, Division of Drug Discovery and Safety,
Leiden Academic Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Martje N. Erkelens
- Department
of Molecular Cell Biology and Immunology, Amsterdam University Medical Centra, Amsterdam 1081 HV, The Netherlands
| | - Alexander T. Bakker
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Vera E. van der Noord
- Cancer
Therapeutics and Drug Safety, Division of Drug Discovery and Safety,
Leiden Academic Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Eva J. van Rooden
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Lindsey Burggraaff
- Computational
Drug Discovery, Division of Drug Discovery and Safety, Leiden Academic
Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Pasquale C. Putter
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Else Botter
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Kim Wals
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
- Oncode Institute, Utrecht 3521 AL, The Netherlands
| | - Hans van den Elst
- Department
of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Hans den Dulk
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Bogdan I. Florea
- Department
of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Bob van de Water
- Cancer
Therapeutics and Drug Safety, Division of Drug Discovery and Safety,
Leiden Academic Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Gerard J. P. van Westen
- Computational
Drug Discovery, Division of Drug Discovery and Safety, Leiden Academic
Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Reina E. Mebius
- Department
of Molecular Cell Biology and Immunology, Amsterdam University Medical Centra, Amsterdam 1081 HV, The Netherlands
| | - Herman S. Overkleeft
- Department
of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
| | - Sylvia E. Le Dévédec
- Cancer
Therapeutics and Drug Safety, Division of Drug Discovery and Safety,
Leiden Academic Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Mario van der Stelt
- Department
of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RA, The Netherlands
- Oncode Institute, Utrecht 3521 AL, The Netherlands
- E-mail:
| |
Collapse
|
28
|
Multiplexed and single cell tracing of lipid metabolism. Nat Methods 2019; 16:1123-1130. [DOI: 10.1038/s41592-019-0593-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 09/10/2019] [Indexed: 12/19/2022]
|
29
|
Fink J, Seibel J. Click reactions with functional sphingolipids. Biol Chem 2019; 399:1157-1168. [PMID: 29908120 DOI: 10.1515/hsz-2018-0169] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/15/2018] [Indexed: 12/17/2022]
Abstract
Sphingolipids and glycosphingolipids can regulate cell recognition and signalling. Ceramide and sphingosine-1-phosphate are major players in the sphingolipid pathways and are involved in the initiation and regulation of signalling, apoptosis, stress responses and infection. Specific chemically synthesised sphingolipid derivatives containing small functionalities like azide or alkyne can mimic the biological properties of natural lipid species, which turns them into useful tools for the investigation of the highly complex sphingolipid metabolism by rapid and selective 'click chemistry' using sensitive tags like fluorophores. Subsequent analysis by various fluorescence microscopy techniques or mass spectrometry allows the identification and quantification of the corresponding sphingolipid metabolites as well as the research of associated enzymes. Here we present an overview of recent advances in the synthesis of ceramide and sphingosine analogues for bioorthogonal click reactions to study biosynthetic pathways and localization of sphingolipids for the development of novel therapeutics against lipid-dependent diseases.
Collapse
Affiliation(s)
- Julian Fink
- University of Würzburg, Institute of Organic Chemistry, Am Hubland, D-97074 Würzburg, Germany
| | - Jürgen Seibel
- University of Würzburg, Institute of Organic Chemistry, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
30
|
Kol M, Williams B, Toombs-Ruane H, Franquelim HG, Korneev S, Schroeer C, Schwille P, Trauner D, Holthuis JC, Frank JA. Optical manipulation of sphingolipid biosynthesis using photoswitchable ceramides. eLife 2019; 8:43230. [PMID: 30720434 PMCID: PMC6386522 DOI: 10.7554/elife.43230] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/02/2019] [Indexed: 12/31/2022] Open
Abstract
Ceramides are central intermediates of sphingolipid metabolism that also function as potent messengers in stress signaling and apoptosis. Progress in understanding how ceramides execute their biological roles is hampered by a lack of methods to manipulate their cellular levels and metabolic fate with appropriate spatiotemporal precision. Here, we report on clickable, azobenzene-containing ceramides, caCers, as photoswitchable metabolic substrates to exert optical control over sphingolipid production in cells. Combining atomic force microscopy on model bilayers with metabolic tracing studies in cells, we demonstrate that light-induced alterations in the lateral packing of caCers lead to marked differences in their metabolic conversion by sphingomyelin synthase and glucosylceramide synthase. These changes in metabolic rates are instant and reversible over several cycles of photoswitching. Our findings disclose new opportunities to probe the causal roles of ceramides and their metabolic derivatives in a wide array of sphingolipid-dependent cellular processes with the spatiotemporal precision of light.
Collapse
Affiliation(s)
- Matthijs Kol
- Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Ben Williams
- Department of Chemistry, Ludwig Maximilians University Munich, Munich, Germany
| | - Henry Toombs-Ruane
- Department of Chemistry, Ludwig Maximilians University Munich, Munich, Germany
| | - Henri G Franquelim
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sergei Korneev
- Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Christian Schroeer
- Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Dirk Trauner
- Department of Chemistry, New York University, New York, United States
| | - Joost Cm Holthuis
- Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - James A Frank
- The Vollum Institute, Oregon Health and Science University, Portland, United States
| |
Collapse
|
31
|
Strmiskova M, Bilodeau DA, Chigrinova M, Pezacki JP. Phenanthridine-based nitrones as substrates for strain-promoted alkyne-nitrone cycloadditions. CAN J CHEM 2019. [DOI: 10.1139/cjc-2018-0253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the past decade, bioorthogonal chemistry that facilitates the efficient conjugation of biomolecules has expanded from the copper-catalyzed alkyne-azide cycloadditions to a multitude of diverse reactions, varying additives and reactional partners, and most often offering better alternatives with faster rates and lower toxicity of employed reactants. Among these, the copper-free strain-promoted cycloaddition reactions have been demonstrated to be more promising, offering a reaction without toxic metal catalysts and with faster inherent kinetic rate constants. The strain-promoted alkyne-nitrone cycloadditions are easily tunable from both the (strained) alkyne and nitrone perspective, both compounds giving the opportunity to modulate the rate of reaction by substituting various positions. Previously, acyclic nitrones have been evaluated in the strain-promoted alkyne-nitrone reactions; however, they were notably prone to hydrolysis. Some five-membered ring endocyclic nitrones developed concomitantly offered the advantage of relatively fast kinetics and better resistance to degradation in aqueous conditions and have been successfully used for labelling of biomolecules in living systems. Herein, we have prepared and studied nitrones inspired by the phenanthridine scaffold that efficiently undergo strain-promoted alkyne-nitrone reactions. Phenanthridine nitrones react fast with strained cyclooctynes with large bimolecular rate constants while maintaining bioorthogonality and resistance to hydrolysis.
Collapse
Affiliation(s)
- Miroslava Strmiskova
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie Private, Ottawa, ON K1N 6N5, Canada
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie Private, Ottawa, ON K1N 6N5, Canada
| | - Didier A. Bilodeau
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie Private, Ottawa, ON K1N 6N5, Canada
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie Private, Ottawa, ON K1N 6N5, Canada
| | - Mariya Chigrinova
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie Private, Ottawa, ON K1N 6N5, Canada
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie Private, Ottawa, ON K1N 6N5, Canada
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie Private, Ottawa, ON K1N 6N5, Canada
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, University of Ottawa, 10 Marie-Curie Private, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
32
|
Rozié A, Santos C, Fabing I, Calsou P, Britton S, Génisson Y, Ballereau S. Alkyne-Tagged Analogue of Jaspine B: New Tool for Identifying Jaspine B Mode of Action. Chembiochem 2018; 19:2438-2442. [PMID: 30303294 DOI: 10.1002/cbic.201800496] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Indexed: 11/06/2022]
Abstract
The first biologically relevant clickable probe related to the antitumor marine lipid jaspine B is reported. The concise synthetic route to both enantiomers relied on the supercritical fluid chromatography (SFC) enantiomeric resolution of racemic materials. The eutomeric dextrogyre derivative represents the first jaspine B analogue with enhanced cytotoxicity with IC50 down to 30 nm. These enantiomeric probes revealed a chiralitydependent cytoplasmic imaging of U2OS cancer cells by in situ click labeling.
Collapse
Affiliation(s)
- Alexandrine Rozié
- Institut de Pharmacologie et de Biologie Structurale, UMR5089 CNRS-Université de Toulouse, Equipe Labellisée Ligue Nationale contre le Cancer 2018, 31077, Toulouse, France
| | - Cécile Santos
- SPCMIB, UMR5068 CNRS-Université Paul Sabatier-Toulouse III, 118 route de Narbonne, 31062, Toulouse, France
| | - Isabelle Fabing
- SPCMIB, UMR5068 CNRS-Université Paul Sabatier-Toulouse III, 118 route de Narbonne, 31062, Toulouse, France
| | - Patrick Calsou
- Institut de Pharmacologie et de Biologie Structurale, UMR5089 CNRS-Université de Toulouse, Equipe Labellisée Ligue Nationale contre le Cancer 2018, 31077, Toulouse, France
| | - Sébastien Britton
- Institut de Pharmacologie et de Biologie Structurale, UMR5089 CNRS-Université de Toulouse, Equipe Labellisée Ligue Nationale contre le Cancer 2018, 31077, Toulouse, France
| | - Yves Génisson
- SPCMIB, UMR5068 CNRS-Université Paul Sabatier-Toulouse III, 118 route de Narbonne, 31062, Toulouse, France
| | - Stéphanie Ballereau
- SPCMIB, UMR5068 CNRS-Université Paul Sabatier-Toulouse III, 118 route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
33
|
Mohamed ZH, Rhein C, Saied EM, Kornhuber J, Arenz C. FRET probes for measuring sphingolipid metabolizing enzyme activity. Chem Phys Lipids 2018; 216:152-161. [DOI: 10.1016/j.chemphyslip.2018.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 09/21/2018] [Indexed: 12/31/2022]
|
34
|
Biogenic Synthesis of Copper and Silver Nanoparticles Using Green Alga Botryococcus braunii and Its Antimicrobial Activity. Bioinorg Chem Appl 2018; 2018:7879403. [PMID: 30420873 PMCID: PMC6215593 DOI: 10.1155/2018/7879403] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/20/2018] [Accepted: 09/26/2018] [Indexed: 11/17/2022] Open
Abstract
The spread of infectious diseases and the increase in the drug resistance among microbes has forced the researchers to synthesize biologically active nanoparticles. Improvement of the ecofriendly procedure for the synthesis of nanoparticles is growing day-by-day in the field of nanobiotechnology. In the present study, we use the extract of green alga Botryococcus braunii for the synthesis of copper and silver nanoparticles. The characterization of copper and silver nanoparticles was carried out by using UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron spectroscopy (SEM). FTIR measurements showed all functional groups having control over reduction and stabilization of the nanoparticles. The X-ray diffraction pattern revealed that the particles were crystalline in nature with a face-centred cubic (FCC) geometry. SEM micrographs have shown the morphology of biogenically synthesized metal nanoparticles. Furthermore, these biosynthesized nanoparticles were found to be highly toxic against two Gram-negative bacterial strains Pseudomonas aeruginosa (MTCC 441) and Escherichia coli (MTCC 442), two Gram-positive bacterial strains Klebsiella pneumoniae (MTCC 109) and Staphylococcus aureus (MTCC 96), and a fungal strain Fusarium oxysporum (MTCC 2087). The zone of inhibition was measured by the agar well plate method, and furthermore, minimum inhibitory concentration was determined by the broth dilution assay.
Collapse
|
35
|
Opportunities for Lipid-Based Probes in the Field of Immunology. Curr Top Microbiol Immunol 2018; 420:283-319. [PMID: 30242513 DOI: 10.1007/82_2018_127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Lipids perform a wide range of functions inside the cell, ranging from structural building block of membranes and energy storage to cell signaling. The mode of action of many signaling lipids has remained elusive due to their low abundance, high lipophilicity, and inherent instability. Various chemical biology approaches, such as photoaffinity or activity-based protein profiling methods, have been employed to shed light on the biological role of lipids and the lipid-protein interaction profile. In this review, we will summarize the recent developments in the field of chemical probes to study lipid biology, especially in immunology, and indicate potential avenues for future research.
Collapse
|
36
|
Click chemistry in sphingolipid research. Chem Phys Lipids 2018; 215:71-83. [DOI: 10.1016/j.chemphyslip.2018.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 01/17/2023]
|
37
|
Astrocytes and oligodendrocytes in grey and white matter regions of the brain metabolize fatty acids. Sci Rep 2017; 7:10779. [PMID: 28883484 PMCID: PMC5589817 DOI: 10.1038/s41598-017-11103-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/15/2017] [Indexed: 11/16/2022] Open
Abstract
The grey and white matter regions of the mammalian brain consist of both neurons and neuroglial cells. Among the neuroglia, the two macroglia oligodendrocytes and astrocytes are the most abundant cell types. While the major function of oligodendrocytes is the formation of the lipid-rich myelin structure, the heterogeneous group of astrocytes fulfils a multitude of important roles in cerebral development and homeostasis. Brain lipid homeostasis involves the synthesis of a specific cerebral lipidome by local lipid metabolism. In this study we have investigated the fatty acid uptake and lipid biosynthesis in grey and white matter regions of the murine brain. Key findings were: (i) white matter oligodendrocytes and astrocytes take up saturated and unsaturated fatty acids, (ii) different grey matter regions show varying lipid labelling intensities, (iii) the medial habenula, an epithalamic grey matter structure, and the oligodendrocytes and astrocytes therein are targeted by fatty acids, and (iv) in the medial habenula, the neutral lipid containing lipid droplets are found in cells facing the ventricle but undetectable in the habenular parenchyma. Our data indicate a role for oligodendrocytes and astrocytes in local lipid metabolism of white and grey matter regions in the brain.
Collapse
|
38
|
Kol M, Panatala R, Nordmann M, Swart L, van Suijlekom L, Cabukusta B, Hilderink A, Grabietz T, Mina JGM, Somerharju P, Korneev S, Tafesse FG, Holthuis JCM. Switching head group selectivity in mammalian sphingolipid biosynthesis by active-site-engineering of sphingomyelin synthases. J Lipid Res 2017; 58:962-973. [PMID: 28336574 DOI: 10.1194/jlr.m076133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 03/07/2017] [Indexed: 12/17/2022] Open
Abstract
SM is a fundamental component of mammalian cell membranes that contributes to mechanical stability, signaling, and sorting. Its production involves the transfer of phosphocholine from phosphatidylcholine onto ceramide, a reaction catalyzed by SM synthase (SMS)1 in the Golgi and SMS2 at the plasma membrane. Mammalian cells also synthesize trace amounts of the SM analog, ceramide phosphoethanolamine (CPE), but the physiological relevance of CPE production is unclear. Previous work revealed that SMS2 is a bifunctional enzyme producing both SM and CPE, whereas a closely related enzyme, SMS-related protein (SMSr)/SAMD8, acts as a monofunctional CPE synthase in the endoplasmic reticulum. Using domain swapping and site-directed mutagenesis on enzymes expressed in defined lipid environments, we here identified structural determinants that mediate the head group selectivity of SMS family members. Notably, a single residue adjacent to the catalytic histidine in the third exoplasmic loop profoundly influenced enzyme specificity, with Glu permitting SMS-catalyzed CPE production and Asp confining the enzyme to produce SM. An exchange of exoplasmic residues with SMSr proved sufficient to convert SMS1 into a bulk CPE synthase. This allowed us to establish mammalian cells that produce CPE rather than SM as the principal phosphosphingolipid and provide a model of the molecular interactions that impart catalytic specificity among SMS enzymes.
Collapse
Affiliation(s)
- Matthijs Kol
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany .,Membrane Biochemistry and Biophysics, Bijvoet Center and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Radhakrishnan Panatala
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany.,Membrane Biochemistry and Biophysics, Bijvoet Center and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Mirjana Nordmann
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - Leoni Swart
- Membrane Biochemistry and Biophysics, Bijvoet Center and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Leonie van Suijlekom
- Membrane Biochemistry and Biophysics, Bijvoet Center and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Birol Cabukusta
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - Angelika Hilderink
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - Tanja Grabietz
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - John G M Mina
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - Pentti Somerharju
- Medical Biochemistry, Institute of Biomedicine, University of Helsinki, Helsinki 00014, Finland
| | - Sergei Korneev
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - Fikadu G Tafesse
- Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239
| | - Joost C M Holthuis
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany .,Membrane Biochemistry and Biophysics, Bijvoet Center and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
39
|
Alecu I, Tedeschi A, Behler N, Wunderling K, Lamberz C, Lauterbach MAR, Gaebler A, Ernst D, Van Veldhoven PP, Al-Amoudi A, Latz E, Othman A, Kuerschner L, Hornemann T, Bradke F, Thiele C, Penno A. Localization of 1-deoxysphingolipids to mitochondria induces mitochondrial dysfunction. J Lipid Res 2016; 58:42-59. [PMID: 27881717 DOI: 10.1194/jlr.m068676] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 10/27/2016] [Indexed: 12/20/2022] Open
Abstract
1-Deoxysphingolipids (deoxySLs) are atypical sphingolipids that are elevated in the plasma of patients with type 2 diabetes and hereditary sensory and autonomic neuropathy type 1 (HSAN1). Clinically, diabetic neuropathy and HSAN1 are very similar, suggesting the involvement of deoxySLs in the pathology of both diseases. However, very little is known about the biology of these lipids and the underlying pathomechanism. We synthesized an alkyne analog of 1-deoxysphinganine (doxSA), the metabolic precursor of all deoxySLs, to trace the metabolism and localization of deoxySLs. Our results indicate that the metabolism of these lipids is restricted to only some lipid species and that they are not converted to canonical sphingolipids or fatty acids. Furthermore, exogenously added alkyne-doxSA [(2S,3R)-2-aminooctadec-17-yn-3-ol] localized to mitochondria, causing mitochondrial fragmentation and dysfunction. The induced mitochondrial toxicity was also shown for natural doxSA, but not for sphinganine, and was rescued by inhibition of ceramide synthase activity. Our findings therefore indicate that mitochondrial enrichment of an N-acylated doxSA metabolite may contribute to the neurotoxicity seen in diabetic neuropathy and HSAN1. Hence, we provide a potential explanation for the characteristic vulnerability of peripheral nerves to elevated levels of deoxySLs.
Collapse
Affiliation(s)
- Irina Alecu
- Institute for Clinical Chemistry, University of Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Andrea Tedeschi
- Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Natascha Behler
- LIMES Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Klaus Wunderling
- LIMES Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Christian Lamberz
- Cyro-Electron Microscopy and Tomography, German Center for Neurodegenerative Diseases, Bonn, Germany
| | | | - Anne Gaebler
- LIMES Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Daniela Ernst
- Institute for Clinical Chemistry, University of Zurich, Zurich, Switzerland
| | - Paul P Van Veldhoven
- Laboratory for Lipid Biochemistry and Protein Interactions, Campus Gasthuisberg, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Ashraf Al-Amoudi
- Cyro-Electron Microscopy and Tomography, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany
| | - Alaa Othman
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Lars Kuerschner
- LIMES Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Thorsten Hornemann
- Institute for Clinical Chemistry, University of Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Frank Bradke
- Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Christoph Thiele
- LIMES Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Anke Penno
- LIMES Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
40
|
Hofmann K, Lamberz C, Piotrowitz K, Offermann N, But D, Scheller A, Al-Amoudi A, Kuerschner L. Tanycytes and a differential fatty acid metabolism in the hypothalamus. Glia 2016; 65:231-249. [PMID: 27726181 DOI: 10.1002/glia.23088] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 08/31/2016] [Accepted: 09/28/2016] [Indexed: 11/12/2022]
Abstract
Although the brain controls all main metabolic pathways in the whole organism, its lipid metabolism is partially separated from the rest of the body. Circulating lipids and other metabolites are taken up into brain areas like the hypothalamus and are locally metabolized and sensed involving several hypothalamic cell types. In this study we show that saturated and unsaturated fatty acids are differentially processed in the murine hypothalamus. The observed differences involve both lipid distribution and metabolism. Key findings were: (i) hypothalamic astrocytes are targeted by unsaturated, but not saturated lipids in lean mice; (ii) in obese mice labeling of these astrocytes by unsaturated oleic acid cannot be detected unless β-oxidation or ketogenesis is inhibited; (iii) the hypothalamus of obese animals increases ketone body and neutral lipid synthesis while tanycytes, hypothalamic cells facing the ventricle, increase their lipid droplet content; and (iv) tanycytes show different labeling for saturated or unsaturated lipids. Our data support a metabolic connection between tanycytes and astrocytes likely to impact hypothalamic lipid sensing. GLIA 2017;65:231-249.
Collapse
Affiliation(s)
- Kristina Hofmann
- Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, D-53115, Germany
| | - Christian Lamberz
- German Center for Neurodegenerative Diseases (DZNE), Bonn, D-53175, Germany
| | - Kira Piotrowitz
- Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, D-53115, Germany
| | - Nina Offermann
- Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, D-53115, Germany
| | - Diana But
- Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, D-53115, Germany
| | - Anja Scheller
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, D-66421, Germany
| | - Ashraf Al-Amoudi
- German Center for Neurodegenerative Diseases (DZNE), Bonn, D-53175, Germany
| | - Lars Kuerschner
- Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, D-53115, Germany
| |
Collapse
|
41
|
Gaebler A, Penno A, Kuerschner L, Thiele C. A highly sensitive protocol for microscopy of alkyne lipids and fluorescently tagged or immunostained proteins. J Lipid Res 2016; 57:1934-1947. [PMID: 27565170 DOI: 10.1194/jlr.d070565] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Indexed: 12/21/2022] Open
Abstract
The demand to study the cellular localization of specific lipids has led to recent advances in lipid probes and microscopy. Alkyne lipids bear a small, noninterfering tag and can be detected upon click reaction with an azide-coupled reporter. Fluorescent alkyne lipid imaging crucially depends on appropriate azide reporters and labeling protocols that allow for an efficient click reaction and therefore a sensitive detection. We synthesized several azide reporters with different spacer components and tested their suitability for alkyne lipid imaging in fixed cells. The implementation of a copper-chelating picolyl moiety into fluorescent or biotin-based azide reagents strongly increased the sensitivity of the imaging routine. We demonstrate the applicability and evaluate the performance of this approach using different lipid classes and experimental setups. As azide picolyl reporters allow for reduced copper catalyst concentrations, they also enable coimaging of alkyne lipids with multiple fluorescent proteins including enhanced green fluorescent protein. Alternatively, and as we also show, microscopy of alkyne lipids can be combined with protein detection by immunocytochemistry. In summary, we present a robust, sensitive, and highly versatile protocol for the labeling of alkyne lipids with azide-coupled reporters for fluorescence microscopy that can be combined with different protein detection and imaging techniques.
Collapse
Affiliation(s)
- Anne Gaebler
- Life & Medical Sciences Institute (LIMES), University of Bonn, D-53115 Bonn, Germany
| | - Anke Penno
- Life & Medical Sciences Institute (LIMES), University of Bonn, D-53115 Bonn, Germany
| | - Lars Kuerschner
- Life & Medical Sciences Institute (LIMES), University of Bonn, D-53115 Bonn, Germany
| | - Christoph Thiele
- Life & Medical Sciences Institute (LIMES), University of Bonn, D-53115 Bonn, Germany.
| |
Collapse
|
42
|
Robichaud PP, Poirier SJ, Boudreau LH, Doiron JA, Barnett DA, Boilard E, Surette ME. On the cellular metabolism of the click chemistry probe 19-alkyne arachidonic acid. J Lipid Res 2016; 57:1821-1830. [PMID: 27538823 DOI: 10.1194/jlr.m067637] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Indexed: 12/21/2022] Open
Abstract
Alkyne and azide analogs of natural compounds that can be coupled to sensitive tags by click chemistry are powerful tools to study biological processes. Arachidonic acid (AA) is a FA precursor to biologically active compounds. 19-Alkyne-AA (AA-alk) is a sensitive clickable AA analog; however, its use as a surrogate to study AA metabolism requires further evaluation. In this study, AA-alk metabolism was compared with that of AA in human cells. Jurkat cell uptake of AA was 2-fold greater than that of AA-alk, but significantly more AA-Alk was elongated to 22:4. AA and AA-alk incorporation into and remodeling between phospholipid (PL) classes was identical indicating equivalent CoA-independent AA-PL remodeling. Platelets stimulated in the pre-sence of AA-alk synthesized significantly less 12-lipoxygenase (12-LOX) and cyclooxygenase products than in the presence of AA. Ionophore-stimulated neutrophils produced significantly more 5-LOX products in the presence of AA-alk than AA. Neutrophils stimulated with only exogenous AA-alk produced significantly less 5-LOX products compared with AA, and leukotriene B4 (LTB4)-alk was 12-fold less potent at stimulating neutrophil migration than LTB4, collectively indicative of weaker leukotriene B4 receptor 1 agonist activity of LTB4-alk. Overall, these results suggest that the use of AA-alk as a surrogate for the study of AA metabolism should be carried out with caution.
Collapse
Affiliation(s)
- Philippe Pierre Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada; Centre de Recherche du Centre Hospitalier Universitaire de Québec, Département de Microbiologie et Immunologie, Université Laval, Québec, QC G1V 4G2, Canada
| | - Samuel J Poirier
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada; Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC G1V 4G5, Canada
| | - Luc H Boudreau
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Jérémie A Doiron
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - David A Barnett
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Eric Boilard
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Département de Microbiologie et Immunologie, Université Laval, Québec, QC G1V 4G2, Canada
| | - Marc E Surette
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada.
| |
Collapse
|
43
|
Dauner M, Batroff E, Bachmann V, Hauck CR, Wittmann V. Synthetic Glycosphingolipids for Live-Cell Labeling. Bioconjug Chem 2016; 27:1624-37. [PMID: 27253729 DOI: 10.1021/acs.bioconjchem.6b00177] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycosphingolipids are an important component of cell membranes that are involved in many biological processes. Fluorescently labeled glycosphingolipids are frequently used to gain insight into their localization. However, the attachment of a fluorophore to the glycan part or-more commonly-to the lipid part of glycosphingolipids is known to alter the biophysical properties and can perturb the biological function of the probe. Presented here is the synthesis of novel glycosphingolipid probes with mono- and disaccharide head groups and ceramide moieties containing fatty acids of varying chain length (C4 to C20). These glycosphingolipids bear an azide or an alkyne group as chemical reporter to which a fluorophore can be attached through a bioorthogonal ligation reaction. The fluorescent tag and any linker connected to it can be chosen in a flexible manner. We demonstrate the suitability of the probes by selective visualization of the plasma membrane of living cells by confocal microscopy techniques. Whereas the derivatives with the shorter fatty acids can be directly applied to HEK 293T cells, the hydrophobic glycosphingolipids with longer fatty acids can be delivered to cells using fusogenic liposomes.
Collapse
Affiliation(s)
- Martin Dauner
- Department of Chemistry and ‡Department of Biology, Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz , 78457 Konstanz, Germany
| | - Ellen Batroff
- Department of Chemistry and ‡Department of Biology, Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz , 78457 Konstanz, Germany
| | - Verena Bachmann
- Department of Chemistry and ‡Department of Biology, Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz , 78457 Konstanz, Germany
| | - Christof R Hauck
- Department of Chemistry and ‡Department of Biology, Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz , 78457 Konstanz, Germany
| | - Valentin Wittmann
- Department of Chemistry and ‡Department of Biology, Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz , 78457 Konstanz, Germany
| |
Collapse
|
44
|
Solanko KA, Modzel M, Solanko LM, Wüstner D. Fluorescent Sterols and Cholesteryl Esters as Probes for Intracellular Cholesterol Transport. Lipid Insights 2016; 8:95-114. [PMID: 27330304 PMCID: PMC4902042 DOI: 10.4137/lpi.s31617] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/04/2016] [Accepted: 04/07/2016] [Indexed: 12/20/2022] Open
Abstract
Cholesterol transport between cellular organelles comprised vesicular trafficking and nonvesicular exchange; these processes are often studied by quantitative fluorescence microscopy. A major challenge for using this approach is producing analogs of cholesterol with suitable brightness and structural and chemical properties comparable with those of cholesterol. This review surveys currently used fluorescent sterols with respect to their behavior in model membranes, their photophysical properties, as well as their transport and metabolism in cells. In the first part, several intrinsically fluorescent sterols, such as dehydroergosterol or cholestatrienol, are discussed. These polyene sterols (P-sterols) contain three conjugated double bonds in the steroid ring system, giving them slight fluorescence in ultraviolet light. We discuss the properties of P-sterols relative to cholesterol, outline their chemical synthesis, and explain how to image them in living cells and organisms. In particular, we show that P-sterol esters inserted into low-density lipoprotein can be tracked in the fibroblasts of Niemann–Pick disease using high-resolution deconvolution microscopy. We also describe fluorophore-tagged cholesterol probes, such as BODIPY-, NBD-, Dansyl-, or Pyrene-tagged cholesterol, and eventual esters of these analogs. Finally, we survey the latest developments in the synthesis and use of alkyne cholesterol analogs to be labeled with fluorophores by click chemistry and discuss the potential of all approaches for future applications.
Collapse
Affiliation(s)
- Katarzyna A Solanko
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Maciej Modzel
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Lukasz M Solanko
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
45
|
Martínez-Montañés F, Schneiter R. Tools for the analysis of metabolic flux through the sphingolipid pathway. Biochimie 2016; 130:76-80. [PMID: 27208414 DOI: 10.1016/j.biochi.2016.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/13/2016] [Indexed: 01/26/2023]
Abstract
Discerning the complex regulation of the enzymatic steps necessary for sphingolipid biosynthesis is facilitated by the utilization of tracers that allow a time-resolved analysis of the pathway dynamics without affecting the metabolic flux. Different strategies have been used and new tools are continuously being developed to probe the various enzymatic conversions that occur within this complex pathway. Here, we provide a short overview of the divergent fungal and mammalian sphingolipid biosynthetic routes, and of the tracers and methods that are frequently employed to follow the flux of intermediates throughout these pathways.
Collapse
Affiliation(s)
| | - Roger Schneiter
- University of Fribourg, Department of Biology, 1700 Fribourg, Switzerland.
| |
Collapse
|
46
|
Kol M, Panatala R, Nordmann M, Swart L, van Suijlekom L, Cabukusta B, Hilderink A, Grabietz T, Mina JGM, Somerharju P, Korneev S, Tafesse FG, Holthuis JCM. Switching head group selectivity in mammalian sphingolipid biosynthesis by active-site engineering of sphingomyelin synthases. J Lipid Res 2016; 57:1273-85. [PMID: 27165857 DOI: 10.1194/jlr.m068692] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Indexed: 01/23/2023] Open
Abstract
SM is a fundamental component of mammalian cell membranes that contributes to mechanical stability, signaling, and sorting. Its production involves the transfer of phosphocholine from phosphatidylcholine onto ceramide, a reaction catalyzed by SM synthase (SMS) 1 in the Golgi and SMS2 at the plasma membrane. Mammalian cells also synthesize trace amounts of the SM analog ceramide phosphoethanolamine (CPE), but the physiological relevance of CPE production is unclear. Previous work revealed that SMS2 is a bifunctional enzyme producing both SM and CPE, whereas a closely related enzyme, sphingomyelin synthase-related protein (SMSr)/SAMD8, acts as a monofunctional CPE synthase in the endoplasmatic reticulum. Using domain swapping and site-directed mutagenesis on enzymes expressed in defined lipid environments, we here identified structural determinants that mediate head group selectivity of SMS family members. Notably, a single residue adjacent to the catalytic histidine in the third exoplasmic loop profoundly influenced enzyme specificity, with glutamic acid permitting SMS-catalyzed CPE production and aspartic acid confining the enzyme to produce SM. An exchange of exoplasmic residues with SMSr proved sufficient to convert SMS1 into a bulk CPE synthase. This allowed us to establish mammalian cells that produce CPE rather than SM as the principal phosphosphingolipid and provide a model of the molecular interactions that impart catalytic specificity among SMS enzymes.
Collapse
Affiliation(s)
- Matthijs Kol
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany Membrane Biochemistry & Biophysics, Bijvoet Center and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Radhakrishnan Panatala
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany Membrane Biochemistry & Biophysics, Bijvoet Center and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Mirjana Nordmann
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - Leoni Swart
- Membrane Biochemistry & Biophysics, Bijvoet Center and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Leonie van Suijlekom
- Membrane Biochemistry & Biophysics, Bijvoet Center and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Birol Cabukusta
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - Angelika Hilderink
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - Tanja Grabietz
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - John G M Mina
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - Pentti Somerharju
- Medical Biochemistry, Institute of Biomedicine, University of Helsinki, Helsinki 00014, Finland
| | - Sergei Korneev
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - Fikadu G Tafesse
- Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239
| | - Joost C M Holthuis
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany Membrane Biochemistry & Biophysics, Bijvoet Center and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
47
|
Gosejacob D, Jäger PS, Vom Dorp K, Frejno M, Carstensen AC, Köhnke M, Degen J, Dörmann P, Hoch M. Ceramide Synthase 5 Is Essential to Maintain C16:0-Ceramide Pools and Contributes to the Development of Diet-induced Obesity. J Biol Chem 2016; 291:6989-7003. [PMID: 26853464 DOI: 10.1074/jbc.m115.691212] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Indexed: 01/22/2023] Open
Abstract
Ceramides are bioactive sphingolipids, which are composed of sphingoid bases carrying acyl chains of various lengths. Ceramides are synthesized by a family of six ceramide synthases (CerS) in mammals, which produce ceramides with differentN-linked acyl chains. Increased ceramide levels are known to contribute to the development of obesity and insulin resistance. Recently, it has been demonstrated that the ceramide acylation pattern is of particular importance for an organism to maintain energy homeostasis. However, which of theCerSfamily members are involved in this process is not yet completely known. Using newly developedCerS5knock-out mice, we show here thatCerS5is essential to maintain cellular C16:0sphingolipid pools in lung, spleen, muscle, liver, and white adipose tissue. Glycerophospholipid levels inCerS5-deficient mice were not altered. We found a strong impact of CerS5-dependent ceramide synthesis in white adipose tissue after high fat diet feeding. In skeletal muscle, liver, and spleen, C16:0-ceramide levels were altered independent of feeding conditions. The loss ofCerS5is associated with reduced weight gain and improved systemic health, including maintenance of glucose homeostasis and reduced white adipose tissue inflammation after high fat diet challenge. Our findings indicate that reduction of endogenous C16:0-ceramide by genetic inhibition ofCerS5is sufficient to ameliorate obesity and its comorbidities.
Collapse
Affiliation(s)
- Dominic Gosejacob
- From the LIMES-Institute, Program Unit Development, Genetics and Molecular Physiology, Molecular Developmental Biology, University of Bonn, Carl-Troll-Strasse 31 and
| | - Philipp S Jäger
- From the LIMES-Institute, Program Unit Development, Genetics and Molecular Physiology, Molecular Developmental Biology, University of Bonn, Carl-Troll-Strasse 31 and
| | - Katharina Vom Dorp
- IMBIO, Molecular Biotechnology, University of Bonn, Karlrobert-Kreiten-Str. 13, 53115 Bonn, Germany
| | - Martin Frejno
- From the LIMES-Institute, Program Unit Development, Genetics and Molecular Physiology, Molecular Developmental Biology, University of Bonn, Carl-Troll-Strasse 31 and
| | - Anne C Carstensen
- From the LIMES-Institute, Program Unit Development, Genetics and Molecular Physiology, Molecular Developmental Biology, University of Bonn, Carl-Troll-Strasse 31 and
| | - Monika Köhnke
- From the LIMES-Institute, Program Unit Development, Genetics and Molecular Physiology, Molecular Developmental Biology, University of Bonn, Carl-Troll-Strasse 31 and
| | - Joachim Degen
- From the LIMES-Institute, Program Unit Development, Genetics and Molecular Physiology, Molecular Developmental Biology, University of Bonn, Carl-Troll-Strasse 31 and
| | - Peter Dörmann
- IMBIO, Molecular Biotechnology, University of Bonn, Karlrobert-Kreiten-Str. 13, 53115 Bonn, Germany
| | - Michael Hoch
- From the LIMES-Institute, Program Unit Development, Genetics and Molecular Physiology, Molecular Developmental Biology, University of Bonn, Carl-Troll-Strasse 31 and
| |
Collapse
|
48
|
Pore-forming toxins: Properties, diversity, and uses as tools to image sphingomyelin and ceramide phosphoethanolamine. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:576-92. [PMID: 26498396 DOI: 10.1016/j.bbamem.2015.10.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 09/30/2015] [Accepted: 10/14/2015] [Indexed: 12/27/2022]
Abstract
Pore-forming toxins (PFTs) represent a unique class of highly specific lipid-binding proteins. The cytotoxicity of these compounds has been overcome through crystallographic structure and mutation studies, facilitating the development of non-toxic lipid probes. As a consequence, non-toxic PFTs have been utilized as highly specific probes to visualize the diversity and dynamics of lipid nanostructures in living and fixed cells. This review is focused on the application of PFTs and their non-toxic analogs as tools to visualize sphingomyelin and ceramide phosphoethanolamine, two major phosphosphingolipids in mammalian and insect cells, respectively. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.
Collapse
|
49
|
Host cell phosphatidylcholine is a key mediator of malaria parasite survival during liver stage infection. Cell Host Microbe 2015; 16:778-86. [PMID: 25498345 PMCID: PMC4271766 DOI: 10.1016/j.chom.2014.11.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/29/2014] [Accepted: 11/04/2014] [Indexed: 01/22/2023]
Abstract
During invasion, Plasmodium, the causative agent of malaria, wraps itself in a parasitophorous vacuole membrane (PVM), which constitutes a critical interface between the parasite and its host cell. Within hepatocytes, each Plasmodium sporozoite generates thousands of new parasites, creating high demand for lipids to support this replication and enlarge the PVM. Here, a global analysis of the total lipid repertoire of Plasmodium-infected hepatocytes reveals an enrichment of neutral lipids and the major membrane phospholipid, phosphatidylcholine (PC). While infection is unaffected in mice deficient in key enzymes involved in neutral lipid synthesis and lipolysis, ablation of rate-limiting enzymes in hepatic PC biosynthetic pathways significantly decreases parasite numbers. Host PC is taken up by both P. berghei and P. falciparum and is necessary for correct localization of parasite proteins to the PVM, which is essential for parasite survival. Thus, Plasmodium relies on the abundance of these lipids within hepatocytes to support infection.
Collapse
|
50
|
Garrido M, Abad JL, Fabriàs G, Casas J, Delgado A. Azide-Tagged Sphingolipids: New Tools for Metabolic Flux Analysis. Chembiochem 2015; 16:641-50. [DOI: 10.1002/cbic.201402649] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Indexed: 11/10/2022]
|