1
|
Alquier T, Christian-Hinman CA, Alfonso J, Færgeman NJ. From benzodiazepines to fatty acids and beyond: revisiting the role of ACBP/DBI. Trends Endocrinol Metab 2021; 32:890-903. [PMID: 34565656 PMCID: PMC8785413 DOI: 10.1016/j.tem.2021.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 01/19/2023]
Abstract
Four decades ago Costa and colleagues identified a small, secreted polypeptide in the brain that can displace the benzodiazepine diazepam from the GABAA receptor, and was thus termed diazepam binding inhibitor (DBI). Shortly after, an identical polypeptide was identified in liver by its ability to induce termination of fatty acid synthesis, and was named acyl-CoA binding protein (ACBP). Since then, ACBP/DBI has been studied in parallel without a clear and integrated understanding of its dual roles. The first genetic loss-of-function models have revived the field, allowing targeted approaches to better understand the physiological roles of ACBP/DBI in vivo. We discuss the roles of ACBP/DBI in central and tissue-specific functions in mammals, with an emphasis on metabolism and mechanisms of action.
Collapse
Affiliation(s)
- Thierry Alquier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal Diabetes Research Center, and Departments of Medicine, Pharmacology and Physiology, Biochemistry, and Neurosciences, Université de Montréal, Montreal, QC, Canada.
| | - Catherine A Christian-Hinman
- Department of Molecular and Integrative Physiology, Neuroscience Program, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Julieta Alfonso
- Department of Clinical Neurobiology, University Hospital Heidelberg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| |
Collapse
|
2
|
Rossiter H, Copic D, Direder M, Gruber F, Zoratto S, Marchetti-Deschmann M, Kremslehner C, Sochorová M, Nagelreiter IM, Mlitz V, Buchberger M, Lengauer B, Golabi B, Sukseree S, Mildner M, Eckhart L, Tschachler E. Autophagy protects murine preputial glands against premature aging, and controls their sebum phospholipid and pheromone profile. Autophagy 2021; 18:1005-1019. [PMID: 34491140 DOI: 10.1080/15548627.2021.1966716] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Preputial glands are large lipid and hormone secreting sebaceous organs of mice, and present a convenient model for the investigation of biological processes in sebocytes. Suppression of ATG7-dependent macroautophagy/autophagy in epithelial cells of murine skin causes enlargement of hair follicle-associated sebaceous glands and alters the lipid profile of sebum. We have now extended these studies to the preputial glands and find that autophagy significantly delays the onset of age-related ductal ectasia, influences lipid droplet morphology and contributes to the complete dissolution of the mature sebocytes during holocrine secretion. Single cell RNA sequencing showed that many genes involved in lipid metabolism and oxidative stress response were downregulated in immature and mature epithelial cells of ATG7-deficient glands. When analyzing the lipid composition of control and mutant glands, we found that levels of all phospholipid classes, except choline plasmalogen, were decreased in the mutant glands, with a concomitant accumulation of diacyl glycerides. Mass spectrometric imaging (MSI) demonstrated that phospholipid species, specifically the dominant phosphatidylcholine (PC 34:1), were decreased in immature and mature sebocytes. In addition, we found a strong reduction in the amounts of the pheromone, palmityl acetate. Thus, autophagy in the preputial gland is not only important for homeostasis of the gland as a whole and an orderly breakdown of cells during holocrine secretion, but also regulates phospholipid and fatty acid metabolism, as well as pheromone production.AbbreviationsATG7: autophagy related 7; BODIPY: boron dipyrromethene; DAG: diacyl glycerides; DBI: diazepam binding inhibitor; GFP: green fluorescent protein; KRT14: keratin 14; HPLC-MS: high performance liquid chromatography-mass spectrometry; LD: lipid droplet; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MSI: mass spectrometric imaging; ORO: Oil Red O; PC: phosphatidylcholine; PE: phosphatidylethanolamine; PG: preputial gland; PLIN2: perilipin 2; PtdIns: phosphatidylinositol; PL: phospholipids; POPC: 1-palmitoyl-2-oleoyl-PC; PS: phosphatidylserine; qRT-PCR: quantitative reverse transcribed PCR; SG: sebaceous gland; scRNAseq: single-cell RNA sequencing; TAG: triacylglycerides; TLC: thin layer chromatography.
Collapse
Affiliation(s)
| | - Dragan Copic
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Martin Direder
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Samuele Zoratto
- Institute of Chemical Technologies and Analytics, Technical University of Vienna, Vienna, Austria
| | | | | | - Michaela Sochorová
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Ionela-Mariana Nagelreiter
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria
| | - Veronika Mlitz
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Maria Buchberger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Barbara Lengauer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Bahar Golabi
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Supawadee Sukseree
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Epidermal Acyl-CoA-binding protein is indispensable for systemic energy homeostasis. Mol Metab 2020; 44:101144. [PMID: 33346070 PMCID: PMC7797911 DOI: 10.1016/j.molmet.2020.101144] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES The skin is the largest sensory organ of the human body and plays a fundamental role in regulating body temperature. However, adaptive alterations in skin functions and morphology have only vaguely been associated with physiological responses to cold stress or sensation of ambient temperatures. We previously found that loss of acyl-CoA-binding protein (ACBP) in keratinocytes upregulates lipolysis in white adipose tissue and alters hepatic lipid metabolism, suggesting a link between epidermal barrier functions and systemic energy metabolism. METHODS To assess the physiological responses to loss of ACBP in keratinocytes in detail, we used full-body ACBP-/- and skin-specific ACBP-/- knockout mice to clarify how loss of ACBP affects 1) energy expenditure by indirect calorimetry, 2) response to high-fat feeding and a high oral glucose load, and 3) expression of brown-selective gene programs by quantitative PCR in inguinal WAT (iWAT). To further elucidate the role of the epidermal barrier in systemic energy metabolism, we included mice with defects in skin structural proteins (ma/ma Flgft/ft) in these studies. RESULTS We show that the ACBP-/- mice and skin-specific ACBP-/- knockout mice exhibited increased energy expenditure, increased food intake, browning of the iWAT, and resistance to diet-induced obesity. The metabolic phenotype, including browning of the iWAT, was reversed by housing the mice at thermoneutrality (30 °C) or pharmacological β-adrenergic blocking. Interestingly, these findings were phenocopied in flaky tail mice (ma/ma Flgft/ft). Taken together, we demonstrate that a compromised epidermal barrier induces a β-adrenergic response that increases energy expenditure and browning of the white adipose tissue to maintain a normal body temperature. CONCLUSIONS Our findings show that the epidermal barrier plays a key role in maintaining systemic metabolic homeostasis. Thus, regulation of epidermal barrier functions warrants further attention to understand the regulation of systemic metabolism in further detail.
Collapse
|
4
|
Xiao HW, Cui M, Li Y, Dong JL, Zhang SQ, Zhu CC, Jiang M, Zhu T, Wang B, Wang HC, Fan SJ. Gut microbiota-derived indole 3-propionic acid protects against radiation toxicity via retaining acyl-CoA-binding protein. MICROBIOME 2020; 8:69. [PMID: 32434586 PMCID: PMC7241002 DOI: 10.1186/s40168-020-00845-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 04/26/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND We have proved fecal microbiota transplantation (FMT) is an efficacious remedy to mitigate acute radiation syndrome (ARS); however, the mechanisms remain incompletely characterized. Here, we aimed to tease apart the gut microbiota-produced metabolites, underpin the therapeutic effects of FMT to radiation injuries, and elucidate the underlying molecular mechanisms. RESULTS FMT elevated the level of microbial-derived indole 3-propionic acid (IPA) in fecal pellets from irradiated mice. IPA replenishment via oral route attenuated hematopoietic system and gastrointestinal (GI) tract injuries intertwined with radiation exposure without precipitating tumor growth in male and female mice. Specifically, IPA-treated mice represented a lower system inflammatory level, recuperative hematogenic organs, catabatic myelosuppression, improved GI function, and epithelial integrity following irradiation. 16S rRNA gene sequencing and subsequent analyses showed that irradiated mice harbored a disordered enteric bacterial pattern, which was preserved after IPA administration. Notably, iTRAQ analysis presented that IPA replenishment retained radiation-reprogrammed protein expression profile in the small intestine. Importantly, shRNA interference and hydrodynamic-based gene delivery assays further validated that pregnane X receptor (PXR)/acyl-CoA-binding protein (ACBP) signaling played pivotal roles in IPA-favored radioprotection in vitro and in vivo. CONCLUSIONS These evidences highlight that IPA is a key intestinal microbiota metabolite corroborating the therapeutic effects of FMT to radiation toxicity. Owing to the potential pitfalls of FMT, IPA might be employed as a safe and effective succedaneum to fight against accidental or iatrogenic ionizing ARS in clinical settings. Our findings also provide a novel insight into microbiome-based remedies toward radioactive diseases. Video abstract.
Collapse
Affiliation(s)
- Hui-Wen Xiao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin, 300192, China
| | - Ming Cui
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin, 300192, China.
| | - Yuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin, 300192, China
| | - Jia-Li Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin, 300192, China
| | - Shu-Qin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin, 300192, China
| | - Chang-Chun Zhu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin, 300192, China
| | - Mian Jiang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin, 300192, China
| | - Tong Zhu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin, 300192, China
| | - Bin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin, 300192, China
| | - Hai-Chao Wang
- Laboratory of Emergency Medicine, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Sai-Jun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, Tianjin, 300192, China.
| |
Collapse
|
5
|
Islinger M, Costello JL, Kors S, Soupene E, Levine TP, Kuypers FA, Schrader M. The diversity of ACBD proteins - From lipid binding to protein modulators and organelle tethers. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118675. [PMID: 32044385 PMCID: PMC7057175 DOI: 10.1016/j.bbamcr.2020.118675] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 12/12/2022]
Abstract
Members of the large multigene family of acyl-CoA binding domain containing proteins (ACBDs) share a conserved motif required for binding of Coenzyme A esterified fatty acids of various chain length. These proteins are present in the three kingdoms of life, and despite their predicted roles in cellular lipid metabolism, knowledge about the precise functions of many ACBD proteins remains scarce. Interestingly, several ACBD proteins are now suggested to function at organelle contact sites, and are recognized as host interaction proteins for different pathogens including viruses and bacteria. Here, we present a thorough phylogenetic analysis of the ACBD family and discuss their structure and evolution. We summarize recent findings on the various functions of animal and fungal ACBDs with particular focus on peroxisomes, the role of ACBD proteins at organelle membranes, and their increasing recognition as targets for pathogens.
Collapse
Affiliation(s)
- Markus Islinger
- Institute of Neuroanatomy, Medical Faculty Manheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Joseph L Costello
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK
| | - Suzan Kors
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK
| | - Eric Soupene
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | | | - Frans A Kuypers
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter EX4 4QD, Devon, UK.
| |
Collapse
|
6
|
Tonon MC, Vaudry H, Chuquet J, Guillebaud F, Fan J, Masmoudi-Kouki O, Vaudry D, Lanfray D, Morin F, Prevot V, Papadopoulos V, Troadec JD, Leprince J. Endozepines and their receptors: Structure, functions and pathophysiological significance. Pharmacol Ther 2020; 208:107386. [DOI: 10.1016/j.pharmthera.2019.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
|
7
|
Kumar A, Ghosh DK, Ranjan A. Mefloquine binding to human acyl-CoA binding protein leads to redox stress-mediated apoptotic death of human neuroblastoma cells. Neurotoxicology 2020; 77:169-180. [PMID: 31987860 DOI: 10.1016/j.neuro.2020.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 12/19/2022]
Abstract
Malaria is an infectious disease that is caused by different species of Plasmodium. Several antimalarial drugs are used to counter the spread and infectivity of Plasmodium species. However, humans are also vulnerable to many of the antimalarial drugs, including the quinoline-based drugs. In particular, the antimalarial mefloquine has been reported to show adverse neuropsychiatric effects in humans. Though mefloquine is known to be neurotoxic, the molecular mechanisms associated with this phenomenon are still obscure. In this study, we show that mefloquine binds to and inactivates the human acyl-CoA binding protein (hACBP), potentially inducing redox stress in human neuroblastoma cells (IMR-32). Mefloquine occupies the acyl-CoA binding pocket of hACBP by interacting with several of the critical acyl-CoA binding amino acids. This leads to the competitive inhibition of acyl-CoA(s) binding to hACBP and to the accumulation of lipid droplets inside the IMR-32 cells. The accumulation of cytosolic lipid globules and oxidative stress finally correlates with the apoptotic death of cells. Taken together, our study deciphers a mechanistic detail of how mefloquine leads to the death of human cells by perturbing the activity of hACBP and lipid homeostasis.
Collapse
Affiliation(s)
- Abhishek Kumar
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, 500039, Telangana, India; Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Debasish Kumar Ghosh
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, 500039, Telangana, India
| | - Akash Ranjan
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, 500039, Telangana, India.
| |
Collapse
|
8
|
Lin MH, Hsu FF, Crumrine D, Meyer J, Elias PM, Miner JH. Fatty acid transport protein 4 is required for incorporation of saturated ultralong-chain fatty acids into epidermal ceramides and monoacylglycerols. Sci Rep 2019; 9:13254. [PMID: 31519952 PMCID: PMC6744566 DOI: 10.1038/s41598-019-49684-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/29/2019] [Indexed: 01/15/2023] Open
Abstract
Fatty acid transport protein 4 (FATP4) is an acyl-CoA synthetase that is required for normal permeability barrier in mammalian skin. FATP4 (SLC27A4) mutations cause ichthyosis prematurity syndrome, a nonlethal disorder. In contrast, Fatp4-/- mice die neonatally from a defective barrier. Here we used electron microscopy and lipidomics to characterize defects in Fatp4-/- mice. Mutants showed lamellar body, corneocyte lipid envelope, and cornified envelope abnormalities. Lipidomics identified two lipids previously speculated to be present in mouse epidermis, sphingosine β-hydroxyceramide and monoacylglycerol; mutants displayed decreased proportions of these and the two ceramide classes that carry ultralong-chain, amide-linked fatty acids (FAs) thought to be critical for barrier function, unbound ω-O-acylceramide and bound ω-hydroxyceramide, the latter constituting the major component of the corneocyte lipid envelope. Other abnormalities included elevated amounts of sphingosine α-hydroxyceramide, phytosphingosine non-hydroxyceramide, and 1-O-acylceramide. Acyl chain length alterations in ceramides also suggested roles for FATP4 in esterifying saturated non-hydroxy and β-hydroxy FAs with at least 25 carbons and saturated or unsaturated ω-hydroxy FAs with at least 30 carbons to CoA. Our lipidomic analysis is the most thorough such study of the Fatp4-/- mouse skin barrier to date, providing information about how FATP4 can contribute to barrier function by regulating fatty acyl moieties in various barrier lipids.
Collapse
Affiliation(s)
- Meei-Hua Lin
- Division of Nephrology, Washington University School of Medicine, 4523 Clayton Ave., St. Louis, MO, 63110, United States
| | - Fong-Fu Hsu
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, 4523 Clayton Ave., St. Louis, MO, 63110, United States
| | - Debra Crumrine
- Dermatology Service, VA Medical Center and Department of Dermatology, University of California-San Francisco, 4150 Clement St., San Francisco, CA, 94121, United States
| | - Jason Meyer
- Dermatology Service, VA Medical Center and Department of Dermatology, University of California-San Francisco, 4150 Clement St., San Francisco, CA, 94121, United States
| | - Peter M Elias
- Dermatology Service, VA Medical Center and Department of Dermatology, University of California-San Francisco, 4150 Clement St., San Francisco, CA, 94121, United States
| | - Jeffrey H Miner
- Division of Nephrology, Washington University School of Medicine, 4523 Clayton Ave., St. Louis, MO, 63110, United States.
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, 4523 Clayton Ave., St. Louis, MO, 63110, United States.
- Department of Cell Biology and Physiology, Washington University School of Medicine, 4523 Clayton Ave., St. Louis, MO, 63110, United States.
| |
Collapse
|
9
|
Ujjainwala AL, Courtney CD, Wojnowski NM, Rhodes JS, Christian CA. Differential impacts on multiple forms of spatial and contextual memory in diazepam binding inhibitor knockout mice. J Neurosci Res 2019; 97:683-697. [PMID: 30680776 DOI: 10.1002/jnr.24393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/04/2019] [Accepted: 01/14/2019] [Indexed: 02/03/2023]
Abstract
Learning and memory are fundamental processes that are disrupted in many neurological disorders including Alzheimer's disease and epilepsy. The hippocampus plays an integral role in these functions, and modulation of synaptic transmission mediated by γ-aminobutyric acid (GABA) type-A receptors (GABAA Rs) impacts hippocampus-dependent learning and memory. The protein diazepam binding inhibitor (DBI) differentially modulates GABAA Rs in various brain regions, including hippocampus, and changes in DBI levels may be linked to altered learning and memory. The effects of genetic loss of DBI signaling on these processes, however, have not been determined. In these studies, we examined male and female constitutive DBI knockout mice and wild-type littermates to investigate the role of DBI signaling in modulating multiple forms of hippocampus-dependent spatial learning and memory. DBI knockout mice did not show impaired discrimination of objects in familiar and novel locations in an object location memory test, but did exhibit reduced time spent exploring the objects. Multiple parameters of Barnes maze performance, testing the capability to utilize spatial reference cues, were disrupted in DBI knockout mice. Furthermore, whereas most wild-type mice adopted a direct search strategy upon learning the location of the target hole, knockout mice showed higher rates of using an inefficient random strategy. In addition, DBI knockout mice displayed typical levels of contextual fear conditioning, but lacked a sex difference observed in wild-type mice. Together, these data suggest that DBI selectively influences certain forms of spatial learning and memory, indicating novel roles for DBI signaling in modulating hippocampus-dependent behavior in a task-specific manner.
Collapse
Affiliation(s)
- Ammar L Ujjainwala
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Connor D Courtney
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Natalia M Wojnowski
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Justin S Rhodes
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Catherine A Christian
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
10
|
Ujjainwala AL, Courtney CD, Rhoads SG, Rhodes JS, Christian CA. Genetic loss of diazepam binding inhibitor in mice impairs social interest. GENES BRAIN AND BEHAVIOR 2017; 17:e12442. [PMID: 29193847 DOI: 10.1111/gbb.12442] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/20/2017] [Accepted: 11/23/2017] [Indexed: 01/21/2023]
Abstract
Neuropsychiatric disorders in which reduced social interest is a common symptom, such as autism, depression, and anxiety, are frequently associated with genetic mutations affecting γ-aminobutyric acid (GABA)ergic transmission. Benzodiazepine treatment, acting via GABA type-A receptors, improves social interaction in male mouse models with autism-like features. The protein diazepam binding inhibitor (DBI) can act as an endogenous benzodiazepine, but a role for DBI in social behavior has not been described. Here, we investigated the role of DBI in the social interest and recognition behavior of mice. The responses of DBI wild-type and knockout male and female mice to ovariectomized female wild-type mice (a neutral social stimulus) were evaluated in a habituation/dishabituation task. Both male and female knockout mice exhibited reduced social interest, and DBI knockout mice lacked the sex difference in social interest levels observed in wild-type mice, in which males showed higher social interest levels than females. The ability to discriminate between familiar and novel stimulus mice (social recognition) was not impaired in DBI-deficient mice of either sex. DBI knockouts could learn a rotarod motor task, and could discriminate between social and nonsocial odors. Both sexes of DBI knockout mice showed increased repetitive grooming behavior, but not in a manner that would account for the decrease in social investigation time. Genetic loss of DBI did not alter seminal vesicle weight, indicating that the social interest phenotype of males lacking DBI is not due to reduced circulating testosterone. Together, these studies show a novel role of DBI in driving social interest and motivation.
Collapse
Affiliation(s)
- A L Ujjainwala
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - C D Courtney
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - S G Rhoads
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - J S Rhodes
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - C A Christian
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
11
|
Kruse V, Neess D, Færgeman NJ. The Significance of Epidermal Lipid Metabolism in Whole-Body Physiology. Trends Endocrinol Metab 2017; 28:669-683. [PMID: 28668301 DOI: 10.1016/j.tem.2017.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/03/2017] [Accepted: 06/06/2017] [Indexed: 12/12/2022]
Abstract
The skin is the largest sensory organ of the human body. The skin not only prevents loss of water and other components of the body, but also is involved in regulation of body temperature and serves as an essential barrier, protecting mammals from both routine and extreme environments. Given the importance of the skin in temperature regulation, it is surprising that adaptive alterations in skin functions and morphology only vaguely have been associated with systemic physiological responses. Despite that impaired lipid metabolism in the skin often impairs the epidermal permeability barrier and insulation properties of the skin, its role in regulating systemic physiology and metabolism is yet to be recognized.
Collapse
Affiliation(s)
- Vibeke Kruse
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Ditte Neess
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Nils J Færgeman
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark.
| |
Collapse
|
12
|
Gallego SF, Sprenger RR, Neess D, Pauling JK, Færgeman NJ, Ejsing CS. Quantitative lipidomics reveals age-dependent perturbations of whole-body lipid metabolism in ACBP deficient mice. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:145-155. [DOI: 10.1016/j.bbalip.2016.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/06/2016] [Accepted: 10/28/2016] [Indexed: 01/08/2023]
|
13
|
Selvaraj V, Tu LN. Current status and future perspectives: TSPO in steroid neuroendocrinology. J Endocrinol 2016; 231:R1-R30. [PMID: 27422254 DOI: 10.1530/joe-16-0241] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 07/15/2016] [Indexed: 12/21/2022]
Abstract
The mitochondrial translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), has received significant attention both as a diagnostic biomarker and as a therapeutic target for different neuronal disease pathologies. Recently, its functional basis believed to be mediating mitochondrial cholesterol import for steroid hormone production has been refuted by studies examining both in vivo and in vitro genetic Tspo-deficient models. As a result, there now exists a fundamental gap in the understanding of TSPO function in the nervous system, and its putative pharmacology in neurosteroid production. In this review, we discuss several recent findings in steroidogenic cells that are in direct contradiction to previous studies, and necessitate a re-examination of the purported role for TSPO in de novo neurosteroid biosynthesis. We critically examine the pharmacological effects of different TSPO-binding drugs with particular focus on studies that measure neurosteroid levels. We highlight the basis of key misconceptions regarding TSPO that continue to pervade the literature, and the need for interpretation with caution to avoid negative impacts. We also summarize the emerging perspectives that point to new directions that need to be investigated for understanding the molecular function of TSPO, only after which the true potential of this therapeutic target in medicine may be realized.
Collapse
Affiliation(s)
- Vimal Selvaraj
- Department of Animal ScienceCornell University, Ithaca, New York, USA
| | - Lan N Tu
- Department of Animal ScienceCornell University, Ithaca, New York, USA
| |
Collapse
|
14
|
Plant acyl-CoA-binding proteins: An emerging family involved in plant development and stress responses. Prog Lipid Res 2016; 63:165-81. [DOI: 10.1016/j.plipres.2016.06.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 06/25/2016] [Accepted: 06/26/2016] [Indexed: 01/22/2023]
|
15
|
Budry L, Bouyakdan K, Tobin S, Rodaros D, Marcher AB, Mandrup S, Fulton S, Alquier T. DBI/ACBP loss-of-function does not affect anxiety-like behaviour but reduces anxiolytic responses to diazepam in mice. Behav Brain Res 2016; 313:201-207. [PMID: 27363924 DOI: 10.1016/j.bbr.2016.06.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 11/18/2022]
Abstract
Diazepam is well known for its anxiolytic properties, which are mediated via activation of the GABAA receptor. Diazepam Binding Inhibitor (DBI), also called acyl-CoA binding protein (ACBP), is a ubiquitously expressed protein originally identified based on its ability to displace diazepam from its binding site on the GABAA receptor. Central administration of ACBP or its cleaved fragment, commonly referred to as endozepines, induces proconflict and anxiety-like behaviour in rodents. For this reason, ACBP is known as an anxiogenic peptide. However, the role of endogenous ACBP in anxiety-like behaviour and anxiolytic responses to diazepam has not been investigated. To address this question, we assessed anxiety behaviour and anxiolytic responses to diazepam in two complementary loss-of-function mouse models including astrocyte-specific ACBP KO (ACBP(GFAP) KO) and whole-body KO (ACBP KO) mice. Male and female ACBP(GFAP) KO and ACBP KO mice do not show significant changes in anxiety-like behaviour compared to control littermates during elevated plus maze (EPM) and open field (OF) tests. Surprisingly, ACBP(GFAP) KO and ACBP KO mice were unresponsive to the anxiolytic effect of a low dose of diazepam during EPM tests. In conclusion, our experiments using genetic ACBP loss-of-function models suggest that endozepines deficiency does not affect anxiety-like behaviour in mice and impairs the anxiolytic action of diazepam.
Collapse
Affiliation(s)
- Lionel Budry
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Universite de Montreal (CRCHUM), University of Montreal, Montreal, QC, H3T 1J4, Canada; Department of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - Khalil Bouyakdan
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Universite de Montreal (CRCHUM), University of Montreal, Montreal, QC, H3T 1J4, Canada; Department of Biochemistry, University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - Stephanie Tobin
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Universite de Montreal (CRCHUM), University of Montreal, Montreal, QC, H3T 1J4, Canada; Department of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - Demetra Rodaros
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Universite de Montreal (CRCHUM), University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - Ann-Britt Marcher
- Departments of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Susanne Mandrup
- Departments of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Stephanie Fulton
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Universite de Montreal (CRCHUM), University of Montreal, Montreal, QC, H3T 1J4, Canada; Department of Nutrition, University of Montreal, Montreal, QC, H3T 1J4, Canada
| | - Thierry Alquier
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Universite de Montreal (CRCHUM), University of Montreal, Montreal, QC, H3T 1J4, Canada; Department of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada; Department of Biochemistry, University of Montreal, Montreal, QC, H3T 1J4, Canada; Departments of Pathology and Cell Biology, University of Montreal, Montreal, QC, H3T 1J4, Canada.
| |
Collapse
|
16
|
Majerowicz D, Hannibal-Bach HK, Castro RSC, Bozaquel-Morais BL, Alves-Bezerra M, Grillo LAM, Masuda CA, Færgeman NJ, Knudsen J, Gondim KC. The ACBP gene family in Rhodnius prolixus: Expression, characterization and function of RpACBP-1. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 72:41-52. [PMID: 27001070 DOI: 10.1016/j.ibmb.2016.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 03/04/2016] [Accepted: 03/16/2016] [Indexed: 06/05/2023]
Abstract
The acyl-CoA-binding proteins (ACBP) constitute a family of conserved proteins that bind acyl-CoA with high affinity and protect it from hydrolysis. Thus, ACBPs may have essential roles in basal cellular lipid metabolism. The genome of the insect Rhodnius prolixus encodes five ACBP genes similar to those described for other insect species. The qPCR analysis revealed that these genes have characteristic expression profiles in insect organs, suggesting that they have specific roles in insect physiology. Recombinant RpACBP-1 was able to bind acyl-CoA in an in vitro gel-shift assay. Moreover, heterologous RpACBP-1 expression in acb1Δ mutant yeast rescued the multi-lobed vacuole phenotype, indicating that RpACBP-1 acts as a bona fide acyl-CoA-binding protein. RpACBP-1 knockdown using RNAi caused triacylglycerol accumulation in the insect posterior midgut and a reduction in the number of deposited eggs. The amount of stored triacylglycerol was reduced in flight muscle, and the incorporation of fatty acids in cholesteryl esters was increased in the fat body. These results showed that RpACBP-1 participates in several lipid metabolism steps in R. prolixus.
Collapse
Affiliation(s)
- David Majerowicz
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Institut for Biokemi og Molekylær Biologi, Syddansk Universitet, Odense, Denmark
| | - Hans K Hannibal-Bach
- Institut for Biokemi og Molekylær Biologi, Syddansk Universitet, Odense, Denmark
| | - Rodolfo S C Castro
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno L Bozaquel-Morais
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michele Alves-Bezerra
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciano A M Grillo
- Escola de Enfermagem e Farmácia, Universidade Federal de Alagoas, Maceió, Brazil
| | - Claudio A Masuda
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nils J Færgeman
- Institut for Biokemi og Molekylær Biologi, Syddansk Universitet, Odense, Denmark
| | - Jens Knudsen
- Institut for Biokemi og Molekylær Biologi, Syddansk Universitet, Odense, Denmark
| | - Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil.
| |
Collapse
|
17
|
Bek S, Neess D, Dixen K, Bloksgaard M, Marcher AB, Chemnitz J, Færgeman NJ, Mandrup S. Compromised epidermal barrier stimulates Harderian gland activity and hypertrophy in ACBP-/- mice. J Lipid Res 2015; 56:1738-46. [PMID: 26142722 DOI: 10.1194/jlr.m060780] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Indexed: 11/20/2022] Open
Abstract
Acyl-CoA binding protein (ACBP) is a small, ubiquitously expressed intracellular protein that binds C14-C22 acyl-CoA esters with very high affinity and specificity. We have recently shown that targeted disruption of the Acbp gene leads to a compromised epidermal barrier and that this causes delayed adaptation to weaning, including the induction of the hepatic lipogenic and cholesterogenic gene programs. Here we show that ACBP is highly expressed in the Harderian gland, a gland that is located behind the eyeball of rodents and involved in the production of fur lipids and lipids used for lubrication of the eye lid. We show that disruption of the Acbp gene leads to a significant enlargement of this gland with hypertrophy of the acinar cells and increased de novo synthesis of monoalkyl diacylglycerol, the main lipid species produced by the gland. Mice with conditional targeting of the Acbp gene in the epidermis recapitulate this phenotype, whereas generation of an artificial epidermal barrier during gland development reverses the phenotype. Our findings indicate that the Harderian gland is activated by the compromised epidermal barrier as an adaptive and protective mechanism to overcome the barrier defect.
Collapse
Affiliation(s)
- Signe Bek
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Ditte Neess
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Karen Dixen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Maria Bloksgaard
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Ann-Britt Marcher
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - John Chemnitz
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|
18
|
Neess D, Bek S, Engelsby H, Gallego SF, Færgeman NJ. Long-chain acyl-CoA esters in metabolism and signaling: Role of acyl-CoA binding proteins. Prog Lipid Res 2015; 59:1-25. [PMID: 25898985 DOI: 10.1016/j.plipres.2015.04.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/11/2015] [Accepted: 04/09/2015] [Indexed: 02/03/2023]
Abstract
Long-chain fatty acyl-CoA esters are key intermediates in numerous lipid metabolic pathways, and recognized as important cellular signaling molecules. The intracellular flux and regulatory properties of acyl-CoA esters have been proposed to be coordinated by acyl-CoA-binding domain containing proteins (ACBDs). The ACBDs, which comprise a highly conserved multigene family of intracellular lipid-binding proteins, are found in all eukaryotes and ubiquitously expressed in all metazoan tissues, with distinct expression patterns for individual ACBDs. The ACBDs are involved in numerous intracellular processes including fatty acid-, glycerolipid- and glycerophospholipid biosynthesis, β-oxidation, cellular differentiation and proliferation as well as in the regulation of numerous enzyme activities. Little is known about the specific roles of the ACBDs in the regulation of these processes, however, recent studies have gained further insights into their in vivo functions and provided further evidence for ACBD-specific functions in cellular signaling and lipid metabolic pathways. This review summarizes the structural and functional properties of the various ACBDs, with special emphasis on the function of ACBD1, commonly known as ACBP.
Collapse
Affiliation(s)
- Ditte Neess
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Signe Bek
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Hanne Engelsby
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Sandra F Gallego
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Nils J Færgeman
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.
| |
Collapse
|
19
|
Selvaraj V, Stocco DM, Tu LN. Minireview: translocator protein (TSPO) and steroidogenesis: a reappraisal. Mol Endocrinol 2015; 29:490-501. [PMID: 25730708 DOI: 10.1210/me.2015-1033] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The 18-kDa translocator protein (TSPO), also known as the peripheral benzodiazepine receptor, is a transmembrane protein in the outer mitochondrial membrane. TSPO has long been described as being indispensable for mitochondrial cholesterol import that is essential for steroid hormone production. In contrast to this initial proposition, recent experiments reexamining TSPO function have demonstrated that it is not involved in steroidogenesis. This fundamental change has forced a reexamination of the functional interpretations made for TSPO that broadly impacts both basic and clinical research across multiple fields. In this minireview, we recapitulate the key studies from 25 years of TSPO research and concurrently examine their limitations that perhaps led towards the incorrect association of TSPO and steroid hormone production. Although this shift in understanding raises new questions regarding the molecular function of TSPO, these recent developments are poised to have a significant positive impact for research progress in steroid endocrinology.
Collapse
Affiliation(s)
- Vimal Selvaraj
- Department of Animal Science (V.S., L.N.T.), Cornell University, Ithaca, New York 14853; and Department of Cell Biology and Biochemistry (D.M.S.), Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | | | | |
Collapse
|
20
|
Bouyakdan K, Taïb B, Budry L, Zhao S, Rodaros D, Neess D, Mandrup S, Faergeman NJ, Alquier T. A novel role for central ACBP/DBI as a regulator of long-chain fatty acid metabolism in astrocytes. J Neurochem 2015; 133:253-65. [PMID: 25598214 DOI: 10.1111/jnc.13035] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 12/15/2014] [Accepted: 01/08/2015] [Indexed: 12/29/2022]
Abstract
Acyl-CoA-binding protein (ACBP) is a ubiquitously expressed protein that binds intracellular acyl-CoA esters. Several studies have suggested that ACBP acts as an acyl-CoA pool former and regulates long-chain fatty acids (LCFA) metabolism in peripheral tissues. In the brain, ACBP is known as Diazepam-Binding Inhibitor, a secreted peptide acting as an allosteric modulator of the GABAA receptor. However, its role in central LCFA metabolism remains unknown. In the present study, we investigated ACBP cellular expression, ACBP regulation of LCFA intracellular metabolism, FA profile, and FA metabolism-related gene expression using ACBP-deficient and control mice. ACBP was mainly found in astrocytes with high expression levels in the mediobasal hypothalamus. We demonstrate that ACBP deficiency alters the central LCFA-CoA profile and impairs unsaturated (oleate, linolenate) but not saturated (palmitate, stearate) LCFA metabolic fluxes in hypothalamic slices and astrocyte cultures. In addition, lack of ACBP differently affects the expression of genes involved in FA metabolism in cortical versus hypothalamic astrocytes. Finally, ACBP deficiency increases FA content and impairs their release in response to palmitate in hypothalamic astrocytes. Collectively, these findings reveal for the first time that central ACBP acts as a regulator of LCFA intracellular metabolism in astrocytes. Acyl-CoA-binding protein (ACBP) or diazepam-binding inhibitor is a secreted peptide acting centrally as a GABAA allosteric modulator. Using brain slices, cortical, and hypothalamic astrocyte cultures from ACBP KO mice, we demonstrate that ACBP mainly localizes in astrocytes and regulates unsaturated but not saturated long-chain fatty acids (LCFA) metabolism. In addition, ACBP deficiency alters FA metabolism-related genes and results in intracellular FA accumulation while affecting their release. Our results support a novel role for ACBP in brain lipid metabolism. FA, fatty acids; KO, knockout; PL, phospholipids; TAG, triacylglycerol.
Collapse
Affiliation(s)
- Khalil Bouyakdan
- Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Universite de Montreal (CRCHUM), Montreal, Quebec, Canada; Department of Biochemistry, University of Montreal, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bagatolli LA. Monitoring Membrane Hydration with 2-(Dimethylamino)-6-Acylnaphtalenes Fluorescent Probes. Subcell Biochem 2015; 71:105-125. [PMID: 26438263 DOI: 10.1007/978-3-319-19060-0_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A family of polarity sensitive fluorescent probes (2-(dimethylamino)-6-acylnaphtalenes, i.e. LAURDAN, PRODAN, ACDAN) was introduced by Gregorio Weber in 1979, with the aim to monitor solvent relaxation phenomena on protein matrices. In the following years, however, PRODAN and particularly LAURDAN, were used to study membrane lateral structure and associated dynamics. Once incorporated into membranes, the (nanosecond) fluorescent decay of these probes is strongly affected by changes in the local polarity and relaxation dynamics of restricted water molecules existing at the membrane/water interface. For instance, when glycerophospholipid containing membranes undertake a solid ordered (gel) to liquid disordered phase transition the fluorescence emission maximum of these probes shift ~ 50 nm with a significant change in their fluorescence lifetime. Furthermore, the fluorescence parameters of LAURDAN and PRODAN are exquisitely sensitive to cholesterol effects, allowing interpretations that correlate changes in membrane packing with membrane hydration. Different membrane model systems as well as innate biological membranes have been studied with this family of probes allowing interesting comparative studies. This chapter presents a short historical overview about these fluorescent reporters, discusses on different models proposed to explain their sensitivity to membrane hydration, and includes relevant examples from experiments performed in artificial and biological membranes.
Collapse
Affiliation(s)
- Luis A Bagatolli
- Membrane Biophysics and Biophotonics Group/MEMPHYS-Center for Biomembrane Physics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark.
| |
Collapse
|
22
|
Xue Y, Xiao S, Kim J, Lung SC, Chen L, Tanner JA, Suh MC, Chye ML. Arabidopsis membrane-associated acyl-CoA-binding protein ACBP1 is involved in stem cuticle formation. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5473-83. [PMID: 25053648 PMCID: PMC4157719 DOI: 10.1093/jxb/eru304] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The membrane-anchored Arabidopsis thaliana ACYL-COA-BINDING PROTEIN1 (AtACBP1) plays important roles in embryogenesis and abiotic stress responses, and interacts with long-chain (LC) acyl-CoA esters. Here, AtACBP1 function in stem cuticle formation was investigated. Transgenic Arabidopsis transformed with an AtACBP1pro::GUS construct revealed β-glucuronidase (GUS) expression on the stem (but not leaf) surface, suggesting a specific role in stem cuticle formation. Isothermal titration calorimetry results revealed that (His)6-tagged recombinant AtACBP1 interacts with LC acyl-CoA esters (18:1-, 18:2-, and 18:3-CoAs) and very-long-chain (VLC) acyl-CoA esters (24:0-, 25:0-, and 26:0-CoAs). VLC fatty acids have been previously demonstrated to act as precursors in wax biosynthesis. Gas chromatography (GC)-flame ionization detector (FID) and GC-mass spectrometry (MS) analyses revealed that an acbp1 mutant showed a reduction in stem and leaf cuticular wax and stem cutin monomer composition in comparison with the wild type (Col-0). Consequently, the acbp1 mutant showed fewer wax crystals on the stem surface in scanning electron microscopy and an irregular stem cuticle layer in transmission electron microscopy in comparison with the wild type. Also, the mutant stems consistently showed a decline in expression of cuticular wax and cutin biosynthetic genes in comparison with the wild type, and the mutant leaves were more susceptible to infection by the necrotrophic pathogen Botrytis cinerea. Taken together, these findings suggest that AtACBP1 participates in Arabidopsis stem cuticle formation by trafficking VLC acyl-CoAs.
Collapse
Affiliation(s)
- Yan Xue
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Shi Xiao
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Juyoung Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| | - Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Liang Chen
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Julian A Tanner
- Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mi Chung Suh
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
23
|
Abstract
Long-chain fatty acyl-coenzyme As (CoAs) are critical regulatory molecules and metabolic intermediates. The initial step in their synthesis is the activation of fatty acids by one of 13 long-chain acyl-CoA synthetase isoforms. These isoforms are regulated independently and have different tissue expression patterns and subcellular locations. Their acyl-CoA products regulate metabolic enzymes and signaling pathways, become oxidized to provide cellular energy, and are incorporated into acylated proteins and complex lipids such as triacylglycerol, phospholipids, and cholesterol esters. Their differing metabolic fates are determined by a network of proteins that channel the acyl-CoAs toward or away from specific metabolic pathways and serve as the basis for partitioning. This review evaluates the evidence for acyl-CoA partitioning by reviewing experimental data on proteins that are believed to contribute to acyl-CoA channeling, the metabolic consequences of loss of these proteins, and the potential role of maladaptive acyl-CoA partitioning in the pathogenesis of metabolic disease and carcinogenesis.
Collapse
|
24
|
Bloksgaard M, Neess D, Færgeman NJ, Mandrup S. Acyl-CoA binding protein and epidermal barrier function. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:369-76. [DOI: 10.1016/j.bbalip.2013.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/20/2013] [Accepted: 09/23/2013] [Indexed: 11/29/2022]
|
25
|
Delayed Hepatic Adaptation to Weaning in ACBP−/− Mice Is Caused by Disruption of the Epidermal Barrier. Cell Rep 2013; 5:1403-12. [DOI: 10.1016/j.celrep.2013.11.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 10/24/2013] [Accepted: 11/04/2013] [Indexed: 11/24/2022] Open
|
26
|
Bloksgaard M, Brewer JR, Pashkovski E, Ananthapadmanabhan KP, Sørensen JA, Bagatolli LA. Effect of detergents on the physicochemical properties of skin stratum corneum: a two-photon excitation fluorescence microscopy study. Int J Cosmet Sci 2013; 36:39-45. [PMID: 23962033 DOI: 10.1111/ics.12089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 08/17/2013] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Understanding the structural and dynamical features of skin is critical for advancing innovation in personal care and drug discovery. Synthetic detergent mixtures used in commercially available body wash products are thought to be less aggressive towards the skin barrier when compared to conventional detergents. The aim of this work is to comparatively characterize the effect of a mild synthetic cleanser mixture (SCM) and sodium dodecyl sulphate (SDS) on the hydration state of the intercellular lipid matrix and on proton activity of excised skin stratum corneum (SC). METHOD Experiments were performed using two-photon excitation fluorescence microscopy. Fluorescent images of fluorescence reporters sensitive to proton activity and hydration of SC were obtained in excised skin and examined in the presence and absence of SCM and SDS detergents. RESULTS Hydration of the intercellular lipid matrix to a depth of 10 μm into the SC was increased upon treatment with SCM, whereas SDS shows this effect only at the very surface of SC. The proton activity of SC remained unaffected by treatment with either detergent. CONCLUSION While our study indicates that the SC is very resistant to external stimuli, it also shows that, in contrast to the response to SDS, SCM to some extent modulates the in-depth hydration properties of the intercellular lipid matrix within excised skin SC.
Collapse
Affiliation(s)
- M Bloksgaard
- Membrane Biophysics and Biophotonics Group/MEMPHYS-Center, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - J R Brewer
- Membrane Biophysics and Biophotonics Group/MEMPHYS-Center, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - E Pashkovski
- Unilever R&D, 40 Merritt Blvd., Trumbull, CT, 06611, USA
| | | | - J A Sørensen
- Department of Plastic Surgery, Odense University Hospital, DK-5000, Odense C, Denmark
| | - L A Bagatolli
- Membrane Biophysics and Biophotonics Group/MEMPHYS-Center, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| |
Collapse
|
27
|
Bloksgaard M, Brewer J, Bagatolli LA. Structural and dynamical aspects of skin studied by multiphoton excitation fluorescence microscopy-based methods. Eur J Pharm Sci 2013; 50:586-94. [PMID: 23608611 DOI: 10.1016/j.ejps.2013.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 04/08/2013] [Accepted: 04/10/2013] [Indexed: 11/19/2022]
Abstract
This mini-review reports on applications of particular multiphoton excitation microscopy-based methodologies employed in our laboratory to study skin. These approaches allow in-depth optical sectioning of the tissue, providing spatially resolved information on specific fluorescence probes' parameters. Specifically, by applying these methods, spatially resolved maps of water dipolar relaxation (generalized polarization function using the 6-lauroyl-2-(N,N-dimethylamino)naphthale probe), activity of protons (fluorescence lifetime imaging using a proton sensitive fluorescence probe--2,7-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein) and diffusion coefficients of distinct fluorescence probes (raster imaging correlation spectroscopy) can be obtained from different regions of the tissue. Comparative studies of different tissue strata, but also between equivalent regions of normal and abnormal excised skin, including applications of fluctuation correlation spectroscopy on transdermal penetration of liposomes are presented and discussed. The data from the different studies reported reveal the intrinsic heterogeneity of skin and also prove these strategies to be powerful noninvasive tools to explore structural and dynamical aspects of the tissue.
Collapse
Affiliation(s)
- Maria Bloksgaard
- Membrane Biophysics and Biophotonics group/MEMPHYS, Center for Biomembrane Physics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | | |
Collapse
|