1
|
Oostveen RF, Kaiser Y, Hartgers ML, Meessen ECE, Grefhorst A, Hovingh GK, Kuipers F, Stroes ESG, Groen AK, Reeskamp LF. Ursodeoxycholic Acid for Trans Intestinal Cholesterol Excretion Stimulation: A Randomized Placebo Controlled Crossover Study. J Am Heart Assoc 2024; 13:e035259. [PMID: 39377212 DOI: 10.1161/jaha.124.035259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/25/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND The trans intestinal cholesterol excretion (TICE) pathway is a potential therapeutic target to reduce plasma low-density lipoprotein (LDL) cholesterol levels. TICE encompasses the direct excretion of cholesterol by enterocytes into feces. In mice, TICE has been shown to be stimulated by a hydrophilic bile acid pool, resulting in increased fecal neutral sterol loss and reduced plasma cholesterol levels. We investigated whether treatment with a hydrophilic bile acid, ursodeoxycholic acid (UDCA), would increase fecal neutral sterols in humans as a proxy for TICE. METHODS AND RESULTS We performed a randomized, double-blind, placebo-controlled, cross-over trial in 20 male participants aged >18 years, with plasma LDL cholesterol levels ≥2.6 mmol/L. After a run-in period of ezetimibe 20 mg once daily for 3 weeks, patients were randomized to UDCA 600 mg or placebo orally once daily for 2 weeks. After a 3 week washout, patients underwent the alternate treatment. At baseline, mean (SD) age, body mass index, and plasma LDL cholesterol were 59±11.3 years, 26.4±3.1 kg/m2, and 3.9±0.8 mmol/L, respectively. After UDCA treatment, the plasma bile acid hydrophobicity index was reduced compared with placebo (-118.7% versus +2.3%, P<0.001). The fecal neutral sterols did not change (-5.8% versus +18.8%, P=0.51) and treatment with UDCA increased LDL cholesterol with 0.39 mmol/L (+8.1% versus -3.64%, P=0.002) when compared with placebo. CONCLUSIONS UDCA in combination with ezetimibe increased plasma bile acid hydrophilicity in healthy subjects with LDL cholesterol levels >2.6 mmol/L but did not result in increased fecal neutral sterols or decreased LDL cholesterol. This suggests that TICE is not stimulated by an increase in the hydrophilicity of the bile acid pool in humans.
Collapse
Affiliation(s)
- Reindert F Oostveen
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences Amsterdam UMC, University of Amsterdam The Netherlands
| | - Yannick Kaiser
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences Amsterdam UMC, University of Amsterdam The Netherlands
| | - Merel L Hartgers
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences Amsterdam UMC, University of Amsterdam The Netherlands
| | - Emma C E Meessen
- Department of Endocrinology and Metabolism Amsterdam UMC, University of Amsterdam The Netherlands
| | - Aldo Grefhorst
- Department of Experimental Vascular Medicine Amsterdam UMC, University of Amsterdam The Netherlands
| | - G Kees Hovingh
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences Amsterdam UMC, University of Amsterdam The Netherlands
| | - Folkert Kuipers
- Department of Pediatrics University Medical Center Groningen, University of Groningen The Netherlands
- European Research Institute for the Biology of Ageing (ERIBA) University Medical Center Groningen, University of Groningen The Netherlands
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences Amsterdam UMC, University of Amsterdam The Netherlands
| | - Albert K Groen
- Department of Endocrinology and Metabolism Amsterdam UMC, University of Amsterdam The Netherlands
- Department of Experimental Vascular Medicine Amsterdam UMC, University of Amsterdam The Netherlands
| | - Laurens F Reeskamp
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences Amsterdam UMC, University of Amsterdam The Netherlands
| |
Collapse
|
2
|
Garrido-Sanchez L, Leiva-Badosa E, Llop-Talaveron J, Pintó-Sala X, Lozano-Andreu T, Corbella-Inglés E, Alia-Ramos P, Arias-Barquet L, Ramon-Torrel JM, Badía-Tahull MB. Blood Phytosterol Concentration and Genetic Variant Associations in a Sample Population. Nutrients 2024; 16:1067. [PMID: 38613098 PMCID: PMC11013666 DOI: 10.3390/nu16071067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
The main objective of this study was to determine plasma levels of PS and to study SNVs rs41360247, rs4245791, rs4148217, and rs11887534 of ABCG8 and the r657152 SNV at the ABO blood group locus in a sample of a population treated at our hospital, and to determine whether these SNVs are related to plasma PS concentrations. The secondary objective was to establish the variables associated with plasma PS concentrations in adults. Participants completed a dietary habit questionnaire and a blood sample was collected to obtain the following variables: campesterol, sitosterol, sitostanol, lanosterol, stigmasterol, biochemical parameters, and the SNVs. In addition, biometric and demographic variables were also recorded. In the generalized linear model, cholesterol and age were positively associated with total PS levels, while BMI was negatively related. For rs4245791, homozygous T allele individuals showed a significantly lower campesterol concentration compared with C homozygotes, and the GG alleles of rs657152 had the lowest levels of campesterol compared with the other alleles of the SNV. Conclusions: The screening of certain SNVs could help prevent the increase in plasma PS and maybe PNALD in some patients. However, further studies on the determinants of plasma phytosterol concentrations are needed.
Collapse
Affiliation(s)
- Leticia Garrido-Sanchez
- Pharmacy Department, Hospital Universitari Bellvitge, IDIBELL, Universitat Barcelona, 08907 L’Hospitalet de Llobregat, Spain
| | - Elisabet Leiva-Badosa
- Pharmacy Department, Hospital Universitari Bellvitge, IDIBELL, Universitat Barcelona, 08907 L’Hospitalet de Llobregat, Spain
| | - Josep Llop-Talaveron
- Pharmacy Department, Hospital Universitari Bellvitge, IDIBELL, Universitat Barcelona, 08907 L’Hospitalet de Llobregat, Spain
| | - Xavier Pintó-Sala
- Cardiovascular Risk Unit, Internal Medicine, Hospital Universitari de Bellvitge, IDIBELL, Universitat Barcelona, 08907 L’Hospitalet de Llobregat, Spain; (X.P.-S.)
| | - Toni Lozano-Andreu
- Pharmacy Department, Institut Català d’Oncologia, IDIBELL, Universitat Barcelona, 08907 L’Hospitalet de Llobregat, Spain
| | - Emili Corbella-Inglés
- Cardiovascular Risk Unit, Internal Medicine, Hospital Universitari de Bellvitge, IDIBELL, Universitat Barcelona, 08907 L’Hospitalet de Llobregat, Spain; (X.P.-S.)
| | - Pedro Alia-Ramos
- Clinical Laboratory Department, Hospital Universitari Bellvitge, IDIBELL, Universitat Barcelona, 08907 L’Hospitalet de Llobregat, Spain
| | - Lluis Arias-Barquet
- Ophthalmology Department, Hospital Universitari Bellvitge, IDIBELL, Universitat Barcelona, 08907 L’Hospitalet de Llobregat, Spain
| | - Josep Maria Ramon-Torrel
- Preventive Medicine Department, Hospital Universitari Bellvitge, IDIBELL, Universitat Barcelona, 08907 L’Hospitalet de Llobregat, Spain
| | - Maria B. Badía-Tahull
- Pharmacy Department, Hospital Universitari Bellvitge, IDIBELL, Universitat Barcelona, 08907 L’Hospitalet de Llobregat, Spain
| |
Collapse
|
3
|
Rezaei F, Farhat D, Gursu G, Samnani S, Lee JY. Snapshots of ABCG1 and ABCG5/G8: A Sterol's Journey to Cross the Cellular Membranes. Int J Mol Sci 2022; 24:ijms24010484. [PMID: 36613930 PMCID: PMC9820320 DOI: 10.3390/ijms24010484] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
The subfamily-G ATP-binding cassette (ABCG) transporters play important roles in regulating cholesterol homeostasis. Recent progress in the structural data of ABCG1 and ABCG5/G8 disclose putative sterol binding sites that suggest the possible cholesterol translocation pathway. ABCG1 and ABCG5/G8 share high similarity in the overall molecular architecture, and both transporters appear to use several unique structural motifs to facilitate cholesterol transport along this pathway, including the phenylalanine highway and the hydrophobic valve. Interestingly, ABCG5/G8 is known to transport cholesterol and phytosterols, whereas ABCG1 seems to exclusively transport cholesterol. Ligand docking analysis indeed suggests a difference in recruiting sterol molecules to the known sterol-binding sites. Here, we further discuss how the different and shared structural features are relevant to their physiological functions, and finally provide our perspective on future studies in ABCG cholesterol transporters.
Collapse
Affiliation(s)
- Fatemeh Rezaei
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Danny Farhat
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Gonca Gursu
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Biochemistry Program, Faculty of Science, University of Ottawa, Ottawa, ON K1H 6N5, Canada
| | - Sabrina Samnani
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Biochemistry Program, Faculty of Science, University of Ottawa, Ottawa, ON K1H 6N5, Canada
| | - Jyh-Yeuan Lee
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence:
| |
Collapse
|
4
|
Abe RJ, Abe JI, Nguyen MTH, Olmsted-Davis EA, Mamun A, Banerjee P, Cooke JP, Fang L, Pownall H, Le NT. Free Cholesterol Bioavailability and Atherosclerosis. Curr Atheroscler Rep 2022; 24:323-336. [PMID: 35332444 PMCID: PMC9050774 DOI: 10.1007/s11883-022-01011-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW As both a cholesterol acceptor and carrier in the reverse cholesterol transport (RCT) pathway, high-density lipoprotein (HDL) is putatively atheroprotective. However, current pharmacological therapies to increase plasma HDL cholesterol (HDL-c) concentration have paradoxically failed to prevent or reduce atherosclerosis and cardiovascular disease (CVD). Given that free cholesterol (FC) transfer between surfaces of lipoproteins and cells is reversible, excess plasma FC can be transferred to the cells of peripheral tissue sites resulting in atherosclerosis. Here, we summarize potential mechanisms contributing to this paradox and highlight the role of excess free cholesterol (FC) bioavailability in atherosclerosis vs. atheroprotection. RECENT FINDINGS Recent findings have established a complex relationship between HDL-c concentration and atherosclerosis. Systemic scavenger receptor class B type 1 (SR-B1) knock out (KO) mice exhibit with increased diet-induced atherosclerosis despite having an elevated plasma HDL-c concentration compared to wild type (WT) mice. The greater bioavailability of HDL-FC in SR-B1 vs. WT mice is associated with a higher FC content in multiple cell types and tissue sites. These results suggest that dysfunctional HDL with high FC bioavailability is atheroprone despite high HDL-c concentration. Past oversimplification of HDL-c involvement in cholesterol transport has led to the failures in HDL targeted therapy. Evidence suggests that FC-mediated functionality of HDL is of higher importance than its quantity; as a result, deciphering the regulatory mechanisms by which HDL-FC bioavailability can induce atherosclerosis can have far-reaching clinical implications.
Collapse
Affiliation(s)
- Rei J Abe
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Jun-Ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Minh T H Nguyen
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | | | - Abrar Mamun
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Priyanka Banerjee
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - John P Cooke
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Longhou Fang
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Henry Pownall
- Weill Cornell Medicine, New York, NY, USA
- Center for Bioenergetics, Department of Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Nhat-Tu Le
- Center for Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA.
- Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Schroor MM, Mokhtar FBA, Plat J, Mensink RP. Associations between SNPs in Intestinal Cholesterol Absorption and Endogenous Cholesterol Synthesis Genes with Cholesterol Metabolism. Biomedicines 2021; 9:biomedicines9101475. [PMID: 34680591 PMCID: PMC8533139 DOI: 10.3390/biomedicines9101475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) have been associated with cholesterol metabolism and may partly explain large inter-individual variability in intestinal cholesterol absorption and endogenous cholesterol synthesis rates. This cross-sectional study therefore examined whether SNPs in genes encoding for proteins involved in intestinal cholesterol absorption (ABCG5, ABCG8, and NPC1L1) and endogenous cholesterol synthesis (CYP51A1, DHCR7, DHCR24, HMGCR, HSD17B7, LBR, and MSMO1) were associated with intestinal cholesterol absorption markers (total cholesterol (TC) standardized campesterol and sitosterol levels), an endogenous cholesterol synthesis marker (TC-standardized lathosterol levels), and serum low-density lipoprotein cholesterol (LDL-C) concentrations in a European cohort. ABCG5 (rs4245786) and the tag SNP ABCG8 (rs4245791) were significantly associated with serum campesterol and/or sitosterol levels. In contrast, NPC1L1 (rs217429 and rs217416) were significantly associated with serum lathosterol levels. The tag SNP in HMGCR (rs12916) and a SNP in LBR (rs12141732) were significantly associated with serum LDL-C concentrations. SNPs in the cholesterol absorption genes were not associated with serum LDL-C concentrations. SNPs in CYP51A1, DHCR24, HSD17B7, and MSMO1 were not associated with the serum non-cholesterol sterols and LDL-C concentrations. Given the variable efficiency of cholesterol-lowering interventions, the identification of SNPs associated with cholesterol metabolism could be a step forward towards personalized approaches.
Collapse
Affiliation(s)
- Maite M. Schroor
- Correspondence: (M.M.S.); (F.B.A.M.); Tel.: +31-(0)43-3884258 (M.M.S.); +31-(0)43-3881313 (F.B.A.M.)
| | - Fatma B. A. Mokhtar
- Correspondence: (M.M.S.); (F.B.A.M.); Tel.: +31-(0)43-3884258 (M.M.S.); +31-(0)43-3881313 (F.B.A.M.)
| | | | | |
Collapse
|
6
|
Zago VHS, Scherrer DZ, Parra ES, Vieira IC, Marson FAL, de Faria EC. Effects of SNVs in ABCA1, ABCG1, ABCG5, ABCG8, and SCARB1 Genes on Plasma Lipids, Lipoproteins, and Adiposity Markers in a Brazilian Population. Biochem Genet 2021; 60:822-841. [PMID: 34505223 DOI: 10.1007/s10528-021-10131-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 08/25/2021] [Indexed: 10/20/2022]
Abstract
Several proteins are involved in cholesterol homeostasis, as scavenger receptor class B type I and ATP-binding cassette (ABC) transporters including ABCA1, ABCG1, ABCG5, and ABCG8. This study aimed to determine the effects of single nucleotide variants (SNVs) rs2275543 (ABCA1), rs1893590 (ABCG1), rs6720173 (ABCG5), rs6544718 (ABCG8), and rs5888 (SCARB1) on plasma lipids, lipoproteins, and adiposity markers in an asymptomatic population and its sex-specific effects. Volunteers (n = 590) were selected and plasma lipids, lipoproteins, and adiposity markers (waist-to-hip and waist-to-height ratios, lipid accumulation product and body adiposity index) were measured. Genomic DNA was isolated from peripheral blood cells according to the method adapted from Gross-Bellard. SNVs were detected in the TaqMan® OpenArray® Real-Time polymerase chain reaction platform and data analyses were performed using the TaqMan® Genotyper Software. The rs2275543*C point to an increase of high-density lipoprotein size in females while in males very-low-density lipoprotein, cholesterol, and triglycerides were statistically lower (P value < 0.05). The rs1893590*C was statistically associated with lower apolipoprotein A-I levels and higher activities of paraoxonase-1 and cholesteryl ester transfer protein (P value < 0.05). The rs6720173 was statistically associated with an increase in cholesterol and low-density lipoprotein cholesterol in males; moreover, rs6544718*T reduced adiposity markers in females (P value < 0.05). Regarding the rs5888, a decreased adiposity marker in the total population and in females occurred (P value < 0.05). Multivariate analysis of variance showed that SNVs could influence components of high-density lipoprotein metabolism, mainly through ABCG1 (P value < 0.05). The ABCA1 and ABCG5 variants showed sex-specific effects on lipids and lipoproteins, while SCARB1 and ABCG8 variants might influence adiposity markers in females. Our data indicate a possible role of ABCG1 on HDL metabolism.
Collapse
Affiliation(s)
- Vanessa Helena Souza Zago
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas, Tessália Vieira de Camargo St, 126, Campinas, São Paulo, 13084-971, Brazil
| | - Daniel Zanetti Scherrer
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas, Tessália Vieira de Camargo St, 126, Campinas, São Paulo, 13084-971, Brazil
| | - Eliane Soler Parra
- Department of Cardiology, Faculty of Medical Sciences, State University of Campinas, Tessália Vieira de Camargo St, 126, Campinas, São Paulo, 13084-971, Brazil
| | - Isabela Calanca Vieira
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas, Tessália Vieira de Camargo St, 126, Campinas, São Paulo, 13084-971, Brazil
| | - Fernando Augusto Lima Marson
- Department of Pediatrics, Faculty of Medical Sciences, State University of Campinas, Tessália Vieira de Camargo St, 126, Campinas, São Paulo, 13084-971, Brazil. .,Department of Medical Genetics and Genomic Medicine, Faculty of Medical Sciences, State University of Campinas, Tessália Vieira de Camargo St, 126, Campinas, São Paulo, 13084-971, Brazil. .,Laboratory of Human and Medical Genetics and Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University, Avenida São Francisco de Assis, 218, Jardim São José, Bragança Paulista, São Paulo, 12916-900, Brazil.
| | - Eliana Cotta de Faria
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas, Tessália Vieira de Camargo St, 126, Campinas, São Paulo, 13084-971, Brazil.
| |
Collapse
|
7
|
Williams K, Segard A, Graf GA. Sitosterolemia: Twenty Years of Discovery of the Function of ABCG5ABCG8. Int J Mol Sci 2021; 22:2641. [PMID: 33807969 PMCID: PMC7961684 DOI: 10.3390/ijms22052641] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023] Open
Abstract
Sitosterolemia is a lipid disorder characterized by the accumulation of dietary xenosterols in plasma and tissues caused by mutations in either ABCG5 or ABCG8. ABCG5 ABCG8 encodes a pair of ABC half transporters that form a heterodimer (G5G8), which then traffics to the surface of hepatocytes and enterocytes and promotes the secretion of cholesterol and xenosterols into the bile and the intestinal lumen. We review the literature from the initial description of the disease, the discovery of its genetic basis, current therapy, and what has been learned from animal, cellular, and molecular investigations of the transporter in the twenty years since its discovery. The genomic era has revealed that there are far more carriers of loss of function mutations and likely pathogenic variants of ABCG5 ABCG8 than previously thought. The impact of these variants on G5G8 structure and activity are largely unknown. We propose a classification system for ABCG5 ABCG8 mutants based on previously published systems for diseases caused by defects in ABC transporters. This system establishes a framework for the comprehensive analysis of disease-associated variants and their impact on G5G8 structure-function.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 5/history
- ATP Binding Cassette Transporter, Subfamily G, Member 5/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 8/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 8/history
- ATP Binding Cassette Transporter, Subfamily G, Member 8/metabolism
- Animals
- Cholesterol/metabolism
- Enterocytes/metabolism
- Enterocytes/pathology
- Hepatocytes/metabolism
- Hepatocytes/pathology
- History, 21st Century
- Humans
- Hypercholesterolemia/genetics
- Hypercholesterolemia/history
- Hypercholesterolemia/metabolism
- Hypercholesterolemia/pathology
- Intestinal Diseases/genetics
- Intestinal Diseases/history
- Intestinal Diseases/metabolism
- Intestinal Diseases/pathology
- Lipid Metabolism, Inborn Errors/genetics
- Lipid Metabolism, Inborn Errors/history
- Lipid Metabolism, Inborn Errors/metabolism
- Lipid Metabolism, Inborn Errors/pathology
- Lipoproteins/genetics
- Lipoproteins/history
- Lipoproteins/metabolism
- Mutation
- Phytosterols/adverse effects
- Phytosterols/genetics
- Phytosterols/history
- Phytosterols/metabolism
Collapse
Affiliation(s)
- Kori Williams
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; (K.W.); (A.S.)
| | - Allison Segard
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; (K.W.); (A.S.)
| | - Gregory A. Graf
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA; (K.W.); (A.S.)
- Saha Cardiovascular Research Center, Lexington, KY 40536, USA
- Barnstable Brown Diabetes and Obesity Center, Lexington, KY 40536, USA
| |
Collapse
|
8
|
Mammalian ABCG-transporters, sterols and lipids: To bind perchance to transport? Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158860. [PMID: 33309976 DOI: 10.1016/j.bbalip.2020.158860] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/15/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023]
Abstract
Members of the ATP binding cassette (ABC) transporter family perform a critical function in maintaining lipid homeostasis in cells as well as the transport of drugs. In this review, we provide an update on the ABCG-transporter subfamily member proteins, which include the homodimers ABCG1, ABCG2 and ABCG4 as well as the heterodimeric complex formed between ABCG5 and ABCG8. This review focusses on progress made in this field of research with respect to their function in health and disease and the recognised transporter substrates. We also provide an update on post-translational regulation, including by transporter substrates, and well as the involvement of microRNA as regulators of transporter expression and activity. In addition, we describe progress made in identifying structural elements that have been recognised as important for transport activity. We furthermore discuss the role of lipids such as cholesterol on the transport function of ABCG2, traditionally thought of as a drug transporter, and provide a model of potential cholesterol binding sites for ABCG2.
Collapse
|
9
|
Kroll T, Prescher M, Smits SHJ, Schmitt L. Structure and Function of Hepatobiliary ATP Binding Cassette Transporters. Chem Rev 2020; 121:5240-5288. [PMID: 33201677 DOI: 10.1021/acs.chemrev.0c00659] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The liver is beyond any doubt the most important metabolic organ of the human body. This function requires an intensive crosstalk within liver cellular structures, but also with other organs. Membrane transport proteins are therefore of upmost importance as they represent the sensors and mediators that shuttle signals from outside to the inside of liver cells and/or vice versa. In this review, we summarize the known literature of liver transport proteins with a clear emphasis on functional and structural information on ATP binding cassette (ABC) transporters, which are expressed in the human liver. These primary active membrane transporters form one of the largest families of membrane proteins. In the liver, they play an essential role in for example bile formation or xenobiotic export. Our review provides a state of the art and comprehensive summary of the current knowledge of hepatobiliary ABC transporters. Clearly, our knowledge has improved with a breath-taking speed over the last few years and will expand further. Thus, this review will provide the status quo and will lay the foundation for new and exciting avenues in liver membrane transporter research.
Collapse
Affiliation(s)
- Tim Kroll
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Martin Prescher
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.,Center for Structural Studies, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
10
|
Quintão ECR. Plasma Non-cholesterol Sterols as Markers of Cholesterol Synthesis and Intestinal Absorption: A Critical Review. Curr Pharm Des 2020; 26:5152-5162. [PMID: 32744960 DOI: 10.2174/1381612826666200730220230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/01/2020] [Indexed: 11/22/2022]
Abstract
Plasma concentrations of phytosterols and non-cholesterol sterol precursors of cholesterol synthesis have been used as markers of intestinal cholesterol absorption and synthesis in inherited and secondary dyslipidemias and in population-based investigations to evaluate the risk for cardiovascular disease, respectively. The method aims at replacing initial research procedures such as the use of stable isotopes associated with fecal steroid balance, which are limited by the high cost and tedious procedures. However, we show in this review that numerous results obtained with serum sterol measurements are contradictory. In this regard, the following points are discussed: 1) how phytosterols relate to atherosclerosis considering that defects in biliary output or in the transport of phytosterols from the intestinal mucosa back into the intestinal lumen provide increased content of phytosterols and other sterols in plasma and tissues, thus not allowing to conclude that their presence in arteries and atheromas represents the etiology of atherosclerosis; 2) serum non-cholesterol sterols as markers of cholesterol synthesis and absorption, such as cholestanol, present discrepant results, rendering them often inadequate to identify cases of coronary artery disease as well as alterations in the whole body cholesterol metabolism; 3) such methods of measurement of cholesterol metabolism are confounded by factors like diabetes mellitus, body weight and other pathologies including considerable hereditary hyperlipidemias biological variabilities that influence the efficiency of synthesis and intestinal absorption of cholesterol.
Collapse
|
11
|
Wang HH, Liu M, Portincasa P, Wang DQH. Recent Advances in the Critical Role of the Sterol Efflux Transporters ABCG5/G8 in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1276:105-136. [PMID: 32705597 PMCID: PMC8118135 DOI: 10.1007/978-981-15-6082-8_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease is characterized by lipid accumulation, inflammatory response, cell death, and fibrosis in the arterial wall and is the leading cause of morbidity and mortality worldwide. Cholesterol gallstone disease is caused by complex genetic and environmental factors and is one of the most prevalent and costly digestive diseases in the USA and Europe. Although sitosterolemia is a rare inherited lipid storage disease, its genetic studies led to identification of the sterol efflux transporters ABCG5/G8 that are located on chromosome 2p21 in humans and chromosome 17 in mice. Human and animal studies have clearly demonstrated that ABCG5/G8 play a critical role in regulating hepatic secretion and intestinal absorption of cholesterol and plant sterols. Sitosterolemia is caused by a mutation in either the ABCG5 or the ABCG8 gene alone, but not in both simultaneously. Polymorphisms in the ABCG5/G8 genes are associated with abnormal plasma cholesterol metabolism and may play a key role in the genetic determination of plasma cholesterol concentrations. Moreover, ABCG5/G8 is a new gallstone gene, LITH9. Gallstone-associated variants in ABCG5/G8 are involved in the pathogenesis of cholesterol gallstones in European, Asian, and South American populations. In this chapter, we summarize the latest advances in the critical role of the sterol efflux transporters ABCG5/G8 in regulating hepatic secretion of biliary cholesterol, intestinal absorption of cholesterol and plant sterols, the classical reverse cholesterol transport, and the newly established transintestinal cholesterol excretion, as well as in the pathogenesis and pathophysiology of ABCG5/G8-related metabolic diseases such as sitosterolemia, cardiovascular disease, and cholesterol gallstone disease.
Collapse
Affiliation(s)
- Helen H Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, Clinica Medica "A. Murri", University of Bari Medical School, Bari, Italy
| | - David Q-H Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
12
|
Genes Potentially Associated with Familial Hypercholesterolemia. Biomolecules 2019; 9:biom9120807. [PMID: 31795497 PMCID: PMC6995538 DOI: 10.3390/biom9120807] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/24/2019] [Accepted: 11/26/2019] [Indexed: 12/21/2022] Open
Abstract
This review addresses the contribution of some genes to the phenotype of familial hypercholesterolemia. At present, it is known that the pathogenesis of this disease involves not only a pathological variant of low-density lipoprotein receptor and its ligands (apolipoprotein B, proprotein convertase subtilisin/kexin type 9 or low-density lipoprotein receptor adaptor protein 1), but also lipids, including sphingolipids, fatty acids, and sterols. The genetic cause of familial hypercholesterolemia is unknown in 20%–40% of the cases. The genes STAP1 (signal transducing adaptor family member 1), CYP7A1 (cytochrome P450 family 7 subfamily A member 1), LIPA (lipase A, lysosomal acid type), ABCG5 (ATP binding cassette subfamily G member 5), ABCG8 (ATP binding cassette subfamily G member 8), and PNPLA5 (patatin like phospholipase domain containing 5), which can cause aberrations of lipid metabolism, are being evaluated as new targets for the diagnosis and personalized management of familial hypercholesterolemia.
Collapse
|
13
|
Walther B, Lett AM, Bordoni A, Tomás‐Cobos L, Nieto JA, Dupont D, Danesi F, Shahar DR, Echaniz A, Re R, Fernandez AS, Deglaire A, Gille D, Schmid A, Vergères G. GutSelf: Interindividual Variability in the Processing of Dietary Compounds by the Human Gastrointestinal Tract. Mol Nutr Food Res 2019; 63:e1900677. [PMID: 31483113 PMCID: PMC6900003 DOI: 10.1002/mnfr.201900677] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/25/2019] [Indexed: 12/19/2022]
Abstract
Nutritional research is currently entering the field of personalized nutrition, to a large extent driven by major technological breakthroughs in analytical sciences and biocomputing. An efficient launching of the personalized approach depends on the ability of researchers to comprehensively monitor and characterize interindividual variability in the activity of the human gastrointestinal tract. This information is currently not available in such a form. This review therefore aims at identifying and discussing published data, providing evidence on interindividual variability in the processing of the major nutrients, i.e., protein, fat, carbohydrates, vitamins, and minerals, along the gastrointestinal tract, including oral processing, intestinal digestion, and absorption. Although interindividual variability is not a primary endpoint of most studies identified, a significant number of publications provides a wealth of information on this topic for each category of nutrients. This knowledge remains fragmented, however, and understanding the clinical relevance of most of the interindividual responses to food ingestion described in this review remains unclear. In that regard, this review has identified a gap and sets the base for future research addressing the issue of the interindividual variability in the response of the human organism to the ingestion of foods.
Collapse
Affiliation(s)
- Barbara Walther
- AgroscopeFederal Department of Economic AffairsEducation and Research EAER3003BerneSwitzerland
| | - Aaron M. Lett
- Section for Nutrition ResearchDepartment of MedicineImperial College LondonLondonUK
| | - Alessandra Bordoni
- Department of Agri‐Food Sciences and TechnologiesUniversity of Bologna47521CesenaItaly
| | | | | | - Didier Dupont
- UMR 1253Science et Technologie du Lait et de l'ŒufINRA35000RennesFrance
| | - Francesca Danesi
- Department of Agri‐Food Sciences and TechnologiesUniversity of Bologna47521CesenaItaly
| | - Danit R. Shahar
- Department of Public HealthThe S. Daniel Abraham International Center for Health and NutritionBen‐Gurion University of the Negev84105Beer‐ShevaIsrael
| | - Ana Echaniz
- Cambridge Food Science LtdCB23 5ABCambridgeUK
| | - Roberta Re
- Cambridge Food Science LtdCB23 5ABCambridgeUK
| | | | - Amélie Deglaire
- UMR 1253Science et Technologie du Lait et de l'ŒufINRA35000RennesFrance
| | - Doreen Gille
- AgroscopeFederal Department of Economic AffairsEducation and Research EAER3003BerneSwitzerland
| | - Alexandra Schmid
- AgroscopeFederal Department of Economic AffairsEducation and Research EAER3003BerneSwitzerland
| | - Guy Vergères
- AgroscopeFederal Department of Economic AffairsEducation and Research EAER3003BerneSwitzerland
| |
Collapse
|
14
|
Borel P, Desmarchelier C. Bioavailability of Fat-Soluble Vitamins and Phytochemicals in Humans: Effects of Genetic Variation. Annu Rev Nutr 2019; 38:69-96. [PMID: 30130464 DOI: 10.1146/annurev-nutr-082117-051628] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent data have shown that interindividual variability in the bioavailability of vitamins A (β-carotene), D, and E, and carotenoids (lutein and lycopene), as well as that of phytosterols, is modulated by single nucleotide polymorphisms (SNPs). The identified SNPs are in or near genes involved in intestinal uptake or efflux of these compounds, as well as in genes involved in their metabolism and transport. The phenotypic effect of each SNP is usually low, but combinations of SNPs can explain a significant part of the variability. Nevertheless, results from these studies should be considered preliminary since they have not been validated in other cohorts. Guidelines for future studies are provided to ensure that sound associations are elucidated that can be used to build consolidated genetic scores that may allow recommended dietary allowances to be tailored to individuals or groups by taking into account the multiloci genotypic signature of people of different ethnic origin or even of individuals.
Collapse
Affiliation(s)
- Patrick Borel
- C2VN, INRA, INSERM, Aix Marseille Université, 13005 Marseille, France; ,
| | | |
Collapse
|
15
|
Dumolt JH, Rideout TC. The Lipid-lowering Effects and Associated Mechanisms of Dietary Phytosterol Supplementation. Curr Pharm Des 2019; 23:5077-5085. [PMID: 28745211 DOI: 10.2174/1381612823666170725142337] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 07/01/2017] [Accepted: 07/21/2017] [Indexed: 12/12/2022]
Abstract
Phytosterols (PS) are plant-based structural analogous of mammalian cholesterol that have been shown to lower blood cholesterol concentrations by ~10%, although inter-individual response to PS supplementation due to subject-specific metabolic and genetic factors is evident. Recent work further suggests that PS may act as effective triglyceride (TG)-lowering agents with maximal TG reductions observed in hypertriglyceridemic subjects. Although PS have been demonstrated to interfere with cholesterol and perhaps TG absorption within the intestine, they also have the capacity to modulate the expression of lipid regulatory genes through liver X receptor (LXR) activation. Identification of single-nucleotide polymorphisms (SNP) in key cholesterol and TG regulating genes, in particular adenosine triphosphate binding cassette G8 (ABCG8) and apolipoprotein E (apoE) have provided insight into the potential of utilizing genomic identifiers as an indicator of PS responsiveness. While PS supplementation is deemed safe, expanding research into the atherogenic potential of oxidized phytosterols (oxyphytosterols) has emerged with their identification in arterial lesions. This review will highlight the lipid-lowering utility and associated mechanisms of PS and discuss novel applications and future research priorities for PS pertaining to in utero PS exposure for long-term cardiovascular disease risk protection and combination therapies with lipidlowering drugs.
Collapse
Affiliation(s)
- Jerad H Dumolt
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, 14214, United States
| | - Todd C Rideout
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, 14214, United States
| |
Collapse
|
16
|
Owens DA, Tomkin GH. Commentary on High-density Lipoprotein Versus Low-density Lipoprotein Therapy and Cardiovascular Outcomes in Patients with Acute Coronary Syndromes by Nikolaos Papageorgiou et al. Curr Cardiol Rev 2018; 14:301-302. [PMID: 30324873 PMCID: PMC6300796 DOI: 10.2174/1573403x1404181008143841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- D A Owens
- Beacon Clinic and Trinity College Dublin, Ireland
| | - G H Tomkin
- Beacon Clinic and Trinity College Dublin, Ireland
| |
Collapse
|
17
|
Abdullah MMH, Eck PK, Couture P, Lamarche B, Jones PJH. The combination of single nucleotide polymorphisms rs6720173 (ABCG5), rs3808607 (CYP7A1), and rs760241 (DHCR7) is associated with differing serum cholesterol responses to dairy consumption. Appl Physiol Nutr Metab 2018; 43:1090-1093. [PMID: 29920211 DOI: 10.1139/apnm-2018-0085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Existing evidence on the influence of genetic architecture on serum cholesterol responsiveness to dietary interventions focuses on individual single nucleotide polymorphisms and single nutrients. We associated the combination of ABCG5 rs6720173-C, CYP7A1 rs3808607-TT, and DHCR7 rs760241-GG genotypes with lower low-density lipoprotein cholesterol concentrations relative to the combination of rs6720173-GG, rs3808607-G, and rs760241-A genotypes (-0.37 ± 0.12 (n = 9) vs. +0.38 ± 0.14 mmol/L (n = 7), p = 0.0016) following a blended dairy (3 servings/day for 4 weeks) intervention.
Collapse
Affiliation(s)
- Mohammad M H Abdullah
- a Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,b Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, MB R3T 6C5, Canada
| | - Peter K Eck
- a Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,b Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, MB R3T 6C5, Canada
| | - Patrick Couture
- c Institute of Nutrition and Functional Foods, Laval University, Québec City, QC G1V 0A6, Canada
| | - Benoît Lamarche
- c Institute of Nutrition and Functional Foods, Laval University, Québec City, QC G1V 0A6, Canada
| | - Peter J H Jones
- a Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,b Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, MB R3T 6C5, Canada
| |
Collapse
|
18
|
Fumeron F, Bard JM, Lecerf JM. Interindividual variability in the cholesterol-lowering effect of supplementation with plant sterols or stanols. Nutr Rev 2018; 75:134-145. [PMID: 28158760 DOI: 10.1093/nutrit/nuw059] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 10/21/2016] [Indexed: 01/29/2023] Open
Abstract
Low-density lipoprotein cholesterol (LDL-C) plays a causal role in atherosclerosis. One way to reduce LDL-C levels is to inhibit cholesterol absorption. Plant sterols and stanols compete with cholesterol for absorption in the intestine and induce an average decrease in LDL-C by 5% to 15% in a dose-dependent manner, but not in all individuals. This review focuses on the interindividual variability in response to dietary supplementation with plant sterols and stanols. Dietary plant sterols and stanols have no significant effects on LDL-C in substantial numbers of individuals. Higher responses, in absolute value and percentage of LDL-C, are observed in individuals with higher cholesterol absorption and a lower rate of cholesterol synthesis. Some data provide evidence of the influence of genetics on the response to plant sterols and stanols. Further studies in large populations are required to extend these conclusions about genetic influences.
Collapse
Affiliation(s)
- Frédéric Fumeron
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; UPMC Université Paris 6, Sorbonne Universités, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France. Université de Nantes (EA 2160), Institut Universitaire Mer et Littoral (IUML) FR3473, CNRS et CRNH (Centre de recherche en Nutrition Humaine), Nantes, France; Institut de Cancérologie de l'Ouest, Saint-Herblain, France. Service de Nutrition, Institut Pasteur de Lille, Lille, France
| | - Jean-Marie Bard
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; UPMC Université Paris 6, Sorbonne Universités, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France. Université de Nantes (EA 2160), Institut Universitaire Mer et Littoral (IUML) FR3473, CNRS et CRNH (Centre de recherche en Nutrition Humaine), Nantes, France; Institut de Cancérologie de l'Ouest, Saint-Herblain, France. Service de Nutrition, Institut Pasteur de Lille, Lille, France
| | - Jean-Michel Lecerf
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; UPMC Université Paris 6, Sorbonne Universités, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France. Université de Nantes (EA 2160), Institut Universitaire Mer et Littoral (IUML) FR3473, CNRS et CRNH (Centre de recherche en Nutrition Humaine), Nantes, France; Institut de Cancérologie de l'Ouest, Saint-Herblain, France. Service de Nutrition, Institut Pasteur de Lille, Lille, France
| |
Collapse
|
19
|
Lamiquiz-Moneo I, Baila-Rueda L, Bea AM, Mateo-Gallego R, Pérez-Calahorra S, Marco-Benedí V, Martín-Navarro A, Ros E, Cofán M, Rodríguez-Rey JC, Pocovi M, Cenarro A, Civeira F. ABCG5/G8 gene is associated with hypercholesterolemias without mutation in candidate genes and noncholesterol sterols. J Clin Lipidol 2017; 11:1432-1440.e4. [DOI: 10.1016/j.jacl.2017.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/13/2017] [Accepted: 09/22/2017] [Indexed: 10/18/2022]
|
20
|
BAR502, a dual FXR and GPBAR1 agonist, promotes browning of white adipose tissue and reverses liver steatosis and fibrosis. Sci Rep 2017; 7:42801. [PMID: 28202906 PMCID: PMC5311892 DOI: 10.1038/srep42801] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/13/2017] [Indexed: 12/31/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a highly prevalent chronic liver disease. Here, we have investigated whether BAR502, a non-bile acid, steroidal dual ligand for FXR and GPBAR1, reverses steato-hepatitis in mice fed a high fat diet (HFD) and fructose. After 9 week, mice on HFD gained ≈30% of b.w (P < 0.01 versus naïve) and were insulin resistant. These overweighting and insulin resistant mice were randomized to receive HFD or HFD in combination with BAR502. After 18 weeks, HFD mice developed NASH like features with severe steato-hepatitis and fibrosis, increased hepatic content of triacylglycerol and cholesterol and expression of SREPB1c, FAS, ApoC2, PPARα and γ, α-SMA, α1 collagen and MCP1 mRNAs. Treatment with BAR502 caused a ≈10% reduction of b.w., increased insulin sensitivity and circulating levels of HDL, while reduced steatosis, inflammatory and fibrosis scores and liver expression of SREPB1c, FAS, PPARγ, CD36 and CYP7A1 mRNA. BAR502 increased the expression of SHP and ABCG5 in the liver and SHP, FGF15 and GLP1 in intestine. BAR502 promoted the browning of epWAT and reduced liver fibrosis induced by CCl4. In summary, BAR502, a dual FXR and GPBAR1 agonist, protects against liver damage caused by HFD by promoting the browning of adipose tissue.
Collapse
|
21
|
Abdullah MM, Cyr A, Lépine MC, Eck PK, Couture P, Lamarche B, Jones PJ. Common Variants in Cholesterol Synthesis- and Transport-Related Genes Associate with Circulating Cholesterol Responses to Intakes of Conventional Dairy Products in Healthy Individuals. J Nutr 2016; 146:1008-16. [PMID: 27052530 DOI: 10.3945/jn.115.222208] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 02/26/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Dairy intake has been associated with varying impacts on circulating cholesterol concentrations across nutritional epidemiology and intervention studies, with findings attributed mainly to differences in the nature of dairy products consumed or study designs. The contribution of the genomic architecture to such observations has yet to be revealed. OBJECTIVE We assessed the impact of multiple common genetic variations in cholesterol-related genes on responses of serum cholesterol to the recommended amount of dairy product intake in Canada. METHODS In a multicenter, randomized crossover design, 101 normolipidemic adults (n = 29 men and 72 women), with a mean ± SD age of 41.7 ± 16.7 y and a body mass index (BMI, in kg/m(2)) of 25.9 ± 4.3 consumed 3 servings/d of dairy [375 mL 1% milk-fat (MF) milk, 175 g 1.5% MF yogurt, and 30 g of 34% MF cheese] or energy-matched control products (juice, cashews, and cookies) provided within a prudent background diet for 4 wk each, separated by a 4- to 8-wk washout period. Serum lipid variables were determined by standard enzymatic methods by using an autoanalyzer. Candidate single nucleotide polymorphisms were assessed by TaqMan genotyping assay. RESULTS The responsiveness of serum total cholesterol (TC) and LDL cholesterol to the dairy compared with the control diet was associated with individuals' genotypes. The cholesterol transport gene ATP-binding cassette subfamily G, member 5 (ABCG5) rs6720173-GG homozygotes had higher concentrations of TC (+0.18 mmol/L; P = 0.0118) and LDL cholesterol (+0.17 mmol/L; P = 0.0056) relative to C-allele carriers (-0.07 and -0.06 mmol/L, respectively). The bile acid synthesis gene cholesterol 7α-hydroxylase (CYP7A1) rs3808607-G-allele carriers had higher TC (+0.20 to +0.28 mmol/L; P = 0.0026) and LDL cholesterol (+0.19 mmol/L for GT genotype; P = 0.0260) relative to TT homozygotes (-0.11 and -0.03 mmol/L, respectively). In addition, the cholesterol synthesis gene 7-dehydrocholesterol reductase (DHCR7) rs760241-A-allele carriers had higher LDL cholesterol (+0.26 mmol/L; P = 0.0399) relative to GG homozygotes (+0.06 mmol/L). CONCLUSION Genetic variations in ABCG5, CYP7A1, and DHCR7 may contribute to differing responses of serum cholesterol to dairy intake among healthy adults. This trial was registered at clinicaltrials.gov as NCT01444326.
Collapse
Affiliation(s)
- Mohammad Mh Abdullah
- Department of Human Nutritional Sciences and Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada; and
| | - Audrey Cyr
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Marie-Claude Lépine
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Peter K Eck
- Department of Human Nutritional Sciences and Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada; and
| | - Patrick Couture
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Benoît Lamarche
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Peter Jh Jones
- Department of Human Nutritional Sciences and Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada; and
| |
Collapse
|
22
|
Gok O, Karaali ZE, Acar L, Kilic U, Ergen A. ABCG5 and ABCG8 gene polymorphisms in type 2 diabetes mellitus in the Turkish population. Can J Diabetes 2015; 39:405-10. [PMID: 26088706 DOI: 10.1016/j.jcjd.2015.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 03/23/2015] [Accepted: 04/09/2015] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The aim of the present study was to investigate the relationship between ABCG5 and ABCG8 gene polymorphisms and plasma lipid concentrations in Turkish patients with type 2 diabetes mellitus. METHODS Included in this study were 80 patients with type 2 diabetes and 73 healthy controls. Two selected single nucleotide polymorphisms in ABC transporter genes, ABCG5 (rs6720173) and ABCG8 (rs4148211), were genotyped by using the polymerase chain reaction-restriction fragment length polymorphism technique. RESULTS The rate of having the ABCG8 AA genotype (p=0.001) was significantly higher in the patients than in the control subjects. Correspondingly, the rates of having the AG genotype (p=0.001) and the G allele (p=0.001) were significantly lower in the patients than in controls. Upon comparing the groups regarding ABCG5, the frequencies of occurrence of the GG genotype (p=0.031) and G allele (p=0.003) were considerably higher in patients than in control subjects. In the patients, the rates of having the CC genotype (p=0.003) and the C allele (p=0.031) were also significantly lower than those in control subjects. There was no significant difference between G5 and G8 polymorphism and lipid levels in the study groups. The ABCG8 AA genotype carriers had higher triglyceride (p=0.045) and very low-density-cholesterol (p=0.045) levels than the ABCG8 GG genotype carriers in all study populations. CONCLUSIONS These results indicate that the AA genotype for ABCG8 and the GG genotype and G allele for ABCG5 are risk factors for diabetes. This study reveals the first data concerning the ABCG5 and ABCG8 gene polymorphisms in Turkish patients with diabetes.
Collapse
Affiliation(s)
- Ozlem Gok
- Department of Molecular Medicine, Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey; Department of Medical Biology and Regenerative and Restorative Medicine Research Center (REMER), Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Zeynep Ermis Karaali
- Department of Internal Medicine, Haseki Training and Research Hospital, Istanbul, Turkey
| | - Leyla Acar
- Department of Molecular Medicine, Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ulkan Kilic
- Department of Medical Biology and Regenerative and Restorative Medicine Research Center (REMER), Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Arzu Ergen
- Department of Molecular Medicine, Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
23
|
Nicolas A, Fatima S, Lamri A, Bellili-Muñoz N, Halimi JM, Saulnier PJ, Hadjadj S, Velho G, Marre M, Roussel R, Fumeron F. ABCG8 polymorphisms and renal disease in type 2 diabetic patients. Metabolism 2015; 64:713-9. [PMID: 25804128 DOI: 10.1016/j.metabol.2015.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/12/2015] [Accepted: 03/09/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIM Sterols, bile acids and their receptors have been involved in diabetic nephropathy. The ATP-binding cassette transporters G5 and G8 (ABCG5 and ABCG8) play an important role in intestinal sterol absorption and bile acid secretion. The aim of our study was to assess the associations between two ABCG8 coding polymorphisms, T400K and D19H, and the incidence of renal events in type 2 diabetic subjects. METHODS Participants were the 3137 French type 2 diabetic subjects with micro- or macro-albuminuria from the genetic substudy of the DIABHYCAR trial. The mean duration of follow-up was 4years. Renal events were defined as a doubling of serum creatinine concentration or end-stage renal disease at follow-up. We then used a second population (DIAB2NEPHROGENE) of 2140 type 2 diabetic patients for the purpose of validation. RESULTS In DIABHYCAR, the 400K allele was significantly associated with a higher risk of incident renal events in a multiple adjusted model (HR: 1.75 [95% CI 1.20-2.56], P=0.003). This association was still significant after further adjustments for baseline values of estimated glomerular filtration rate and urinary albumin excretion. In the validation population, the 400K allele was associated with the prevalence of end-stage renal disease (OR=2.01 [95% CI 1.15-3.54], P=0.015). No significant association was found between the D19H polymorphism and the risk of diabetic nephropathy. CONCLUSIONS A polymorphism of the sterol transporter ABCG8 has been associated with the prevalence of end-stage renal disease and with the incidence of new renal events in type 2 diabetic patients.
Collapse
Affiliation(s)
- Anthony Nicolas
- INSERM, Centre de Recherche des Cordeliers, Research Unit 1138, Paris, France; Univ Pierre et Marie Curie, Paris, France
| | - Sehrish Fatima
- INSERM, Centre de Recherche des Cordeliers, Research Unit 1138, Paris, France
| | - Amel Lamri
- INSERM, Centre de Recherche des Cordeliers, Research Unit 1138, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Naima Bellili-Muñoz
- INSERM, Centre de Recherche des Cordeliers, Research Unit 1138, Paris, France
| | - Jean-Michel Halimi
- University Hospital of Tours, Diabetology and Nephrology Department, Tours, France
| | - Pierre-Jean Saulnier
- Université de Poitiers, UFR Médecine Pharmacie, CIC1402, Poitiers, France; CHU de Poitiers, Service Endocrinologie, Diabétologie, Pole DUNE & Centre d'investigation Clinique, Poitiers, France; INSERM, CIC1402, Poitiers, France
| | - Samy Hadjadj
- Université de Poitiers, UFR Médecine Pharmacie, CIC1402, Poitiers, France; CHU de Poitiers, Service Endocrinologie, Diabétologie, Pole DUNE & Centre d'investigation Clinique, Poitiers, France; INSERM, CIC1402, Poitiers, France
| | - Gilberto Velho
- INSERM, Centre de Recherche des Cordeliers, Research Unit 1138, Paris, France
| | - Michel Marre
- INSERM, Centre de Recherche des Cordeliers, Research Unit 1138, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, Paris, France; Assistance Publique Hôpitaux de Paris, Bichat Hospital, Department of Diabetology, Endocrinology and Nutrition, Paris, France
| | - Ronan Roussel
- INSERM, Centre de Recherche des Cordeliers, Research Unit 1138, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, Paris, France; Assistance Publique Hôpitaux de Paris, Bichat Hospital, Department of Diabetology, Endocrinology and Nutrition, Paris, France
| | - Frédéric Fumeron
- INSERM, Centre de Recherche des Cordeliers, Research Unit 1138, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
24
|
Potential risks associated with increased plasma plant-sterol levels. DIABETES & METABOLISM 2014; 41:76-81. [PMID: 25497968 DOI: 10.1016/j.diabet.2014.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/05/2014] [Accepted: 11/07/2014] [Indexed: 12/30/2022]
Abstract
The consumption of plant sterols is associated with a decrease in LDL cholesterol. However, it is also associated with an increase in plasma plant-sterol (sitosterol, campesterol) levels that may be detrimental. Indeed, the genetic disease sitosterolaemia, which is characterized by elevated plasma levels of plant sterol, is associated with premature atherosclerosis. Yet, although plasma plant-sterol levels are recognized markers of cholesterol absorption, the relationship between such levels and atherosclerosis is not clear. Several studies have analysed the association between plasma plant-sterol levels and cardiovascular disease (CVD), but have found conflicting results. Although the largest prospective trials and genome-wide association studies suggest that high plasma levels of plant sterols are associated with increased CV risk, other studies have reported no such association and even an inverse relationship. Thus, the available data cannot confirm an increased CV risk with plant sterols, but cannot rule it out either. Only a prospective interventional trial to analyse the effects of plant-sterol-enriched food on the occurrence of CV events can exclude a potential CV risk linked with their consumption.
Collapse
|
25
|
Granado-Lorencio F, de Las Heras L, Millán CS, Garcia-López FJ, Blanco-Navarro I, Pérez-Sacristán B, Domínguez G. β-Cryptoxanthin modulates the response to phytosterols in post-menopausal women carrying NPC1L1 L272L and ABCG8 A632 V polymorphisms: an exploratory study. GENES AND NUTRITION 2014; 9:428. [PMID: 25163590 DOI: 10.1007/s12263-014-0428-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/11/2014] [Indexed: 01/26/2023]
Abstract
Phytosterol (PS) intake may be used for hypercholesterolaemia in some groups although the presence of non-responders is well known. Carotenoids and PS/cholesterol may compete for the same transporters during absorption. As part of a randomized, double-blind, crossover, multiple-dose supplementation study with β-cryptoxanthin (β-Cx) and PS, single and combined, polymorphisms of ABCG8 (A632V) and NCPL1 (L272L) were determined in 19 post-menopausal women. Subjects carrying CC polymorphism for NCP1L1 (L272L) showed a net increase in total cholesterol and LDL after PS intake but, interestingly, displayed a decrease in both lipid fractions after consuming PS plus β-Cx. For the ABCG8 (A632V) gene, CT/TT carriers consuming PS also displayed an increase in total cholesterol and LDL, but this increment was much lower after the intake of PS plus β-Cx. Additionally, in CC carriers for ABCG8 (A632V), a greater decrease in total cholesterol and LDL was found after the intake of PS plus β-Cx compared to that observed after PS alone. Overall, our results suggest that β-Cx improves the response to PS in individuals carrying specific genetic polymorphisms (i.e. non-responders), opening the possibility to modulate the response to PS by food technology. (ClinicalTrials.gov NCT01074723).
Collapse
Affiliation(s)
- F Granado-Lorencio
- Unidad de Vitaminas, Hospital Universitario Puerta de Hierro-Majadahonda, 28222, Madrid, Spain,
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW To provide an update on recent advances made in our mechanistic and pathophysiological understanding of the rare human disease Sitosterolemia, the role of ABCG5/ABCG8 in sterol trafficking and how newer data implicate a more wider role in the body. RECENT FINDINGS Sitosterolemia is caused by a genetic defect of sterolins (ABCG5/ABCG8) mapped to the STSL locus. Polymorphic variations in STSL have been linked to lipid levels and gallstone disease in whites. Newer studies now link this locus to a more diverse ethnic group for gallstone disease, susceptibility to biliary cancer, and show variants that alter sterolin function. Intriguingly, carriers of a mutant allele seem to show protection against carotid wall disease. Although the 'promoter' region of the STSL is minimal, regulatory regions responsive to liver X receptor have remained elusive, but no longer; two intronic regions in ABCG8 have now been identified. Xenosterol accumulation leads to loss of abdominal fat, infertility, and premature death. Xenosterol accumulation in mouse platelet membranes leads to platelet hyperactivation, increased microparticle formation, and reduced αIIbβ3 surface expression. In humans, phytosterols may promote liver injury in parenteral nutrition-associated liver disease. SUMMARY Progress in understanding sterolin function is beginning to show that xenosterols can be toxic and are involved on pathogenesis, and the role of ABCG5/ABCG8 may extend into other metabolic processes by altering intracellular sterol metabolism.
Collapse
Affiliation(s)
- Shailendra B Patel
- aClement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin, USA bDivision of Endocrinology, Metabolism and Clinical Nutrition, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
27
|
Baila-Rueda L, Mateo-Gallego R, Lamiquiz-Moneo I, Cenarro A, Civeira F. Severe hypercholesterolemia and phytosterolemia with extensive xanthomas in primary biliary cirrhosis: role of biliary excretion on sterol homeostasis. J Clin Lipidol 2014; 8:520-4. [PMID: 25234565 DOI: 10.1016/j.jacl.2014.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/07/2014] [Accepted: 05/18/2014] [Indexed: 11/26/2022]
Abstract
Primary biliary cirrhosis (PBC) is an autoimmune, chronic, cholestatic liver disease that affects primarily women. PBC is commonly associated with hypercholesterolemia that has been associated with cholestasis. We report an exceptionally high blood cholesterol and phytosterols with just mild cholestasis indicating a selective defect in sterol biliary secretion in a patient with PBC.
Collapse
Affiliation(s)
- Lucia Baila-Rueda
- Unidad de Lípidos and Laboratorio de Investigación Molecular, Servicios de Medicina Interna and Endocrinología, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Rocio Mateo-Gallego
- Unidad de Lípidos and Laboratorio de Investigación Molecular, Servicios de Medicina Interna and Endocrinología, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Itziar Lamiquiz-Moneo
- Unidad de Lípidos and Laboratorio de Investigación Molecular, Servicios de Medicina Interna and Endocrinología, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Ana Cenarro
- Unidad de Lípidos and Laboratorio de Investigación Molecular, Servicios de Medicina Interna and Endocrinología, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Fernando Civeira
- Unidad de Lípidos and Laboratorio de Investigación Molecular, Servicios de Medicina Interna and Endocrinología, Hospital Universitario Miguel Servet, Zaragoza, Spain.
| |
Collapse
|
28
|
Wu G, Li GB, Yao M, Zhang DQ, Dai B, Ju CJ, Han M. ABCG5/8 variants are associated with susceptibility to coronary heart disease. Mol Med Rep 2014; 9:2512-20. [PMID: 24691589 DOI: 10.3892/mmr.2014.2098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 02/13/2014] [Indexed: 11/06/2022] Open
Abstract
ATP-binding cassette sub-family G member 5 (ABCG5) and ABCG8 are members of an ATP-binding cassette transporter superfamily. ABCG5 and ABCG8 variants affected serum levels of cholesterol and were considered as risk factors for coronary heart disease (CHD). The present control study analyzed ABCG5 and ABCG8 variants in a population for association with the risk of CHD. A total of 417 CHD patients and 267 controls were recruited for genotyping of four single nucleotide polymorphisms (SNPs; i.e. i7892T>C in ABCG5 and Tyr54CysA>G, Thr400LysC>A and 5U145A>C in ABCG8) using quantitative PCR high-resolution melting (qPCR-HRM). Serum lipid levels were measured using an automatic biochemical analyzer. The association of ABCG5/8 variants with lipid levels was analyzed using a Chi-square test. The impact of candidate ABCG5/8 SNPs on CHD was evaluated in a dominant genetic model with stepwise multiple regression analysis. Subgroup analyses were performed with regard to these SNPs, tobacco smoking status, alcohol consumption and gender. Genotypic and allelic frequencies of ABCG8 Thr400LysC>A were significantly different (P<0.05) between CHD patients and controls. CC homozygotes of the ABCG8 Thr400LysC>A SNP had greater triglyceride levels than CA/AA carriers with CHD. Logistic analysis revealed CHD risk was significantly higher in CC homozygotes of ABCG8 Thr400LysC>A than in carriers of the A allele (adjusted P=0.048; OR=2.034; 95% CI=0.983-4.207). Furthermore, there was a significant gene-tobacco smoking interaction. CC homozygotes of ABCG8 Thr400LysC>A SNP had significantly higher triglyceride concentrations (P=0.012) and an increased risk of CHD than tobacco smoking carriers of the A allele. The data from the current study suggested that ABCG8 Thr400LysC>A SNP genetic variants modulated plasma triglyceride levels and thereby affected CHD risk in the population studied. The genetic variant of ABCG8 also contributed to CHD risk through interaction with tobacco smoking.
Collapse
Affiliation(s)
- Ge Wu
- Department of Pharmacy, Office of Drug Clinical Trial Institution, The Fourth Hospital of Jilin University, Changchun, Jilin 130011, P.R. China
| | - Gui-Bin Li
- Department of Orthopedics, The Fourth Hospital of Jilin University, Changchun, Jilin 130011, P.R. China
| | - Ming Yao
- Department of Pharmacy, Office of Drug Clinical Trial Institution, The Fourth Hospital of Jilin University, Changchun, Jilin 130011, P.R. China
| | - Dong-Qing Zhang
- Department of Cardiology, The Fourth Hospital of Jilin University, Changchun, Jilin 130011, P.R. China
| | - Bin Dai
- Department of Orthopedics, The Fourth Hospital of Jilin University, Changchun, Jilin 130011, P.R. China
| | - Chuan-Jing Ju
- Department of Cardiology, The Fourth Hospital of Jilin University, Changchun, Jilin 130011, P.R. China
| | - Ming Han
- Department of Pharmacy, Office of Drug Clinical Trial Institution, The Fourth Hospital of Jilin University, Changchun, Jilin 130011, P.R. China
| |
Collapse
|
29
|
HIRSCHFIELD GIDEONM, CHAPMAN ROGERW, KARLSEN TOMH, LAMMERT FRANK, LAZARIDIS KONSTANTINOSN, MASON ANDREWL. The genetics of complex cholestatic disorders. Gastroenterology 2013; 144:1357-74. [PMID: 23583734 PMCID: PMC3705954 DOI: 10.1053/j.gastro.2013.03.053] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/24/2013] [Accepted: 03/27/2013] [Indexed: 02/07/2023]
Abstract
Cholestatic liver diseases are caused by a range of hepatobiliary insults and involve complex interactions among environmental and genetic factors. Little is known about the pathogenic mechanisms of specific cholestatic diseases, which has limited our ability to manage patients with these disorders. However, recent genome-wide studies have provided insight into the pathogenesis of gallstones, primary biliary cirrhosis, and primary sclerosing cholangitis. A lithogenic variant in the gene that encodes the hepatobiliary transporter ABCG8 has been identified as a risk factor for gallstone disease; this variant has been associated with altered cholesterol excretion and metabolism. Other variants of genes encoding transporters that affect the composition of bile have been associated with cholestasis, namely ABCB11, which encodes the bile salt export pump, and ABCB4, which encodes hepatocanalicular phosphatidylcholine floppase. In contrast, studies have associated primary biliary cirrhosis and primary sclerosing cholangitis with genes encoding major histocompatibility complex proteins and identified loci associated with microbial sensing and immune regulatory pathways outside this region, such as genes encoding IL12, STAT4, IRF5, IL2 and its receptor (IL2R), CD28, and CD80. These discoveries have raised interest in the development of reagents that target these gene products. We review recent findings from genetic studies of patients with cholestatic liver disease. Future characterization of genetic variants in animal models, stratification of risk alleles by clinical course, and identification of interacting environmental factors will increase our understanding of these complex cholestatic diseases.
Collapse
Affiliation(s)
- GIDEON M. HIRSCHFIELD
- Centre for Liver Research, National Institute for Health Research Biomedical Research Unit, University of Birmingham, Birmingham, England
| | - ROGER W. CHAPMAN
- Department of Gastroenterology, John Radcliffe Hospital, Oxford, England
| | - TOM H. KARLSEN
- Research Institute for Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - FRANK LAMMERT
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany
| | - KONSTANTINOS N. LAZARIDIS
- Center for Basic Research in Digestive Diseases, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - ANDREW L. MASON
- Centre of Excellence in Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Plant sterols as ingredients to functional foods are recommended for lowering LDL cholesterol. However, there is an ongoing discussion whether the use of plant sterols is safe. RECENT FINDINGS Genetic analyses showed that common variants of the ATP binding cassette transporter G8 (ABCG8) and ABO genes are associated with elevated circulating plant sterols and higher risk for cardiovascular disease. However, these data do not prove a causal role for plant sterols in atherosclerosis because the risk alleles in ABCG8 and ABO are also related to elevated total and LDL cholesterol levels. The ABO locus exhibits still further pleiotropy. Moreover, analyses in the general population indicated that moderately elevated circulating plant sterols are not correlated with present or future vascular disease. In agreement, novel studies using food frequency questionnaires, studies in experimental animals, and dietary intervention studies support that ingestion of plant sterols may be beneficial to cardiovascular health. SUMMARY Taken together, current evidence supports the recommendations for the use of plant sterols as LDL cholesterol-lowering agents. Nevertheless, a prospective, randomized, controlled, double-blinded, intervention trial conclusively showing that plant sterol supplementation will prevent hard cardiovascular endpoints is not available to date.
Collapse
Affiliation(s)
- Günther Silbernagel
- Division of Endocrinology, Diabetology, Nephrology, Vascular Disease, and Clinical Chemistry, Department of Internal Medicine, Eberhard-Karls-University Tübingen, Tübingen, Germany.
| | | | | | | |
Collapse
|
31
|
Jakulj L, Mohammed H, van Dijk TH, Boer T, Turner S, Groen AK, Vissers MN, Stroes ESG. Plasma plant sterols serve as poor markers of cholesterol absorption in man. J Lipid Res 2012. [PMID: 23178226 DOI: 10.1194/jlr.p031021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The validation of the use of plasma plant sterols as a marker of cholesterol absorption is frail. Nevertheless, plant sterol concentrations are routinely used to describe treatment-induced changes in cholesterol absorption. Their use has also been advocated as a clinical tool to tailor cholesterol-lowering therapy. Prior to wider implementation, however, the validity of plant sterols as absorption markers needs solid evaluation. Therefore, we compared plasma plant sterol concentrations to gold-standard stable isotope-determined cholesterol absorption. Plasma campesterol/TC concentrations (camp/TC) were measured in a population of 175 mildly hypercholesterolemic individuals (age: 59.7 ± 5.6 years; BMI: 25.5 ± 2.9 kg/m(2); LDL-C: 4.01 ± 0.56 mmol/l). We compared cholesterol absorption according to the plasma dual-isotope method in subjects with the highest camp/TC concentrations (N = 41, camp/TC: 2.14 ± 0.68 μg/mg) and the lowest camp/TC concentrations (N = 39, camp/TC: 0.97 ± 0.22 μg/mg). Fractional cholesterol absorption did not differ between the groups (24 ± 12% versus 25 ± 16%, P = 0.60), nor was it associated with plasma camp/TC concentrations in the total population of 80 individuals (β = 0.13; P = 0.30, adjusted for BMI and plasma triglycerides). Our findings do not support a relation between plasma plant sterol concentrations and true cholesterol absorption and, therefore, do not favor the use of these sterols as markers of cholesterol absorption. This bears direct consequences for the interpretation of earlier studies, as well as for future studies targeting intestinal regulation of cholesterol metabolism.
Collapse
Affiliation(s)
- Lily Jakulj
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Intestinal lipid transport plays a central role in fat homeostasis. Here we review the pathways regulating intestinal absorption and delivery of dietary and biliary lipid substrates, principally long-chain fatty acid, cholesterol, and other sterols. We discuss the regulation and functions of CD36 in fatty acid absorption, NPC1L1 in cholesterol absorption, as well as other lipid transporters including FATP4 and SRB1. We discuss the pathways of intestinal sterol efflux via ABCG5/G8 and ABCA1 as well as the role of the small intestine in high-density lipoprotein (HDL) biogenesis and reverse cholesterol transport. We review the pathways and genetic regulation of chylomicron assembly, the role of dominant restriction points such as microsomal triglyceride transfer protein and apolipoprotein B, and the role of CD36, l-FABP, and other proteins in formation of the prechylomicron complex. We will summarize current concepts of regulated lipoprotein secretion (including HDL and chylomicron pathways) and include lessons learned from families with genetic mutations in dominant pathways (i.e., abetalipoproteinemia, chylomicron retention disease, and familial hypobetalipoproteinemia). Finally, we will provide an integrative view of intestinal lipid homeostasis through recent findings on the role of lipid flux and fatty acid signaling via diverse receptor pathways in regulating absorption and production of satiety factors.
Collapse
Affiliation(s)
- Nada A Abumrad
- Center for Human Nutrition and Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
33
|
Li X, Schulte P, Godin DV, Cheng KM. Differential mRNA expression of seven genes involved in cholesterol metabolism and transport in the liver of atherosclerosis-susceptible and -resistant Japanese quail strains. Genet Sel Evol 2012; 44:20. [PMID: 22682430 PMCID: PMC3430562 DOI: 10.1186/1297-9686-44-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 06/08/2012] [Indexed: 11/28/2022] Open
Abstract
Background Two atherosclerosis-susceptible and -resistant Japanese quail (Coturnix japonica) strains obtained by divergent selection are commonly used as models to study atherosclerosis, but no genetic characterization of their phenotypic differences has been reported so far. Our objective was to examine possible differences in the expression of genes involved in cholesterol metabolism and transport in the liver between these two strains and to evaluate the value of this model to analyze the gene system affecting cholesterol metabolism and transport. Methods A factorial study with both strains (atherosclerosis-susceptible versus atherosclerosis-resistant) and two diets (control versus cholesterol) was carried out. The mRNA concentrations of four genes involved in cholesterol biosynthesis (HMGCR, FDFT1, SQLE and DHCR7) and three genes in cholesterol transport (ABCG5, ABCG8 and APOA1) were assayed using real-time quantitative PCR. Plasma lipids were also assayed. Results Expression of ABCG5 (control diet) and ABCG8 (regardless of dietary treatment) and expression of HMGCR, FDFT1 and SQLE (regardless of dietary treatment) were significantly higher in the atherosclerosis-resistant than in the atherosclerosis-susceptible strain. Plasma triglyceride and LDL levels, and LDL/HDL ratio were significantly higher in the atherosclerosis-susceptible than in the atherosclerosis-resistant strain fed the cholesterol diet. In the atherosclerosis-susceptible strain, ABCG5 expression regressed significantly and positively on plasma LDL level, whereas DHCR7 and SQLE expression regressed significantly and negatively on plasma triglyceride level. Conclusions Our results provide support for the hypothesis that the atherosclerosis-resistant strain metabolizes and excretes cholesterol faster than the atherosclerosis-susceptible strain. We have also demonstrated that these quail strains are a useful model to study cholesterol metabolism and transport in relation with atherosclerosis.
Collapse
Affiliation(s)
- Xinrui Li
- Avian Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
34
|
Miao L, Yin RX, Hu XJ, Wu DF, Cao XL, Li Q, Yan TT, Aung LHH, Wu JZ, Lin WX. Association of rs2072183 SNP and serum lipid levels in the Mulao and Han populations. Lipids Health Dis 2012; 11:61. [PMID: 22646906 PMCID: PMC3422998 DOI: 10.1186/1476-511x-11-61] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 05/30/2012] [Indexed: 01/13/2023] Open
Abstract
Background Niemann-pick C1-like 1 (NPC1L1) is a key protein for intestinal cholesterol transportation. Common single nucleotide polymorphisms (SNPs) in the NPC1L1 gene have been associated with cholesterol absorption and serum lipid levels. The present study was undertaken to explore the possible association of NPC1L1 rs2072183 1735 C > G SNP and several environmental factors with serum lipid levels in the Mulao and Han populations. Methods Genotyping of the rs2072183 SNP was performed in 688 subjects of Mulao and 738 participants of Han Chinese. The interactions between NPC1L1 1735 C > G polymorphism and several environmental factors on serum lipid phenotypes were tested using the factorial design covariance analysis after controlling for potential confounders. Results The frequency of G allele was lower in Mulao than in Han (29.72% vs. 37.26%, P < 0.001). The frequency of CC, CG and GG genotypes was 49.85%, 40.84% and 9.31% in Mulao, and 39.30%, 46.88% and 13.82% in Han (P < 0.001); respectively. The levels of low-density lipoprotein cholesterol (LDL-C), apolipoprotein (Apo) B and the ratio of ApoAI/ApoB in Han but not in Mulao were different among the three genotypes (P < 0.05 for all), the subjects with GG and CG genotypes had higher LDL-C, ApoB levels and lower ApoAI/ApoB ratio than the subjects with CC genotype. Subgroup analysis showed that the G allele carriers in Han had higher total cholesterol (TC), LDL-C and ApoB levels in males (P < 0.05) and lower ApoAI/ApoB ratio in both sexes (P < 0.05) than the G allele noncarriers. The G allele carriers in Mulao had higher TC and LDL-C levels in males (P < 0.05) and lower high-density lipoprotein cholesterol (HDL-C) levels in both sexes (P < 0.05) than the G allele noncarriers. Serum TC, LDL-C, ApoB levels and ApoAI/ApoB ratio were correlated with genotypes in Han males (P < 0.05) but not in females. Serum lipid parameters were also correlated with several environmental factors. The genotypes of rs2072183 SNP were interacted with gender or cigarette smoking to influence serum TC and HDL-C levels in Mulao, whereas the genotypes of rs2072183 SNP were interacted with several environmental factors to influence all seven lipid traits in Han (P < 0.05-0.01). Conclusions The present study suggests that the rs2072183 SNP in NPC1L1 gene and its association with serum lipid profiles are different between the Mulao and Han populations. The difference in serum lipid profiles between the two ethnic groups might partly result from different rs2072183 SNP or NPC1L1 gene-environmental interactions.
Collapse
Affiliation(s)
- Lin Miao
- Department of Cardiology, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
ATP-binding cassette transporter G5 and G8 polymorphisms and several environmental factors with serum lipid levels. PLoS One 2012; 7:e37972. [PMID: 22655090 PMCID: PMC3360029 DOI: 10.1371/journal.pone.0037972] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 04/27/2012] [Indexed: 02/04/2023] Open
Abstract
Background The association of ATP-binding cassette (ABC) transporter single nucleotide polymorphisms (SNPs) and serum lipid profiles is inconsistent. The present study was undertaken to detect the association of ABCG5/G8 SNPs and several environmental factors with serum lipid levels. Methodology/Principal Findings Genotyping of the ABCG5 (rs4131229 and rs6720173) and ABCG8 (rs3806471 and rs4148211) SNPs was performed in 719 unrelated subjects of Mulao nationality and 782 participants of Han nationality. There were no differences in the genotypic and allelic frequencies of four SNPs between the two ethnic groups besides the genotypic frequencies of rs4131229 SNP in Han. The levels of triglyceride (TG), apolipoprotein (Apo) A1, and ApoA1/ApoB ratio (rs4131229); low-density lipoprotein cholesterol (LDL-C) and ApoB (rs6720173); high-density lipoprotein cholesterol (HDL-C), ApoA1, ApoB, and ApoA1/ApoB ratio (rs3806471); and HDL-C, ApoA1, and ApoA1/ApoB ratio (rs4148211) in Han were different among their genotypes (P<0.05–0.001). The levels of LDL-C (rs6720173) and ApoA1 (rs3806471) in Mulao were also different among their genotypes (P<0.05 for each). The levels of TC, TG, HDL-C, ApoA1, and ApoA1/ApoB ratio (rs4131229); LDL-C and ApoB (rs6720173); HDL-C, ApoA1, and ApoA1/ApoB ratio (rs3806471); and TG, HDL-C, ApoA1, and ApoA1/ApoB ratio (rs4148211) in Han males; and ApoA1/ApoB ratio (rs4131229); LDL-C, ApoB, and ApoA1/ApoB ratio (rs3806471); HDL-C, ApoA1, and ApoA1/ApoB ratio (rs4148211) in Han females were different between the genotypes (P<0.05–0.001). The levels of LDL-C in Mulao females were also different between GG and GC/CC genotypes of rs6720173 (P<0.05). The correlation between serum lipid parameters and genotypes of four SNPs was observed in Han, especially in Han males. Serum lipid parameters were also correlated with several environmental factors. Conclusions The associations of four ABCG5/G8 SNPs and serum lipid levels are different between the Mulao and Han populations, or between males and females, suggesting that there may be a racial/ethnic- and/or sex-specific association between ABCG5/G8 SNPs and some serum lipid parameters.
Collapse
|
36
|
Stieger B, Meier PJ. Pharmacogenetics of drug transporters in the enterohepatic circulation. Pharmacogenomics 2012; 12:611-31. [PMID: 21619426 DOI: 10.2217/pgs.11.53] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This article summarizes the impact of the pharmacogenetics of drug transporters expressed in the enterohepatic circulation on the pharmacokinetics and pharmacodynamics of drugs. The role of pharmacogenetics in the function of drug transporter proteins in vitro is now well established and evidence is rapidly accumulating from in vivo pharmacokinetic studies, which suggests that genetic variants of drug transporter proteins can translate into clinically relevant phenotypes. However, a large amount of conflicting information on the clinical relevance of drug transporter proteins has so far precluded the emergence of a clear picture regarding the role of drug transporter pharmacogenetics in medical practice. This is very well exemplified by the case of P-glycoprotein (MDR1, ABCB1). The challenge is now to develop pharmacogenetic models with sufficient predictive power to allow for translation into drug therapy. This will require a combination of pharmacogenetics of drug transporters, drug metabolism and pharmacodynamics of the respective drugs.
Collapse
Affiliation(s)
- Bruno Stieger
- Division of Clinical Pharmacology & Toxicology, University Hospital, 8091 Zurich, Switzerland
| | | |
Collapse
|
37
|
Silverton L, Dean M, Moitra K. Variation and evolution of the ABC transporter genes ABCB1, ABCC1, ABCG2, ABCG5 and ABCG8: implication for pharmacogenetics and disease. ACTA ACUST UNITED AC 2011; 26:169-79. [PMID: 22098604 DOI: 10.1515/dmdi.2011.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The ATP-binding cassette (ABC) transporter genes are ubiquitous in the genomes of all vertebrates. Some of these transporters play a key role in xenobiotic defense and are endowed with the capacity to efflux harmful toxic substances. A major role in the evolution of the vertebrate ABC genes is played by gene duplication. Multiple gene duplication and deletion events have been identified in ABC genes, resulting in either gene birth or gene death indicating that the process of gene evolution is still ongoing in this group of transporters. Additionally, polymorphisms in these genes are linked to variations in expression, function, drug disposition and drug response. Single nucleotide polymorphisms in the ABC genes may be considered as markers of individual risk for adverse drug reactions or susceptibility to complex diseases as they can uniquely influence the quality and quantity of gene product. As the ABC genes continue to evolve, globalization will yield additional migration and racial admixtures that will have far reaching implications for the pharmacogenetics of this unique family of transporters in the context of human health.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP Binding Cassette Transporter, Subfamily G, Member 5
- ATP Binding Cassette Transporter, Subfamily G, Member 8
- ATP-Binding Cassette Transporters/genetics
- Animals
- Evolution, Molecular
- Genetic Variation
- Humans
- Lipoproteins/genetics
- Multidrug Resistance-Associated Proteins/genetics
- Neoplasm Proteins/genetics
- Pharmacogenetics
Collapse
Affiliation(s)
- Latoya Silverton
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | | |
Collapse
|
38
|
Sivakumaran S, Agakov F, Theodoratou E, Prendergast JG, Zgaga L, Manolio T, Rudan I, McKeigue P, Wilson JF, Campbell H. Abundant pleiotropy in human complex diseases and traits. Am J Hum Genet 2011; 89:607-18. [PMID: 22077970 DOI: 10.1016/j.ajhg.2011.10.004] [Citation(s) in RCA: 371] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/25/2011] [Accepted: 10/07/2011] [Indexed: 11/19/2022] Open
Abstract
We present a systematic review of pleiotropy among SNPs and genes reported to show genome-wide association with common complex diseases and traits. We find abundant evidence of pleiotropy; 233 (16.9%) genes and 77 (4.6%) SNPs show pleiotropic effects. SNP pleiotropic status was associated with gene location (p = 0.024; pleiotropic SNPs more often exonic [14.5% versus 4.9% for nonpleiotropic, trait-associated SNPs] and less often intergenic [15.8% versus 23.6%]), "predicted transcript consequence" (p = 0.001; pleiotropic SNPs more often predicted to be structurally deleterious [5% versus 0.4%] but not more often in regulatory sequences), and certain disease classes. We develop a method to calculate the likelihood that pleiotropic links between traits occurred more often than expected and demonstrate that this approach can identify etiological links that are already known (such as between fetal hemoglobin and malaria risk) and those that are not yet established (e.g., between plasma campesterol levels and gallstones risk; and between immunoglobulin A and juvenile idiopathic arthritis). Examples of pleiotropy will accumulate over time, but it is already clear that pleiotropy is a common property of genes and SNPs associated with disease traits, and this will have implications for identification of molecular targets for drug development, future genetic risk-profiling, and classification of diseases.
Collapse
Affiliation(s)
- Shanya Sivakumaran
- Centre for Population Health Sciences, The University of Edinburgh, Edinburgh EH8 9AG, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lupattelli G, De Vuono S, Mannarino E. Patterns of cholesterol metabolism: pathophysiological and therapeutic implications for dyslipidemias and the metabolic syndrome. Nutr Metab Cardiovasc Dis 2011; 21:620-627. [PMID: 21855307 DOI: 10.1016/j.numecd.2011.04.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 04/08/2011] [Accepted: 04/27/2011] [Indexed: 11/17/2022]
Abstract
Investigating cholesterol metabolism, which derives from balancing cholesterol synthesis and absorption, opens new perspectives in the pathogenesis of dyslipidemias and the metabolic syndrome (MS). Cholesterol metabolism is studied by measuring plasma levels of campesterol, sitosterol and cholestanol, that is, plant sterols which are recognised as surrogate cholesterol-absorption markers and lathosterol or squalene, that is, cholesterol precursors, which are considered surrogate cholesterol-synthesis markers. This article presents current knowledge on cholesterol synthesis and absorption, as evaluated by means of cholesterol precursors and plant sterols, and discusses patterns of cholesterol balance in the main forms of primary hyperlipidaemia and MS. Understanding the mechanism(s) underlying these patterns of cholesterol synthesis and absorption will help to predict the response to hypolipidemic treatment, which can then be tailored to ensure the maximum clinical benefit for patients.
Collapse
Affiliation(s)
- G Lupattelli
- Internal Medicine, Angiology and Atherosclerosis, Department of Clinical and Experimental Medicine, University of Perugia, Italy.
| | | | | |
Collapse
|
40
|
Calandra S, Tarugi P, Speedy HE, Dean AF, Bertolini S, Shoulders CC. Mechanisms and genetic determinants regulating sterol absorption, circulating LDL levels, and sterol elimination: implications for classification and disease risk. J Lipid Res 2011; 52:1885-926. [PMID: 21862702 DOI: 10.1194/jlr.r017855] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This review integrates historical biochemical and modern genetic findings that underpin our understanding of the low-density lipoprotein (LDL) dyslipidemias that bear on human disease. These range from life-threatening conditions of infancy through severe coronary heart disease of young adulthood, to indolent disorders of middle- and old-age. We particularly focus on the biological aspects of those gene mutations and variants that impact on sterol absorption and hepatobiliary excretion via specific membrane transporter systems (NPC1L1, ABCG5/8); the incorporation of dietary sterols (MTP) and of de novo synthesized lipids (HMGCR, TRIB1) into apoB-containing lipoproteins (APOB) and their release into the circulation (ANGPTL3, SARA2, SORT1); and receptor-mediated uptake of LDL and of intestinal and hepatic-derived lipoprotein remnants (LDLR, APOB, APOE, LDLRAP1, PCSK9, IDOL). The insights gained from integrating the wealth of genetic data with biological processes have important implications for the classification of clinical and presymptomatic diagnoses of traditional LDL dyslipidemias, sitosterolemia, and newly emerging phenotypes, as well as their management through both nutritional and pharmaceutical means.
Collapse
Affiliation(s)
- Sebastiano Calandra
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | | | | | | | |
Collapse
|
41
|
|