1
|
Liu S, Mohri S, Tsukamoto M, Yanai Y, Manabe Y, Sugawara T. Preventive effects of dietary fucoxanthin on ultraviolet A induced photoaging in hairless mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:453-464. [PMID: 39194018 DOI: 10.1002/jsfa.13842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/24/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Repeated exposure to ultraviolet A (UVA) irradiation, which can penetrate the epidermis and reach the dermis, is one of the major causes of skin photoaging. Photoaged skin is characterized clinically by generalized wrinkling, a dry and loose appearance, and seborrheic keratoses, along with skin barrier dysfunction. Fucoxanthin, a xanthophyll carotenoid with a specific allenic bond and 5,6-monoepoxide in its structure, has been found to serve various functions as a food supplement. In the present study, the protective effects of orally administered fucoxanthin at relatively low concentrations (0.001% and 0.01%) against UVA induced photoaging were evaluated in vivo using hairless mice. RESULTS Oral supplementation of 0.001% fucoxanthin was sufficient for its metabolites to accumulate in the skin, thereby inhibiting pathological changes induced by UVA irradiation, including impaired skin barrier function and accelerated wrinkle formation. Analysis of gene expression revealed that dietary fucoxanthin exerted antiphotoaging effects, possibly by modulating natural moisturizing factor (NMF) synthesis, desquamation, and ceramide composition in the epidermis, and by inhibiting the UVA induced degradation of collagen fibers and inflammation in the dermis. CONCLUSION Taken together, our data indicate the potential application of dietary fucoxanthin as a novel ingredient in nutricosmetics for skin care against photoaging. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuyu Liu
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shinsuke Mohri
- Department of Biomedical Sciences, Ritsumeikan University, Kyoto, Japan
| | | | | | - Yuki Manabe
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
2
|
Berdyshev E. Skin Lipid Barrier: Structure, Function and Metabolism. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2024; 16:445-461. [PMID: 39363765 PMCID: PMC11450438 DOI: 10.4168/aair.2024.16.5.445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 10/05/2024]
Abstract
Lipids are important skin components that provide, together with proteins, barrier function of the skin. Keratinocyte terminal differentiation launches unique metabolic changes to lipid metabolism that result in the predominance of ceramides within lipids of the stratum corneum (SC)-the very top portion of the skin. Differentiating keratinocytes form unique ceramides that can be found only in the skin, and generate specialized extracellular structures known as lamellae. Lamellae establish tight hydrophobic layers between dying keratinocytes to protect the body from water loss and also from penetration of allergens and bacteria. Genetic and immunological factors may lead to the failure of keratinocyte terminal differentiation and significantly alter the proportion between SC components. The consequence of such changes is loss or deterioration of skin barrier function that can lead to pathological changes in the skin. This review summarizes our current understanding of the role of lipids in skin barrier function. It also draws attention to the utility of testing SC for lipid and protein biomarkers to predict future onset of allergic skin diseases.
Collapse
Affiliation(s)
- Evgeny Berdyshev
- Department of Medicine, National Jewish Health, Denver, CO, USA.
| |
Collapse
|
3
|
Nicolaou A, Kendall AC. Bioactive lipids in the skin barrier mediate its functionality in health and disease. Pharmacol Ther 2024; 260:108681. [PMID: 38897295 DOI: 10.1016/j.pharmthera.2024.108681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/11/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Our skin protects us from external threats including ultraviolet radiation, pathogens and chemicals, and prevents excessive trans-epidermal water loss. These varied activities are reliant on a vast array of lipids, many of which are unique to skin, and that support physical, microbiological and immunological barriers. The cutaneous physical barrier is dependent on a specific lipid matrix that surrounds terminally-differentiated keratinocytes in the stratum corneum. Sebum- and keratinocyte-derived lipids cover the skin's surface and support and regulate the skin microbiota. Meanwhile, lipids signal between resident and infiltrating cutaneous immune cells, driving inflammation and its resolution in response to pathogens and other threats. Lipids of particular importance include ceramides, which are crucial for stratum corneum lipid matrix formation and therefore physical barrier functionality, fatty acids, which contribute to the acidic pH of the skin surface and regulate the microbiota, as well as the stratum corneum lipid matrix, and bioactive metabolites of these fatty acids, involved in cell signalling, inflammation, and numerous other cutaneous processes. These diverse and complex lipids maintain homeostasis in healthy skin, and are implicated in many cutaneous diseases, as well as unrelated systemic conditions with skin manifestations, and processes such as ageing. Lipids also contribute to the gut-skin axis, signalling between the two barrier sites. Therefore, skin lipids provide a valuable resource for exploration of healthy cutaneous processes, local and systemic disease development and progression, and accessible biomarker discovery for systemic disease, as well as an opportunity to fully understand the relationship between the host and the skin microbiota. Investigation of skin lipids could provide diagnostic and prognostic biomarkers, and help identify new targets for interventions. Development and improvement of existing in vitro and in silico approaches to explore the cutaneous lipidome, as well as advances in skin lipidomics technologies, will facilitate ongoing progress in skin lipid research.
Collapse
Affiliation(s)
- Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK; Lydia Becker Institute of Immunology and Inflammation; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK.
| | - Alexandra C Kendall
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK
| |
Collapse
|
4
|
Nădăban A, Frame CO, El Yachioui D, Gooris GS, Dalgliesh RM, Malfois M, Iacovella CR, Bunge AL, McCabe C, Bouwstra JA. The Sphingosine and Phytosphingosine Ceramide Ratio in Lipid Models Forming the Short Periodicity Phase: An Experimental and Molecular Simulation Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13794-13809. [PMID: 38917358 PMCID: PMC11238587 DOI: 10.1021/acs.langmuir.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The lipids located in the outermost layer of the skin, the stratum corneum (SC), play a crucial role in maintaining the skin barrier function. The primary components of the SC lipid matrix are ceramides (CERs), cholesterol (CHOL), and free fatty acids (FFAs). They form two crystalline lamellar phases: the long periodicity phase (LPP) and the short periodicity phase (SPP). In inflammatory skin conditions like atopic dermatitis and psoriasis, there are changes in the SC CER composition, such as an increased concentration of a sphingosine-based CER (CER NS) and a reduced concentration of a phytosphingosine-based CER (CER NP). In the present study, a lipid model was created exclusively forming the SPP, to examine whether alterations in the CER NS:CER NP molar ratio would affect the lipid organization. Experimental data were combined with molecular dynamics simulations of lipid models containing CER NS:CER NP at ratios of 1:2 (mimicking a healthy SC ratio) and 2:1 (observed in inflammatory skin diseases), mixed with CHOL and lignoceric acid as the FFA. The experimental findings show that the acyl chains of CER NS and CER NP and the FFA are in close proximity within the SPP unit cell, indicating that CER NS and CER NP adopt a linear conformation, similarly as observed for the LPP. Both the experiments and simulations indicate that the lamellar organization is the same for the two CER NS:CER NP ratios while the SPP NS:NP 1:2 model had a slightly denser hydrogen bonding network than the SPP NS:NP 2:1 model. The simulations show that this might be attributed to intermolecular hydrogen bonding with the additional hydroxide group on the headgroup of CER NP compared with CER NS.
Collapse
Affiliation(s)
- Andreea Nădăban
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333CC, The Netherlands
| | - Chloe O Frame
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1604, United States of America
| | - Dounia El Yachioui
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333CC, The Netherlands
| | - Gerrit S Gooris
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333CC, The Netherlands
| | - Robert M Dalgliesh
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Marc Malfois
- ALBA Synchrotron, Cerdanyola del Vallès, 08290 Barcelona, Spain
| | - Christopher R Iacovella
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1604, United States of America
| | - Annette L Bunge
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States of America
| | - Clare McCabe
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1604, United States of America
- School of Engineering and Physical Science, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Joke A Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333CC, The Netherlands
| |
Collapse
|
5
|
Isom M, Desaire H. Skin Surface Sebum Analysis by ESI-MS. Biomolecules 2024; 14:790. [PMID: 39062504 PMCID: PMC11274890 DOI: 10.3390/biom14070790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The skin surface is an important sample source that the metabolomics community has only just begun to explore. Alterations in sebum, the lipid-rich mixture coating the skin surface, correlate with age, sex, ethnicity, diet, exercise, and disease state, making the skin surface an ideal sample source for future noninvasive biomarker exploration, disease diagnosis, and forensic investigation. The potential of sebum sampling has been realized primarily via electrospray ionization mass spectrometry (ESI-MS), an ideal approach to assess the skin surface lipidome. However, a better understanding of sebum collection and subsequent ESI-MS analysis is required before skin surface sampling can be implemented in routine analyses. Challenges include ambiguity in definitive lipid identification, inherent biological variability in sebum production, and methodological, technical variability in analyses. To overcome these obstacles, avoid common pitfalls, and achieve reproducible, robust outcomes, every portion of the workflow-from sample collection to data analysis-should be carefully considered with the specific application in mind. This review details current practices in sebum sampling, sample preparation, ESI-MS data acquisition, and data analysis, and it provides important considerations in acquiring meaningful lipidomic datasets from the skin surface. Forensic researchers investigating sebum as a means for suspect elimination in lieu of adequate fingerprint ridge detail or database matches, as well as clinical researchers interested in noninvasive biomarker exploration, disease diagnosis, and treatment monitoring, can use this review as a guide for developing methods of best-practice.
Collapse
Affiliation(s)
| | - Heather Desaire
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA;
| |
Collapse
|
6
|
Fluhr JW, Moore DJ, Lane ME, Lachmann N, Rawlings AV. Epidermal barrier function in dry, flaky and sensitive skin: A narrative review. J Eur Acad Dermatol Venereol 2024; 38:812-820. [PMID: 38140732 DOI: 10.1111/jdv.19745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023]
Abstract
The stratum corneum (SC)-the outermost layer of the epidermis-is the principal permeability and protective barrier of the skin. Different components of the SC, including corneocytes, natural moisturizing factor, a variety of enzymes and their inhibitors, antimicrobial peptides and lipids, work interactively to maintain barrier function. The main barrier properties of the SC are the limitation of water loss and the prevention of infection and contact with potentially harmful exogenous factors. Although the SC functions consistently as a protective barrier throughout the body, variations in functions and morphology occur across body sites with age and skin type. Healthy SC function also depends on the interplay between the chemosensory barrier, the skin's microbiome and the innate immune system. Dysregulation of SC barrier function can lead to the development of skin disorders, such as dry, flaky or sensitive skin, but the complete underlying pathophysiology of these are not fully understood. This review provides insight into the current literature and emerging themes related to epidermal barrier changes that occur in the context of dry, flaky and sensitive skin. Additional studies are needed to further elucidate the underlying aetiology of dry, flaky and sensitive skin and to provide tailored treatment.
Collapse
Affiliation(s)
- Joachim W Fluhr
- Institute of Allergology IFA Charité Universitätsmedizin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | | | - Majella E Lane
- Department of Pharmaceutics, UCL School of Pharmacy, London, UK
| | | | - Anthony V Rawlings
- Department of Pharmaceutics, UCL School of Pharmacy, London, UK
- AVR Consulting Ltd., Northwich, UK
| |
Collapse
|
7
|
Mistry J, Notman R. Mechanisms of the Drug Penetration Enhancer Propylene Glycol Interacting with Skin Lipid Membranes. J Phys Chem B 2024; 128:3885-3897. [PMID: 38622775 PMCID: PMC11056976 DOI: 10.1021/acs.jpcb.3c06784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 04/17/2024]
Abstract
Very few drugs have the necessary physicochemical properties to cross the skin's main permeability barrier, the stratum corneum (SC), in sufficient amounts. Propylene glycol (PG) is a chemical penetration enhancer that could be included in topical formulations in order to overcome the barrier properties of the skin and facilitate the transport of drugs across it. Experiments have demonstrated that PG increases the mobility and disorder of SC lipids and may extract cholesterol from the SC, but little is known about the molecular mechanisms of drug permeation enhancement by PG. In this work, we have performed molecular dynamics (MD) simulations to investigate the molecular-level effects of PG on the structure and properties of model SC lipid bilayers. The model bilayers were simulated in the presence of PG concentrations over the range of 0-100% w/w PG, using both an all-atom and a united atom force field. PG was found to localize in the hydrophilic headgroup regions at the bilayer interface, to occupy the lipid-water hydrogen-bonding sites, and to slightly increase lipid tail disorder in a concentration-dependent manner. We showed with MD simulation that PG enhances the permeation of small molecules such as water by interacting with the bilayer interface; the results of our study may be used to guide the design of formulations for transdermal drug delivery with enhanced skin permeation, as well as topical formulations and cosmetic products.
Collapse
Affiliation(s)
- Jade Mistry
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | - Rebecca Notman
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| |
Collapse
|
8
|
Dessì A, Di Maria C, Pintus R, Fanos V, Bosco A. Lipidomics and Metabolomics in Infant Atopic Dermatitis: What's the Correlation with Early Nutrition? Curr Pediatr Rev 2024; 20:510-524. [PMID: 37055903 DOI: 10.2174/1573396320666230411093122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 04/15/2023]
Abstract
To date, the complex picture of atopic dermatitis (AD) has not yet been fully clarified, despite the important prevalence of this disease in the pediatric population (20%) and the possibility of persistence into adulthood, with important implications for the quality of life of those affected, as well as significant social and financial costs. The most recent scientific evidence suggests a new interpretation of AD, highlighting the important role of the environment, particularly that of nutrition in the early stages of development. In fact, the new indications seem to point out the harmful effect of elimination diets, except in rare cases, the uselessness of chrono-insertions during complementary feeding and some benefits, albeit weak, of breastfeeding in those at greater risk. In this context, metabolomics and lipidomics can be necessary for a more in-depth knowledge of the complex metabolic network underlying this pathology. In fact, an alteration of the metabolic contents in children with AD has been highlighted, especially in correlation to the intestinal microbiota. While preliminary lipidomic studies showed the usefulness of a more in-depth knowledge of the alterations of the skin barrier to improve the development of baby skin care products. Therefore, investigating the response of different allergic phenotypes could be useful for better patient management and understanding, thus providing an early intervention on dysbiosis necessary to regulate the immune response from the earliest stages of development.
Collapse
Affiliation(s)
- Angelica Dessì
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, AOU Cagliari, Cagliari, Italy
| | - Camilla Di Maria
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, AOU Cagliari, Cagliari, Italy
| | - Roberta Pintus
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, AOU Cagliari, Cagliari, Italy
| | - Vassilios Fanos
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, AOU Cagliari, Cagliari, Italy
| | - Alice Bosco
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, AOU Cagliari, Cagliari, Italy
| |
Collapse
|
9
|
Bouwstra JA, Nădăban A, Bras W, McCabe C, Bunge A, Gooris GS. The skin barrier: An extraordinary interface with an exceptional lipid organization. Prog Lipid Res 2023; 92:101252. [PMID: 37666282 PMCID: PMC10841493 DOI: 10.1016/j.plipres.2023.101252] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
The barrier function of the skin is primarily located in the stratum corneum (SC), the outermost layer of the skin. The SC is composed of dead cells with highly organized lipid lamellae in the intercellular space. As the lipid matrix forms the only continuous pathway, the lipids play an important role in the permeation of compounds through the SC. The main lipid classes are ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs). Analysis of the SC lipid matrix is of crucial importance in understanding the skin barrier function, not only in healthy skin, but also in inflammatory skin diseases with an impaired skin barrier. In this review we provide i) a historical overview of the steps undertaken to obtain information on the lipid composition and organization in SC of healthy skin and inflammatory skin diseases, ii) information on the role CERs, CHOL and FFAs play in the lipid phase behavior of very complex lipid model systems and how this knowledge can be used to understand the deviation in lipid phase behavior in inflammatory skin diseases, iii) knowledge on the role of both, CER subclasses and chain length distribution, on lipid organization and lipid membrane permeability in complex and simple model systems with synthetic CERs, CHOL and FFAs, iv) similarity in lipid phase behavior in SC of different species and complex model systems, and vi) future directions in modulating lipid composition that is expected to improve the skin barrier in inflammatory skin diseases.
Collapse
Affiliation(s)
- Joke A Bouwstra
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| | - Andreea Nădăban
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Wim Bras
- Chemical Sciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, United States of America
| | - Clare McCabe
- School of Engineering & Physical Science, Heriot-Watt University, Edinburgh, Scotland, UK
| | - Annette Bunge
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, United States of America
| | - Gerrit S Gooris
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
10
|
Du W, He L, Wang Z, Dong Y, He X, Hu J, Zhang M. Serum lipidomics-based study of electroacupuncture for skin wound repair in rats. J Cell Mol Med 2023; 27:3127-3146. [PMID: 37517065 PMCID: PMC10568671 DOI: 10.1111/jcmm.17891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/16/2023] [Accepted: 07/22/2023] [Indexed: 08/01/2023] Open
Abstract
Lipid metabolism plays an important role in the repair of skin wounds. Studies have shown that acupuncture is very effective in skin wound repair. However, there is little knowledge about the mechanism of electroacupuncture. Thirty-six SD rats were divided into three groups: sham-operated group, model group and electroacupuncture group, with six rats in each group. After the intervention, orbital venous blood was collected for lipid metabolomics analysis, wound perfusion was detected and finally the effect of electroacupuncture on skin wound repair was comprehensively evaluated by combining wound healing rate and histology. Lipid metabolomics analysis revealed 11 differential metabolites in the model versus sham-operated group. There were 115 differential metabolites in the model versus electro-acupuncture group. 117 differential metabolites in the electro-acupuncture versus sham-operated group. There were two differential metabolites common to all three groups. Mainly cholesteryl esters and sphingolipids were elevated after electroacupuncture and triglycerides were largely decreased after electroacupuncture. The electroacupuncture group recovered faster than the model group in terms of blood perfusion and wound healing (p < 0.05). Electroacupuncture may promote rat skin wound repair by improving lipid metabolism and improving local perfusion.
Collapse
Affiliation(s)
- Weibin Du
- Research Institute of OrthopaedicsThe Affiliated Jiangnan Hospital of Zhejiang Chinese Medical UniversityZhejiangChina
- Hangzhou Xiaoshan Hospital of Traditional Chinese MedicineZhejiangChina
| | - Lihong He
- Research Institute of OrthopaedicsThe Affiliated Jiangnan Hospital of Zhejiang Chinese Medical UniversityZhejiangChina
- Hangzhou Xiaoshan Hospital of Traditional Chinese MedicineZhejiangChina
| | - Zhenwei Wang
- Research Institute of OrthopaedicsThe Affiliated Jiangnan Hospital of Zhejiang Chinese Medical UniversityZhejiangChina
- Hangzhou Xiaoshan Hospital of Traditional Chinese MedicineZhejiangChina
| | - Yi Dong
- Shaoxing TCM Hospital Affiliated to Zhejiang Chinese Medical UniversityZhejiangChina
| | - Xiaofen He
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchZhejiang Chinese Medical University, The Third Clinical Medical CollegeZhejiangChina
| | - Jintao Hu
- Orthopaedics and Traumatology DepartmentHangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical UniversityZhejiangChina
| | - Min Zhang
- Research Institute of OrthopaedicsThe Affiliated Jiangnan Hospital of Zhejiang Chinese Medical UniversityZhejiangChina
- Hangzhou Xiaoshan Hospital of Traditional Chinese MedicineZhejiangChina
| |
Collapse
|
11
|
Vargová K, Martinková M, Raschmanová JŠ, Pilátová MB, Kešeľáková A, Jáger D. Straightforward access to novel cytotoxic phytosphingosine-like aminotriols from l-erythrose chiron. Carbohydr Res 2023; 526:108789. [PMID: 36934648 DOI: 10.1016/j.carres.2023.108789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/26/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
A divergent approach to a small library of long-chain 6-amino-1,4,5-triols as novel phytosphingosine-type entities, together with their preliminary cytotoxic evaluation, was achieved. Construction of the target compounds addressed two key aspects. First, the installation of a carbon-nitrogen bond via two prototypes of [3,3]-sigmatropic rearrangements and second the introduction of an alkyl side chain unit by using a late stage olefin cross-metathesis process. As shown in cell viability experiments, the corresponding HCl salts proved to be the most cytotoxic derivatives among all the tested substances, with IC50 values in the lower micromolar range on the Jurkat, HeLa and HCT-116 cell lines.
Collapse
Affiliation(s)
- Kristína Vargová
- Institute of Chemical Sciences, Department of Organic Chemistry, P.J. Šafárik University, Moyzesova 11, 040 01, Košice, Slovak Republic
| | - Miroslava Martinková
- Institute of Chemical Sciences, Department of Organic Chemistry, P.J. Šafárik University, Moyzesova 11, 040 01, Košice, Slovak Republic.
| | - Jana Špaková Raschmanová
- Institute of Chemical Sciences, Department of Organic Chemistry, P.J. Šafárik University, Moyzesova 11, 040 01, Košice, Slovak Republic
| | - Martina Bago Pilátová
- Institute of Pharmacology, Faculty of Medicine, P.J. Šafárik University, SNP 1, 040 66, Košice, Slovak Republic
| | - Alexandra Kešeľáková
- Institute of Pharmacology, Faculty of Medicine, P.J. Šafárik University, SNP 1, 040 66, Košice, Slovak Republic
| | - Dávid Jáger
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01, Košice, Slovak Republic
| |
Collapse
|
12
|
Chu H, Kim SM, Zhang K, Wu Z, Lee H, Kim JH, Kim HL, Kim YR, Kim SH, Kim WJ, Lee YW, Lee KH, Liu KH, Park CO. Head and neck dermatitis is exacerbated by Malassezia furfur colonization, skin barrier disruption, and immune dysregulation. Front Immunol 2023; 14:1114321. [PMID: 36911720 PMCID: PMC9992991 DOI: 10.3389/fimmu.2023.1114321] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction & objectives Head and neck dermatitis (HND) is a refractory phenotype of atopic dermatitis (AD) and can be a therapeutic challenge due to lack of responsiveness to conventional treatments. Previous studies have suggested that the microbiome and fungiome may play a role in inducing HND, but the underlying pathogenic mechanisms remain unknown. This study aimed to determine the link between HND and fungiome and to examine the contribution of Malassezia furfur. Materials and methods To identify the effect of the sensitization status of M. furfur on HND, 312 patients diagnosed with AD were enrolled. To elucidate the mechanism underlying the effects of M. furfur, human keratinocytes and dermal endothelial cells were cultured with M. furfur and treated with Th2 cytokines. The downstream effects of various cytokines, including inflammation and angiogenesis, were investigated by real-time quantitative PCR. To identify the association between changes in lipid composition and M. furfur sensitization status, D-squame tape stripping was performed. Lipid composition was evaluated by focusing on ceramide species using liquid chromatography coupled with tandem mass spectrometry. Results Increased sensitization to M. furfur was observed in patients with HND. Additionally, sensitization to M. furfur was associated with increased disease severity in these patients. IL-4 treated human keratinocytes cultured with M. furfur produced significantly more VEGF, VEGFR, IL-31, and IL-33. IL-4/M. furfur co-cultured dermal endothelial cells exhibited significantly elevated VEGFR, TGF-β, TNF-α, and IL-1β levels. Stratum corneum lipid analysis revealed decreased levels of esterified omega-hydroxyacyl-sphingosine, indicating skin barrier dysfunction in HND. Finally, M. furfur growth was inhibited by the addition of these ceramides to culture media, while the growth of other microbiota, including Cutibacterium acnes, were not inhibited. Conclusions Under decreased levels of ceramide in AD patients with HND, M. furfur would proliferate, which may enhance pro-inflammatory cytokine levels, angiogenesis, and tissue remodeling. Thus, it plays a central role in the pathogenesis of HND in AD.
Collapse
Affiliation(s)
- Howard Chu
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su Min Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - KeLun Zhang
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Zhexue Wu
- Brain Korea 21 FOUR Community Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Hemin Lee
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Hye Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye Li Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yu Ri Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seo Hyeong Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Wan Jin Kim
- Department of Dermatology, Myongji Hospital, Goyang, Republic of Korea
| | - Yang Won Lee
- Department of Dermatology, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Kwang Hoon Lee
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kwang-Hyeon Liu
- Brain Korea 21 FOUR Community Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Chang Ook Park
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
13
|
Horse-Derived Ceramide Accentuates Glucosylceramide Synthase and Ceramide Synthase 3 by Activating PPARβ/δ and/or PPARγ to Stimulate Ceramide Synthesis. Biomedicines 2023; 11:biomedicines11020548. [PMID: 36831084 PMCID: PMC9953238 DOI: 10.3390/biomedicines11020548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Horse-derived ceramide (HC), which contains galactosylceramides as its main component, significantly improves skin symptoms when applied topically to patients with atopic dermatitis. We speculated that efficacy resulted from the amelioration of epidermal ceramide metabolism, and we characterized those effects using reconstructed human epidermal equivalents. Lipid analysis, RT-PCR and Western blotting revealed that HC significantly increased the total ceramide content of the stratum corneum (SC), accompanied by significantly increased gene and/or protein expression levels of ceramide synthase (CERS) 3, fatty acid elongase (ELOVL) 4, glucosylceramide synthase (GCS), β-glucocerebrosidase, sphingomyelin synthase and acid sphingomyelinase. Mechanistic analyses using cultures of primary human keratinocytes revealed the marked stimulatory effects of HC on the mRNA expression levels of CERS3, ELOVL4 and GCS under high calcium-derived differentiation conditions. Signaling analyses demonstrated that an antagonist of PPARβ/δ significantly abrogated the HC-stimulated mRNA expression levels of GCS, CERS3 and ELOVL4. GW9662, an antagonist of PPARγ, significantly abolished the HC-up-regulated mRNA expression levels of GCS and ELOVL4, but not of CERS3. These findings suggest that HC has the distinct potential to accentuate the expression of GCS, CERS3 and ELOVL4 via the activation of PPARβ/δ and/or PPARγ to accelerate ceramide synthesis in the SC.
Collapse
|
14
|
Zhang Q, Alinaghi A, Williams DB, Roberts MS. A thermodynamic and kinetic analysis of human epidermal penetration of phenolic compounds: II. Maximum flux and solute diffusion through stratum corneum lipids. Int J Pharm 2023; 631:122522. [PMID: 36563793 DOI: 10.1016/j.ijpharm.2022.122522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/17/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Warming the skin is a key means of promoting solute permeation through the skin. Changes in solute permeation associated with variations in skin temperature also assist in understanding the mechanism by which solutes permeate the skin. However, few studies have considered the relative impact of temperature on the main determinants of the maximum flux for a solute across the skin, the solubility of a solute and its diffusivity in the stratum corneum. In this study, we quantified for the first time the thermodynamics associated with the maximum skin fluxes for a series of phenolic compounds of similar size but with varying lipophilicity (defined by the logarithms of their octanol/water partition coefficient, logP). These studies were undertaken using aqueous donor solutions (along with testosterone as a reference solute) across human epidermal membranes in vertical Franz diffusion cells at 4 °C, 24 °C and 37 °C with intermittent receptor sampling and volume replacement over 24 h. Kinetic and thermodynamic analyses included the estimation of the stratum corneum (SC) apparent SC diffusivity from the SC maximum fluxes and SC solubilities and the associated activation energies, enthalpies and entropies for diffusion. The key findings were that the differences in the maximum flux of phenolic compounds varying in lipophilicity mainly arose from differences in SC solubility at the various temperatures and that, at the highest temperature, SC permeability and SC diffusion were affected by SC lipid fluidisation and that variations in SC - water partitioning enthalpies explain some of the previously low activation energies for permeation of the more lipophilic phenols. Higher enthalpies for diffusion were seen for solutes with addition hydrogen bonding capacity and the highest negative entropy was observed with the more compact solutes. Various relationships between the derived thermodynamic parameters were explored and interpreted in a proposed model for solute partitioning into and permeation through the SC intercellular lipid lamellae.
Collapse
Affiliation(s)
- Qian Zhang
- Clinical and Health Sciences, University of South Australia, Adelaide SA 5001, Australia; Current address: Acrux DDS Pty Ltd, 103-113 Stanley St, West Melbourne, VIC 3003, Australia
| | - Azadeh Alinaghi
- Clinical and Health Sciences, University of South Australia, Adelaide SA 5001, Australia; Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, Australia
| | - Desmond B Williams
- Clinical and Health Sciences, University of South Australia, Adelaide SA 5001, Australia
| | - Michael S Roberts
- Clinical and Health Sciences, University of South Australia, Adelaide SA 5001, Australia; Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA, Australia; Therapeutics Research Centre, Frazer Institute, University of Queensland, Translational Research Institute, Brisbane, QLD, Australia.
| |
Collapse
|
15
|
Kleuser B, Bäumer W. Sphingosine 1-Phosphate as Essential Signaling Molecule in Inflammatory Skin Diseases. Int J Mol Sci 2023; 24:ijms24021456. [PMID: 36674974 PMCID: PMC9863039 DOI: 10.3390/ijms24021456] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Sphingolipids are crucial molecules of the mammalian epidermis. The formation of skin-specific ceramides contributes to the formation of lipid lamellae, which are important for the protection of the epidermis from excessive water loss and protect the skin from the invasion of pathogens and the penetration of xenobiotics. In addition to being structural constituents of the epidermal layer, sphingolipids are also key signaling molecules that participate in the regulation of epidermal cells and the immune cells of the skin. While the importance of ceramides with regard to the proliferation and differentiation of skin cells has been known for a long time, it has emerged in recent years that the sphingolipid sphingosine 1-phosphate (S1P) is also involved in processes such as the proliferation and differentiation of keratinocytes. In addition, the immunomodulatory role of this sphingolipid species is becoming increasingly apparent. This is significant as S1P mediates a variety of its actions via G-protein coupled receptors. It is, therefore, not surprising that dysregulation in the signaling pathways of S1P is involved in the pathophysiological conditions of skin diseases. In the present review, the importance of S1P in skin cells, as well as the immune cells of the skin, is elaborated. In particular, the role of the molecule in inflammatory skin diseases will be discussed. This is important because interfering with S1P signaling pathways may represent an innovative option for the treatment of inflammatory skin diseases.
Collapse
Affiliation(s)
- Burkhard Kleuser
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise Str. 2+4, 14195 Berlin, Germany
- Correspondence: (B.K.); (W.B.)
| | - Wolfgang Bäumer
- Department of Veterinary Medicine, Institute of Pharmacology and Toxicology, Freie Universität Berlin, Koserstr. 20, 14195 Berlin, Germany
- Correspondence: (B.K.); (W.B.)
| |
Collapse
|
16
|
Yoshida M, Numajiri S, Notani N, Sato N, Nomoto K, Arikawa H, Urabe H, Ichikawa H, Akimoto R, Sato JI, Yamashita Y, Hirao T. Staining of stratum corneum with fluorescent ε-poly-L-lysine and its application to evaluation of skin conditions. Skin Res Technol 2023; 29:e13245. [PMID: 36457277 PMCID: PMC9838768 DOI: 10.1111/srt.13245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 11/05/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND ε-Poly-L-lysine (PLL) is a cationic polymer consisting of 25 to 35 L-lysine residues that adheres to the surface of skin as well as hair. However, the properties of PLL regarding its adhesion to the skin remain to be elucidated. In this study, we examined the staining of stratum corneum (SC) with fluorescence-labeled PLL and explored its relationship with skin condition. MATERIALS AND METHODS Alexa Fluor 488-labeled PLL (AF-PLL) was reacted with tape-stripped stratum corneum (SC), and the staining properties were monitored by fluorescence microscopy. Clinical study was performed by measuring the water content of the cheek SC and transepidermal water loss (TEWL), and the tape-stripped SC was subjected to staining with AF-PLL. RESULTS AF-PLL staining of the SC was inhibited at acidic pH or by the addition of high concentration of salt solution, suggesting the involvement of ionic interaction between PLL and the SC, at least in part. The AF-PLL staining was inhibited by unlabeled PLL or various alkyl amines, but not by L-lysine monomer. AF-PLL staining was observed inside the corneocytes as well as surrounding cornified envelope. Clinical study revealed that AF-PLL staining intensity of the SC was negatively correlated with its water content and positively correlated with its TEWL. CONCLUSION PLL can efficiently adhere to SC and AF-PLL staining of SC can be applied to evaluate skin conditions.
Collapse
Affiliation(s)
- Moemi Yoshida
- Cosmetic Science Laboratory, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Sana Numajiri
- Cosmetic Science Laboratory, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Nao Notani
- Cosmetic Science Laboratory, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Nao Sato
- Cosmetic Science Laboratory, Faculty of Pharmacy, Chiba Institute of Science, Choshi, Japan
| | - Koji Nomoto
- Homerion Laboratory Co., Ltd., Shibuya-ku, Tokyo, Japan
| | | | - Hiroya Urabe
- Homerion Laboratory Co., Ltd., Shibuya-ku, Tokyo, Japan
| | | | - Ryuji Akimoto
- Homerion Laboratory Co., Ltd., Shibuya-ku, Tokyo, Japan
| | | | - Yuji Yamashita
- Cosmetic Science Laboratory, Faculty of Pharmacy, Chiba Institute of Science, Choshi, Japan
| | - Tetsuji Hirao
- Cosmetic Science Laboratory, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan.,Cosmetic Science Laboratory, Faculty of Pharmacy, Chiba Institute of Science, Choshi, Japan
| |
Collapse
|
17
|
Helder RWJ, Rousel J, Boiten WA, Gooris GS, Nadaban A, El Ghalbzouri A, Bouwstra JA. The effect of PPAR isoform (de)activation on the lipid composition in full-thickness skin models. Exp Dermatol 2022; 32:469-478. [PMID: 36541108 DOI: 10.1111/exd.14733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/28/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Human skin equivalents (HSEs) are 3D-cultured human skin models that mimic many aspects of native human skin (NHS). Although HSEs resemble NHS very closely, the barrier located in the stratum corneum (SC) is impaired. This is caused by an altered lipid composition in the SC of HSEs compared with NHS. One of the most pronounced changes in this lipid composition is a high level of monounsaturation. One key enzyme in this change is stearoyl-CoA desaturase-1 (SCD1), which catalyses the monounsaturation of lipids. In order to normalize the lipid composition, we aimed to target a group of nuclear receptors that are important regulators in the lipid synthesis. This group of receptors are known as the peroxisome proliferating activating receptors (PPARs). By (de)activating each isoform (PPAR-α, PPAR-δ and PPAR-γ), the PPAR isoforms may have normalizing effects on the lipid composition. In addition, another PPAR-α agonist Wy14643 was included as this supplement demonstrated normalizing effects in the lipid composition in a more recent study. After PPAR (ant)agonists supplementation, the mRNA of downstream targets, lipid synthesis genes and lipid composition were investigated. The PPAR downstream targets were activated, indicating that the supplements reached the keratinocytes to trigger their effect. However, minimal impact was observed on the lipid composition after PPAR isoform (de) activation. Only the highest concentration Wy14643 resulted in strong, but negative effects on CER composition. Although the novel tested modifications did not result in an improvement, more insight is gained on the nuclear receptors PPARs and their effects on the lipid barrier in full-thickness skin models.
Collapse
Affiliation(s)
- Richard W J Helder
- Division of Biotherapeutics, LACDR, Leiden University, Leiden, The Netherlands
| | - Jannik Rousel
- Division of Biotherapeutics, LACDR, Leiden University, Leiden, The Netherlands
| | - Walter A Boiten
- Division of Biotherapeutics, LACDR, Leiden University, Leiden, The Netherlands
| | - Gerrit S Gooris
- Division of Biotherapeutics, LACDR, Leiden University, Leiden, The Netherlands
| | - Andreea Nadaban
- Division of Biotherapeutics, LACDR, Leiden University, Leiden, The Netherlands
| | | | - Joke A Bouwstra
- Division of Biotherapeutics, LACDR, Leiden University, Leiden, The Netherlands
| |
Collapse
|
18
|
Voegeli R, Rawlings AV. Moisturizing at a molecular level - The basis of Corneocare. Int J Cosmet Sci 2022; 45:133-154. [PMID: 36453857 DOI: 10.1111/ics.12832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND This review covers the last 20 years of research we and our collaborators have conducted on ethnic differences in facial skin moisturization placed in historical context with previous research. METHODS We have focussed particularly on the biochemical and cellular gradients of the stratum corneum (SC) with the aim of discovering new skin moisturization and SC maturation mechanisms, identifying new technologies and/or providing conceptual innovations for ingredients that will improve our understanding and treatment of dry skin. Specifically, we discuss gradients for corneodesmosomes and proteases, corneocyte phenotype-inducing enzymes, filaggrin and natural moisturizing factor (NMF), and barrier lipids. These gradients are interdependent and influence greatly corneocyte maturation. RESULTS The interrelationship between corneodesmolysis and the covalent attachment of ω-hydroxy ceramides and ω-hydroxy fatty acids to the corneocyte protein envelope forming the corneocyte lipid envelope is especially relevant in our new understanding of mechanisms leading to dry skin. This process is initiated by a linoleoyl-ω-acyl ceramide transforming enzyme cascade including 12R lipoxygenase (12R-LOX), epidermal lipoxygenase-3 (eLOX3), epoxide hydrolase 3 (EPHX3), short-chain dehydrogenase/reductase family 9C member 7 (SDR9C7), ceramidase and transglutaminase 1. CONCLUSION Our research has opened the opportunity of using novel treatment systems for dry skin based on lipids, humectants, niacinamide and inhibitors of the plasminogen system. It is clear that skin moisturization is a more complex mechanism than simple skin hydration.
Collapse
|
19
|
Badhe Y, Schmitt T, Gupta R, Rai B, Neubert RH. Investigating the nanostructure of a CER[NP]/CER[AP]-based stratum corneum lipid matrix model: A combined neutron diffraction & molecular dynamics simulations approach. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - BIOMEMBRANES 2022; 1864:184007. [PMID: 35863424 DOI: 10.1016/j.bbamem.2022.184007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
Abstract
The human skin provides a physiochemical and biological protective barrier due to the unique structure of its outermost layer known as the Stratum corneum. This layer consists of corneocytes and a multi-lamellar lipid matrix forming a composite, which is a major determining factor for the barrier function of the Stratum corneum. A substantiated understanding of this barrier is necessary, as controlled breaching or modulation of the same is also essential for various health and personal care applications such as topical drug delivery and cosmetics to a name few. In this study, we discuss the state-of-the-art of neutron diffraction techniques, using specifically deuterated lipids, combined with the information obtained from molecular models using molecular dynamics simulations, to understand the structure and barrier function of the Stratum corneum lipid matrix. As an example, the effect of ceramide concentration on a lipid lamella system consisting of CER[NP]/CER[AP]/Cholesterol/free fatty acid (deprotonated) is studied. This study demonstrates the usefulness of the combined approach of neutron diffraction and molecular dynamics simulations for effective analysis of the model systems created for the Stratum corneum lipid matrix. The optimization of force fields by comparison with experimental data is furthermore an important step in the direction of providing a predictive quality.
Collapse
|
20
|
Nădăban A, Gooris GS, Beddoes CM, Dalgliesh RM, Bouwstra JA. Phytosphingosine ceramide mainly localizes in the central layer of the unique lamellar phase of skin lipid model systems. J Lipid Res 2022; 63:100258. [PMID: 35931203 PMCID: PMC9421324 DOI: 10.1016/j.jlr.2022.100258] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
Understanding the lipid arrangement within the skin's outermost layer, the stratum corneum (SC), is important for advancing knowledge on the skin barrier function. The SC lipid matrix consists of ceramides (CERs), cholesterol, and free fatty acids, which form unique crystalline lamellar phases, referred to as the long periodicity phase (LPP) and short periodicity phases. As the SC lipid composition is complex, lipid model systems that mimic the properties of native SC are used to study the SC lipid organization and molecular arrangement. In previous studies, such lipid models were used to determine the molecular organization in the trilayer structure of the LPP unit cell. The aim of this study was to examine the location of CER N-(tetracosanoyl)-phytosphingosine (CER NP) in the unit cell of this lamellar phase and compare its position with CER N-(tetracosanoyl)-sphingosine (CER NS). We selected CER NP as it is the most prevalent CER subclass in the human SC, and its location in the LPP is not known. Our neutron diffraction results demonstrate that the acyl chain of CER NP was positioned in the central part of the trilayer structure, with a fraction also present in the outer layers, the same location as determined for the acyl chain of CER NS. In addition, our Fourier transformed infrared spectroscopy results are in agreement with this molecular arrangement, suggesting a linear arrangement for the CER NS and CER NP. These findings provide more detailed insight into the lipid organization in the SC lipid matrix.
Collapse
Affiliation(s)
- Andreea Nădăban
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Gerrit S Gooris
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Charlotte M Beddoes
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Robert M Dalgliesh
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, United Kingdom
| | - Joke A Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
21
|
Shamaprasad P, Frame CO, Moore TC, Yang A, Iacovella CR, Bouwstra JA, Bunge AL, McCabe C. Using molecular simulation to understand the skin barrier. Prog Lipid Res 2022; 88:101184. [PMID: 35988796 PMCID: PMC10116345 DOI: 10.1016/j.plipres.2022.101184] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/15/2022]
Abstract
Skin's effectiveness as a barrier to permeation of water and other chemicals rests almost entirely in the outermost layer of the epidermis, the stratum corneum (SC), which consists of layers of corneocytes surrounded by highly organized lipid lamellae. As the only continuous path through the SC, transdermal permeation necessarily involves diffusion through these lipid layers. The role of the SC as a protective barrier is supported by its exceptional lipid composition consisting of ceramides (CERs), cholesterol (CHOL), and free fatty acids (FFAs) and the complete absence of phospholipids, which are present in most biological membranes. Molecular simulation, which provides molecular level detail of lipid configurations that can be connected with barrier function, has become a popular tool for studying SC lipid systems. We review this ever-increasing body of literature with the goals of (1) enabling the experimental skin community to understand, interpret and use the information generated from the simulations, (2) providing simulation experts with a solid background in the chemistry of SC lipids including the composition, structure and organization, and barrier function, and (3) presenting a state of the art picture of the field of SC lipid simulations, highlighting the difficulties and best practices for studying these systems, to encourage the generation of robust reproducible studies in the future. This review describes molecular simulation methodology and then critically examines results derived from simulations using atomistic and then coarse-grained models.
Collapse
Affiliation(s)
- Parashara Shamaprasad
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235-1604, United States of America; Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN 37235-1604, United States of America
| | - Chloe O Frame
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235-1604, United States of America; Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN 37235-1604, United States of America
| | - Timothy C Moore
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235-1604, United States of America; Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN 37235-1604, United States of America
| | - Alexander Yang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235-1604, United States of America; Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN 37235-1604, United States of America
| | - Christopher R Iacovella
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235-1604, United States of America; Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN 37235-1604, United States of America
| | - Joke A Bouwstra
- Division of BioTherapeutics, LACDR, Leiden University, 2333 CC Leiden, the Netherlands
| | - Annette L Bunge
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, United States of America
| | - Clare McCabe
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235-1604, United States of America; Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN 37235-1604, United States of America; School of Engineering and Physical Science, Heriot-Watt University, Edinburgh, United Kingdom.
| |
Collapse
|
22
|
Nakamura T, Yoshida H, Haneoka M, Nakamura S, Takahashi Y. Season- and facial site-specific skin changes due to long-term mask wearing during the COVID-19 pandemic. Skin Res Technol 2022; 28:749-758. [PMID: 35789503 PMCID: PMC9349579 DOI: 10.1111/srt.13196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/19/2022] [Indexed: 11/30/2022]
Abstract
Background As people have regularly worn facial masks due to the coronavirus disease 2019 (COVID‐19) pandemic, mask‐wear‐related adverse effects on the skin have been recognized. The aim of this study was to explore skin changes, their seasonal variations in the general population caused by commonly used masks and a possible mechanism underlying negative effects of mask‐wearing. Materials and methods Eighteen Japanese females participated in the study during summer and winter in Japan. Skin characteristics were measured in the non‐mask‐wearing preauricular area and the mask‐wearing cheek and perioral areas. Results Trans‐epidermal water loss (TEWL) on the cheek area tended to be increased in winter, which was positively correlated with skin scaliness on the same area. Ceramide (CER) content and composition in the mask‐covered stratum corneum (SC) were slightly changed between summer and winter, and CER [NP]/[NS] ratio was negatively correlated with the TEWL on the perioral skin in winter. Skin hydration and sebum secretion were higher on the cheek compared to the perioral area in summer. Skin redness was particularly high on the cheek in winter. Conclusion Mask‐wear‐related skin changes were season‐ and facial site‐specific, and alterations in SC CER may play a role in barrier‐related skin problems caused by mask use.
Collapse
Affiliation(s)
- Tomomi Nakamura
- Biological Science Research, Kao Corporation, Odawara-shi, Kanagawa, Japan
| | - Hiroyuki Yoshida
- Biological Science Research, Kao Corporation, Odawara-shi, Kanagawa, Japan
| | - Mai Haneoka
- Analytical Science Research, Kao Corporation, Ichikai-machi, Tochigi, Japan
| | - Shun Nakamura
- Analytical Science Research, Kao Corporation, Ichikai-machi, Tochigi, Japan
| | - Yoshito Takahashi
- Biological Science Research, Kao Corporation, Odawara-shi, Kanagawa, Japan
| |
Collapse
|
23
|
Beddoes CM, Gooris GS, Barlow DJ, Lawrence MJ, Dalgliesh RM, Malfois M, Demé B, Bouwstra JA. The importance of ceramide headgroup for lipid localisation in skin lipid models. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183886. [PMID: 35143742 DOI: 10.1016/j.bbamem.2022.183886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
The stratum corneum's lipid matrix is a critical for the skin's barrier function and is primarily composed of ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs). The lipids form a long periodicity phase (LPP), a unique trilayer unit cell structure. An enzyme driven pathway is implemented to synthesize these key lipids. If these enzymes are down- or upregulated as in inflammatory diseases, the final lipid composition is affected often altering the barrier function. In this study, we mimicked down regulation of enzymes involved in the synthesis of the sphingosine and CER amide bond. In a LPP lipid model, we substituted CER N-(tetracosanoyl)-sphingosine (CER NS) with either i) FFA C24 and free sphingosine, to simulate the loss of the CER amide bond, or ii) with FFA C24 and C18 to simulate the loss of the sphingosine headgroup. Our study shows the lipids in the LPP would not phase separate until at least 25% of the CER NS is substituted keeping the lateral packing and conformational ordering unaltered. Neutron diffraction studies showed that free sphingosine chains localized at the outer layers of the unit cell, while the remaining CER NS head group was concentrated in the inner headgroup layers. However, when FFA C18 was inserted, CER NS was dispersed throughout the LPP, resulting in an even distribution between the inner and outer water layers. The presented results highlight the importance of the CER NS headgroup structure and its interaction in combination with the carbon chain invariability for optimal lipid arrangement.
Collapse
Affiliation(s)
- Charlotte M Beddoes
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, University of Leiden, Leiden, the Netherlands
| | - Gert S Gooris
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, University of Leiden, Leiden, the Netherlands
| | - David J Barlow
- Division of Pharmacy and Optometry, Manchester University, Manchester, United Kingdom
| | - M Jayne Lawrence
- Division of Pharmacy and Optometry, Manchester University, Manchester, United Kingdom
| | - Robert M Dalgliesh
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX, United Kingdom
| | - Marc Malfois
- ALBA Synchrotron, Carrer de la Llum 2-6, 08290 Cerdanyola del Valles, Barcelona, Spain
| | - Bruno Demé
- Institut Laue-Langevin, Grenoble, France
| | - Joke A Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, University of Leiden, Leiden, the Netherlands.
| |
Collapse
|
24
|
Opálka L, Meyer JM, Ondrejčeková V, Svatošová L, Radner FPW, Vávrová K. ω-O-Acylceramides but not ω-hydroxy ceramides are required for healthy lamellar phase architecture of skin barrier lipids. J Lipid Res 2022; 63:100226. [PMID: 35568253 PMCID: PMC9192818 DOI: 10.1016/j.jlr.2022.100226] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022] Open
Abstract
Epidermal omega-O-acylceramides (ω-O-acylCers) are essential components of a competent skin barrier. These unusual sphingolipids with ultralong N-acyl chains contain linoleic acid esterified to the terminal hydroxyl of the N-acyl, the formation of which requires the transacylase activity of patatin-like phospholipase domain containing 1 (PNPLA1). In ichthyosis with dysfunctional PNPLA1, ω-O-acylCer levels are significantly decreased, and ω-hydroxylated Cers (ω-OHCers) accumulate. Here we explore the role of the linoleate moiety in ω-O-acylCers in the assembly of the skin lipid barrier. Ultrastructural studies of skin samples from neonatal Pnpla1+/+ and Pnpla1-/- mice showed that the linoleate moiety in ω-O-acylCers is essential for lamellar pairing in lamellar bodies, as well as for stratum corneum lipid assembly into the long periodicity lamellar phase (LPP). To further study the molecular details of ω-O-acylCer deficiency on skin barrier lipid assembly, we built in vitro lipid models composed of major stratum corneum lipid subclasses containing either ω-O-acylCer (healthy skin model), ω-OHCer (Pnpla1-/- model), or combination of the two. X-ray diffraction, infrared spectroscopy, and permeability studies indicated that ω-OHCers could not substitute for ω-O-acylCers, although in favorable conditions, they form a medium lamellar phase with a 10.8 nm-repeat distance and permeability barrier properties similar to LPP. In the absence of ω-O-acylCers, skin lipids were prone to separation into two phases with diminished barrier properties. The models combining ω-OHCers with ω-O-acylCers indicated that accumulation of ω-OHCers does not prevent ω-O-acylCer-driven lamellar stacking. These data suggest that ω-O-acylCer supplementation may be a viable therapeutic option in patients with PNPLA1 deficiency.
Collapse
Affiliation(s)
- Lukáš Opálka
- Charles University, Faculty of Pharmacy in Hradec Králové, Hradec Králové, Czech Republic
| | - Jason M Meyer
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Veronika Ondrejčeková
- Charles University, Faculty of Pharmacy in Hradec Králové, Hradec Králové, Czech Republic
| | - Linda Svatošová
- Charles University, Faculty of Pharmacy in Hradec Králové, Hradec Králové, Czech Republic
| | - Franz P W Radner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Kateřina Vávrová
- Charles University, Faculty of Pharmacy in Hradec Králové, Hradec Králové, Czech Republic.
| |
Collapse
|
25
|
Suzuki M, Ohno Y, Kihara A. Whole picture of human stratum corneum ceramides, including the chain-length diversity of long-chain bases. J Lipid Res 2022; 63:100235. [PMID: 35654151 PMCID: PMC9240646 DOI: 10.1016/j.jlr.2022.100235] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/12/2022] Open
Abstract
Ceramides are essential lipids for skin permeability barrier function, and a wide variety of ceramide species exist in the stratum corneum (SC). Although ceramides with long-chain bases (LCBs) of various lengths have been identified in the human SC, a quantitative analysis that distinguishes ceramide species with different LCB chain lengths has not been yet published. Therefore, the whole picture of human SC ceramides remains unclear. Here, we conducted LC/MS/MS analyses to detect individual ceramide species differing in both the LCB and FA chain lengths and quantified 1,327 unbound ceramides and 254 protein-bound ceramides: the largest number of ceramide species reported to date. Ceramides containing an LCB whose chain length was C16–26 were present in the human SC. Of these, C18 (28.6%) was the most abundant, followed by C20 (24.8%) and C22 (12.8%). Each ceramide class had a characteristic distribution of LCB chain lengths and was divided into five groups according to this distribution. There was almost no difference in FA composition between the ceramide species containing LCBs of different chain lengths. Furthermore, we demonstrated that one of the serine palmitoyltransferase (SPT) complexes, SPTLC1/SPTLC3/SPTSSB, was able to produce C16–24 LCBs. The expression levels of all subunits constituting the SPT complexes increased during keratinocyte differentiation, resulting in the observed chain-length diversity of LCBs in the human SC. This study provides a molecular basis for elucidating human SC ceramide diversity and the pathogenesis of skin disorders.
Collapse
Affiliation(s)
- Madoka Suzuki
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yusuke Ohno
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
26
|
Choi HK, Hwang K, Hong YD, Cho YH, Kim JW, Lee EO, Park WS, Park CS. Ceramide NPs Derived from Natural Oils of Korean Traditional Plants Enhance Skin Barrier Functions and Stimulate Expressions of Genes for Epidermal Homeostasis. J Cosmet Dermatol 2022; 21:4931-4941. [PMID: 35262269 DOI: 10.1111/jocd.14905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/06/2022] [Accepted: 03/01/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND New ceramide (CER) NPs were prepared by linking fatty acids derived from oils of Korean traditional plants to phytosphingosine(PHS). The oils of Korean traditional plants were extracted from the seeds of Panax ginseng, Camellia sinensis, Glycine max napjakong, Glycine max seoritae and Camellia japonica as sources of diverse fatty acids AIMS: To investigate signaling bioactivities of HP-C. sinensis ceramide NP that was column purified to remove any residual PHS and to evaluate the skin barrier functions of the HP-C. sinensis ceramide NP in human skin. METHODS The expressions of genes related with epidermal differentiation was analyzed in vitro by qPCR. Human studies were also performed to determine the skin barrier functions with respect of TEWL and SC cohesion. RESULTS The HP-C. sinensis CER NP significantly enhanced the expressions of FLG, CASP14 and INV indicates that the signaling biological activities of oil-derived ceramide NPs could be different depend on the natural oils. The control ceramide, C18-CER NP had no effect on the expression of the three genes. HP-C. sinensis CER NP was selected for the in vivo human studies. Application of 0.5% HP-C. sinensis CER NP cream stimulated significantly faster recovery of a disrupted skin barrier than that of the control C18-CER NP. A significant enhancement of SC cohesion of the skin treated with 0.5% HP-C. sinensis CER NP was also observed. CONCLUSION Taken all together, our results clearly demonstrate that HP-C. sinensis CER NP, P. ginseng CER NP and other oil-derived CER NP could be a better choice for developing moisturizers to improve skin barrier function as they more closely mimic the endogenous CER composition of the actual human skin barrier.
Collapse
Affiliation(s)
- Hyun Kyung Choi
- Department of Chemical Engineering, Dongguk University, 3-26, Pil-dong, Chung-gu, Seoul, 100-715, Republic of Korea
| | - Kyeonghwan Hwang
- Department of Chemical Engineering, Dongguk University, 3-26, Pil-dong, Chung-gu, Seoul, 100-715, Republic of Korea.,Department of R&D center, Amorepacific, Republic of Korea
| | | | - Young Hoon Cho
- Department of Chemical Engineering, Dongguk University, 3-26, Pil-dong, Chung-gu, Seoul, 100-715, Republic of Korea
| | - Jin Wook Kim
- SNU Business Incubator, 5-105, 89 Sehoro, Gwonseon-gu, Suwon, Gyeonggi-do, 16614, Republic of Korea
| | - Eun Ok Lee
- SNU Business Incubator, 5-105, 89 Sehoro, Gwonseon-gu, Suwon, Gyeonggi-do, 16614, Republic of Korea
| | - Won-Seok Park
- Department of R&D center, Amorepacific, Republic of Korea
| | - Chang Seo Park
- Department of Chemical Engineering, Dongguk University, 3-26, Pil-dong, Chung-gu, Seoul, 100-715, Republic of Korea.,SNU Business Incubator, 5-105, 89 Sehoro, Gwonseon-gu, Suwon, Gyeonggi-do, 16614, Republic of Korea
| |
Collapse
|
27
|
Nanodelivery Strategies for Skin Diseases with Barrier Impairment: Focusing on Ceramides and Glucocorticoids. NANOMATERIALS 2022; 12:nano12020275. [PMID: 35055292 PMCID: PMC8779445 DOI: 10.3390/nano12020275] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023]
Abstract
The human epidermis has a characteristic lipidic composition in the stratum corneum, where ceramides play a crucial role in the skin barrier homeostasis and in water-holding capacity. Several skin diseases, such as atopic dermatitis and psoriasis, exhibit a dysfunction in the lipid barrier with altered ceramide levels and increased loss of transepidermal water. Glucocorticoids are normally employed in the therapeutical management of these pathologies. However, they have shown a poor safety profile and reduced treatment efficiency. The main objective of this review is to, within the framework of the limitations of the currently available therapeutical approaches, establish the relevance of nanocarriers as a safe and efficient delivery strategy for glucocorticoids and ceramides in the topical treatment of skin disorders with barrier impairment.
Collapse
|
28
|
Vietri Rudan M, Watt FM. Mammalian Epidermis: A Compendium of Lipid Functionality. Front Physiol 2022; 12:804824. [PMID: 35095565 PMCID: PMC8791442 DOI: 10.3389/fphys.2021.804824] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Mammalian epidermis is a striking example of the role of lipids in tissue biology. In this stratified epithelium, highly specialized structures are formed that leverage the hydrophobic properties of lipids to form an impermeable barrier and protect the humid internal environment of the body from the dry outside. This is achieved through tightly regulated lipid synthesis that generates the molecular species unique to the tissue. Beyond their fundamental structural role, lipids are involved in the active protection of the body from external insults. Lipid species present on the surface of the body possess antimicrobial activity and directly contribute to shaping the commensal microbiota. Lipids belonging to a variety of classes are also involved in the signaling events that modulate the immune responses to environmental stress as well as differentiation of the epidermal keratinocytes themselves. Recently, high-resolution methods are beginning to provide evidence for the involvement of newly identified specific lipid molecules in the regulation of epidermal homeostasis. In this review we give an overview of the wide range of biological functions of mammalian epidermal lipids.
Collapse
|
29
|
Strati F, Mukhina T, Neubert RH, Opalka L, Hause G, Schmelzer CE, Menzel M, Brezesinski G. Cerosomes as skin repairing agent: Mode of action studies with a model stratum corneum layer at liquid/air and liquid/solid interfaces. BBA ADVANCES 2022; 2:100039. [PMID: 37082599 PMCID: PMC10074917 DOI: 10.1016/j.bbadva.2021.100039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The stratum corneum (SC) is the largest physical barrier of the human body. It protects against physical, chemical and biological damages, and avoids evaporation of water from the deepest skin layers. For its correct functioning, the homeostasis of the SC lipid matrix is fundamental. An alteration of the lipid matrix composition and in particular of its ceramide (CER) fraction can lead to the development of pathologies such as atopic dermatitis and psoriasis. Different studies showed that the direct replenishment of SC lipids on damaged skin had positive effects on the recovery of its barrier properties. In this work, cerosomes, i.e. liposomes composed of SC lipids, have been successfully prepared in order to investigate the mechanism of interaction with a model SC lipid matrix. The cerosomes contain CER[NP], D-CER[AP], stearic acid and cholesterol. In addition, hydrogenated soybean phospholipids have been added to one of the formulations leading to an increased stability at neutral pH. For the mode of action studies, monolayer models at the air-water interface and on solid support have been deployed. The results indicated that a strong interaction occurred between SC monolayers and the cerosomes. Since both systems were negatively charged, the driving force for the interaction must be based on the ability of CERs head groups to establish intermolecular hydrogen bonding networks that energetically prevailed against the electrostatic repulsion. This work proved for the first time the mode of action by which cerosomes exploit their function as skin barrier repairing agents on the SC.
Collapse
|
30
|
Sochorová M, Vávrová K, Fedorova M, Ni Z, Slenter D, Kutmon M, Willighagen EL, Letsiou S, Töröcsik D, Marchetti-Deschmann M, Zoratto S, Kremslehner C, Gruber F. Research Techniques Made Simple: Lipidomic Analysis in Skin Research. J Invest Dermatol 2021; 142:4-11.e1. [PMID: 34924150 DOI: 10.1016/j.jid.2021.09.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022]
Abstract
Although lipids are crucial molecules for cell structure, metabolism, and signaling in most organs, they have additional specific functions in the skin. Lipids are required for the maintenance and regulation of the epidermal barrier, physical properties of the skin, and defense against microbes. Analysis of the lipidome-the totality of lipids-is of similar complexity to those of proteomics or other omics, with lipid structures ranging from simple, linear, to highly complex structures. In addition, the ordering and chemical modifications of lipids have consequences on their biological function, especially in the skin. Recent advances in analytic capability (usually with mass spectrometry), bioinformatic processing, and integration with other dermatological big data have allowed researchers to increasingly understand the roles of specific lipid species in skin biology. In this paper, we review the techniques used to analyze skin lipidomics and epilipidomics.
Collapse
Affiliation(s)
- Michaela Sochorová
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Skin Multimodal Analytical Imaging of Aging and Senescence (SKINMAGINE), Medical University of Vienna, Vienna, Austria; Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Kateřina Vávrová
- Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Leipzig, Germany; Center for Biotechnology and Biomedicine (BBZ), Leipzig University, Leipzig, Germany
| | - Zhixu Ni
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Leipzig, Germany; Center for Biotechnology and Biomedicine (BBZ), Leipzig University, Leipzig, Germany
| | - Denise Slenter
- Department of Bioinformatics (BiGCaT), NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Martina Kutmon
- Department of Bioinformatics (BiGCaT), NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands; Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, Netherlands
| | - Egon L Willighagen
- Department of Bioinformatics (BiGCaT), NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Sophia Letsiou
- Department of Metabolic Diseases, University Medical Center Utrecht, Utrecht, Netherlands
| | - Daniel Töröcsik
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Martina Marchetti-Deschmann
- Christian Doppler Laboratory for Skin Multimodal Analytical Imaging of Aging and Senescence (SKINMAGINE), Medical University of Vienna, Vienna, Austria; Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Vienna, Austria; Austrian Cluster of Tissue Regeneration, Vienna, Austria
| | - Samuele Zoratto
- Christian Doppler Laboratory for Skin Multimodal Analytical Imaging of Aging and Senescence (SKINMAGINE), Medical University of Vienna, Vienna, Austria; Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Vienna, Austria; Austrian Cluster of Tissue Regeneration, Vienna, Austria
| | - Christopher Kremslehner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Skin Multimodal Analytical Imaging of Aging and Senescence (SKINMAGINE), Medical University of Vienna, Vienna, Austria
| | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Skin Multimodal Analytical Imaging of Aging and Senescence (SKINMAGINE), Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
31
|
Strati F, Oliveira JSL, Opalka L, Mukhina T, Dobner B, Neubert RHH, Brezesinski G. Two- and Three-Dimensional Physical-Chemical Characterization of CER[AP]: A Study of Stereochemistry and Chain Symmetry. J Phys Chem B 2021; 125:9960-9969. [PMID: 34463098 DOI: 10.1021/acs.jpcb.1c05572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The stratum corneum represents the first skin barrier against chemical and physical damage. These unique properties are based on its peculiar lipid composition with ceramides (CERs) as the main protagonists. In this study, the structural and chemical properties of the α-OH phytosphingosine [AP] CER class have been investigated. α-OH CERs are present in the stratum corneum in their d-forms; however, in most model systems the diastereomer mixture with the synthetically produced l-form is used. The d-form is well-known to form a hydrogen bonding network that helps to reduce the permeability of the lipid matrix, while the l-form does not show any hydrogen bonding network formation. In this paper, 2D (monolayers) and 3D (aqueous dispersions) models have been used to thoroughly study the physical-chemical behaviors of CER[AP] diastereomers taking into account how the symmetry of the chain pattern influences the behavior of the molecules. The chains of both diastereomers arrange in an oblique unit cell, but only the d-CER[AP] forms a supramolecular lattice (subgel phase) in both model systems. Interestingly, the chain pattern does not play any role in structure formation since the hydrogen bonding network dictates the packing properties. The 1:1 mixture of the diastereomers phase separates into two domains: one is composed of practically pure d-form and the other one is composed of a mixture of the l-form with a certain amount of d-form molecules.
Collapse
Affiliation(s)
- Fabio Strati
- Institute of Applied Dermatopharmacy at Martin Luther University Halle-Wittenberg, Weinbergweg 23, 06120 Halle (Saale), Germany
| | - Joana S L Oliveira
- Max Planck Institute of Colloids and Interfaces, Potsdam Science Park, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Lukas Opalka
- Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Tetiana Mukhina
- Institute for Condensed Matter Physics, Technical University Darmstadt, Hochschulstrasse 8, 64289 Darmstadt, Germany
| | - Bodo Dobner
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Reinhard H H Neubert
- Institute of Applied Dermatopharmacy at Martin Luther University Halle-Wittenberg, Weinbergweg 23, 06120 Halle (Saale), Germany
| | - Gerald Brezesinski
- Institute of Applied Dermatopharmacy at Martin Luther University Halle-Wittenberg, Weinbergweg 23, 06120 Halle (Saale), Germany
| |
Collapse
|
32
|
Gupta KM, Das S, Chow PS. Molecular dynamics simulations to elucidate translocation and permeation of active from lipid nanoparticle to skin: complemented by experiments. NANOSCALE 2021; 13:12916-12928. [PMID: 34477775 DOI: 10.1039/d1nr02652f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
One of the most realistic approaches for delivering actives (pharmaceuticals/cosmetics) deep into skin layers is encapsulation into nanoparticles (NPs). Nonetheless, molecular-level mechanisms related to active delivery from NPs to the skin have scarcely been studied despite the large number of synthesis and characterization studies. We herein report the underlying mechanism of active translocation and permeation through the outermost layer of skin, the stratum corneum (SC), via molecular dynamics (MD) simulations complemented by experimental studies. A SC molecular model is constructed using current state-of-the-art methodology via incorporating the three most abundant skin lipids: ceramides, free fatty acids, and cholesterol. As a potent antioxidant, ferulic acid (FA) is used as the model active, and it is loaded into Gelucire 50/13 NP. MD simulations elucidate that, first, FA-loaded NP approaches the skin surface quickly, followed by slight penetration and adsorption onto the upper skin surface; FA then translocates from the NP surface to the skin surface due to stronger NP-skin interactions compared to the FA-NP interactions; then, once FA is released onto the skin surface, it slowly permeates deep into the skin bilayer. Both the free energy and resistance to permeation not only indicate the spontaneous transfer of FA from the bulk to the skin surface, but they also reveal that the main barrier against permeation exists in the middle of the lipid hydrophobic tails. Significantly lower diffusion of FA is obtained in the main barrier region compared to the bulk. The estimated permeability coefficient (log P) values are found to be higher than the experimental values. Importantly, the permeation process evaluated via MD simulations perfectly matches with experiments. The study suggests a molecular simulation platform that provides various crucial insights relating to active delivery from loaded NP to skin, and it could facilitate the design and development of novel NP-based formulations for transdermal delivery and the topical application of drugs/cosmetics.
Collapse
Affiliation(s)
- Krishna M Gupta
- Institute of Chemical & Engineering Sciences, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833.
| | | | | |
Collapse
|
33
|
Uche L, Gooris GS, Bouwstra JA, Beddoes CM. Increased Levels of Short-Chain Ceramides Modify the Lipid Organization and Reduce the Lipid Barrier of Skin Model Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9478-9489. [PMID: 34319754 PMCID: PMC8389989 DOI: 10.1021/acs.langmuir.1c01295] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/09/2021] [Indexed: 06/13/2023]
Abstract
The skin barrier function is attributed to the stratum corneum (SC) intercellular lipid matrix, which is composed primarily of ceramides (CERs), free fatty acids, and cholesterol. These lipids are organized in two lamellar phases: the short and long periodicity phases (SPP and LPP), respectively. The LPP is considered important for the skin barrier function. High levels of short-chain CERs are observed in various inflammatory skin diseases and have been correlated with barrier dysfunction. In this research, we investigated how the increase in the fraction of the short-chain CER with a nonhydroxy C16 acyl chain linked to a C18 sphingosine base CER NS(C16) at the expense of the physiological chain length CER NS with a C24 acyl chain (CER NS(C24)) impacts the microstructure and barrier function of a lipid model that mimicked certain characteristics of the SC lipid organization. The permeability and lipid organization of the model membranes were compared with that of a control model without CER NS(C16). The permeability increased significantly when ≥50% of CER NS(C24) was substituted with CER NS(C16). Employing biophysical techniques, we showed that the lipid packing density reduced with an increasing proportion of CER NS(C16). Substitution of 75% of CER NS(C24) by CER NS(C16) resulted in the formation of phase-separated lipid domains and alteration of the LPP structure. Using deuterium-labeled lipids enabled simultaneous characterization of the C24 and C16 acyl chains in the lipid models, providing insight into the mechanisms underlying the reduced skin barrier function in diseased skin.
Collapse
|
34
|
Hatta I, Nakazawa H, Ohta N, Uchino T, Yanase K. Stratum Corneum Function: A Structural Study with Dynamic Synchrotron X-ray Diffraction Experiments. J Oleo Sci 2021; 70:1181-1199. [PMID: 34373412 DOI: 10.5650/jos.ess21159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Studies on the effectiveness of substances such as drugs and cosmetics that act on the skin require structural evidence at the molecular level in the stratum corneum to clarify their interaction with intercellular lipid and soft keratin. For this purpose, when applying the substances to the stratum corneum X-ray diffraction experiment is one of the powerful tools. To detect minute structural changes in a stratum corneum sample, using a "solution cell", dynamic synchrotron X-ray diffraction measurements were performed when applying aqueous solution of the substances to the stratum corneum: (1) It was found that a surfactant, sodium dodecyl sulfate, significantly disrupted the long-period lamellar structure. (2) To study the effects of water, structural modifications of the short-period lamellar structure and the soft keratin in corneocytes were measured as a function of time. At the initial water content of 15 wt%, the spacings of the short-period lamellar structure and the soft keratin increased toward those at the water content of 25 wt%, that is a key water content in the stratum corneum. (3) Nanoparticles composed of assembly of amphiphilic molecules are one of the leading pharmaceutical formulations. When the nanoparticles were applied, a new assembly of amphiphilic molecules originated from the nanoparticle appeared. This phenomenon suggests that the formation of the new assembly at the surface of skin is concerned with the release of the drug from the nanoparticles. (4) When ethanol was applied to the stratum corneum, only the liquid state in the intercellular lipid matrix was dissolved. After the removal of ethanol from this stratum corneum, the ordered hydrocarbon-chain packing structures appeared. From this fact we would propose that the liquid state region is the main pathway for hydrophobic drugs with a small molecular weight in connection with the so-called 500 Da rule. Here, not only the technique but also the background to these studies and the characteristic results obtained from these studies are explained.
Collapse
Affiliation(s)
- Ichiro Hatta
- Department of Research, Nagoya Industrial Science Research Institute
| | | | - Noboru Ohta
- Japan Synchrotron Radiation Research Institute (JASRI/SPring-8)
| | - Tomonobu Uchino
- Department of Clinical Pharmaceutics, School of Pharmaceutical Sciences, University of Shizuoka
| | - Kaori Yanase
- Beauty Care Laboratory, Kracie Home Products, Ltd
| |
Collapse
|
35
|
Petracca B, Nădăban A, Eeman M, Gooris GS, Bouwstra JA. Effects of ozone on stratum corneum lipid integrity and assembly. Chem Phys Lipids 2021; 240:105121. [PMID: 34352254 DOI: 10.1016/j.chemphyslip.2021.105121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/04/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022]
Abstract
The stratum corneum (SC) acts as the main barrier of the skin against exogenous substances (e.g. air pollutants) and against the loss of endogenous substances such as water. The SC consists of keratin-rich dead cells surrounded by crystalline lamellar lipid regions. The main lipid classes are ceramides (CERs), free fatty acids (FFAs), and cholesterol (CHOL). Tropospheric ozone (O3) is a potent oxidant compound that reacts instantly with biological molecules such as lipids and proteins. Although it has been reported that O3 induces biological responses at the cellular level, to the best of our knowledge, there is no information related to the damages O3 can cause at the level of the SC extracellular lipid matrix. The aim of our work was to investigate which SC lipid subclasses are prone to oxidation when exposed to O3 and how the changes in chemical structures affect the lipid organization in a stratum corneum substitute (SCS) membrane. Ultimately the barrier properties of the SCS were examined. Our studies reveal that O3 induces chemical modifications of the unsaturated bonds in CERs and CHOL. The appearance of carbonyl groups at the headgroup level and the removal of the linoleate moiety of omega acylceramides (CER EOS) impact the lamellar organization of the lipid assembly and to a lesser extent the lateral packing of the lipids. Unexpectedly, the modifications improved the barrier function of the SCS.
Collapse
Affiliation(s)
- Benedetta Petracca
- Dow Silicones Belgium SRL, Rue Jules Bordet, Parc Industriel Zone C, B-7180 Seneffe, Belgium; Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Andreea Nădăban
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, the Netherlands
| | - Marc Eeman
- Dow Silicones Belgium SRL, Rue Jules Bordet, Parc Industriel Zone C, B-7180 Seneffe, Belgium.
| | - Gert S Gooris
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, the Netherlands
| | - Joke A Bouwstra
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, the Netherlands
| |
Collapse
|
36
|
Bouwstra JA, Helder RW, El Ghalbzouri A. Human skin equivalents: Impaired barrier function in relation to the lipid and protein properties of the stratum corneum. Adv Drug Deliv Rev 2021; 175:113802. [PMID: 34015420 DOI: 10.1016/j.addr.2021.05.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 12/15/2022]
Abstract
To advance drug development representative reliable skin models are indispensable. Animal skin as test model for human skin delivery is restricted as their properties greatly differ from human skin. In vitro 3D-human skin equivalents (HSEs) are valuable tools as they recapitulate important aspects of the human skin. However, HSEs still lack the full barrier functionality as observed in native human skin, resulting in suboptimal screening outcome. In this review we provide an overview of established in-house and commercially available HSEs and discuss in more detail to what extent their skin barrier biology is mimicked in vitro focusing on the lipid properties and cornified envelope. Further, we will illustrate how underlying factors, such as culture medium improvements and environmental factors affect the barrier lipids. Lastly, potential improvements in skin barrier function will be proposed aiming at a new generation of HSEs that may replace animal skin delivery studies fully.
Collapse
|
37
|
Lim SH, Kim EJ, Lee CH, Park GH, Yoo KM, Nam SJ, Shin KO, Park K, Choi EH. A Lipid Mixture Enriched by Ceramide NP with Fatty Acids of Diverse Chain Lengths Contributes to Restore the Skin Barrier Function Impaired by Topical Corticosteroid. Skin Pharmacol Physiol 2021; 35:112-123. [PMID: 34348350 DOI: 10.1159/000518517] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 07/10/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The stratum corneum (SC) is a skin barrier that consists of corneocytes, intercellular lipids, and corneodesmosomes. Ceramides are composed of sphingoid bases linked with various types of fatty acids (FAs), and they are an essential constituent of SC intercellular lipids. Among their subtypes, ceramide NP with a phytosphingosine base is especially important. Most of the previous studies on barrier recovery have focused on a specific ceramide with a single chain FA, not with diverse chain lengths. Skin barrier function is impaired by various factors, including topical corticosteroid. OBJECTIVE We evaluated whether a lipid mixture enriched by ceramide NP with FAs of diverse chain lengths (CER [NP]*) can restore the skin barrier function impaired by topical corticosteroid. METHODS Twenty-seven healthy adult male volunteers were recruited. Topical corticosteroid was applied on both volar forearms of volunteers. Then, the test cream containing a lipid mixture with CER (NP)* was applied on the left forearm, and a vehicle cream without a lipid mixture was applied on the right forearm of each subject. The functional parameters of the skin barrier were compared before and after the treatment. Epidermal differentiation markers, hyaluronic acid synthase 3 (HAS3), cytokine levels, and the lipid profiles in the SC were analyzed. RESULTS The functional parameters of the skin barrier, such as barrier recovery rate, SC integrity, and SC hydration were significantly improved in the test cream-applied site compared to the vehicle cream-applied sites. Filaggrin and HAS3 levels were significantly higher in the sites applied with the test cream. Interleukin (IL)-1α levels were also significantly increased in these sites. IL-2, IL-6, IL-10, and IL-13 levels were significantly decreased in the test cream-applied sites. Lipid analyses showed that C18, C20, and total ceramide NP levels significantly increased in the sites where the test cream was applied. Also, C16, C18, C20, C24, and total ceramide NP levels were significantly elevated in the test cream-applied sites after acute barrier disruption. CONCLUSION Our results demonstrate that a lipid mixture enriched by CER (NP)* could recover the barrier function impaired by topical corticosteroid.
Collapse
Affiliation(s)
- Sung Ha Lim
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Eun Jung Kim
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Chung Hyuk Lee
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | | | | | | | - Kyong-Oh Shin
- The Korean Institute of Nutrition, Department of Food Science and Nutrition, Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea
| | - Kyungho Park
- The Korean Institute of Nutrition, Department of Food Science and Nutrition, Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea
| | - Eung Ho Choi
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| |
Collapse
|
38
|
Dini I, Laneri S. The New Challenge of Green Cosmetics: Natural Food Ingredients for Cosmetic Formulations. Molecules 2021; 26:molecules26133921. [PMID: 34206931 PMCID: PMC8271805 DOI: 10.3390/molecules26133921] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 01/18/2023] Open
Abstract
Nowadays, much attention is paid to issues such as ecology and sustainability. Many consumers choose “green cosmetics”, which are environmentally friendly creams, makeup, and beauty products, hoping that they are not harmful to health and reduce pollution. Moreover, the repeated mini-lock downs during the COVID-19 pandemic have fueled the awareness that body beauty is linked to well-being, both external and internal. As a result, consumer preferences for makeup have declined, while those for skincare products have increased. Nutricosmetics, which combines the benefits derived from food supplementation with the advantages of cosmetic treatments to improve the beauty of our body, respond to the new market demands. Food chemistry and cosmetic chemistry come together to promote both inside and outside well-being. A nutricosmetic optimizes the intake of nutritional microelements to meet the needs of the skin and skin appendages, improving their conditions and delaying aging, thus helping to protect the skin from the aging action of environmental factors. Numerous studies in the literature show a significant correlation between the adequate intake of these supplements, improved skin quality (both aesthetic and histological), and the acceleration of wound-healing. This review revised the main foods and bioactive molecules used in nutricosmetic formulations, their cosmetic effects, and the analytical techniques that allow the dosage of the active ingredients in the food.
Collapse
|
39
|
McGurk KA, Keavney BD, Nicolaou A. Circulating ceramides as biomarkers of cardiovascular disease: Evidence from phenotypic and genomic studies. Atherosclerosis 2021; 327:18-30. [PMID: 34004484 DOI: 10.1016/j.atherosclerosis.2021.04.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/25/2021] [Accepted: 04/30/2021] [Indexed: 12/20/2022]
Abstract
There is a need for new biomarkers of atherosclerotic cardiovascular disease (ACVD), the main cause of death globally. Ceramides, a class of potent bioactive lipid mediators, have signalling roles in apoptosis, cellular stress and inflammation. Recent studies have highlighted circulating ceramides as novel biomarkers of coronary artery disease, type-2 diabetes and insulin resistance. Ceramides are highly regulated by enzymatic reactions throughout the body in terms of their activity and metabolism, including production, degradation and transport. The genetic studies that have been completed to date on the main ceramide species found in circulation are described, highlighting the importance of DNA variants in genes involved in ceramide biosynthesis as key influencers of heritable, circulating ceramide levels. We also review studies of disease associations with ceramides and discuss mechanistic insights deriving from recent genomic studies. The signalling activities of ceramides in vascular inflammation and apoptosis, associations between circulating ceramides and coronary artery disease risk, type-2 diabetes and insulin resistance, and the potential importance of ceramides with regard to ACVD risk factors, such as blood pressure, lipoproteins and lifestyle factors, are also discussed.
Collapse
Affiliation(s)
- Kathryn A McGurk
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, UK; Laboratory for Lipidomics and Lipid Research, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, UK
| | - Bernard D Keavney
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, UK; Manchester Heart Centre, Manchester University NHS Foundation Trust, UK
| | - Anna Nicolaou
- Laboratory for Lipidomics and Lipid Research, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, UK; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
40
|
Mieremet A, Helder RWJ, Nadaban A, Boiten WA, Gooris GS, El Ghalbzouri A, Bouwstra JA. Multitargeted Approach for the Optimization of Morphogenesis and Barrier Formation in Human Skin Equivalents. Int J Mol Sci 2021; 22:ijms22115790. [PMID: 34071405 PMCID: PMC8198964 DOI: 10.3390/ijms22115790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 12/20/2022] Open
Abstract
In vitro skin tissue engineering is challenging due to the manifold differences between the in vivo and in vitro conditions. Yet, three-dimensional (3D) human skin equivalents (HSEs) are able to mimic native human skin in many fundamental aspects. However, the epidermal lipid barrier formation, which is essential for the functionality of the skin barrier, remains compromised. Recently, HSEs with an improved lipid barrier formation were generated by (i) incorporating chitosan in the dermal collagen matrix, (ii) reducing the external oxygen level to 3%, and (iii) inhibiting the liver X receptor (LXR). In this study, we aimed to determine the synergic effects in full-thickness models (FTMs) with combinations of these factors as single-, double-, and triple-targeted optimization approaches. The collagen–chitosan FTM supplemented with the LXR inhibitor showed improved epidermal morphogenesis, an enhanced lipid composition, and a better lipid organization. Importantly, barrier functionality was improved in the corresponding approach. In conclusion, our leading optimization approach substantially improved the epidermal morphogenesis, barrier formation, and functionality in the FTM, which therefore better resembled native human skin.
Collapse
Affiliation(s)
- Arnout Mieremet
- Department of Dermatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.M.); (A.E.G.)
| | - Richard W. J. Helder
- Division of BioTherapeutics, Leiden Academic Centre of Drug Research, Leiden University, 2333 CD Leiden, The Netherlands; (R.W.J.H.); (A.N.); (W.A.B.); (G.S.G.)
| | - Andreea Nadaban
- Division of BioTherapeutics, Leiden Academic Centre of Drug Research, Leiden University, 2333 CD Leiden, The Netherlands; (R.W.J.H.); (A.N.); (W.A.B.); (G.S.G.)
| | - Walter A. Boiten
- Division of BioTherapeutics, Leiden Academic Centre of Drug Research, Leiden University, 2333 CD Leiden, The Netherlands; (R.W.J.H.); (A.N.); (W.A.B.); (G.S.G.)
| | - Gert S. Gooris
- Division of BioTherapeutics, Leiden Academic Centre of Drug Research, Leiden University, 2333 CD Leiden, The Netherlands; (R.W.J.H.); (A.N.); (W.A.B.); (G.S.G.)
| | - Abdoelwaheb El Ghalbzouri
- Department of Dermatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.M.); (A.E.G.)
| | - Joke A. Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre of Drug Research, Leiden University, 2333 CD Leiden, The Netherlands; (R.W.J.H.); (A.N.); (W.A.B.); (G.S.G.)
- Correspondence: ; Tel.: +31-71-527-4208
| |
Collapse
|
41
|
Narangifard A, Wennberg CL, den Hollander L, Iwai I, Han H, Lundborg M, Masich S, Lindahl E, Daneholt B, Norlén L. Molecular Reorganization during the Formation of the Human Skin Barrier Studied In Situ. J Invest Dermatol 2021; 141:1243-1253.e6. [DOI: 10.1016/j.jid.2020.07.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/01/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022]
|
42
|
Abstract
Skin barrier dysfunction caused by endogenous or exogenous factors can lead to various disorders such as xerosis cutis, ichthyoses, and atopic dermatitis. Filaggrin is a pivotal structural protein of the stratum corneum (SC) and provides natural moisturizing factors that play a role in skin barrier functions. Filaggrin aggregates keratin filaments, resulting in the formation of a keratin network, which binds cornified envelopes and collapse keratinocytes to flattened corneocytes. This complex network contributes to the physical strength of the skin. Filaggrin is degraded by caspase-14, calpain 1, and bleomycin hydrolases into amino acids and amino acid metabolites such as trans-urocanic acid and pyrrolidone carboxylic acid, which are pivotal natural moisturizing factors in the SC. Accordingly, filaggrin is important for the pathophysiology of skin barrier disorders, and its deficiency or dysfunction leads to a variety of skin disorders. Here, the roles and biology of filaggrin, related skin diseases, and a therapeutic strategy targeting filaggrin are reviewed. In addition, several drug candidates of different mode of actions targeting filaggrin, along with their clinical efficacy, are discussed.
Collapse
|
43
|
Helder RWJ, Rousel J, Boiten WA, Gooris GS, Nadaban A, El Ghalbzouri A, Bouwstra JA. Improved organotypic skin model with reduced quantity of monounsaturated ceramides by inhibiting stearoyl-CoA desaturase-1. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158885. [PMID: 33444760 DOI: 10.1016/j.bbalip.2021.158885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/24/2020] [Accepted: 01/08/2021] [Indexed: 01/08/2023]
Abstract
Full thickness models (FTM) are 3D in vitro skin cultures that resemble the native human skin (NHS) to a great extent. However, the barrier function of these skin models is reduced. The skin barrier is located in the stratum corneum (SC) and consists of corneocytes embedded in a lipid matrix. In this matrix, deviations in the composition of the FTMs lipid matrix may contribute to the impaired skin barrier when compared to NHS. One of the most abundant changes in lipid composition is an increase in monounsaturated lipids for which stearoyl-CoA desaturase-1 (SCD-1) is responsible. To improve the SC lipid composition, we reduced SCD-1 activity during the generation of the FTMs. These FTMs were subsequently assessed on all major aspects, including epidermal homeostasis, lipid composition, lipid organization, and barrier functionality. We demonstrate that SCD-1 inhibition was successful and resulted in FTMs that better mimic the lipid composition of FTMs to NHS by a significant reduction in monounsaturated lipids. In conclusion, this study demonstrates an effective approach to normalize SC monounsaturated lipid concentration and may be a valuable tool in further optimizing the FTMs in future studies.
Collapse
Affiliation(s)
- Richard W J Helder
- Division of BioTherapeutics, LACDR, Leiden University, Leiden, the Netherlands.
| | - Jannik Rousel
- Division of BioTherapeutics, LACDR, Leiden University, Leiden, the Netherlands.
| | - Walter A Boiten
- Division of BioTherapeutics, LACDR, Leiden University, Leiden, the Netherlands.
| | - Gerrit S Gooris
- Division of BioTherapeutics, LACDR, Leiden University, Leiden, the Netherlands.
| | - Andreea Nadaban
- Division of BioTherapeutics, LACDR, Leiden University, Leiden, the Netherlands.
| | | | - Joke A Bouwstra
- Division of BioTherapeutics, LACDR, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
44
|
Ono S, Eda N, Mori T, Otsuka A, Nakamura N, Inai Y, Ota N, Akama T. Tape stripping method is useful for the quantification of antimicrobial peptides on the human skin surface including the stratum corneum. Sci Rep 2020; 10:15259. [PMID: 32943667 PMCID: PMC7499253 DOI: 10.1038/s41598-020-72111-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/24/2020] [Indexed: 11/09/2022] Open
Abstract
Antimicrobial peptides (AMPs) play an important role in innate immunity in human skin. It is known that AMPs mainly function in the stratum corneum. Therefore, AMP concentrations in the stratum corneum need to be precisely measured to clarify functional and physiological importance of AMPs in cutaneous defence. Tape stripping (TS) is a well-established method by which components in the stratum corneum can be collected. However, the usefulness of the TS method for measuring AMP concentration in human skin remains unclear. Therefore, we compared it with another popular method, skin rinsing, which had been established as a method for measuring AMP concentration in human skin. When investigated on healthy medial forearm using RNase 7, which is one of the typical AMPs, as an index, there was a significant positive correlation between RNase 7 concentrations measured by the TS method at adjacent forearm sites, demonstrating the reproducibility of the TS method. Next, a significant positive correlation was detected in RNase 7 concentrations measured using the TS and the skin rinsing method, indicating that the TS method is comparable to the skin rinsing method. Thus, we speculate that the TS method is useful for measuring AMP concentration in human skin.
Collapse
Affiliation(s)
- Shigeyuki Ono
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan.
| | - Nobuhiko Eda
- Japan Institute of Sports Sciences, Tokyo, Japan.,Waseda Institute for Sport Science, Saitama, Japan
| | - Takuya Mori
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan
| | - Atsuko Otsuka
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan
| | | | - Yuto Inai
- Graduate School of Sport Sciences, Waseda University, Saitama, Japan
| | - Noriyasu Ota
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497, Japan
| | - Takao Akama
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| |
Collapse
|
45
|
Yokose U, Ishikawa J, Morokuma Y, Naoe A, Inoue Y, Yasuda Y, Tsujimura H, Fujimura T, Murase T, Hatamochi A. The ceramide [NP]/[NS] ratio in the stratum corneum is a potential marker for skin properties and epidermal differentiation. BMC DERMATOLOGY 2020; 20:6. [PMID: 32867747 PMCID: PMC7461267 DOI: 10.1186/s12895-020-00102-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/24/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Specific species of ceramides (Cer), major constituents of lipids in the stratum corneum (SC), are decreased and are correlated with SC barrier and water-holding functions in the skin of patients with atopic dermatitis (AD) or psoriasis (Pso). However, possible correlations between Cer subclass ratios and skin properties in barrier-disrupted skin and in healthy skin remain unclear. The objective of this study was to identify a new marker to evaluate skin properties and epidermal differentiation in SC not only in barrier-disrupted skin but also in healthy skin. METHODS The Cer subclass ratios in the SC of healthy control subjects and in patients with AD or Pso were evaluated. Correlations with candidate markers and facial skin features of healthy Japanese females (20-74 years old, n = 210) were investigated. Variations of markers during epidermal differentiation were studied in human epidermis and in cultured keratinocytes. RESULTS The ratios of Cer [NP]/[NS], Cer [NH]/[NS], Cer [NP]/[AS], Cer [NH]/[NS], Cer [NDS]/[AS], Cer [AH]/[AS] and Cer [EOP]/[AS] showed significant differences between non-lesional skin of AD patients and normal skin of healthy control subjects, as well as Pso patients and their healthy control subjects. The Cer [NP]/[NS] ratio was correlated with SC functional parameters (transepidermal water loss and capacitance) and with skin appearance (texture, scaling and color) even in the cheek skin of healthy female subjects. The Cer [NP]/[NS] ratio in the SC was approximately 18-times higher than in living keratinocytes, and it increased as they differentiated. CONCLUSIONS The Cer [NP]/[NS] ratio in the SC is a potential marker for skin properties and epidermal differentiation in barrier-disrupted skin as well as in healthy skin.
Collapse
Affiliation(s)
- Urara Yokose
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497 Japan
| | - Junko Ishikawa
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497 Japan
| | - Yuki Morokuma
- Health and Beauty Research, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo, 131-8501 Japan
| | - Ayano Naoe
- Analytical Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497 Japan
| | - Yosuke Inoue
- Analytical Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497 Japan
| | - Yuka Yasuda
- Analytical Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497 Japan
| | - Hisashi Tsujimura
- Analytical Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497 Japan
| | - Tsutomu Fujimura
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497 Japan
| | - Takatoshi Murase
- Biological Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi, 321-3497 Japan
| | - Atsushi Hatamochi
- Department of Dermatology, Dokkyo Medical University, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293 Japan
| |
Collapse
|
46
|
Schmitt T, Neubert RHH. State of the Art in Stratum Corneum Research. Part II: Hypothetical Stratum Corneum Lipid Matrix Models. Skin Pharmacol Physiol 2020; 33:213-230. [PMID: 32683377 DOI: 10.1159/000509019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/05/2020] [Indexed: 12/31/2022]
Abstract
This review is the second part of a series which presents the state of the art in stratum corneum (SC) lipid matrix (LM) research in depth. In this part, the various hypothetical models which were developed to describe the structure and function of the SC LM as the skin's barrier will be discussed. New as well as a cumulative assortment of older results which change the view on the different models are considered to conclude how well the different models are holding up today. As a final conclusion, a model, factoring in as much of the known data as possible, is concluded, unifying the varying different models into one which can be developed further, as new results are found in the future. So far, the model is described with a single crystalline or gel-like phase with a certain amount of nanocrystallites of concentrated ceramides (CERs) and free fatty acids and more fluid nanodomains caused by a fluidizing effect of the cholesterol. These domains are dynamically resolved and reformed and do not impair the barrier function. The chain conformation is not completely clear yet; however, an equilibrium of fully extended and hairpin-folded CERs with ratios depending on the properties of each individual CER species is proposed as most likely. An overlapping middle layer as described for the tri-layer model in part I of this series would be present for both conformations. The macroscopic broad-narrow-broad layering, observed in electron micrographs, is explained by an external templating by the lipid envelope, and an internal templating by short and long lipid chains each preferentially show a homophilic association, forming thicker and thinner bilayers, respectively. The degree of influence of the very long ω-hydroxy-CERs is discussed as well.
Collapse
Affiliation(s)
- Thomas Schmitt
- Department I, Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Reinhard H H Neubert
- Institute of Applied Dermatopharmacy at the Martin Luther University Halle-Wittenberg (IADP), Halle/Saale, Germany, .,Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany,
| |
Collapse
|
47
|
Badhe Y, Gupta R, Rai B. Development and application of coarse-grained MARTINI model of skin lipid ceramide [AP]. J Mol Model 2020; 26:182. [PMID: 32583227 DOI: 10.1007/s00894-020-04435-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 06/02/2020] [Indexed: 01/10/2023]
Abstract
Stratum corneum (SC), the outermost layer of the skin, contains large variety of lipids, endowing them with the amphiphilic properties, needed to fulfil their key role in skin's barrier function. The individual role of lipid types in the barrier function is difficult to understand due to the immense heterogeneity and complexity of the lipid's organization within the SC. The lipid organization is being explored using both computational (molecular dynamics simulations) and experimental (neutron diffraction) techniques. Even though atomistic simulations provide unprecedented atomic level details, the major limitation is time and length scale that can be achieved with decent computational facility. Alternatively, coarse-grain (CG) models are currently being used to capture physics at bigger time and length scale without losing essential underlined structural information. In this study, a CG model of α-hydroxy phytosphingosines (CER[AP]) is developed based on philosophy of MARTINI force field. At first, the model is validated with various atomistic simulations and available experimental data. Later on, the model's compatibility with other major skin lipids, cholesterol, and free fatty acid (palmitic acid) is checked by simulating a mixture of lipid multilayer in presence and absence of water. The developed model of CER[AP] is able to predict key structural properties within the acceptable error limits. The phenomena of ceramide conformation transformation, cholesterol flip-flop, and specificity of lipid arrangement within the multilayered systems is observed during the simulation. This signifies the importance of model in capturing higher order structural transformations.
Collapse
Affiliation(s)
- Yogesh Badhe
- Physical Science Research Area, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services, 54B, Hadapsar Industrial Estate, Pune, 411013, India
| | - Rakesh Gupta
- Physical Science Research Area, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services, 54B, Hadapsar Industrial Estate, Pune, 411013, India.
| | - Beena Rai
- Physical Science Research Area, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services, 54B, Hadapsar Industrial Estate, Pune, 411013, India
| |
Collapse
|
48
|
Martinotti C, Ruiz-Perez L, Deplazes E, Mancera RL. Molecular Dynamics Simulation of Small Molecules Interacting with Biological Membranes. Chemphyschem 2020; 21:1486-1514. [PMID: 32452115 DOI: 10.1002/cphc.202000219] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/22/2020] [Indexed: 12/12/2022]
Abstract
Cell membranes protect and compartmentalise cells and their organelles. The semi-permeable nature of these membranes controls the exchange of solutes across their structure. Characterising the interaction of small molecules with biological membranes is critical to understanding of physiological processes, drug action and permeation, and many biotechnological applications. This review provides an overview of how molecular simulations are used to study the interaction of small molecules with biological membranes, with a particular focus on the interactions of water, organic compounds, drugs and short peptides with models of plasma cell membrane and stratum corneum lipid bilayers. This review will not delve on other types of membranes which might have different composition and arrangement, such as thylakoid or mitochondrial membranes. The application of unbiased molecular dynamics simulations and enhanced sampling methods such as umbrella sampling, metadynamics and replica exchange are described using key examples. This review demonstrates how state-of-the-art molecular simulations have been used successfully to describe the mechanism of binding and permeation of small molecules with biological membranes, as well as associated changes to the structure and dynamics of these membranes. The review concludes with an outlook on future directions in this field.
Collapse
Affiliation(s)
- Carlo Martinotti
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute and, Curtin Institute for Computation, Curtin University, Perth, WA 6845, Australia
| | - Lanie Ruiz-Perez
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute and, Curtin Institute for Computation, Curtin University, Perth, WA 6845, Australia
| | - Evelyne Deplazes
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Ricardo L Mancera
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute and, Curtin Institute for Computation, Curtin University, Perth, WA 6845, Australia
| |
Collapse
|
49
|
van Smeden J, Al-Khakany H, Wang Y, Visscher D, Stephens N, Absalah S, Overkleeft HS, Aerts JMFG, Hovnanian A, Bouwstra JA. Skin barrier lipid enzyme activity in Netherton patients is associated with protease activity and ceramide abnormalities. J Lipid Res 2020; 61:859-869. [PMID: 32265319 PMCID: PMC7269766 DOI: 10.1194/jlr.ra120000639] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/31/2020] [Indexed: 12/17/2022] Open
Abstract
Individuals with Netherton syndrome (NTS) have increased serine protease activity, which strongly impacts the barrier function of the skin epidermis and leads to skin inflammation. Here, we investigated how serine protease activity in NTS correlates with changes in the stratum corneum (SC) ceramides, which are crucial components of the skin barrier. We examined two key enzymes involved in epidermal ceramide biosynthesis, β-glucocerebrosidase (GBA) and acid-sphingomyelinase (ASM). We compared in situ expression levels and activities of GBA and ASM between NTS patients and controls and correlated the expression and activities with i) SC ceramide profiles, ii) in situ serine protease activity, and iii) clinical presentation of patients. Using activity-based probe labeling, we visualized and localized active epidermal GBA, and a newly developed in situ zymography method enabled us to visualize and localize active ASM. Reduction in active GBA in NTS patients coincided with increased ASM activity, particularly in areas with increased serine protease activity. NTS patients with scaly erythroderma exhibited more pronounced anomalies in GBA and ASM activities than patients with ichthyosis linearis circumflexa. They also displayed a stronger increase in SC ceramides processed via ASM. We conclude that changes in the localization of active GBA and ASM correlate with i) altered SC ceramide composition in NTS patients, ii) local serine protease activity, and iii) the clinical manifestation of NTS.
Collapse
Affiliation(s)
- Jeroen van Smeden
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Centre for Human Drug Research, Leiden, The Netherlands
| | - Hanin Al-Khakany
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Yichen Wang
- INSERM UMR1163, Imagine Institute, Paris Descartes University, Paris, France
| | - Dani Visscher
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Nicole Stephens
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Samira Absalah
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Herman S Overkleeft
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Johannes M F G Aerts
- Medical Biochemistry Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Alain Hovnanian
- INSERM UMR1163, Imagine Institute, Paris Descartes University, Paris, France; Department of Genetics Necker-Enfants Malades Hospital, Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
| | - Joke A Bouwstra
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands. mailto:
| |
Collapse
|
50
|
Kawana M, Miyamoto M, Ohno Y, Kihara A. Comparative profiling and comprehensive quantification of stratum corneum ceramides in humans and mice by LC/MS/MS. J Lipid Res 2020; 61:884-895. [PMID: 32265320 PMCID: PMC7269764 DOI: 10.1194/jlr.ra120000671] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/01/2020] [Indexed: 12/21/2022] Open
Abstract
Ceramides are the predominant lipids in the stratum corneum (SC) and are crucial components for normal skin barrier function. Although the composition of various ceramide classes in the human SC has been reported, that in mice is still unknown, despite mice being widely used as animal models of skin barrier function. Here, we performed LC/MS/MS analyses using recently available ceramide class standards to measure 25 classes of free ceramides and 5 classes of protein-bound ceramides from human and mouse SC. Phytosphingosine- and 6-hydroxy sphingosine-type ceramides, which both contain an additional hydroxyl group, were abundant in the human SC (35% and 45% of total ceramides, respectively). In contrast, in mice, phytosph-ingosine- and 6-hydroxy sphingosine-type ceramides were present at ∼1% and undetectable levels, respectively, and sphingosine-type ceramides accounted for ∼90%. In humans, ceramides containing α-hydroxy FA were abundant, whereas ceramides containing β-hydroxy or ω-hydroxy FA were abundant in mice. The hydroxylated β-carbon in β-hydroxy ceramides was in the (R) configuration. Genetic knockout of β-hydroxy acyl-CoA dehydratases in HAP1 cells increased β-hydroxy ceramide levels, suggesting that β-hydroxy acyl-CoA, an FA-elongation cycle intermediate in the ER, is a substrate for β-hydroxy ceramide synthesis. We anticipate that our methods and findings will help to elucidate the role of each ceramide class in skin barrier formation and in the pathogenesis of skin disorders.
Collapse
Affiliation(s)
- Momoko Kawana
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Masatoshi Miyamoto
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yusuke Ohno
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|