1
|
Alim MA, Mumu TJ, Tamanna US, Khan MM, Miah MI, Islam MS, Jesmin ZA, Khan T, Hasan MR, Alam MJ, Murtaja Reza Linkon KM, Rahman MN, Begum R, Prodhan UK. Hypolipidemic effect and modulation of hepatic enzymes by different edible oils in obese Wistar rats. Heliyon 2024; 10:e25880. [PMID: 38384579 PMCID: PMC10878912 DOI: 10.1016/j.heliyon.2024.e25880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
The current study assessed the hypolipidemic effect and modulation of hepatic enzymes by different edible oils in obese Wistar rats. In order to conduct this study, 36 Wistar rats that were collected at 5 weeks of age and weighed an average of 70 g were split into two groups: 28 of them were fed a high-fat diet (HFD) and 8 of them were fed a control diet. After 5 weeks of feeding, rats from the HFD (obese, n = 4) and the control diet group (n = 4) were sacrificed. Subsequently, the rest of obese rats (n = 24) were separated into six groups, including the continuing high-fat (CHF) diet group, rice bran oil (RBO) diet group, olive oil (OO) diet group, soybean oil (SO) diet group, cod liver oil (CLO) diet group, and sunflower oil (SFO) diet group, and the continuing control diet group (n = 4). Rats from each group were sacrificed following an additional 5 weeks, and all analytical tests were carried out. The results found that the interventions of RBO, CLO, and SFO in obese rats reduced their body weight non-significantly when compared with CHF. It was also observed that a non-significant reduction in weight of the heart, AAT, and EAT occurred by RBO, OO, SO, and CLO, while SFO reduced the AAT level significantly (p < 0.05). Besides, RBO, OO, SO, CLO, and SFO decreased IBAT and liver fat significantly compared to CHF. Similarly, the administration of RBO, OO, SO, and CLO reduced ALT significantly. RBO reduced GGT (p < 0.05) significantly, but other oils did not. The given oil has the efficiency to reduce TC, TAG, and LDL-C but increase HDL-C significantly. These findings suggest that different edible oils can ameliorate obesity, regulate lipid profiles, and modulate hepatic enzymes.
Collapse
Affiliation(s)
- Md Abdul Alim
- Department of Food Technology and Nutritional Science, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Tarana Jannat Mumu
- Department of Food Technology and Nutritional Science, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
- Ahsania Mission Cancer and General Hospital, Dhaka, 1230, Bangladesh
| | - Ummay Salma Tamanna
- Department of Food Technology and Nutritional Science, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
- Ibn Sina Consultation Centre, Dhaka, 1212, Bangladesh
| | - Md Moin Khan
- Department of Food Technology and Nutritional Science, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
- SR Ingredients Ltd., Dhaka, 1229, Bangladesh
| | - Md Imran Miah
- Department of Food Technology and Nutritional Science, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
- CSF Global-Child Sight Foundation, Dhaka, 1212, Bangladesh
| | - Md Shahikul Islam
- Department of Food Technology and Nutritional Science, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
- Akij Food and Beverage Ltd., Dhaka, 1208, Bangladesh
| | - Zannat Ara Jesmin
- Department of Food Technology and Nutritional Science, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Tayeba Khan
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Md Rakibul Hasan
- Department of Food Technology and Nutritional Science, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Md Jahangir Alam
- Department of Food Technology and Nutritional Science, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Khan Md Murtaja Reza Linkon
- Department of Food Technology and Nutritional Science, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Md Nannur Rahman
- Department of Food Technology and Nutritional Science, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Rokeya Begum
- Department of Food Technology and Nutritional Science, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Utpal Kumar Prodhan
- Department of Food Technology and Nutritional Science, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| |
Collapse
|
2
|
Rebelos E, Iozzo P, Guzzardi MA, Brunetto MR, Bonino F. Brain-gut-liver interactions across the spectrum of insulin resistance in metabolic fatty liver disease. World J Gastroenterol 2021; 27:4999-5018. [PMID: 34497431 PMCID: PMC8384743 DOI: 10.3748/wjg.v27.i30.4999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/29/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
Metabolic associated fatty liver disease (MAFLD), formerly named "nonalcoholic fatty liver disease" occurs in about one-third of the general population of developed countries worldwide and behaves as a major morbidity and mortality risk factor for major causes of death, such as cardiovascular, digestive, metabolic, neoplastic and neuro-degenerative diseases. However, progression of MAFLD and its associated systemic complications occur almost invariably in patients who experience the additional burden of intrahepatic and/or systemic inflammation, which acts as disease accelerator. Our review is focused on the new knowledge about the brain-gut-liver axis in the context of metabolic dysregulations associated with fatty liver, where insulin resistance has been assumed to play an important role. Special emphasis has been given to digital imaging studies and in particular to positron emission tomography, as it represents a unique opportunity for the noninvasive in vivo study of tissue metabolism. An exhaustive revision of targeted animal models is also provided in order to clarify what the available preclinical evidence suggests for the causal interactions between fatty liver, dysregulated endogenous glucose production and insulin resistance.
Collapse
Affiliation(s)
- Eleni Rebelos
- Turku PET Centre, University of Turku, Turku 20500, Finland
| | - Patricia Iozzo
- Institute of Clinical Physiology, National Research Council, Pisa 56124, Italy
| | | | - Maurizia Rossana Brunetto
- Hepatology Unit and Laboratory of Molecular Genetics and Pathology of Hepatitis, Pisa University Hospital, Pisa 56121, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56121, Italy
- Institute of Biostructure and Bioimaging, National Research Council, Napoli 80145, Italy
| | - Ferruccio Bonino
- Institute of Biostructure and Bioimaging, National Research Council, Napoli 80145, Italy
| |
Collapse
|
3
|
Daujat-Chavanieu M, Gerbal-Chaloin S. Regulation of CAR and PXR Expression in Health and Disease. Cells 2020; 9:E2395. [PMID: 33142929 PMCID: PMC7692647 DOI: 10.3390/cells9112395] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Pregnane X receptor (PXR, NR1I2) and constitutive androstane receptor (CAR, NR1I3) are members of the nuclear receptor superfamily that mainly act as ligand-activated transcription factors. Their functions have long been associated with the regulation of drug metabolism and disposition, and it is now well established that they are implicated in physiological and pathological conditions. Considerable efforts have been made to understand the regulation of their activity by their cognate ligand; however, additional regulatory mechanisms, among which the regulation of their expression, modulate their pleiotropic effects. This review summarizes the current knowledge on CAR and PXR expression during development and adult life; tissue distribution; spatial, temporal, and metabolic regulations; as well as in pathological situations, including chronic diseases and cancers. The expression of CAR and PXR is modulated by complex regulatory mechanisms that involve the interplay of transcription factors and also post-transcriptional and epigenetic modifications. Moreover, many environmental stimuli affect CAR and PXR expression through mechanisms that have not been elucidated.
Collapse
Affiliation(s)
| | - Sabine Gerbal-Chaloin
- IRMB, University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France;
| |
Collapse
|
4
|
Anti-Inflammatory Strategies Targeting Metaflammation in Type 2 Diabetes. Molecules 2020; 25:molecules25092224. [PMID: 32397353 PMCID: PMC7249034 DOI: 10.3390/molecules25092224] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/28/2020] [Accepted: 05/02/2020] [Indexed: 02/06/2023] Open
Abstract
One of the concepts explaining the coincidence of obesity and type 2 diabetes (T2D) is the metaflammation theory. This chronic, low-grade inflammatory state originating from metabolic cells in response to excess nutrients, contributes to the development of T2D by increasing insulin resistance in peripheral tissues (mainly in the liver, muscles, and adipose tissue) and by targeting pancreatic islets and in this way impairing insulin secretion. Given the role of this not related to infection inflammation in the development of both: insulin resistance and insulitis, anti-inflammatory strategies could be helpful not only to control T2D symptoms but also to treat its causes. This review presents current concepts regarding the role of metaflammation in the development of T2D in obese individuals as well as data concerning possible application of different anti-inflammatory strategies (including lifestyle interventions, the extra-glycemic potential of classical antidiabetic compounds, nonsteroidal anti-inflammatory drugs, immunomodulatory therapies, and bariatric surgery) in the management of T2D.
Collapse
|
5
|
Saraswathi V, Heineman R, Alnouti Y, Shivaswamy V, Desouza CV. A combination of Omega-3 PUFAs and COX inhibitors: A novel strategy to manage obesity-linked dyslipidemia and adipose tissue inflammation. J Diabetes Complications 2020; 34:107494. [PMID: 31787562 DOI: 10.1016/j.jdiacomp.2019.107494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 01/30/2023]
Abstract
We previously reported that fish oil in combination with cyclooxygenase (COX) inhibitors exerts enhanced hypolipidemic and anti-inflammatory effects in mice. Here, we sought to determine the effects of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) in combination with naproxen (NX), a COX inhibitor, on dyslipidemia and gene expression in adipose tissue (AT) in humans. Obese dyslipidemic patients were randomly assigned to one of these interventions for 12 wk: 1) Standard nutrition counseling (control), 2) ω-3 PUFAs (2 g twice daily), 3) NX (220 mg twice daily), and 4) ω-3 PUFAs (2 g twice daily) + NX (220 mg twice daily). The serum triglycerides showed a trend towards a reduction and a significant reduction (P<0.05) in ω-3 and ω3 + NX-treated subjects, respectively, compared to control. The mRNA expression of vascular cell adhesion molecule-1 (Vcam1), an inflammatory marker, increased significantly in AT of ω-3 PUFA-treated subjects but not in ω-3 PUFAs+NX-treated group. The plasma level of glycine-conjugated hyodeoxycholic acid, a secondary bile acid with hypolipidemic property, increased significantly in ω-3 PUFAs + NX-treated group. Our data suggest that combining NX with ω-3 PUFAs increases their effectiveness in reducing serum TG and favorably altering AT gene expression and plasma bile acid profile.
Collapse
Affiliation(s)
- Viswanathan Saraswathi
- Internal Medicine, Division of Diabetes, Endocrinology, and Metabolism, University of Nebraska Medical Center, United States of America; VA Nebraska-Western Iowa Health Care System, Omaha, NE, United States of America
| | - Robert Heineman
- Internal Medicine, Division of Diabetes, Endocrinology, and Metabolism, University of Nebraska Medical Center, United States of America; VA Nebraska-Western Iowa Health Care System, Omaha, NE, United States of America
| | - Yazen Alnouti
- Pharmaceutical Sciences, University of Nebraska Medical Center, United States of America
| | - Vijay Shivaswamy
- Internal Medicine, Division of Diabetes, Endocrinology, and Metabolism, University of Nebraska Medical Center, United States of America; VA Nebraska-Western Iowa Health Care System, Omaha, NE, United States of America
| | - Cyrus V Desouza
- Internal Medicine, Division of Diabetes, Endocrinology, and Metabolism, University of Nebraska Medical Center, United States of America; VA Nebraska-Western Iowa Health Care System, Omaha, NE, United States of America.
| |
Collapse
|
6
|
Bellucci PN, González Bagnes MF, Di Girolamo G, González CD. Potential Effects of Nonsteroidal Anti-Inflammatory Drugs in the Prevention and Treatment of Type 2 Diabetes Mellitus. J Pharm Pract 2017; 30:549-556. [PMID: 27194069 DOI: 10.1177/0897190016649551] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are a group of heterogeneous drugs largely known for their anti-inflammatory, antipyretic, and analgesic effects, which are met by means of the inhibition of the cyclooxygenase (COX) enzymes. Even when their use in patients with diabetes mellitus is limited due to relevant adverse events, some pharmacological and metabolic effects of NSAIDs have been further studied to be potentially beneficial in the prevention and/or treatment of diabetic subjects. Effects on endogenous glucose production, peripheral insulin resistance, pancreatic islet, and systemic inflammation and the insulin clearance have been reported. In this article, we overview the scientific literature of the last 5 years regarding the potential effects of NSAID treatment on diabetes prevention/treatment. The selected papers showed information in both humans and animal models. Furthermore, we included papers that suggest new areas for further investigation, and we discussed our own suggestions on this matter.
Collapse
Affiliation(s)
- Pamela Natalia Bellucci
- 1 Department of Pharmacology, School of Medicine, Instituto Universitario CEMIC, Buenos Aires, Argentina
| | | | - Guillermo Di Girolamo
- 2 Second Chair of Pharmacology - Department of Pharmacology and Toxicology, School of Medicine, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Claudio Daniel González
- 1 Department of Pharmacology, School of Medicine, Instituto Universitario CEMIC, Buenos Aires, Argentina
| |
Collapse
|
7
|
Huang CW, Chen YJ, Yang JT, Chen CY, Ajuwon KM, Chen SE, Su NW, Chen YS, Mersmann HJ, Ding ST. Docosahexaenoic acid increases accumulation of adipocyte triacylglycerol through up-regulation of lipogenic gene expression in pigs. Lipids Health Dis 2017; 16:33. [PMID: 28173868 PMCID: PMC5297193 DOI: 10.1186/s12944-017-0428-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/01/2017] [Indexed: 12/14/2022] Open
Abstract
Background Changing dietary fatty acid composition in modern diet influences the prevalence of obesity. Increasing evidences suggest favorable effects of n-3 PUFA for protecting against obesity and the metabolic syndrome. However, the regulation of n-3 PUFA in adipose is still unclear. Thus, this study addressed metabolism of different dietary fats in the adipose tissue of porcine model. Methods Eight-week-old cross-bred pigs were randomly assigned to three groups and fed a 2% fat diet for 30 days from either soybean oil (SBO), docosahexaenoic acid (DHA) or beef tallow. An in vitro experiment was conducted in which linoleic acid (LA), DHA or oleic acid (OA) were added to represent the major fatty acid in the SBO-, DHA- or BT- diets, respectively. Adipocytes size and lipid metabolism related genes were analyzed. Results Plasma triacylglycerol (TAG) was lower in DHA- than in BT-fed pigs, and the product of lipolysis, glycerol was highest in BT-fed pigs. In addition, expression of the lipolytic genes, adipose triglyceride lipase and hormone sensitive lipase was higher in BT-fed pigs and with OA treatment in vitro. DHA promoted protein kinase A activity in pigs without affecting lipolytic genes. Adipocyte cell sizes, TAG content and expression of lipogenic-related genes including, adipose differentiated related protein (ADRP) and diacylglycerol acyltransferase 1 (DGAT1) were elevated by DHA in vivo and in vitro, indicating DHA promoted adipogenesis to trap TAG in adipose tissue. Fatty acid β-oxidation genes were increased in the DHA-fed pigs. Conclusion This effect was partly explained by the effect of DHA to promote adipogenesis to trap TAG in adipocytes and also increase expression of genes involved in adipocyte fatty acid oxidation. Therefore, our results suggest a direct effect of DHA on adipocyte metabolism, resulting in TAG turnover and fatty acid dissipation to facilitate plasma lipid uptake from the circulation. Electronic supplementary material The online version of this article (doi:10.1186/s12944-017-0428-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chao-Wei Huang
- Department of Animal Science and Technology, National Taiwan University, No.50, Ln. 155, Sec. 3, Keelung Rd., Da'an Dist, Taipei City, 10672, Taiwan
| | - Yu-Jen Chen
- Institute of Biotechnology, National Taiwan University, Taipei, 10672, Taiwan
| | - Jui-Ting Yang
- Department of Animal Science and Technology, National Taiwan University, No.50, Ln. 155, Sec. 3, Keelung Rd., Da'an Dist, Taipei City, 10672, Taiwan
| | - Ching-Yi Chen
- Department of Animal Science and Technology, National Taiwan University, No.50, Ln. 155, Sec. 3, Keelung Rd., Da'an Dist, Taipei City, 10672, Taiwan
| | - Kolapo M Ajuwon
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907-2054, USA
| | - Shuen-Ei Chen
- Department of Animal Science, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Nan-Wei Su
- Department of Agricultural Chemistry, National Taiwan University, Taipei, 10672, Taiwan
| | - Yu-Shan Chen
- Department of Animal Science and Technology, National Taiwan University, No.50, Ln. 155, Sec. 3, Keelung Rd., Da'an Dist, Taipei City, 10672, Taiwan
| | - Harry J Mersmann
- Department of Animal Science and Technology, National Taiwan University, No.50, Ln. 155, Sec. 3, Keelung Rd., Da'an Dist, Taipei City, 10672, Taiwan
| | - Shih-Torng Ding
- Department of Animal Science and Technology, National Taiwan University, No.50, Ln. 155, Sec. 3, Keelung Rd., Da'an Dist, Taipei City, 10672, Taiwan. .,Institute of Biotechnology, National Taiwan University, Taipei, 10672, Taiwan.
| |
Collapse
|
8
|
Saraswathi V, Perriotte-Olson C, Ganesan M, Desouza CV, Alnouti Y, Duryee MJ, Thiele GM, Nordgren TM, Clemens DL. A combination of dietary N-3 fatty acids and a cyclooxygenase-1 inhibitor attenuates nonalcoholic fatty liver disease in mice. J Nutr Biochem 2017; 42:149-159. [PMID: 28187366 DOI: 10.1016/j.jnutbio.2017.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 12/13/2016] [Accepted: 01/19/2017] [Indexed: 12/12/2022]
Abstract
We sought to determine whether a combination of purified n-3 fatty acids (n-3) and SC-560 (SC), a cyclooxygenase-1-specific inhibitor, is effective in ameliorating nonalcoholic fatty liver disease in obesity. Female wild-type mice were fed a high-fat and high-cholesterol diet (HF) supplemented with n-3 in the presence or absence of SC. Mice treated with SC alone exhibited no change in liver lipids, whereas n-3-fed mice tended to have lower hepatic lipids. Mice given n-3+SC had significantly lower liver lipids compared with HF controls indicating enhanced lipid clearance. Total and sulfated bile acids were significantly higher only in n-3+SC-treated mice compared with chow diet (CD) controls. Regarding mechanisms, the level of pregnane X receptor (PXR), a nuclear receptor regulating drug/bile detoxification, was significantly higher in mice given n-3 or n-3+SC. Studies in precision-cut liver slices and in cultured hepatoma cells showed that n-3+SC enhanced not only the expression/activation of PXR and its target genes but also the expression of farnesoid X receptor (FXR), another regulator of bile synthesis/clearance, indicating that n-3+SC can induce both PXR and FXR. The mRNA level of FGFR4 which inhibits bile formation showed a significant reduction in Huh 7 cells upon n-3 and n-3+SC treatment. PXR overexpression in hepatoma cells confirmed that n-3 or SC each induced the expression of PXR target genes and in combination had an enhanced effect. Our findings suggest that combining SC with n-3 potentiates its lipid-lowering effect, in part, by enhanced PXR and/or altered FXR/FGFR4 signaling.
Collapse
Affiliation(s)
- Viswanathan Saraswathi
- Department of Internal Medicine, Division of Diabetes, Endocrinology, and Metabolism, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Curtis Perriotte-Olson
- Department of Internal Medicine, Division of Diabetes, Endocrinology, and Metabolism, University of Nebraska Medical Center, Omaha, NE, USA
| | - Murali Ganesan
- Department of Internal Medicine, Division of Diabetes, Endocrinology, and Metabolism, University of Nebraska Medical Center, Omaha, NE, USA
| | - Cyrus V Desouza
- Department of Internal Medicine, Division of Diabetes, Endocrinology, and Metabolism, University of Nebraska Medical Center, Omaha, NE, USA; VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Yazen Alnouti
- Department of Pharmaceutical Science, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael J Duryee
- Department of Internal Medicine, Division of Rheumatology and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Geoffrey M Thiele
- Department of Pharmaceutical Science, University of Nebraska Medical Center, Omaha, NE, USA; VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Tara M Nordgren
- Department of Internal Medicine, Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dahn L Clemens
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, NE, USA; VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| |
Collapse
|
9
|
Huang CW, Chien YS, Chen YJ, Ajuwon KM, Mersmann HM, Ding ST. Role of n-3 Polyunsaturated Fatty Acids in Ameliorating the Obesity-Induced Metabolic Syndrome in Animal Models and Humans. Int J Mol Sci 2016; 17:ijms17101689. [PMID: 27735847 PMCID: PMC5085721 DOI: 10.3390/ijms17101689] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/05/2016] [Accepted: 09/27/2016] [Indexed: 02/07/2023] Open
Abstract
The incidence of obesity and its comorbidities, such as insulin resistance and type II diabetes, are increasing dramatically, perhaps caused by the change in the fatty acid composition of common human diets. Adipose tissue plays a role as the major energy reservoir in the body. An excess of adipose mass accumulation caused by chronic positive energy balance results in obesity. The n-3 polyunsaturated fatty acids (n-3 PUFA), DHA (docosahexaenoic acid) and EPA (eicosapentaenoic acid) exert numerous beneficial effects to maintain physiological homeostasis. In the current review, the physiology of n-3 PUFA effects in the body is delineated from studies conducted in both human and animal experiments. Although mechanistic studies in human are limited, numerous studies conducted in animals and models in vitro provide potential molecular mechanisms of the effects of these fatty acids. Three aspects of n-3 PUFA in adipocyte regulation are discussed: (1) lipid metabolism, including adipocyte differentiation, lipolysis and lipogenesis; (2) energy expenditure, such as mitochondrial and peroxisomal fatty acid β-oxidation; and (3) inflammation, including adipokines and specialized pro-resolving lipid mediators. Additionally, the mechanisms by which n-3 PUFA regulate gene expression are highlighted. The beneficial effects of n-3 PUFA may help to reduce the incidence of obesity and its comorbidities.
Collapse
Affiliation(s)
- Chao-Wei Huang
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| | - Yi-Shan Chien
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| | - Yu-Jen Chen
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan.
| | - Kolapo M Ajuwon
- Department of Animal Science, Purdue University, West Lafayette, IN 47907-2054, USA.
| | - Harry M Mersmann
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| | - Shih-Torng Ding
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan.
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
10
|
Picklo MJ, Murphy EJ. A High-Fat, High-Oleic Diet, But Not a High-Fat, Saturated Diet, Reduces Hepatic α-Linolenic Acid and Eicosapentaenoic Acid Content in Mice. Lipids 2015; 51:537-47. [DOI: 10.1007/s11745-015-4106-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/20/2015] [Indexed: 10/22/2022]
|
11
|
El-Khuffash A, Jain A, Corcoran D, Shah PS, Hooper CW, Brown N, Poole SD, Shelton EL, Milne GL, Reese J, McNamara PJ. Efficacy of paracetamol on patent ductus arteriosus closure may be dose dependent: evidence from human and murine studies. Pediatr Res 2014; 76:238-44. [PMID: 24941212 PMCID: PMC4321957 DOI: 10.1038/pr.2014.82] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/19/2014] [Indexed: 01/14/2023]
Abstract
BACKGROUND We evaluated the clinical effectiveness of variable courses of paracetamol on patent ductus arteriosus (PDA) closure and examined its effect on the in vitro term and preterm murine ductus arteriosus (DA). METHODS Neonates received one of the following three paracetamol regimens: short course of oral paracetamol (SCOP), long course of oral paracetamol (LCOP), and intravenous paracetamol (IVP) for 2-6 d. Pressure myography was used to examine changes in vasomotor tone of the preterm and term mouse DA in response to paracetamol or indomethacin. Their effect on prostaglandin synthesis by DA explants was measured by mass spectroscopy. RESULTS Twenty-one preterm infants were included. No changes in PDA hemodynamics were seen in SCOP infants (n = 5). The PDA became less significant and eventually closed in six LCOP infants (n = 7). PDA closure was achieved in eight IVP infants (n = 9). On pressure myograph, paracetamol induced a concentration-dependent constriction of the term mouse DA, up to 30% of baseline (P < 0.01), but required >1 µmol/l. Indomethacin induced greater DA constriction and suppression of prostaglandin synthesis (P < 0.05). CONCLUSION The clinical efficacy of paracetamol on PDA closure may depend on the duration of treatment and the mode of administration. Paracetamol is less potent than indomethacin for constriction of the mouse DA in vitro.
Collapse
Affiliation(s)
| | - Amish Jain
- Department of Pediatrics, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - David Corcoran
- Department of Pediatrics, The Rotunda Hospital, Dublin, Ireland
| | - Prakesh S. Shah
- Department of Pediatrics, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Christopher W. Hooper
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Naoko Brown
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Stanley D. Poole
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Elaine L. Shelton
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ginger L. Milne
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jeff Reese
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Patrick J. McNamara
- Department of Neonatology, The Hospital for Sick Children, Toronto, Ontario, Canada,Department of Physiology and Experimental Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Li J, Bi L, Hulke M, Li T. Fish oil and fenofibrate prevented phosphorylation-dependent hepatic sortilin 1 degradation in Western diet-fed mice. J Biol Chem 2014; 289:22437-49. [PMID: 24986865 DOI: 10.1074/jbc.m114.548933] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Obesity and diabetes are associated with hepatic triglyceride overproduction and hypertriglyceridemia. Recent studies have found that the cellular trafficking receptor sortilin 1 (Sort1) inhibits hepatic apolipoprotein B secretion and reduces plasma lipid levels in mice, and its hepatic expression was negatively associated with plasma lipids in humans. This study investigated the regulation of hepatic Sort1 under diabetic conditions and by lipid-lowering fish oil and fenofibrate. Results showed that hepatic Sort1 protein, but not mRNA, was markedly lower in Western diet-fed mice. Knockdown of hepatic Sort1 increased plasma triglyceride in mice. Feeding mice a fish oil-enriched diet completely restored hepatic Sort1 levels in Western diet-fed mice. Fenofibrate also restored hepatic Sort1 protein levels in Western diet-fed wild type mice, but not in peroxisome proliferator-activated receptor α (PPARα) knock-out mice. PPARα ligands did not induce Sort1 in hepatocytes in vitro. Instead, fish oil and fenofibrate reduced circulating and hepatic fatty acids in mice, and n-3 polyunsaturated fatty acids prevented palmitate inhibition of Sort1 protein in HepG2 cells. LC/MS/MS analysis revealed that Sort1 phosphorylation at serine 793 was increased in obese mice and in palmitate-treated HepG2 cells. Mutations that abolished phosphorylation at Ser-793 increased Sort1 stability and prevented palmitate inhibition of Sort1 ubiquitination and degradation in HepG2 cells. In summary, therapeutic strategies that prevent posttranslational hepatic Sort1 down-regulation in obesity and diabetes may be beneficial in improving dyslipidemia.
Collapse
Affiliation(s)
- Jibiao Li
- From the Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Lipeng Bi
- From the Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Michelle Hulke
- From the Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Tiangang Li
- From the Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
13
|
Meidenbauer JJ, Ta N, Seyfried TN. Influence of a ketogenic diet, fish-oil, and calorie restriction on plasma metabolites and lipids in C57BL/6J mice. Nutr Metab (Lond) 2014; 11:23. [PMID: 24910707 PMCID: PMC4047269 DOI: 10.1186/1743-7075-11-23] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/06/2014] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Diet therapies including calorie restriction, ketogenic diets, and fish-oil supplementation have been used to improve health and to treat a variety of neurological and non-neurological diseases. METHODS We investigated the effects of three diets on circulating plasma metabolites (glucose and β-hydroxybutyrate), hormones (insulin and adiponectin), and lipids over a 32-day period in C57BL/6J mice. The diets evaluated included a standard rodent diet (SD), a ketogenic diet (KD), and a standard rodent diet supplemented with fish-oil (FO). Each diet was administered in either unrestricted (UR) or restricted (R) amounts to reduce body weight by 20%. RESULTS The KD-UR increased body weight and glucose levels and promoted a hyperlipidemic profile, whereas the FO-UR decreased body weight and glucose levels and promoted a normolipidemic profile, compared to the SD-UR. When administered in restricted amounts, all three diets produced a similar plasma metabolite profile, which included decreased glucose levels and a normolipidemic profile. Linear regression analysis showed that circulating glucose most strongly predicted body weight and triglyceride levels, whereas calorie intake moderately predicted glucose levels and strongly predicted ketone body levels. CONCLUSIONS These results suggest that biomarkers of health can be improved when diets are consumed in restricted amounts, regardless of macronutrient composition.
Collapse
Affiliation(s)
| | - Nathan Ta
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| | | |
Collapse
|
14
|
Fibrates and fish oil, but not corn oil, up-regulate the expression of the cholesteryl ester transfer protein (CETP) gene. J Nutr Biochem 2014; 25:669-74. [PMID: 24746832 DOI: 10.1016/j.jnutbio.2014.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 02/07/2014] [Accepted: 02/12/2014] [Indexed: 12/28/2022]
Abstract
Cholesteryl ester transfer protein (CETP) is a plasma protein that reduces high density lipoprotein (HDL)-cholesterol (chol) levels and may increase atherosclerosis risk. n-3 and n-6 polyunsaturated fatty acids (PUFAs) are natural ligands, and fibrates are synthetic ligands for peroxisome proliferator activated receptor-alpha (PPARα), a transcription factor that modulates lipid metabolism. In this study, we investigated the effects of PUFA oils and fibrates on CETP expression. Hypertriglyceridemic CETP transgenic mice were treated with gemfibrozil, fenofibrate, bezafibrate or vehicle (control), and normolipidemic CETP transgenic mice were treated with fenofibrate or with fish oil (FO; n-3 PUFA rich), corn oil (CO, n-6 PUFA rich) or saline. Compared with the control treatment, only fenofibrate significantly diminished triglyceridemia (50%), whereas all fibrates decreased the HDL-chol level. Elevation of the CETP liver mRNA levels and plasma activity was observed in the fenofibrate (53%) and gemfibrozil (75%) groups. Compared with saline, FO reduced the plasma levels of nonesterified fatty acid (26%), total chol (15%) and HDL-chol (20%). Neither of the oil treatments affected the plasma triglyceride levels. Compared with saline, FO increased the plasma adiponectin level and reduced plasma leptin levels, whereas CO increased the leptin levels. FO, but not CO, significantly increased the plasma CETP mass (90%) and activity (23%) as well as increased the liver level of CETP mRNA (28%). In conclusion, fibrates and FO, but not CO, up-regulated CETP expression at both the mRNA and protein levels. We propose that these effects are mediated by the activation of PPARα, which acts on a putative PPAR response element in the CETP gene.
Collapse
|
15
|
Saraswathi V, Ramnanan CJ, Wilks AW, Desouza CV, Eller AA, Murali G, Ramalingam R, Milne GL, Coate KC, Edgerton DS. Impact of hematopoietic cyclooxygenase-1 deficiency on obesity-linked adipose tissue inflammation and metabolic disorders in mice. Metabolism 2013; 62:1673-85. [PMID: 23987235 PMCID: PMC4845736 DOI: 10.1016/j.metabol.2013.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 06/13/2013] [Accepted: 07/16/2013] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Adipose tissue (AT)-specific inflammation is considered to mediate the pathological consequences of obesity and macrophages are known to activate inflammatory pathways in obese AT. Because cyclooxygenases play a central role in regulating the inflammatory processes, we sought to determine the role of hematopoietic cyclooxygenase-1 (COX-1) in modulating AT inflammation in obesity. MATERIALS/METHODS Bone marrow transplantation was performed to delete COX-1 in hematopoietic cells. Briefly, female wild type (wt) mice were lethally irradiated and injected with bone marrow (BM) cells collected from wild type (COX-1+/+) or COX-1 knock-out (COX-1-/-) donor mice. The mice were fed a high fat diet for 16 weeks. RESULTS The mice that received COX-1-/- bone marrow (BM-COX-1-/-) exhibited a significant increase in fasting glucose, total cholesterol and triglycerides in the circulation compared to control (BM-COX-1+/+) mice. Markers of AT-inflammation were increased and were associated with increased leptin and decreased adiponectin in plasma. Hepatic inflammation was reduced with a concomitant reduction in TXB2 levels. The hepatic mRNA expression of genes involved in lipogenesis and lipid transport was increased while expression of genes involved in regulating hepatic glucose output was reduced in BM-COX-1-/- mice. Finally, renal inflammation and markers of renal glucose release were increased in BM-COX-1-/- mice. CONCLUSION Hematopoietic COX-1 deletion results in impairments in metabolic homeostasis which may be partly due to increased AT inflammation and dysregulated adipokine profile. An increase in renal glucose release and hepatic lipogenesis/lipid transport may also play a role, at least in part, in mediating hyperglycemia and dyslipidemia, respectively.
Collapse
Affiliation(s)
- Viswanathan Saraswathi
- Department of Molecular Physiology and Biophysics; Department of Internal Medicine/Division of Diabetes, Endocrinology, and Metabolism; Department of Cellular and Integrative Physiology, University of Nebraska Medical Center; VA Nebraska Western Iowa Health Care System, Omaha, NE.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abimosleh SM, Tran CD, Howarth GS. Emu oil reduces small intestinal inflammation in the absence of clinical improvement in a rat model of indomethacin-induced enteropathy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:429706. [PMID: 23573127 PMCID: PMC3612469 DOI: 10.1155/2013/429706] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/04/2013] [Accepted: 02/13/2013] [Indexed: 12/13/2022]
Abstract
Nonsteroidal-anti-inflammatory-drug (NSAID) enteropathy is characterized by small intestinal damage and ulceration. Emu Oil (EO) has previously been reported to reduce intestinal inflammation. Aim. We investigated EO for its potential to attenuate NSAID-enteropathy in rats. Methods. Male Sprague Dawley rats (n = 10/group) were gavaged with Water, Olive Oil (OO), or EO (0.5 mL; days 0-12) and with 0.5 mL Water or the NSAID, Indomethacin (8 mg/kg; days 5-12) daily. Disease activity index (DAI), 13C-sucrose breath test (SBT), organ weights, intestinal damage severity (IDS), and myeloperoxidase (MPO) activity were assessed. P < 0.05 was considered significant. Results. In Indomethacin-treated rats, DAI was elevated (days 10-12) and SBT values (56%) and thymus weight (55%) were decreased, relative to normal controls. Indomethacin increased duodenum (68%), colon (24%), SI (48%), caecum (48%), liver (51%) and spleen (88%) weights, IDS scores, and MPO levels (jejunum: 195%, ileum: 104%) compared to normal controls. Jejunal MPO levels were decreased (64%) by both EO and OO, although only EO decreased ileal MPO (50%), compared to Indomethacin controls. Conclusions. EO reduced acute intestinal inflammation, whereas other parameters of Indomethacin-induced intestinal injury were not affected significantly. Increased EO dose and/or frequency of administration could potentially improve clinical efficacy.
Collapse
Affiliation(s)
- Suzanne M. Abimosleh
- Department of Gastroenterology, Women's and Children's Hospital, North Adelaide, SA 5006, Australia
- Discipline of Physiology, School of Medical Sciences, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Cuong D. Tran
- Department of Gastroenterology, Women's and Children's Hospital, North Adelaide, SA 5006, Australia
- Discipline of Physiology, School of Medical Sciences, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Gordon S. Howarth
- Department of Gastroenterology, Women's and Children's Hospital, North Adelaide, SA 5006, Australia
- Discipline of Physiology, School of Medical Sciences, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, SA 5371, Australia
| |
Collapse
|
17
|
Differential stem- and progenitor-cell trafficking by prostaglandin E2. Nature 2013; 495:365-9. [PMID: 23485965 PMCID: PMC3606692 DOI: 10.1038/nature11929] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 01/22/2013] [Indexed: 02/06/2023]
Abstract
To maintain lifelong production of blood cells, hematopoietic stem cells (HSC) are tightly regulated by inherent programs and extrinsic regulatory signals received from their microenvironmental niche. Long-term repopulating HSC (LT-HSC) reside in several, perhaps overlapping, niches that produce regulatory molecules/signals necessary for homeostasis and increased output following stress/injury 1–5. Despite significant advances in specific cellular or molecular mechanisms governing HSC/niche interactions, little is understood about regulatory function within the intact mammalian hematopoietic niche. Recently, we and others described a positive regulatory role for Prostaglandin E2 (PGE2) on HSC function ex vivo6,7. While exploring the role of endogenous PGE2 we unexpectedly observed hematopoietic egress after nonsteroidal anti-inflammatory drug (NSAID) treatment. Surprisingly, this was independent of the SDF-1/CXCR4 axis. Stem and progenitor cells were found to have differing mechanisms of egress, with HSC transit to the periphery dependent on niche attenuation and reduction in the retentive molecule osteopontin (OPN). Hematopoietic grafts mobilized with NSAIDs had superior repopulating ability and long-term engraftment. Treatment of non-human primates and healthy human volunteers confirmed NSAID-mediated egress in higher species. PGE2 receptor knockout mice demonstrated that progenitor expansion and stem/progenitor egress resulted from reduced EP4 receptor signaling. These results not only uncover unique regulatory roles for EP4 signaling in HSC retention in the niche but also define a rapidly translatable strategy to therapeutically enhance transplantation.
Collapse
|