1
|
Saez Lancellotti TE, Avena MV, Funes AK, Bernal-López MR, Gómez-Huelgas R, Fornes MW. Exploring the impact of lipid stress on sperm cytoskeleton: insights and prospects. Nat Rev Urol 2024:10.1038/s41585-024-00952-1. [PMID: 39528754 DOI: 10.1038/s41585-024-00952-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
The decline in male fertility correlates with the global rise in obesity and dyslipidaemia, representing significant public health challenges. High-fat diets induce metabolic alterations, including hypercholesterolaemia, hepatic steatosis and atherosclerosis, with detrimental effects on testicular function. Testicular tissue, critically dependent on lipids for steroidogenesis, is particularly vulnerable to these metabolic disruptions. Excessive lipid accumulation within the testes, including cholesterol, triglycerides and specific fatty acids, disrupts essential sperm production processes such as membrane formation, maturation, energy metabolism and cell signalling. This leads to apoptosis, impaired spermatogenesis, and abnormal sperm morphology and function, ultimately compromising male fertility. During spermiogenesis, round spermatids undergo extensive reorganization, including the formation of the acrosome, manchette and specialized filamentous structures, which are essential for defining the final sperm cell shape. In this Perspective, we examine the impact of high-fat diets on the cytoskeleton of spermatogenic cells and its consequences to identify the mechanisms underlying male infertility associated with dyslipidaemia. Understanding these processes may facilitate the development of therapeutic strategies, such as dietary interventions or natural product supplementation, that aim to address infertility in men with obesity and hypercholesterolaemia. The investigation of cytoskeleton response to lipid stress extends beyond male reproduction, offering insights with broader implications.
Collapse
Affiliation(s)
- Tania E Saez Lancellotti
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina.
- Instituto de Investigaciones, Facultad de Ciencias Médicas, Universidad del Aconcagua, Mendoza, Argentina.
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain.
| | - María V Avena
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Abi K Funes
- Laboratorio de Biología Molecular del Metabolismo & Nutrición (MeNu), Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María-Rosa Bernal-López
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Ricardo Gómez-Huelgas
- Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel W Fornes
- Laboratorio de Investigaciones Andrológicas de Mendoza (LIAM), Instituto de Histología y Embriología (IHEM), CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
2
|
Hart NR. Paradoxes: Cholesterol and Hypoxia in Preeclampsia. Biomolecules 2024; 14:691. [PMID: 38927094 PMCID: PMC11201883 DOI: 10.3390/biom14060691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Preeclampsia, a hypertensive disease of pregnancy of unknown etiology, is intensely studied as a model of cardiovascular disease (CVD) not only due to multiple shared pathologic elements but also because changes that develop over decades in CVD appear and resolve within days in preeclampsia. Those affected by preeclampsia and their offspring experience increased lifetime risks of CVD. At the systemic level, preeclampsia is characterized by increased cellular, membrane, and blood levels of cholesterol; however, cholesterol-dependent signaling, such as canonical Wnt/βcatenin, Hedgehog, and endothelial nitric oxide synthase, is downregulated indicating a cholesterol deficit with the upregulation of cholesterol synthesis and efflux. Hypoxia-related signaling in preeclampsia also appears to be paradoxical with increased Hypoxia-Inducible Factors in the placenta but measurably increased oxygen in maternal blood in placental villous spaces. This review addresses the molecular mechanisms by which excessive systemic cholesterol and deficient cholesterol-dependent signaling may arise from the effects of dietary lipid variance and environmental membrane modifiers causing the cellular hypoxia that characterizes preeclampsia.
Collapse
Affiliation(s)
- Nancy R Hart
- PeaceHealth St. Joseph Medical Center, Bellingham, WA 98225, USA
| |
Collapse
|
3
|
Nguyen TD, Rao MK, Dhyani SP, Banks JM, Winek MA, Michalkiewicz J, Lee MY. Nucleoporin93 limits Yap activity to prevent endothelial cell senescence. Aging Cell 2024; 23:e14095. [PMID: 38348753 PMCID: PMC11019141 DOI: 10.1111/acel.14095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 02/27/2024] Open
Abstract
As the innermost lining of the vasculature, endothelial cells (ECs) are constantly subjected to systemic inflammation and particularly vulnerable to aging. Endothelial health is hence vital to prevent age-related vascular disease. Healthy ECs rely on the proper localization of transcription factors via nuclear pore complexes (NPCs) to govern cellular behavior. Emerging studies report NPC degradation with natural aging, suggesting impaired nucleocytoplasmic transport in age-associated EC dysfunction. We herein identify nucleoporin93 (Nup93), a crucial structural NPC protein, as an indispensable player in vascular protection. Endothelial Nup93 protein levels are significantly reduced in the vasculature of aged mice, paralleling observations of Nup93 loss when using in vitro models of EC senescence. The loss of Nup93 in human ECs induces cell senescence and promotes the expression of inflammatory adhesion molecules, where restoring Nup93 protein in senescent ECs reverses features of endothelial aging. Mechanistically, we find that both senescence and loss of Nup93 impair endothelial NPC transport, leading to nuclear accumulation of Yap and downstream inflammation. Pharmacological studies indicate Yap hyperactivation as the primary consequence of senescence and Nup93 loss in ECs. Collectively, our findings indicate that the maintenance of endothelial Nup93 is a key determinant of EC health, where aging targets endothelial Nup93 levels to impair NPC function as a novel mechanism of EC senescence and vascular aging.
Collapse
Affiliation(s)
- Tung D. Nguyen
- Department of Physiology and BiophysicsThe University of Illinois at Chicago – College of MedicineChicagoIllinoisUSA
- The Center for Cardiovascular ResearchThe University of Illinois at Chicago – College of MedicineChicagoIllinoisUSA
| | - Mihir K. Rao
- Department of Physiology and BiophysicsThe University of Illinois at Chicago – College of MedicineChicagoIllinoisUSA
| | - Shaiva P. Dhyani
- Department of Physiology and BiophysicsThe University of Illinois at Chicago – College of MedicineChicagoIllinoisUSA
| | - Justin M. Banks
- Department of Physiology and BiophysicsThe University of Illinois at Chicago – College of MedicineChicagoIllinoisUSA
| | - Michael A. Winek
- Department of Physiology and BiophysicsThe University of Illinois at Chicago – College of MedicineChicagoIllinoisUSA
| | - Julia Michalkiewicz
- Department of Physiology and BiophysicsThe University of Illinois at Chicago – College of MedicineChicagoIllinoisUSA
- The Center for Cardiovascular ResearchThe University of Illinois at Chicago – College of MedicineChicagoIllinoisUSA
| | - Monica Y. Lee
- Department of Physiology and BiophysicsThe University of Illinois at Chicago – College of MedicineChicagoIllinoisUSA
- The Center for Cardiovascular ResearchThe University of Illinois at Chicago – College of MedicineChicagoIllinoisUSA
| |
Collapse
|
4
|
George M, Allerkamp HH, Koshenov Z, Oflaz FE, Tam-Amersdorfer C, Kolesnik T, Rittchen S, Lang M, Fröhlich E, Graier W, Strobl H, Wadsack C. Liver X receptor activation mitigates oxysterol-induced dysfunction in fetoplacental endothelial cells. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159466. [PMID: 38369253 DOI: 10.1016/j.bbalip.2024.159466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/19/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
Maintaining the homeostasis of the placental vasculature is of paramount importance for ensuring normal fetal growth and development. Any disruption in this balance can lead to perinatal morbidity. Several studies have uncovered an association between high levels of oxidized cholesterol (oxysterols), and complications during pregnancy, including gestational diabetes mellitus (GDM) and preeclampsia (PE). These complications often coincide with disturbances in placental vascular function. Here, we investigate the role of two oxysterols (7-ketocholesterol, 7β-hydroxycholesterol) in (dys)function of primary fetoplacental endothelial cells (fpEC). Our findings reveal that oxysterols exert a disruptive influence on fpEC function by elevating the production of reactive oxygen species (ROS) and interfering with mitochondrial transmembrane potential, leading to its depolarization. Moreover, oxysterol-treated fpEC exhibited alterations in intracellular calcium (Ca2+) levels, resulting in the reorganization of cell junctions and a corresponding increase in membrane stiffness and vascular permeability. Additionally, we observed an enhanced adhesion of THP-1 monocytes to fpEC following oxysterol treatment. We explored the influence of activating the Liver X Receptor (LXR) with the synthetic agonist T0901317 (TO) on oxysterol-induced endothelial dysfunction in fpEC. Our results demonstrate that LXR activation effectively reversed oxysterol-induced ROS generation, monocyte adhesion, and cell junction permeability in fpEC. Although the effects on mitochondrial depolarization and calcium mobilization did not reach statistical significance, a strong trend towards stabilization of calcium mobilization was evident in LXR-activated cells. Taken together, our results suggest that high levels of systemic oxysterols link to placental vascular dysfunction and LXR agonists may alleviate their impact on fetoplacental vasculature.
Collapse
Affiliation(s)
- Meekha George
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria.
| | | | - Zhanat Koshenov
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; Department of Biochemistry, Weill Cornell Medicine, New York, USA
| | - Furkan E Oflaz
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Carmen Tam-Amersdorfer
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Immunology, Medical University of Graz, 8010 Graz, Austria
| | | | - Sonja Rittchen
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Immunology, Medical University of Graz, 8010 Graz, Austria; Department of Pharmacology, Medical University of Graz, Austria
| | - Magdalena Lang
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Immunology, Medical University of Graz, 8010 Graz, Austria
| | | | - Wolfgang Graier
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Herbert Strobl
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Immunology, Medical University of Graz, 8010 Graz, Austria
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; BioTech-Med, 8010 Graz, Austria.
| |
Collapse
|
5
|
Xiu F, Console L, Indiveri C, Su S, Wang T, Visentin M. Effect of 7-ketocholesterol incorporation on substrate binding affinity and turnover rate of the organic cation transporter 2 (OCT2). Biochem Pharmacol 2024; 220:116017. [PMID: 38176620 DOI: 10.1016/j.bcp.2023.116017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/07/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
The organic cation transporter 2 (OCT2) is pivotal in the renal elimination of several positively charged molecules. OCT2 mode of transport is profoundly influenced by the level of membrane cholesterol. The aim of this study was to investigate the effect of oxidized cholesterol on OCT2 transport activity in human embryonic kidney 293 cells stably transfected with OCT2 (OCT2-HEK293) and in primary renal proximal tubular epithelial cells (RPTEC). Cholesterol was exchanged with 7-ketocholesterol, the main product of cholesterol auto-oxidation, by exposing cells to sterol-saturated methyl-β-cyclodextrin (mβcd). After a 30 min-exposure, approximately 50% of the endogenous cholesterol was replaced by 7-ketocholesterol without significant changes in total sterol level. In the presence of 7-ketocholesterol, [3H]1-methyl-4-phenylpyridinium (MPP+) uptake was significantly reduced in both cell lines. 7-ketocholesterol incorporation did not affect lipid raft integrity, nor OCT2 surface expression and spatial organization. The inhibitory effect of 7-ketocholesterol on MPP+ uptake was abolished by the presence of MPP+ in the trans-compartment. In the presence of 7-ketocholesterol, both Kt and Vmax of MPP+ influx decreased. Molecular docking using OCT2 structure in outward occluded conformation showed overlapping poses and similar binding energies between cholesterol and 7-ketocholesterol. The thermal stability of OCT2 was not changed when cholesterol was replaced with 7-ketocholesterol. We conclude that 7-ketocholesterol confers a higher rigidity to the carrier by reducing its conformational entropy, arguably as a result of changes in plasma membrane physical properties, thereby facilitating the achievement of a higher affinity state at the expense of the mobility and overall cycling rate of the transporter.
Collapse
Affiliation(s)
- Fangrui Xiu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland
| | - Lara Console
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| | - Shanshan Su
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Tong Wang
- School of Nursing, Shandong University fo Traditional Chinese Medicine, Jinan 250014, China.
| | - Michele Visentin
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland.
| |
Collapse
|
6
|
Dias IHK, Shokr H. Oxysterols as Biomarkers of Aging and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:307-336. [PMID: 38036887 DOI: 10.1007/978-3-031-43883-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Oxysterols derive from either enzymatic or non-enzymatic oxidation of cholesterol. Even though they are produced as intermediates of bile acid synthesis pathway, they are recognised as bioactive compounds in cellular processes. Therefore, their absence or accumulation have been shown to be associated with disease phenotypes. This chapter discusses the contribution of oxysterol to ageing, age-related diseases such as neurodegeneration and various disorders such as cancer, cardiovascular disease, diabetes, metabolic and ocular disorders. It is clear that oxysterols play a significant role in development and progression of these diseases. As a result, oxysterols are being investigated as suitable markers for disease diagnosis purposes and some drug targets are in development targeting oxysterol pathways. However, further research will be needed to confirm the suitability of these potentials.
Collapse
Affiliation(s)
- Irundika H K Dias
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, UK.
| | - Hala Shokr
- Manchester Pharmacy School, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
7
|
Mahmood T, Miles JR, Minnier J, Tavori H, DeBarber AE, Fazio S, Shapiro MD. Effect of PCSK9 inhibition on plasma levels of small dense low density lipoprotein-cholesterol and 7-ketocholesterol. J Clin Lipidol 2024; 18:e50-e58. [PMID: 37923663 PMCID: PMC10957330 DOI: 10.1016/j.jacl.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/19/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Oxidized forms of cholesterol (oxysterols) are implicated in atherogenesis and can accumulate in the body via direct absorption from food or through oxidative reactions of endogenous cholesterol, inducing the formation of LDL particles loaded with oxidized cholesterol. It remains unknown whether drastic reductions in LDL-cholesterol (LDL-C) are associated with changes in circulating oxysterols and whether small dense LDL (sdLDL) are more likely to carry these oxysterols and susceptible to the effects of PCSK9 inhibition (PCSK9i). OBJECTIVE We investigate the effect of LDL-C reduction accomplished via PCSK9i on changes in plasma levels of sdLDL-cholesterol (sdLDL-C) and a common, stable oxysterol, 7-ketocholesterol (7-KC), among 134 patients referred to our Preventive Cardiology clinic. METHODS Plasma lipid panel, sdLDL-C, and 7-KC measurements were obtained from patients before and after initiation of PCSK9i. RESULTS The intervention caused a significant lowering of LDL-C (-55.4 %). The changes in sdLDL-C levels (mean reduction 51.4 %) were highly correlated with the reductions in LDL-C levels (R = 0.829, p < 0.001). Interestingly, whereas changes in plasma free 7-KC levels with PCSK9i treatment were much smaller than (-6.6 %) and did not parallel those of LDL-C and sdLDL-C levels, they did significantly correlate with changes in triglycerides and very low-density lipoprotein-cholesterol (VLDL-C) levels (R = 0.219, p = 0.025). CONCLUSION Our findings suggest a non-preferential clearance of LDL subparticles as a consequence of LDL receptor upregulation caused by PCSK9 inhibition. Moreover, the lack of significant reduction in 7-KC with PCSK9i suggests that 7-KC may be in part carried by VLDL and lost during lipoprotein processing leading to LDL formation.
Collapse
Affiliation(s)
- Tahir Mahmood
- Oregon Health & Science University, Knight Cardiovascular Institute, Center for Preventive Cardiology, Portland, OR, USA (Dr Mahmood, Miles, Minnier, Tavori and Fazio)
| | - Joshua R Miles
- Oregon Health & Science University, Knight Cardiovascular Institute, Center for Preventive Cardiology, Portland, OR, USA (Dr Mahmood, Miles, Minnier, Tavori and Fazio)
| | - Jessica Minnier
- Oregon Health & Science University, Knight Cardiovascular Institute, Center for Preventive Cardiology, Portland, OR, USA (Dr Mahmood, Miles, Minnier, Tavori and Fazio); Oregon Health & Science University, OHSU-PSU School of Public Health, Portland, OR, USA (Dr Minnier)
| | - Hagai Tavori
- Oregon Health & Science University, Knight Cardiovascular Institute, Center for Preventive Cardiology, Portland, OR, USA (Dr Mahmood, Miles, Minnier, Tavori and Fazio)
| | - Andrea E DeBarber
- Oregon Health & Science University, University Shared Resources, Portland, OR, USA (Dr DeBarber)
| | - Sergio Fazio
- Oregon Health & Science University, Knight Cardiovascular Institute, Center for Preventive Cardiology, Portland, OR, USA (Dr Mahmood, Miles, Minnier, Tavori and Fazio)
| | - Michael D Shapiro
- Wake Forest University School of Medicine, Section on Cardiovascular Medicine, Center for Prevention of Cardiovascular Disease, Winston-Salem, NC, USA (Dr Shapiro).
| |
Collapse
|
8
|
Vigne S, Pot C. Implication of Oxysterols and Phytosterols in Aging and Human Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:231-260. [PMID: 38036883 DOI: 10.1007/978-3-031-43883-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Cholesterol is easily oxidized and can be transformed into numerous oxidation products, among which oxysterols. Phytosterols are plant sterols related to cholesterol. Both oxysterols and phytosterols can have an impact on human health and diseases.Cholesterol is a member of the sterol family that plays essential roles in biological processes, including cell membrane stability and myelin formation. Cholesterol can be metabolized into several molecules including bile acids, hormones, and oxysterols. On the other hand, phytosterols are plant-derived compounds structurally related to cholesterol, which can also have an impact on human health. Here, we review the current knowledge about the role of oxysterols and phytosterols on human health and focus on the impact of their pathways on diseases of the central nervous system (CNS), autoimmune diseases, including inflammatory bowel diseases (IBD), vascular diseases, and cancer in both experimental models and human studies. We will first discuss the implications of oxysterols and then of phytosterols in different human diseases.
Collapse
Affiliation(s)
- Solenne Vigne
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, Lausanne, Switzerland
| | - Caroline Pot
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, Lausanne, Switzerland.
| |
Collapse
|
9
|
Nguyen TD, Rao MK, Dhyani SP, Banks JM, Winek MA, Michalkiewicz J, Lee MY. Nucleoporin93 (Nup93) Limits Yap Activity to Prevent Endothelial Cell Senescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566598. [PMID: 38014013 PMCID: PMC10680655 DOI: 10.1101/2023.11.10.566598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Endothelial cells (ECs) form the innermost lining of the vasculature and serve a pivotal role in preventing age-related vascular disease. Endothelial health relies on the proper nucleocytoplasmic shuttling of transcription factors via nuclear pore complexes (NPCs). Emerging studies report NPC degradation with natural aging, suggesting impaired nucleocytoplasmic transport in age-related EC dysfunction. We herein identify nucleoporin93 (Nup93), a crucial structural NPC protein, as an indispensable player for vascular protection. Endothelial Nup93 protein levels are significantly reduced in the vasculature of aged mice, paralleling observations of Nup93 loss when using in vitro models of endothelial aging. Mechanistically, we find that loss of Nup93 impairs NPC transport, leading to the nuclear accumulation of Yap and downstream inflammation. Collectively, our findings indicate maintenance of endothelial Nup93 as a key determinant of EC health, where aging targets endothelial Nup93 levels to impair NPC function as a novel mechanism for EC senescence and vascular aging.
Collapse
|
10
|
Nasoni MG, Crinelli R, Iuliano L, Luchetti F. When nitrosative stress hits the endoplasmic reticulum: Possible implications in oxLDL/oxysterols-induced endothelial dysfunction. Free Radic Biol Med 2023; 208:178-185. [PMID: 37544487 DOI: 10.1016/j.freeradbiomed.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/14/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Oxidized LDL (oxLDL) and oxysterols are known to play a crucial role in endothelial dysfunction (ED) by inducing endoplasmic reticulum stress (ERS), inflammation, and apoptosis. However, the precise molecular mechanisms underlying these pathophysiological processes remain incompletely understood. Emerging evidence strongly implicates excessive nitric oxide (NO) production in the progression of various pathological conditions. The accumulation of reactive nitrogen species (RNS) leading to nitrosative stress (NSS) and aberrant protein S-nitrosylation contribute to NO toxicity. Studies have highlighted the involvement of NSS and S-nitrosylation in perturbing ER signaling through the modification of ER sensors and resident isomerases in neurons. This review focuses on the existing evidence that strongly associates NO with ERS and the possible implications in the context of ED induced by oxLDL and oxysterols. The potential effects of perturbed NO synthesis on signaling effectors linking NSS with ERS in endothelial cells are discussed to provide a conceptual framework for further investigations and the development of novel therapeutic strategies targeting ED.
Collapse
Affiliation(s)
- M G Nasoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| | - R Crinelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| | - L Iuliano
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University of Rome, Latina, Italy.
| | - F Luchetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| |
Collapse
|
11
|
Fancher IS, Levitan I. Membrane Cholesterol Interactions with Proteins in Hypercholesterolemia-Induced Endothelial Dysfunction. Curr Atheroscler Rep 2023; 25:535-541. [PMID: 37418067 PMCID: PMC10471518 DOI: 10.1007/s11883-023-01127-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2023] [Indexed: 07/08/2023]
Abstract
PURPOSE OF REVIEW The goal of this review is to highlight work identifying mechanisms driving hypercholesterolemia-mediated endothelial dysfunction. We specifically focus on cholesterol-protein interactions and address specific questions related to the impact of hypercholesterolemia on cellular cholesterol and vascular endothelial function. We describe key approaches used to determine the effects of cholesterol-protein interactions in mediating endothelial dysfunction under dyslipidemic conditions. RECENT FINDINGS The benefits of removing the cholesterol surplus on endothelial function in models of hypercholesterolemia is clear. However, specific mechanisms driving cholesterol-induced endothelial dysfunction need to be determined. In this review, we detail the latest findings describing cholesterol-mediated endothelial dysfunction, highlighting our studies indicating that cholesterol suppresses endothelial Kir2.1 channels as a major underlying mechanism. The findings detailed in this review support the targeting of cholesterol-induced suppression of proteins in restoring endothelial function in dyslipidemic conditions. The identification of similar mechanisms regarding other cholesterol-endothelial protein interactions is warranted.
Collapse
Affiliation(s)
- Ibra S. Fancher
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, DE USA
| | - Irena Levitan
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL USA
| |
Collapse
|
12
|
Wang H, Ramshekar A, Cung T, Wallace-Carrete C, Zaugg C, Nguyen J, Stoddard GJ, Hartnett ME. 7-Ketocholesterol Promotes Retinal Pigment Epithelium Senescence and Fibrosis of Choroidal Neovascularization via IQGAP1 Phosphorylation-Dependent Signaling. Int J Mol Sci 2023; 24:10276. [PMID: 37373423 PMCID: PMC10299509 DOI: 10.3390/ijms241210276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/04/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Accumulation of 7-ketocholesterol (7KC) occurs in age-related macular degeneration (AMD) and was found previously to promote fibrosis, an untreatable cause of vision loss, partly through induction of endothelial-mesenchymal transition. To address the hypothesis that 7KC causes mesenchymal transition of retinal pigment epithelial cells (RPE), we exposed human primary RPE (hRPE) to 7KC or a control. 7KC-treated hRPE did not manifest increased mesenchymal markers, but instead maintained RPE-specific proteins and exhibited signs of senescence with increased serine phosphorylation of histone H3, serine/threonine phosphorylation of mammalian target of rapamycin (p-mTOR), p16 and p21, β-galactosidase labeling, and reduced LaminB1, suggesting senescence. The cells also developed senescence-associated secretory phenotype (SASP) determined by increased IL-1β, IL-6, and VEGF through mTOR-mediated NF-κB signaling, and reduced barrier integrity that was restored by the mTOR inhibitor, rapamycin. 7KC-induced p21, VEGF, and IL-1β were inhibited by an inhibitor of protein kinase C. The kinase regulates IQGAP1 serine phosphorylation. Furthermore, after 7KC injection and laser-induced injury, mice with an IQGAP1 serine 1441-point mutation had significantly reduced fibrosis compared to littermate control mice. Our results provide evidence that age-related accumulation of 7KC in drusen mediates senescence and SASP in RPE, and IQGAP1 serine phosphorylation is important in causing fibrosis in AMD.
Collapse
Affiliation(s)
- Haibo Wang
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA; (H.W.); (A.R.); (T.C.); (C.W.-C.); (C.Z.); (J.N.)
- Department of Pathology, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Aniket Ramshekar
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA; (H.W.); (A.R.); (T.C.); (C.W.-C.); (C.Z.); (J.N.)
| | - Thaonhi Cung
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA; (H.W.); (A.R.); (T.C.); (C.W.-C.); (C.Z.); (J.N.)
| | - Chris Wallace-Carrete
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA; (H.W.); (A.R.); (T.C.); (C.W.-C.); (C.Z.); (J.N.)
| | - Chandler Zaugg
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA; (H.W.); (A.R.); (T.C.); (C.W.-C.); (C.Z.); (J.N.)
| | - Jasmine Nguyen
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA; (H.W.); (A.R.); (T.C.); (C.W.-C.); (C.Z.); (J.N.)
| | - Gregory J. Stoddard
- Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA;
| | - M. Elizabeth Hartnett
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA; (H.W.); (A.R.); (T.C.); (C.W.-C.); (C.Z.); (J.N.)
- Byers Eye Institute, Stanford University, Palo Alto, CA 94304, USA
| |
Collapse
|
13
|
Hart NR. A theoretical model of dietary lipid variance as the origin of primary ciliary dysfunction in preeclampsia. Front Mol Biosci 2023; 10:1173030. [PMID: 37251083 PMCID: PMC10210153 DOI: 10.3389/fmolb.2023.1173030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/14/2023] [Indexed: 05/31/2023] Open
Abstract
Serving as the cell's key interface in communicating with the outside world, primary cilia have emerged as an area of multidisciplinary research interest over the last 2 decades. Although the term "ciliopathy" was first used to describe abnormal cilia caused by gene mutations, recent studies focus on abnormalities of cilia that are found in diseases without clear genetic antecedents, such as obesity, diabetes, cancer, and cardiovascular disease. Preeclampsia, a hypertensive disease of pregnancy, is intensely studied as a model for cardiovascular disease partially due to many shared pathophysiologic elements, but also because changes that develop over decades in cardiovascular disease arise in days with preeclampsia yet resolve rapidly after delivery, thus providing a time-lapse view of the development of cardiovascular pathology. As with genetic primary ciliopathies, preeclampsia affects multiple organ systems. While aspirin delays the onset of preeclampsia, there is no cure other than delivery. The primary etiology of preeclampsia is unknown; however, recent reviews emphasize the fundamental role of abnormal placentation. During normal embryonic development, trophoblastic cells, which arise from the outer layer of the 4-day-old blastocyst, invade the maternal endometrium and establish extensive placental vascular connections between mother and fetus. In primary cilia of trophoblasts, Hedgehog and Wnt/catenin signaling operate upstream of vascular endothelial growth factor to advance placental angiogenesis in a process that is promoted by accessible membrane cholesterol. In preeclampsia, impaired proangiogenic signaling combined with an increase in apoptotic signaling results in shallow invasion and inadequate placental function. Recent studies show primary cilia in preeclampsia to be fewer in number and shortened with functional signaling abnormalities. Presented here is a model that integrates preeclampsia lipidomics and physiology with the molecular mechanisms of liquid-liquid phase separation in model membrane studies and the known changes in human dietary lipids over the last century to explain how changes in dietary lipids might reduce accessible membrane cholesterol and give rise to shortened cilia and defects in angiogenic signaling, which underlie placental dysfunction of preeclampsia. This model offers a possible mechanism for non-genetic dysfunction in cilia and proposes a proof-of-concept study to treat preeclampsia with dietary lipids.
Collapse
|
14
|
Aguilar VM, Paul A, Lazarko D, Levitan I. Paradigms of endothelial stiffening in cardiovascular disease and vascular aging. Front Physiol 2023; 13:1081119. [PMID: 36714307 PMCID: PMC9874005 DOI: 10.3389/fphys.2022.1081119] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
Endothelial cells, the inner lining of the blood vessels, are well-known to play a critical role in vascular function, while endothelial dysfunction due to different cardiovascular risk factors or accumulation of disruptive mechanisms that arise with aging lead to cardiovascular disease. In this review, we focus on endothelial stiffness, a fundamental biomechanical property that reflects cell resistance to deformation. In the first part of the review, we describe the mechanisms that determine endothelial stiffness, including RhoA-dependent contractile response, actin architecture and crosslinking, as well as the contributions of the intermediate filaments, vimentin and lamin. Then, we review the factors that induce endothelial stiffening, with the emphasis on mechanical signals, such as fluid shear stress, stretch and stiffness of the extracellular matrix, which are well-known to control endothelial biomechanics. We also describe in detail the contribution of lipid factors, particularly oxidized lipids, that were also shown to be crucial in regulation of endothelial stiffness. Furthermore, we discuss the relative contributions of these two mechanisms of endothelial stiffening in vasculature in cardiovascular disease and aging. Finally, we present the current state of knowledge about the role of endothelial stiffening in the disruption of endothelial cell-cell junctions that are responsible for the maintenance of the endothelial barrier.
Collapse
Affiliation(s)
- Victor M. Aguilar
- Department of Medicine, Division of Pulmonary and Critical Care, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States,Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Amit Paul
- Department of Medicine, Division of Pulmonary and Critical Care, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Dana Lazarko
- Department of Medicine, Division of Pulmonary and Critical Care, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Irena Levitan
- Department of Medicine, Division of Pulmonary and Critical Care, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States,Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States,*Correspondence: Irena Levitan,
| |
Collapse
|
15
|
Perez-Salas U, Porcar L, Garg S, Ayee MAA, Levitan I. Effective Parameters Controlling Sterol Transfer: A Time-Resolved Small-Angle Neutron Scattering Study. J Membr Biol 2022; 255:423-435. [PMID: 35467109 DOI: 10.1007/s00232-022-00231-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/19/2022] [Indexed: 11/29/2022]
Abstract
Though cholesterol is the most prevalent and essential sterol in mammalian cellular membranes, its precursors, post-synthesis cholesterol products, as well as its oxidized derivatives play many other important physiological roles. Using a non-invasive in situ technique, time-resolved small angle neutron scattering, we report on the rate of membrane desorption and corresponding activation energy for this process for a series of sterol precursors and post-synthesis cholesterol products that vary from cholesterol by the number and position of double bonds in B ring of cholesterol's steroid core. In addition, we report on sterols that have oxidation modifications in ring A and ring B of the steroid core. We find that sterols that differ in position or the number of double bonds in ring B have similar time and energy characteristics, while oxysterols have faster transfer rates and lower activation energies than cholesterol in a manner generally consistent with known sterol characteristics, like Log P, the n-octanol/water partitioning coefficient. We find, however, that membrane/water partitioning which is dependent on lipid-sterol interactions is a better predictor, shown by the correlation of the sterols' tilt modulus with both the desorption rates and activation energy.
Collapse
Affiliation(s)
- Ursula Perez-Salas
- Physics Department, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| | - Lionel Porcar
- Institut Laue Langevin, 71 Avenue des Martyrs, 38042, Grenoble Cedex 9, France
| | - Sumit Garg
- Physics Department, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Manuela A A Ayee
- Department of Engineering, Dordt University, Sioux Center, IA, USA
| | - Irena Levitan
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60607, USA
| |
Collapse
|
16
|
Rezende L, Couto NFD, Fernandes-Braga W, Epshtein Y, Alvarez-Leite JI, Levitan I, Andrade LDO. OxLDL induces membrane structure rearrangement leading to biomechanics alteration and migration deficiency in macrophage. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - BIOMEMBRANES 2022; 1864:183951. [PMID: 35504320 DOI: 10.1016/j.bbamem.2022.183951] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
Cholesterol sequestration from plasma membrane has been shown to induce lipid packing disruption, causing actin cytoskeleton reorganization and polymerization, increasing cell stiffness and inducing lysosomal exocytosis in non-professional phagocytes. Similarly, oxidized form of low-density lipoprotein (oxLDL) has also been shown to disrupt lipid organization and packing in endothelial cells, leading to biomechanics alterations that interfere with membrane injury and repair. For macrophages, much is known about oxLDL effects in cell activation, cytokine production and foam cell formation. However, little is known about its impact in the organization of macrophage membrane structured domains and cellular mechanics, the focus of the present study. Treatment of bone marrow-derived macrophages (BMDM) with oxLDL not only altered membrane structure, and potentially the distribution of raft domains, but also induced actin rearrangement, diffuse integrin distribution and cell shrinkage, similarly to observed upon treatment of these cells with MβCD. Those alterations led to decreased migration efficiency. For both treatments, higher co-localization of actin cytoskeleton and GM1 was observed, indicating a similar mechanism of action involving raft-like domain dynamics. Lastly, like MβCD treatment, oxLDL also induced lysosomal spreading in BMDM. We propose that OxLDL induced re-organization of membrane/cytoskeleton complex in macrophages can be attributed to the insertion of oxysterols into the membrane, which lead to changes in lipid organization and disruption of membrane structure, similar to the effect of cholesterol depletion by MβCD treatment. These results indicate that oxLDL can induce physical alterations in the complex membrane/cytoskeleton of macrophages, leading to significant biomechanical changes that compromise cell behavior.
Collapse
Affiliation(s)
- Luisa Rezende
- Department of Morphology/Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Natalia Fernanda Do Couto
- Department of Morphology/Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Medicine, University of Illinois at Chicago, Chicago, USA
| | - Weslley Fernandes-Braga
- Department of Biochemistry and Immunology/Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Yulia Epshtein
- Department of Medicine, University of Illinois at Chicago, Chicago, USA
| | | | - Irena Levitan
- Department of Medicine, University of Illinois at Chicago, Chicago, USA
| | | |
Collapse
|
17
|
Lechner BD, Smith P, McGill B, Marshall S, Trick JL, Chumakov AP, Winlove CP, Konovalov OV, Lorenz CD, Petrov PG. The Effects of Cholesterol Oxidation on Erythrocyte Plasma Membranes: A Monolayer Study. MEMBRANES 2022; 12:828. [PMID: 36135847 PMCID: PMC9506283 DOI: 10.3390/membranes12090828] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Cholesterol plays a key role in the molecular and mesoscopic organisation of lipid membranes and it is expected that changes in its molecular structure (e.g., through environmental factors such as oxidative stress) may affect adversely membrane properties and function. In this study, we present evidence that oxidation of cholesterol has significant effects on the mechanical properties, molecular and mesoscopic organisation and lipid-sterol interactions in condensed monolayers composed of the main species found in the inner leaflet of the erythrocyte membrane. Using a combination of experimental methods (static area compressibility, surface dilatational rheology, fluorescence microscopy, and surface sensitive X-ray techniques) and atomistic molecular dynamics simulations, we show that oxidation of cholesterol to 7-ketocholesterol leads to stiffening of the monolayer (under both static and dynamic conditions), significant changes in the monolayer microdomain organisation, disruption in the van der Waals, electrostatic and hydrophobic interactions between the sterol and the other lipid species, and the lipid membrane hydration. Surface sensitive X-ray techniques reveal that, whilst the molecular packing mode is not significantly affected by cholesterol oxidation in these condensed phases, there are subtle changes in membrane thickness and a significant decrease in the coherence length in monolayers containing 7-ketocholesterol.
Collapse
Affiliation(s)
- Bob-Dan Lechner
- Department of of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
| | - Paul Smith
- Department of Physics, King’s College London, The Strand, London WC2R 2LS, UK
| | - Beth McGill
- Department of of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
| | - Skye Marshall
- Department of of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
| | - Jemma L. Trick
- Department of Physics, King’s College London, The Strand, London WC2R 2LS, UK
| | - Andrei P. Chumakov
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Charles Peter Winlove
- Department of of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
| | - Oleg V. Konovalov
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Christian D. Lorenz
- Department of Physics, King’s College London, The Strand, London WC2R 2LS, UK
| | - Peter G. Petrov
- Department of of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
| |
Collapse
|
18
|
Liu Y, Yang X, Xiao F, Jie F, Zhang Q, Liu Y, Xiao H, Lu B. Dietary cholesterol oxidation products: Perspectives linking food processing and storage with health implications. Compr Rev Food Sci Food Saf 2021; 21:738-779. [PMID: 34953101 DOI: 10.1111/1541-4337.12880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/23/2022]
Abstract
Dietary cholesterol oxidation products (COPs) are heterogeneous compounds formed during the processing and storage of cholesterol-rich foods, such as seafood, meat, eggs, and dairy products. With the increased intake of COPs-rich foods, the concern about health implications of dietary COPs is rising. Dietary COPs may exert deleterious effects on human health to induce several inflammatory diseases including atherosclerosis, neurodegenerative diseases, and inflammatory bowel diseases. Thus, knowledge regarding the effects of processing and storage conditions leading to formation of COPs is needed to reduce the levels of COPs in foods. Efficient methodologies to determine COPs in foods are also essential. More importantly, the biological roles of dietary COPs in human health and effects of phytochemicals on dietary COPs-induced diseases need to be established. This review summarizes the recent information on dietary COPs including their formation in foods during their processing and storage, analytical methods of determination of COPs, metabolic fate, implications for human health, and beneficial interventions by phytochemicals. The formation of COPs is largely dependent on the heating temperature, storage time, and food matrices. Alteration of food processing and storage conditions is one of the potent strategies to restrict hazardous dietary COPs from forming, including maintaining relatively low temperatures, shorter processing or storage time, and the appropriate addition of antioxidants. Once absorbed into the circulation, dietary COPs can contribute to the progression of several inflammatory diseases, where the absorbed dietary COPs may induce inflammation, apoptosis, and autophagy in cells in the target organs or tissues. Improved intake of phytochemicals may be an effective strategy to reduce the hazardous effects of dietary COPs.
Collapse
Affiliation(s)
- Yan Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Xuan Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Fan Xiao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Fan Jie
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Qinjun Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Yuqi Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Hang Xiao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
19
|
Ayee MAA, Levitan I. Lipoprotein-Induced Increases in Cholesterol and 7-Ketocholesterol Result in Opposite Molecular-Scale Biophysical Effects on Membrane Structure. Front Cardiovasc Med 2021; 8:715932. [PMID: 34336964 PMCID: PMC8322651 DOI: 10.3389/fcvm.2021.715932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Under hypercholesterolemic conditions, exposure of cells to lipoproteins results in a subtle membrane increase in the levels of cholesterol and 7-ketocholesterol, as compared to normal conditions. The effect of these physiologically relevant concentration increases on multicomponent bilayer membranes was investigated using coarse-grained molecular dynamics simulations. Significant changes in the structural and dynamic properties of the bilayer membranes resulted from these subtle increases in sterol levels, with both sterol species inducing decreases in the lateral area and inhibiting lateral diffusion to varying extents. Cholesterol and 7-ketocholesterol, however, exhibited opposite effects on lipid packing and orientation. The results from this study indicate that the subtle increases in membrane sterol levels induced by exposure to lipoproteins result in molecular-scale biophysical perturbation of membrane structure.
Collapse
Affiliation(s)
- Manuela A A Ayee
- Department of Engineering, Dordt University, Sioux Center, IA, United States
| | - Irena Levitan
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
20
|
Gianazza E, Brioschi M, Martinez Fernandez A, Casalnuovo F, Altomare A, Aldini G, Banfi C. Lipid Peroxidation in Atherosclerotic Cardiovascular Diseases. Antioxid Redox Signal 2021; 34:49-98. [PMID: 32640910 DOI: 10.1089/ars.2019.7955] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Atherosclerotic cardiovascular diseases (ACVDs) continue to be a primary cause of mortality worldwide in adults aged 35-70 years, occurring more often in countries with lower economic development, and they constitute an ever-growing global burden that has a considerable socioeconomic impact on society. The ACVDs encompass diverse pathologies such as coronary artery disease and heart failure (HF), among others. Recent Advances: It is known that oxidative stress plays a relevant role in ACVDs and some of its effects are mediated by lipid oxidation. In particular, lipid peroxidation (LPO) is a process under which oxidants such as reactive oxygen species attack unsaturated lipids, generating a wide array of oxidation products. These molecules can interact with circulating lipoproteins, to diffuse inside the cell and even to cross biological membranes, modifying target nucleophilic sites within biomolecules such as DNA, lipids, and proteins, and resulting in a plethora of biological effects. Critical Issues: This review summarizes the evidence of the effect of LPO in the development and progression of atherosclerosis-based diseases, HF, and other cardiovascular diseases, highlighting the role of protein adduct formation. Moreover, potential therapeutic strategies targeted at lipoxidation in ACVDs are also discussed. Future Directions: The identification of valid biomarkers for the detection of lipoxidation products and adducts may provide insights into the improvement of the cardiovascular risk stratification of patients and the development of therapeutic strategies against the oxidative effects that can then be applied within a clinical setting.
Collapse
Affiliation(s)
- Erica Gianazza
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| | - Maura Brioschi
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| | | | | | | | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Cristina Banfi
- Proteomics Unit, Monzino Cardiology Center IRCCS, Milan, Italy
| |
Collapse
|
21
|
Luchetti F, Crinelli R, Nasoni MG, Benedetti S, Palma F, Fraternale A, Iuliano L. LDL receptors, caveolae and cholesterol in endothelial dysfunction: oxLDLs accomplices or victims? Br J Pharmacol 2020; 178:3104-3114. [PMID: 32986849 DOI: 10.1111/bph.15272] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/29/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
Oxidized LDLs (oxLDLs) and oxysterols play a key role in endothelial dysfunction and the development of atherosclerosis. The loss of vascular endothelium function negatively impacts vasomotion, cell growth, adhesiveness and barrier functions. While for some of these disturbances, a reasonable explanation can be provided from a mechanistic standpoint, for many others, the molecular mediators that are involved are unknown. Caveolae, specific plasma membrane domains, have recently emerged as targets and mediators of oxLDL-induced endothelial dysfunction. Caveolae and their associated protein caveolin-1 (Cav-1) are involved in oxLDLs/LDLs transcytosis, mainly through the scavenger receptor class B type 1 (SR-B1 or SCARB1). In contrast, oxLDLs endocytosis is mediated by the lectin-like oxidized LDL receptor 1 (LOX-1), whose activity depends on an intact caveolae system. In addition, LOX-1 regulates the expression of Cav-1 and vice versa. On the other hand, oxLDLs may affect cholesterol plasma membrane content/distribution thus influencing caveolae architecture, Cav-1 localization and the associated signalling. Overall, the evidence indicate that caveolae have both active and passive roles in oxLDL-induced endothelial cell dysfunction. First, as mediators of lipid uptake and transfer in the subendothelial space and, later, as targets of changes in composition/dynamics of plasma membrane lipids resulting from increased levels of circulating oxLDLs. Gaining a better understanding of how oxLDLs interact with endothelial cells and modulate caveolae-mediated signalling pathways, leading to endothelial dysfunction, is crucial to find new targets for intervention to tackle atherosclerosis and the related clinical entities. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Francesca Luchetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Rita Crinelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Maria Gemma Nasoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Serena Benedetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Francesco Palma
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | | | - Luigi Iuliano
- Department of Medico-Surgical Sciences and Biotechnologies Vascular Biology, Atherothrombosis & Mass Spectrometry, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
22
|
Liebman C, McColloch A, Rabiei M, Bowling A, Cho M. Mechanics of the cell: Interaction mechanisms and mechanobiological models. CURRENT TOPICS IN MEMBRANES 2020; 86:143-184. [PMID: 33837692 DOI: 10.1016/bs.ctm.2020.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The importance of cell mechanics has long been recognized for the cell development and function. Biomechanics plays an important role in cell metabolism, regulation of mechanotransduction pathways and also modulation of nuclear response. The mechanical properties of the cell are likely determined by, among many others, the cytoskeleton elasticity, membrane tension and cell-substrate adhesion. This coordinated but complex mechanical interplay is required however, for the cell to respond to and influence in a reciprocal manner the chemical and mechanical signals from the extracellular matrix (ECM). In an effort to better and more fully understand the cell mechanics, the role of nuclear mechanics has emerged as an important contributor to the overall cellular mechanics. It is not too difficult to appreciate the physical connection between the nucleus and the cytoskeleton network that may be connected to the ECM through the cell membrane. Transmission of forces from ECM through this connection is essential for a wide range of cellular behaviors and functions such as cytoskeletal reorganization, nuclear movement, cell migration and differentiation. Unlike the cellular mechanics that can be measured using a number of biophysical techniques that were developed in the past few decades, it still remains a daunting challenge to probe the nuclear mechanics directly. In this paper, we therefore aim to provide informative description of the cell membrane and cytoskeleton mechanics, followed by unique computational modeling efforts to elucidate the nucleus-cytoskeleton coupling. Advances in our knowledge of complete cellular biomechanics and mechanotransduction may lead to clinical relevance and applications in mechano-diseases such as atherosclerosis, stem cell-based therapies, and the development of tissue engineered products.
Collapse
Affiliation(s)
- Caleb Liebman
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Andrew McColloch
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Manoochehr Rabiei
- Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, TX, United States
| | - Alan Bowling
- Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, TX, United States.
| | - Michael Cho
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States.
| |
Collapse
|
23
|
Le Master E, Ahn SJ, Levitan I. Mechanisms of endothelial stiffening in dyslipidemia and aging: Oxidized lipids and shear stress. CURRENT TOPICS IN MEMBRANES 2020; 86:185-215. [PMID: 33837693 PMCID: PMC8168803 DOI: 10.1016/bs.ctm.2020.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Vascular stiffening of the arterial walls is well-known as a key factor in aging and the development of cardiovascular disease; however, the role of endothelial stiffness in vascular dysfunction is still an emerging topic. In this review, the authors discuss the impact of dyslipidemia, oxidized lipids, substrate stiffness, age and pro-atherogenic disturbed flow have on endothelial stiffness. Furthermore, we investigate several mechanistic pathways that are key contributors in endothelial stiffness and discuss their physiological effects in the onset of atherogenesis in the disturbed flow regions of the aortic vasculature. The findings in this chapter describe a novel paradigm of synergistic interaction of plasma dyslipidemia/oxidized lipids and pro-atherogenic disturbed shear stress, as well as aging has on endothelial stiffness and vascular dysfunction.
Collapse
Affiliation(s)
- Elizabeth Le Master
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Sang Joon Ahn
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Irena Levitan
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
24
|
Ayee MAA, Bunker BC, De Groot JL. Membrane modulatory effects of omega-3 fatty acids: Analysis of molecular level interactions. CURRENT TOPICS IN MEMBRANES 2020; 86:57-81. [PMID: 33837698 DOI: 10.1016/bs.ctm.2020.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioactive omega-3 polyunsaturated fatty acids have been shown to reduce the risk of death in patients with cardiovascular disease and alleviate the symptoms of other inflammatory diseases. However, the mechanisms of action of these effects remain unclear. It has been postulated that omega-3 polyunsaturated fatty acids modify cell membranes by incorporation into the membrane and altering the signaling properties of cellular receptors. In this chapter, we explore the effects of omega-3 polyunsaturated fatty acids on cell membrane structure and function. We present a review of the current evidence for the health benefits of these compounds and explore the molecular mechanisms through which omega-3 polyunsaturated fatty acids interact with membrane lipids and modulate bilayer structure. Using computational models of multicomponent phospholipid bilayers, we assess the consequences of incorporation of these fatty acids on membrane lipid packing, water permeation, and membrane structure.
Collapse
Affiliation(s)
- Manuela A A Ayee
- Department of Engineering, Dordt University, Sioux Center, IA, United States.
| | - Brendan C Bunker
- Department of Engineering, Dordt University, Sioux Center, IA, United States
| | - Jordan L De Groot
- Department of Engineering, Dordt University, Sioux Center, IA, United States
| |
Collapse
|
25
|
Le Master E, Levitan I. Endothelial stiffening in dyslipidemia. Aging (Albany NY) 2020; 11:299-300. [PMID: 30674709 PMCID: PMC6366977 DOI: 10.18632/aging.101778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/15/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Elizabeth Le Master
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Irena Levitan
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
26
|
Bogachkov YY, Chen L, Le Master E, Fancher IS, Zhao Y, Aguilar V, Oh MJ, Wary KK, DiPietro LA, Levitan I. LDL induces cholesterol loading and inhibits endothelial proliferation and angiogenesis in Matrigels: correlation with impaired angiogenesis during wound healing. Am J Physiol Cell Physiol 2020; 318:C762-C776. [PMID: 31995410 DOI: 10.1152/ajpcell.00495.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Hypercholesterolemia is a major risk factor for adverse cardiovascular outcomes, but its effect on angiogenesis and wound healing is not well understood. In this study, using a combination of mass spectrometry and laurdan two-photon imaging, we show that elevated levels of low-density lipoprotein (LDL), like those seen in hypercholesterolemic patients, lead to an increase in both free cholesterol and cholesterol esters, as well as increase in lipid order of endothelial cell membranes. Notably, these effects are distinct and opposite to the lack of cholesterol loading and the disruption of lipid order observed in our earlier studies in response to oxidized LDL (oxLDL). The same pathological level of LDL leads to a significant inhibition of endothelial proliferation and cell cycle arrest in G2/M phase, whereas oxLDL enhances endothelial proliferation in S phase of the cycle. LDL but not oxLDL suppresses the expression of vascular endothelial growth factor receptor-2 while enhancing the expression of vascular endothelial growth factor (VEGF). Furthermore, we show that aged (8-10 mo) hypercholesterolemic apolipoprotein E-deficient (ApoE-/-) mice display delayed wound closure compared with age-matched C57/BL6 wild-type controls following a skin punch biopsy. The delay in wound healing is associated with a decreased expression of cluster of differentiation 31 platelet endothelial cell adhesion molecule endothelial marker and decreased angiogenesis within the wound bed. Furthermore, decreased endothelial responsiveness to the growth factors VEGF and basic fibroblast growth factor is observed in ApoE-/- mice in Matrigel plugs and in Matrigels with high levels of LDL in wild-type mice. We propose that plasma hypercholesterolemia is antiangiogenic due to elevated levels of LDL.
Collapse
Affiliation(s)
- Yedida Y Bogachkov
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois.,Department of Cellular and Molecular Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| | - Elizabeth Le Master
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Ibra S Fancher
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Yan Zhao
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| | - Victor Aguilar
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Myung-Jin Oh
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Kishore K Wary
- Department of Cellular and Molecular Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Luisa A DiPietro
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| | - Irena Levitan
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois.,Department of Cellular and Molecular Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
27
|
Couto NF, Rezende L, Fernandes-Braga W, Alves AP, Agero U, Alvarez-Leite J, Damasceno NRT, Castro-Gomes T, Andrade LO. OxLDL alterations in endothelial cell membrane dynamics leads to changes in vesicle trafficking and increases cell susceptibility to injury. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183139. [PMID: 31812625 DOI: 10.1016/j.bbamem.2019.183139] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/14/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
Abstract
Plasma membrane repair (PMR) is an important process for cell homeostasis, especially for cells under constant physical stress. Repair involves a sequence of Ca2+-dependent events, including lysosomal exocytosis and subsequent compensatory endocytosis. Cholesterol sequestration from plasma membrane causes actin cytoskeleton reorganization and polymerization, increasing cell stiffness, which leads to exocytosis and reduction of a peripheral pool of lysosomes involved in PMR. These changes in mechanical properties are similar to those observed in cells exposed to oxidized Low Density Lipoprotein (oxLDL), a key molecule during atherosclerosis development. Using a human umbilical vein endothelial cell line (EAhY926) we evaluated the influence of mechanical modulation induced by oxLDL in PMR and its effect in endothelial fragility. Similar to MβCD (a drug capable of sequestering cholesterol) treatment, oxLDL exposure led to actin reorganization and de novo polymerization, as well as an increase in cell rigidity and lysosomal exocytosis. Additionally, for both MβCD and oxLDL treated cells, there was an initial increase in endocytic events, likely triggered by the peak of exocytosis induced by both treatments. However, no further endocytic events were observed, suggesting that constitutive endocytosis is blocked upon treatment and that the reorganized cytoskeleton function as a mechanical barrier to membrane traffic. Finally, the increase in cell rigidity renders cells more prone to mechanical injury. Together, these data show that mechanical modulation induced by oxLDL exposure not only alters membrane traffic in cells, but also makes them more susceptible to mechanical injury, which may likely contribute to the initial steps of atherosclerosis development.
Collapse
Affiliation(s)
- Natália Fernanda Couto
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luisa Rezende
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Weslley Fernandes-Braga
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Paula Alves
- Department of Physics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ubirajara Agero
- Department of Physics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jacqueline Alvarez-Leite
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Thiago Castro-Gomes
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luciana O Andrade
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
28
|
Targosz-Korecka M, Wnętrzak A, Chachaj-Brekiesz A, Gonet-Surówka A, Kubisiak A, Filiczkowska A, Szymoński M, Dynarowicz-Latka P. Effect of selected B-ring-substituted oxysterols on artificial model erythrocyte membrane and isolated red blood cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183067. [PMID: 31634445 DOI: 10.1016/j.bbamem.2019.183067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/19/2019] [Accepted: 09/11/2019] [Indexed: 01/24/2023]
Abstract
In this paper, systematic studies concerning the influence of selected oxysterols on the structure and fluidity of human erythrocyte membrane modeled as Langmuir monolayers have been performed. Three oxidized cholesterol derivatives, namely 7α-hydroxycholesterol (7α-OH) 7β-hydroxycholesterol (7β-OH) and 7-ketocholesterol (7-K) have been incorporated in two different proportions (10 and 50%) into artificial erythrocyte membrane, modeled as two-component (cholesterol:POPC) Langmuir monolayer. All the studied oxysterols were found to alter membrane fluidity and the effect was more pronounced for higher oxysterol content. 7α-OH increased membrane fluidity while opposite effect was observed for 7β-OH and 7-K. Experiments performed on model systems have been verified in biological studies on red blood cells (RBC). Consistent results have been found, i.e. under the influence of 7α-OH, the elasticity of erythrocytes increased, and in the presence of other investigated oxysterols - decreased. The strongest effect was noticed for 7-K. Change of membrane elasticity was associated with the change of erythrocytes shape, being most noticeable under the influence of 7-K.
Collapse
Affiliation(s)
- Marta Targosz-Korecka
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Anita Wnętrzak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Anna Chachaj-Brekiesz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | | | - Agata Kubisiak
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Anna Filiczkowska
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Marek Szymoński
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | | |
Collapse
|
29
|
Meech R, Hu DG, McKinnon RA, Mubarokah SN, Haines AZ, Nair PC, Rowland A, Mackenzie PI. The UDP-Glycosyltransferase (UGT) Superfamily: New Members, New Functions, and Novel Paradigms. Physiol Rev 2019; 99:1153-1222. [DOI: 10.1152/physrev.00058.2017] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UDP-glycosyltransferases (UGTs) catalyze the covalent addition of sugars to a broad range of lipophilic molecules. This biotransformation plays a critical role in elimination of a broad range of exogenous chemicals and by-products of endogenous metabolism, and also controls the levels and distribution of many endogenous signaling molecules. In mammals, the superfamily comprises four families: UGT1, UGT2, UGT3, and UGT8. UGT1 and UGT2 enzymes have important roles in pharmacology and toxicology including contributing to interindividual differences in drug disposition as well as to cancer risk. These UGTs are highly expressed in organs of detoxification (e.g., liver, kidney, intestine) and can be induced by pathways that sense demand for detoxification and for modulation of endobiotic signaling molecules. The functions of the UGT3 and UGT8 family enzymes have only been characterized relatively recently; these enzymes show different UDP-sugar preferences to that of UGT1 and UGT2 enzymes, and to date, their contributions to drug metabolism appear to be relatively minor. This review summarizes and provides critical analysis of the current state of research into all four families of UGT enzymes. Key areas discussed include the roles of UGTs in drug metabolism, cancer risk, and regulation of signaling, as well as the transcriptional and posttranscriptional control of UGT expression and function. The latter part of this review provides an in-depth analysis of the known and predicted functions of UGT3 and UGT8 enzymes, focused on their likely roles in modulation of levels of endogenous signaling pathways.
Collapse
Affiliation(s)
- Robyn Meech
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ross A. McKinnon
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Siti Nurul Mubarokah
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Alex Z. Haines
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Pramod C. Nair
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Andrew Rowland
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Peter I. Mackenzie
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| |
Collapse
|
30
|
Sun S, Adyshev D, Dudek S, Paul A, McColloch A, Cho M. Cholesterol-dependent Modulation of Stem Cell Biomechanics: Application to Adipogenesis. J Biomech Eng 2019; 141:2729412. [PMID: 30901381 DOI: 10.1115/1.4043253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Indexed: 11/08/2022]
Abstract
Cell mechanics has been shown to regulate stem cell differentiation. We have previously reported that altered cell stiffness of mesenchymal stem cells can delay or facilitate biochemically directed differentiation. One of the factors that can affect the cell stiffness is cholesterol. However, the effect of cholesterol on differentiation of human mesenchymal stem cells (hMSCs) remains elusive. In this paper, we demonstrate that cholesterol is involved in the modulation of the cell stiffness and subsequent adipogenic differentiation. Rapid cytoskeletal actin reorganization was evident and correlated with the cell's Young's modulus measured using atomic force microscopy (AFM). In addition, the level of membrane-bound cholesterol was found to increase during adipogenic differentiation and inversely varied with the cell stiffness. Furthermore, cholesterol played a key role in the regulation of the cell morphology and biomechanics, suggesting its crucial involvement in mechanotransduction. To better understand the underlying mechanisms, we investigated the effect of cholesterol on the membrane-cytoskeleton linker proteins (ezrin and moesin). Cholesterol depletion was found to up-regulate the ezrin expression which promoted cell spreading, increased Young's modulus, and hindered adipogenesis. In contrast, cholesterol enrichment increased the moesin expression, decreased Young's modulus, and induced cell rounding and facilitated adipogenesis. Taken together, cholesterol appears to regulate the stem cell mechanics and adipogenesis through the membrane-associated linker proteins.
Collapse
Affiliation(s)
- Shan Sun
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607
| | - Djanybek Adyshev
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60607
| | - Steve Dudek
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60607
| | - Amit Paul
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607
| | - Andrew McColloch
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019
| | - Michael Cho
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019
| |
Collapse
|
31
|
Ayee MA, Levitan I. Membrane Stiffening in Osmotic Swelling: Analysis of Membrane Tension and Elastic Modulus. CURRENT TOPICS IN MEMBRANES 2018; 81:97-123. [PMID: 30243442 PMCID: PMC6588289 DOI: 10.1016/bs.ctm.2018.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The effects of osmotic swelling on key cellular biomechanical properties are explored in this chapter. We present the governing equations and theoretical backgrounds of the models employed to estimate cell membrane tension and elastic moduli from experimental methods, and provide a summary of the prevailing experimental approaches used to obtain these biomechanical parameters. A detailed analysis of the current evidence of the effects of osmotic swelling on membrane tension and elastic moduli is provided. Briefly, due to the buffering effect of unfolding membrane reservoirs, mild hypotonic swelling does not change membrane tension or the adhesion of the membrane to the underlying cytoskeleton. Conversely, osmotic swelling causes the cell membrane envelope to stiffen, measured as an increase in the membrane elastic modulus.
Collapse
Affiliation(s)
| | - Irena Levitan
- University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
32
|
Le Master E, Huang RT, Zhang C, Bogachkov Y, Coles C, Shentu TP, Sheng Y, Fancher IS, Ng C, Christoforidis T, Subbaiah PV, Berdyshev E, Qain Z, Eddington DT, Lee J, Cho M, Fang Y, Minshall RD, Levitan I. Proatherogenic Flow Increases Endothelial Stiffness via Enhanced CD36-Mediated Uptake of Oxidized Low-Density Lipoproteins. Arterioscler Thromb Vasc Biol 2018; 38:64-75. [PMID: 29025707 PMCID: PMC5746473 DOI: 10.1161/atvbaha.117.309907] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Disturbed flow (DF) is well-known to induce endothelial dysfunction and synergistically with plasma dyslipidemia facilitate plaque formation. Little is known, however, about the synergistic impact of DF and dyslipidemia on endothelial biomechanics. Our goal was to determine the impact of DF on endothelial stiffness and evaluate the role of dyslipidemia/oxLDL (oxidized low-density lipoprotein) in this process. APPROACH AND RESULTS Endothelial elastic modulus of intact mouse aortas ex vivo and of human aortic endothelial cells exposed to laminar flow or DF was measured using atomic force microscopy. Endothelial monolayer of the aortic arch is found to be significantly stiffer than the descending aorta (4.2+1.1 versus 2.5+0.2 kPa for aortic arch versus descending aorta) in mice maintained on low-fat diet. This effect is significantly exacerbated by short-term high-fat diet (8.7+2.5 versus 4.5+1.2 kPa for aortic arch versus descending aorta). Exposure of human aortic endothelial cells to DF in vitro resulted in 50% increase in oxLDL uptake and significant endothelial stiffening in the presence but not in the absence of oxLDL. DF also increased the expression of oxLDL receptor CD36 (cluster of differentiation 36), whereas downregulation of CD36 abrogated DF-induced endothelial oxLDL uptake and stiffening. Furthermore, genetic deficiency of CD36 abrogated endothelial stiffening in the aortic arch in vivo in mice fed either low-fat diet or high-fat diet. We also show that the loss of endothelial stiffening in CD36 knockout aortas is not mediated by the loss of CD36 in circulating cells. CONCLUSIONS DF facilitates endothelial CD36-dependent uptake of oxidized lipids resulting in local increase of endothelial stiffness in proatherogenic areas of the aorta.
Collapse
Affiliation(s)
- Elizabeth Le Master
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Ru-Ting Huang
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Chongxu Zhang
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Yedida Bogachkov
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Cassandre Coles
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Tzu-Pin Shentu
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Yue Sheng
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Ibra S Fancher
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Carlos Ng
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Theodore Christoforidis
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Pappasani V Subbaiah
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Evgeny Berdyshev
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Zhijian Qain
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - David T Eddington
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - James Lee
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Michael Cho
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Yun Fang
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Richard D Minshall
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.)
| | - Irena Levitan
- From the Division of Pulmonary and Critical Care (E.L.M., C.Z., T.-P.S., I.S.F., I.L.), Division of Endocrinology (P.V.S.), Division of Hematology and Oncology, Department of Medicine (Y.S., Z.Q.), and Departments of Bioengineering (E.L.M., T.-P.S., C.N., T.C., D.T.E., J.L., M.C., I.L.), Pharmacology (Y.B., C.C., R.D.M., I.L.), and Anesthesiology (R.D.M.), University of Illinois at Chicago; Department of Medicine, University of Chicago, IL (R.-T.H., Y.F.); and Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO (E.B.).
| |
Collapse
|
33
|
Current knowledge on the mechanism of atherosclerosis and pro-atherosclerotic properties of oxysterols. Lipids Health Dis 2017; 16:188. [PMID: 28969682 PMCID: PMC5625595 DOI: 10.1186/s12944-017-0579-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/22/2017] [Indexed: 01/22/2023] Open
Abstract
Due to the fact that one of the main causes of worldwide deaths are directly related to atherosclerosis, scientists are constantly looking for atherosclerotic factors, in an attempt to reduce prevalence of this disease. The most important known pro-atherosclerotic factors include: elevated levels of LDL, low HDL levels, obesity and overweight, diabetes, family history of coronary heart disease and cigarette smoking. Since finding oxidized forms of cholesterol – oxysterols – in lesion in the arteries, it has also been presumed they possess pro-atherosclerotic properties. The formation of oxysterols in the atherosclerosis lesions, as a result of LDL oxidation due to the inflammatory response of cells to mechanical stress, is confirmed. However, it is still unknown, what exactly oxysterols cause in connection with atherosclerosis, after gaining entry to the human body e.g., with food containing high amounts of cholesterol, after being heated. The in vivo studies should provide data to finally prove or disprove the thesis regarding the pro-atherosclerotic prosperities of oxysterols, yet despite dozens of available in vivo research some studies confirm such properties, other disprove them. In this article we present the current knowledge about the mechanism of formation of atherosclerotic lesions and we summarize available data on in vivo studies, which investigated whether oxysterols have properties to cause the formation and accelerate the progress of the disease. Additionally we will try to discuss why such different results were obtained in all in vivo studies.
Collapse
|
34
|
Gargiulo S, Testa G, Gamba P, Staurenghi E, Poli G, Leonarduzzi G. Oxysterols and 4-hydroxy-2-nonenal contribute to atherosclerotic plaque destabilization. Free Radic Biol Med 2017; 111:140-150. [PMID: 28057601 DOI: 10.1016/j.freeradbiomed.2016.12.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/22/2016] [Accepted: 12/24/2016] [Indexed: 12/31/2022]
Abstract
A growing bulk of evidence suggests that cholesterol oxidation products, known as oxysterols, and 4-hydroxy-2-nonenal (HNE), the major proatherogenic components of oxidized low density lipoproteins (oxLDLs), significantly contribute to atherosclerotic plaque progression and destabilization, with eventual plaque rupture. These oxidized lipids are involved in various key steps of this complex process, mainly thanks to their ability to induce inflammation, oxidative stress, and apoptosis. This review summarizes the current knowledge of the effects induced by these compounds on vascular cells, after their accumulation in the arterial wall and in the atherosclerotic plaque.
Collapse
Affiliation(s)
- Simona Gargiulo
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Paola Gamba
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Erica Staurenghi
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy.
| |
Collapse
|
35
|
Ferreira GS, Pinto PR, Iborra RT, Del Bianco V, Santana MFM, Nakandakare ER, Nunes VS, Negrão CE, Catanozi S, Passarelli M. Aerobic Exercise Training Selectively Changes Oxysterol Levels and Metabolism Reducing Cholesterol Accumulation in the Aorta of Dyslipidemic Mice. Front Physiol 2017; 8:644. [PMID: 28928671 PMCID: PMC5591863 DOI: 10.3389/fphys.2017.00644] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/15/2017] [Indexed: 12/11/2022] Open
Abstract
Background: Oxysterols are bioactive lipids that control cellular cholesterol synthesis, uptake, and exportation besides mediating inflammation and cytotoxicity that modulate the development of atherosclerosis. Aerobic exercise training (AET) prevents and regresses atherosclerosis by the improvement of lipid metabolism, reverse cholesterol transport (RCT) and antioxidant defenses in the arterial wall. We investigated in dyslipidemic mice the role of a 6-week AET program in the content of plasma and aortic arch cholesterol and oxysterols, the expression of genes related to cholesterol flux and the effect of the exercise-mimetic AICAR, an AMPK activator, in macrophage oxysterols concentration. Methods: Sixteen-week old male apo E KO mice fed a chow diet were included in the protocol. Animals were trained in a treadmill running, 15 m/min, 5 days/week, for 60 min (T; n = 29). A control group was kept sedentary (S; n = 32). Plasma lipids and glucose were determined by enzymatic techniques and glucometer, respectively. Cholesterol and oxysterols in aortic arch and macrophages were measured by gas chromatography/mass spectrometry. The expression of genes involved in lipid metabolism was determined by RT-qPCR. The effect of AMPK in oxysterols metabolism was determined in J774 macrophages treated with 0.25 mM AICAR. Results: Body weight and plasma TC, TG, HDL-c, glucose, and oxysterols were similar between groups. As compared to S group, AET enhanced 7β-hydroxycholesterol (70%) and reduced cholesterol (32%) in aorta. In addition, exercise increased Cyp27a1 (54%), Cd36 (75%), Cat (70%), Prkaa1 (40%), and Prkaa2 (51%) mRNA. In macrophages, the activation of AMPK followed by incubation with HDL2 increased Abca1 (52%) and Cd36 (220%) and decrease Prkaa1 (19%), Cyp27a1 (47%) and 7α-hydroxycholesterol level. Conclusion: AET increases 7β-hydroxycholesterol in the aortic arch of dyslipidemic mice, which is related to the enhanced expression of Cd36. In addition, the increase and reduction of Cyp27a1 and Cyp7b1 in trained mice may contribute to enhance levels of 27-OH C. Both oxysterols may act as an alternative pathway for the RCT contributing to the reduction of cholesterol in the aortic arch preventing atherogenesis.
Collapse
Affiliation(s)
- Guilherme Silva Ferreira
- Laboratorio de Lipides, Laboratorio de Investigaçao Medica - 10 (LIM-10), Hospital das Clinicas (HCFMUSP), Faculdade de Medicina, Universidade de Sao PauloSao Paulo, Brazil
| | - Paula R Pinto
- Laboratorio de Lipides, Laboratorio de Investigaçao Medica - 10 (LIM-10), Hospital das Clinicas (HCFMUSP), Faculdade de Medicina, Universidade de Sao PauloSao Paulo, Brazil
| | - Rodrigo T Iborra
- Laboratorio de Lipides, Laboratorio de Investigaçao Medica - 10 (LIM-10), Hospital das Clinicas (HCFMUSP), Faculdade de Medicina, Universidade de Sao PauloSao Paulo, Brazil
| | - Vanessa Del Bianco
- Laboratorio de Lipides, Laboratorio de Investigaçao Medica - 10 (LIM-10), Hospital das Clinicas (HCFMUSP), Faculdade de Medicina, Universidade de Sao PauloSao Paulo, Brazil
| | - Monique Fátima Mello Santana
- Laboratorio de Lipides, Laboratorio de Investigaçao Medica - 10 (LIM-10), Hospital das Clinicas (HCFMUSP), Faculdade de Medicina, Universidade de Sao PauloSao Paulo, Brazil
| | - Edna Regina Nakandakare
- Laboratorio de Lipides, Laboratorio de Investigaçao Medica - 10 (LIM-10), Hospital das Clinicas (HCFMUSP), Faculdade de Medicina, Universidade de Sao PauloSao Paulo, Brazil
| | - Valéria S Nunes
- Laboratorio de Lipides, Laboratorio de Investigaçao Medica - 10 (LIM-10), Hospital das Clinicas (HCFMUSP), Faculdade de Medicina, Universidade de Sao PauloSao Paulo, Brazil
| | - Carlos E Negrão
- Unidade de Reabilitação Cardiovascular e Fisiologia do Exercício, Instituto do Coração InCor da Faculdade de Medicina, Universidade de São PauloSão Paulo, Brazil
| | - Sergio Catanozi
- Laboratorio de Lipides, Laboratorio de Investigaçao Medica - 10 (LIM-10), Hospital das Clinicas (HCFMUSP), Faculdade de Medicina, Universidade de Sao PauloSao Paulo, Brazil
| | - Marisa Passarelli
- Laboratorio de Lipides, Laboratorio de Investigaçao Medica - 10 (LIM-10), Hospital das Clinicas (HCFMUSP), Faculdade de Medicina, Universidade de Sao PauloSao Paulo, Brazil
| |
Collapse
|
36
|
Luchetti F, Crinelli R, Cesarini E, Canonico B, Guidi L, Zerbinati C, Di Sario G, Zamai L, Magnani M, Papa S, Iuliano L. Endothelial cells, endoplasmic reticulum stress and oxysterols. Redox Biol 2017; 13:581-587. [PMID: 28783588 PMCID: PMC5545768 DOI: 10.1016/j.redox.2017.07.014] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/21/2017] [Accepted: 07/28/2017] [Indexed: 12/13/2022] Open
Abstract
Oxysterols are bioactive lipids that act as regulators of lipid metabolism, inflammation, cell viability and are involved in several diseases, including atherosclerosis. Mounting evidence linked the atherosclerosis to endothelium dysfunction; in fact, the endothelium regulates the vascular system with roles in processes such as hemostasis, cell cholesterol, hormone trafficking, signal transduction and inflammation. Several papers shed light the ability of oxysterols to induce apoptosis in different cell lines including endothelial cells. Apoptotic endothelial cell and endothelial denudation may constitute a critical step in the transition to plaque erosion and vessel thrombosis, so preventing the endothelial damaged has garnered considerable attention as a novel means of treating atherosclerosis. Endoplasmic reticulum (ER) is the site where the proteins are synthetized and folded and is necessary for most cellular activity; perturbations of ER homeostasis leads to a condition known as endoplasmic reticulum stress. This condition evokes the unfolded protein response (UPR) an adaptive pathway that aims to restore ER homeostasis. Mounting evidence suggests that chronic activation of UPR leads to cell dysfunction and death and recently has been implicated in pathogenesis of endothelial dysfunction. Autophagy is an essential catabolic mechanism that delivers misfolded proteins and damaged organelles to the lysosome for degradation, maintaining basal levels of autophagic activity it is critical for cell survival. Several evidence suggests that persistent ER stress often results in stimulation of autophagic activities, likely as a compensatory mechanism to relieve ER stress and consequently cell death. In this review, we summarize evidence for the effect of oxysterols on endothelial cells, especially focusing on oxysterols-mediated induction of endoplasmic reticulum stress. Endothelial cells dysfunction is critical in the process of atherothrombosis. Endoplasmic reticulum stress is a key component in endothelial cell dysfunction. Oxysterols are oxidation products of cholesterol found in atherosclerosis lesions. Oxysterols are potential modulators of endoplasmic reticulum stress.
Collapse
Affiliation(s)
- F Luchetti
- Departments of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| | - R Crinelli
- Departments of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - E Cesarini
- Departments of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - B Canonico
- Departments of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - L Guidi
- Departments of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - C Zerbinati
- Department of Medico-Surgical Sciences and Biotechnologies Vascular Biology, Atherothrombosis & Mass Spectrometry, Sapienza University of Rome, Latina, Italy
| | - G Di Sario
- Departments of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - L Zamai
- Departments of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - M Magnani
- Departments of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - S Papa
- Departments of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - L Iuliano
- Department of Medico-Surgical Sciences and Biotechnologies Vascular Biology, Atherothrombosis & Mass Spectrometry, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
37
|
Zhang C, Adamos C, Oh MJ, Baruah J, Ayee MAA, Mehta D, Wary KK, Levitan I. oxLDL induces endothelial cell proliferation via Rho/ROCK/Akt/p27 kip1 signaling: opposite effects of oxLDL and cholesterol loading. Am J Physiol Cell Physiol 2017; 313:C340-C351. [PMID: 28701359 DOI: 10.1152/ajpcell.00249.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 12/19/2022]
Abstract
Oxidized modifications of LDL (oxLDL) play a key role in the development of endothelial dysfunction and atherosclerosis. However, the underlying mechanisms of oxLDL-mediated cellular behavior are not completely understood. Here, we compared the effects of two major types of oxLDL, copper-oxidized LDL (Cu2+-oxLDL) and lipoxygenase-oxidized LDL (LPO-oxLDL), on proliferation of human aortic endothelial cells (HAECs). Cu2+-oxLDL enhanced HAECs' proliferation in a dose- and degree of oxidation-dependent manner. Similarly, LPO-oxLDL also enhanced HAEC proliferation. Mechanistically, both Cu2+-oxLDL and LPO-oxLDL enhance HAEC proliferation via activation of Rho, Akt phosphorylation, and a decrease in the expression of cyclin-dependent kinase inhibitor 1B (p27kip1). Both Cu2+-oxLDL or LPO-oxLDL significantly increased Akt phosphorylation, whereas an Akt inhibitor, MK2206, blocked oxLDL-induced increase in HAEC proliferation. Blocking Rho with C3 or its downstream target ROCK with Y27632 significantly inhibited oxLDL-induced Akt phosphorylation and proliferation mediated by both Cu2+- and LPO-oxLDL. Activation of RhoA was blocked by Rho-GDI-1, which also abrogated oxLDL-induced Akt phosphorylation and HAEC proliferation. In contrast, blocking Rac1 in these cells had no effect on oxLDL-induced Akt phosphorylation or cell proliferation. Moreover, oxLDL-induced Rho/Akt signaling downregulated cell cycle inhibitor p27kip1 Preloading these cells with cholesterol, however, prevented oxLDL-induced Akt phosphorylation and HAEC proliferation. These findings provide a new understanding of the effects of oxLDL on endothelial proliferation, which is essential for developing new treatments against neovascularization and progression of atherosclerosis.
Collapse
Affiliation(s)
- Chongxu Zhang
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; and
| | - Crystal Adamos
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; and
| | - Myung-Jin Oh
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; and
| | - Jugajyoti Baruah
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Manuela A A Ayee
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; and
| | - Dolly Mehta
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Kishore K Wary
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Irena Levitan
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; and
| |
Collapse
|
38
|
Ayee MAA, LeMaster E, Shentu TP, Singh DK, Barbera N, Soni D, Tiruppathi C, Subbaiah PV, Berdyshev E, Bronova I, Cho M, Akpa BS, Levitan I. Molecular-Scale Biophysical Modulation of an Endothelial Membrane by Oxidized Phospholipids. Biophys J 2017; 112:325-338. [PMID: 28122218 DOI: 10.1016/j.bpj.2016.12.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 12/31/2022] Open
Abstract
The influence of two bioactive oxidized phospholipids on model bilayer properties, membrane packing, and endothelial cell biomechanics was investigated computationally and experimentally. The truncated tail phospholipids, 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC) and 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC), are two major oxidation products of the unsaturated phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycero-phosphocholine. A combination of coarse-grained molecular dynamics simulations, Laurdan multiphoton imaging, and atomic force microscopy microindentation experiments was used to determine the impact of POVPC and PGPC on the structure of a multicomponent phospholipid bilayer and to assess the consequences of their incorporation on membrane packing and endothelial cell stiffness. Molecular simulations predicted differential bilayer perturbation effects of the two oxidized phospholipids based on the chemical identities of their truncated tails, including decreased bilayer packing, decreased bilayer bending modulus, and increased water penetration. Disruption of lipid order was consistent with Laurdan imaging results indicating that POVPC and PGPC decrease the lipid packing of both ordered and disordered membrane domains. Computational predictions of a larger membrane perturbation effect by PGPC correspond to greater stiffness of PGPC-treated endothelial cells observed by measuring cellular elastic moduli using atomic force microscopy. Our results suggest that disruptions in membrane structure by oxidized phospholipids play a role in the regulation of overall endothelial cell stiffness.
Collapse
Affiliation(s)
- Manuela A A Ayee
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Elizabeth LeMaster
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Tzu Pin Shentu
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Dev K Singh
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Nicolas Barbera
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Dheeraj Soni
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | | | - Papasani V Subbaiah
- Division of Endocrinology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | | | | | - Michael Cho
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Belinda S Akpa
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina
| | - Irena Levitan
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
39
|
Kulig W, Cwiklik L, Jurkiewicz P, Rog T, Vattulainen I. Cholesterol oxidation products and their biological importance. Chem Phys Lipids 2016; 199:144-160. [DOI: 10.1016/j.chemphyslip.2016.03.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 12/14/2022]
|
40
|
Guillemot-Legris O, Mutemberezi V, Muccioli GG. Oxysterols in Metabolic Syndrome: From Bystander Molecules to Bioactive Lipids. Trends Mol Med 2016; 22:594-614. [PMID: 27286741 DOI: 10.1016/j.molmed.2016.05.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 12/11/2022]
Abstract
Oxysterols are cholesterol metabolites now considered bona fide bioactive lipids. Recent studies have identified new receptors for oxysterols involved in immune and inflammatory processes, hence reviving their appeal. Through multiple receptors, oxysterols are involved in numerous metabolic and inflammatory processes, thus emerging as key mediators in metabolic syndrome. This syndrome is characterized by complex interactions between inflammation and a dysregulated metabolism. Presently, the use of synthetic ligands and genetic models has facilitated a better understanding of the roles of oxysterols in metabolism, but also raised interesting questions. We discuss recent findings on the absolute levels of oxysterols in tissues, their newly identified targets, and the mechanistic studies emphasizing their importance in metabolic disease, as there is a pressing need to further comprehend these intriguing bioactive lipids.
Collapse
Affiliation(s)
- Owein Guillemot-Legris
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Av. E.Mounier, 72 (B1.72.01), 1200 Bruxelles, Belgium
| | - Valentin Mutemberezi
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Av. E.Mounier, 72 (B1.72.01), 1200 Bruxelles, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Av. E.Mounier, 72 (B1.72.01), 1200 Bruxelles, Belgium.
| |
Collapse
|
41
|
Oh MJ, Zhang C, LeMaster E, Adamos C, Berdyshev E, Bogachkov Y, Kohler EE, Baruah J, Fang Y, Schraufnagel DE, Wary KK, Levitan I. Oxidized LDL signals through Rho-GTPase to induce endothelial cell stiffening and promote capillary formation. J Lipid Res 2016; 57:791-808. [PMID: 26989083 DOI: 10.1194/jlr.m062539] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Indexed: 12/26/2022] Open
Abstract
Endothelial biomechanics is emerging as a key factor in endothelial function. Here, we address the mechanisms of endothelial stiffening induced by oxidized LDL (oxLDL) and investigate the role of oxLDL in lumen formation. We show that oxLDL-induced endothelial stiffening is mediated by CD36-dependent activation of RhoA and its downstream target, Rho kinase (ROCK), via inhibition of myosin light-chain phosphatase (MLCP) and myosin light-chain (MLC)2 phosphorylation. The LC-MS/MS analysis identifies 7-ketocholesterol (7KC) as the major oxysterol in oxLDL. Similarly to oxLDL, 7KC induces RhoA activation, MLCP inhibition, and MLC2 phosphorylation resulting in endothelial stiffening. OxLDL also facilitates formation of endothelial branching networks in 3D collagen gels in vitro and induces increased formation of functional blood vessels in a Matrigel plug assay in vivo. Both effects are RhoA and ROCK dependent. An increase in lumen formation was also observed in response to pre-exposing the cells to 7KC, an oxysterol that induces endothelial stiffening, but not to 5α,6α epoxide that does not affect endothelial stiffness. Importantly, loading cells with cholesterol prevented oxLDL-induced RhoA activation and the downstream signaling cascade, and reversed oxLDL-induced lumen formation. In summary, we show that oxLDL-induced endothelial stiffening is mediated by the CD36/RhoA/ROCK/MLCP/MLC2 pathway and is associated with increased endothelial angiogenic activity.
Collapse
Affiliation(s)
- Myung-Jin Oh
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Chongxu Zhang
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Elizabeth LeMaster
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Crystal Adamos
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Evgeny Berdyshev
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Yedida Bogachkov
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Erin E Kohler
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL
| | - Jugajyoti Baruah
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL
| | - Yun Fang
- Department of Medicine, University of Chicago, Chicago, IL
| | - Dean E Schraufnagel
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Kishore K Wary
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL
| | - Irena Levitan
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
42
|
Gargiulo S, Gamba P, Testa G, Leonarduzzi G, Poli G. The role of oxysterols in vascular ageing. J Physiol 2016; 594:2095-113. [PMID: 26648329 DOI: 10.1113/jp271168] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/06/2015] [Indexed: 12/24/2022] Open
Abstract
The ageing endothelium progressively loses its remarkable and crucial ability to maintain homeostasis of the vasculature, as it acquires a proinflammatory phenotype. Cellular and structural changes gradually accumulate in the blood vessels, and markedly in artery walls. Most changes in aged arteries are comparable to those occurring during the atherogenic process, the latter being more marked: pro-oxidant and proinflammatory molecules, mainly deriving from or triggered by oxidized low density lipoproteins (oxLDLs), are undoubtedly a major driving force of this process. Oxysterols, quantitatively relevant components of oxLDLs, are likely candidate molecules in the pathogenesis of vascular ageing, because of their marked pro-oxidant, proinflammatory and proapoptotic properties. An increasing bulk of experimental data point to the contribution of a variety of oxysterols of pathophysiological interest, also in the age-related genesis of endothelium dysfunction, intimal thickening due to lipid accumulation, and smooth muscle cell migration and arterial stiffness due to increasing collagen deposition and calcification. This review provides an updated analysis of the molecular mechanisms whereby oxysterols accumulating in the wall of ageing blood vessels may 'activate' endothelial and monocytic cells, through expression of an inflammatory phenotype, and 'convince' smooth muscle cells to proliferate, migrate and, above all, to act as fibroblast-like cells.
Collapse
Affiliation(s)
- Simona Gargiulo
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Paola Gamba
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, 10043 Orbassano, Torino, Italy
| |
Collapse
|
43
|
Ampuero J, Romero-Gómez M. Assessing cardiovascular risk in hepatitis C: An unmet need. World J Hepatol 2015; 7:2214-2219. [PMID: 26380047 PMCID: PMC4561776 DOI: 10.4254/wjh.v7.i19.2214] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/13/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis C virus (HCV) is associated with significant morbidity and mortality, as a result of the progression towards cirrhosis and hepatocellular carcinoma. Additionally, HCV seems to be an independent risk factor for cardiovascular diseases (CVD) due to its association with insulin resistance, diabetes and steatosis. HCV infection represents an initial step in the chronic inflammatory cascade, showing a direct role in altering glucose metabolism. After achieving sustained virological response, the incidence of insulin resistance and diabetes dramatically decrease. HCV core protein plays an essential role in promoting insulin resistance and oxidative stress. On the other hand, atherosclerosis is a common disease in which the artery wall thickens due to accumulation of fatty deposits. The main step in the formation of atherosclerotic plaques is the oxidation of low density lipoprotein particles, together with the increased production of proinflammatory markers [tumor necrosis factor-α, interleukin (IL)-6, IL-18 or C-reactive protein]. The advent of new direct acting antiviral therapy has dramatically increased the sustained virological response rates of hepatitis C infection. In this scenario, the cardiovascular risk has emerged and represents a major concern after the eradication of the virus. Consequently, the number of studies evaluating this association is growing. Data derived from these studies have demonstrated the strong link between HCV infection and the atherogenic process, showing a higher risk of coronary heart disease, carotid atherosclerosis, peripheral artery disease and, ultimately, CVD-related mortality.
Collapse
|
44
|
Lénárt N, Walter FR, Bocsik A, Sántha P, Tóth ME, Harazin A, Tóth AE, Vizler C, Török Z, Pilbat AM, Vígh L, Puskás LG, Sántha M, Deli MA. Cultured cells of the blood-brain barrier from apolipoprotein B-100 transgenic mice: effects of oxidized low-density lipoprotein treatment. Fluids Barriers CNS 2015; 12:17. [PMID: 26184769 PMCID: PMC4504453 DOI: 10.1186/s12987-015-0013-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 07/01/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The apolipoprotein B-100 (ApoB-100) transgenic mouse line is a model of human atherosclerosis. Latest findings suggest the importance of ApoB-100 in the development of neurodegenerative diseases and microvascular/perivascular localization of ApoB-100 protein was demonstrated in the cerebral cortex of ApoB-100 transgenic mice. The aim of the study was to characterize cultured brain endothelial cells, pericytes and glial cells from wild-type and ApoB-100 transgenic mice and to study the effect of oxidized low-density lipoprotein (oxLDL) on these cells. METHODS Morphology of cells isolated from brains of wild type and ApoB-100 transgenic mice was characterized by immunohistochemistry and the intensity of immunolabeling was quantified by image analysis. Toxicity of oxLDL treatment was monitored by real-time impedance measurement and lactate dehydrogenase release. Reactive oxygen species and nitric oxide production, barrier permeability in triple co-culture blood-brain barrier model and membrane fluidity were also determined after low-density lipoprotein (LDL) or oxLDL treatment. RESULTS The presence of ApoB-100 was confirmed in brain endothelial cells, while no morphological change was observed between wild type and transgenic cells. Oxidized but not native LDL exerted dose-dependent toxicity in all three cell types, induced barrier dysfunction and increased reactive oxygen species (ROS) production in both genotypes. A partial protection from oxLDL toxicity was seen in brain endothelial and glial cells from ApoB-100 transgenic mice. Increased membrane rigidity was measured in brain endothelial cells from ApoB-100 transgenic mice and in LDL or oxLDL treated wild type cells. CONCLUSION The morphological and functional properties of cultured brain endothelial cells, pericytes and glial cells from ApoB-100 transgenic mice were characterized and compared to wild type cells for the first time. The membrane fluidity changes in ApoB-100 transgenic cells related to brain microvasculature indicate alterations in lipid composition which may be linked to the partial protection against oxLDL toxicity.
Collapse
Affiliation(s)
- Nikolett Lénárt
- Laboratory of Animal Genetics and Molecular Neurobiology, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, 6720, Szeged, Hungary. .,Laboratory of Neuroimmunology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Fruzsina R Walter
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.
| | - Alexandra Bocsik
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.
| | - Petra Sántha
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.
| | - Melinda E Tóth
- Laboratory of Animal Genetics and Molecular Neurobiology, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, 6720, Szeged, Hungary.
| | - András Harazin
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.
| | - Andrea E Tóth
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.
| | - Csaba Vizler
- Laboratory of Molecular Stress Biology, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.
| | - Zsolt Török
- Laboratory of Molecular Stress Biology, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.
| | - Ana-Maria Pilbat
- Laboratory of Molecular Stress Biology, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.
| | - László Vígh
- Laboratory of Molecular Stress Biology, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.
| | - László G Puskás
- Laboratory of Functional Genomics, Laboratories of Core Facilities, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.
| | - Miklós Sántha
- Laboratory of Animal Genetics and Molecular Neurobiology, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, 6720, Szeged, Hungary.
| | - Mária A Deli
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.
| |
Collapse
|
45
|
Schött HF, Lütjohann D. Validation of an isotope dilution gas chromatography-mass spectrometry method for combined analysis of oxysterols and oxyphytosterols in serum samples. Steroids 2015; 99:139-50. [PMID: 25701095 DOI: 10.1016/j.steroids.2015.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/05/2015] [Accepted: 02/07/2015] [Indexed: 11/17/2022]
Abstract
We describe the validation of a method for the analysis of oxysterols, i.e. oxycholesterols and oxyphytosterols, in human serum using gas chromatography-mass spectrometry selected ion monitoring (GC-MS-SIM). Concentrations of 7α- and 7β-hydroxy-, and 7oxo-cholesterol, -campesterol, and -sitosterol as well as 4β-hydroxycholesterol and side-chain oxygenated 24S-, 25-, and 27-hydroxycholesterol were determined by isotope dilution methodology. After saponification at room temperature the oxysterols were extracted, separated from their substrates, cholesterol, campesterol, and sitosterol, by solid phase extraction, and subsequently derivatised to their corresponding trimethylsilyl-ethers prior to GC-MS-SIM. In order to prevent artificial autoxidation butylated hydroxytoluene and ethylenediaminetetraacetic acid were added. The validation of the method was performed according to the International Conference on Harmonisation guidance, including limits of detection and quantification, ranges, recovery and precision. Due to improved instrumental settings and work-up procedure, limits of detection and quantification ranged between 8.0-202.0pg/mL and 28.0-674pg/mL, respectively. Recovery data in five calibration points varied between 91.9% and 116.8% and in serum samples between 93.1% and 118.1%. The mean coefficient of variation (CV) for the recovery of all compounds was <10%. Well satisfying CVs for within-day precision (2.1-10.8%) and for between-day precision (2.3-12.1%) were obtained. More than 20 samples could be processed in a single routine day and test series of about 300 samples can be realised without impairment of the validation parameters during a sequence. Comparison of oxysterol and oxyphytosterol content in serum and plasma revealed no difference. A fully validated isotope dilution methodology for the quantification of oxycholesterols and oxyphytosterols from human serum or plasma is presented.
Collapse
Affiliation(s)
- Hans-Frieder Schött
- Institute for Clinical Chemistry and Clinical Pharmacology, University Clinics Bonn, 53105 Bonn, Germany.
| | - Dieter Lütjohann
- Institute for Clinical Chemistry and Clinical Pharmacology, University Clinics Bonn, 53105 Bonn, Germany.
| |
Collapse
|
46
|
Irvin MR, Zhi D, Aslibekyan S, Claas SA, Absher DM, Ordovas JM, Tiwari HK, Watkins S, Arnett DK. Genomics of post-prandial lipidomic phenotypes in the Genetics of Lipid lowering Drugs and Diet Network (GOLDN) study. PLoS One 2014; 9:e99509. [PMID: 24905834 PMCID: PMC4048279 DOI: 10.1371/journal.pone.0099509] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 05/15/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Increased postprandial lipid (PPL) response to dietary fat intake is a heritable risk factor for cardiovascular disease (CVD). Variability in postprandial lipids results from the complex interplay of dietary and genetic factors. We hypothesized that detailed lipid profiles (eg, sterols and fatty acids) may help elucidate specific genetic and dietary pathways contributing to the PPL response. METHODS AND RESULTS We used gas chromatography mass spectrometry to quantify the change in plasma concentration of 35 fatty acids and 11 sterols between fasting and 3.5 hours after the consumption of a high-fat meal (PPL challenge) among 40 participants from the GOLDN study. Correlations between sterols, fatty acids and clinical measures were calculated. Mixed linear regression was used to evaluate associations between lipidomic profiles and genomic markers including single nucleotide polymorphisms (SNPs) and methylation markers derived from the Affymetrix 6.0 array and the Illumina Methyl450 array, respectively. After the PPL challenge, fatty acids increased as well as sterols associated with cholesterol absorption, while sterols associated with cholesterol synthesis decreased. PPL saturated fatty acids strongly correlated with triglycerides, very low-density lipoprotein, and chylomicrons. Two SNPs (rs12247017 and rs12240292) in the sorbin and SH3 domain containing 1 (SORBS1) gene were associated with b-Sitosterol after correction for multiple testing (P≤4.5*10(-10)). SORBS1 has been linked to obesity and insulin signaling. No other markers reached the genome-wide significance threshold, yet several other biologically relevant loci are highlighted (eg, PRIC285, a co-activator of PPARa). CONCLUSIONS Integration of lipidomic and genomic data has the potential to identify new biomarkers of CVD risk.
Collapse
Affiliation(s)
- Marguerite R. Irvin
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| | - Degui Zhi
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Stella Aslibekyan
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Steven A. Claas
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Devin M. Absher
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, United States of America
| | - Jose M. Ordovas
- Department of Epidemiology, Atherothrombosis and Imaging, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Instituto Madrileño de Estudios Avanzados Alimentacion, Madrid, Spain
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, United States of America
| | - Hemant K. Tiwari
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Steve Watkins
- Metabolon, Lipomics Division, Research Triangle Park, North Carolina, United States of America
| | - Donna K. Arnett
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
47
|
Stroka KM, Konstantopoulos K. Physical biology in cancer. 4. Physical cues guide tumor cell adhesion and migration. Am J Physiol Cell Physiol 2014; 306:C98-C109. [PMID: 24133064 PMCID: PMC3919991 DOI: 10.1152/ajpcell.00289.2013] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 10/15/2013] [Indexed: 12/13/2022]
Abstract
As tumor cells metastasize from the primary tumor location to a distant secondary site, they encounter an array of biologically and physically heterogeneous microenvironments. While it is well established that biochemical signals guide all stages of the metastatic cascade, mounting evidence indicates that physical cues also direct tumor cell behavior, including adhesion and migration phenotypes. Physical cues acting on tumor cells in vivo include extracellular matrix mechanical properties, dimensionality, and topography, as well as interstitial flow, hydrodynamic shear stresses, and local forces due to neighboring cells. State-of-the-art technologies have recently enabled us and other researchers to engineer cell microenvironments that mimic specific physical properties of the cellular milieu. Through integration of these engineering strategies, along with physics, molecular biology, and imaging techniques, we have acquired new insights into tumor cell adhesion and migration mechanisms. In this review, we focus on the extravasation and invasion stages of the metastatic cascade. We first discuss the physical role of the endothelium during tumor cell extravasation and invasion and how contractility of endothelial and tumor cells contributes to the ability of tumor cells to exit the vasculature. Next, we examine how matrix dimensionality and stiffness coregulate tumor cell adhesion and migration beyond the vasculature. Finally, we summarize how tumor cells translate and respond to physical cues through mechanotransduction. Because of the critical role of tumor cell mechanotransduction at various stages of the metastatic cascade, targeting signaling pathways involved in tumor cell mechanosensing of physical stimuli may prove to be an effective therapeutic strategy for cancer patients.
Collapse
Affiliation(s)
- Kimberly M Stroka
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland
| | | |
Collapse
|
48
|
Nadkarni SK. Optical measurement of arterial mechanical properties: from atherosclerotic plaque initiation to rupture. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:121507. [PMID: 24296995 PMCID: PMC4696609 DOI: 10.1117/1.jbo.18.12.121507] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 05/19/2023]
Abstract
During the pathogenesis of coronary atherosclerosis, from lesion initiation to rupture, arterial mechanical properties are altered by a number of cellular, molecular, and hemodynamic processes. There is growing recognition that mechanical factors may actively drive vascular cell signaling and regulate atherosclerosis disease progression. In advanced plaques, the mechanical properties of the atheroma influence stress distributions in the fibrous cap and mediate plaque rupture resulting in acute coronary events. This review paper explores current optical technologies that provide information on the mechanical properties of arterial tissue to advance our understanding of the mechanical factors involved in atherosclerosis development leading to plaque rupture. The optical approaches discussed include optical microrheology and traction force microscopy that probe the mechanical behavior of single cell and extracellular matrix components, and intravascular imaging modalities including laser speckle rheology, optical coherence elastography, and polarization-sensitive optical coherence tomography to measure the mechanical properties of advanced coronary lesions. Given the wealth of information that these techniques can provide, optical imaging modalities are poised to play an increasingly significant role in elucidating the mechanical aspects of coronary atherosclerosis in the future.
Collapse
Affiliation(s)
- Seemantini K. Nadkarni
- Massachusetts General Hospital, Harvard Medical School, Wellman Center for Photomedicine, Boston, Massachusetts 02114
- Address all correspondence to: Seemantini K. Nadkarni, Massachusetts General Hospital, Harvard Medical School, Wellman Center for Photomedicine, Boston, Massachusetts 02114. Tel: (617)-724-1381; Fax: (617)-7264103; E-mail:
| |
Collapse
|
49
|
Griffiths WJ, Crick PJ, Wang Y, Ogundare M, Tuschl K, Morris AA, Bigger BW, Clayton PT, Wang Y. Analytical strategies for characterization of oxysterol lipidomes: liver X receptor ligands in plasma. Free Radic Biol Med 2013; 59:69-84. [PMID: 22846477 DOI: 10.1016/j.freeradbiomed.2012.07.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 07/18/2012] [Accepted: 07/20/2012] [Indexed: 01/12/2023]
Abstract
Bile acids, bile alcohols, and hormonal steroids represent the ultimate biologically active products of cholesterol metabolism in vertebrates. However, intermediates in their formation, including oxysterols and cholestenoic acids, also possess known, e.g., as ligands to nuclear and G-protein-coupled receptors, and unknown regulatory activities. The potential diversity of molecules originating from the cholesterol structure is very broad and their abundance in biological materials ranges over several orders of magnitude. Here we describe the application of enzyme-assisted derivatization for sterol analysis (EADSA) in combination with liquid chromatography-electrospray ionization-mass spectrometry to define the oxysterol and cholestenoic acid metabolomes of human plasma. Quantitative profiling of adult plasma using EADSA leads to the detection of over 30 metabolites derived from cholesterol, some of which are ligands to the nuclear receptors LXR, FXR, and pregnane X receptor or the G-protein-coupled receptor Epstein-Barr virus-induced gene 2. The potential of the EADSA technique in screening for inborn errors of cholesterol metabolism and biosynthesis is demonstrated by the unique plasma profile of patients suffering from cerebrotendinous xanthomatosis. The analytical methods described are easily adapted to the analysis of other biological fluids, including cerebrospinal fluid, and also tissues, e.g., brain, in which nuclear and G-protein-coupled receptors may have important regulatory roles.
Collapse
Affiliation(s)
- William J Griffiths
- Institute of Mass Spectrometry, College of Medicine, Swansea University, Swansea SA2 8PP, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Seet RC, Quek AM, Lim EC, Halliwell B. Biomarkers of oxidative damage are elevated among individuals with high cardiovascular risk: Refining subject selection strategies for antioxidant trials. Free Radic Res 2013; 47:283-90. [DOI: 10.3109/10715762.2013.769215] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|