1
|
Shi W, Feng D, Hu X, Wang C, Niu G, Zhao Z, Zhang H, Wang M, Wu Y. Lipoprotein(a) and High-Sensitivity C-Reactive Protein Compound the Risk of Hypoattenuating Leaflet Thickening After Transcatheter Aortic Valve Replacement. J Am Heart Assoc 2024; 13:e035597. [PMID: 39424417 DOI: 10.1161/jaha.124.035597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/11/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND The mechanism for hypoattenuating leaflet thickening (HALT) after transcatheter aortic valve replacement is still not well elucidated, and the role of Lp(a) (lipoprotein[a]) and hs-CRP (high-sensitivity C-reactive protein) has rarely been studied. This study sought to test the hypothesis that the risk of HALT is associated with an elevated level of Lp(a) or hs-CRP. METHODS AND RESULTS A total of 307 consecutive individuals who underwent a transcatheter aortic valve replacement procedure were included. All patients received their first postoperative computed tomography scans within 12 months, and raw data were analyzed on 3mensio software. HALT was defined as visually identified increased leaflet thickness with typical meniscal appearance and at least 2 different multiplanar reformation projections. Associations of Lp(a) or hs-CRP with the risk of HALT were evaluated using multivariable logistic regression analysis. The incidence of HALT within 12 months after transcatheter aortic valve replacement in this study was 36.2%, and the risk of HALT was associated with higher baseline Lp(a) (the multivariable adjusted odds ratio [OR] for every 10 mg/dL change was 1.18 [95% CI, 1.09-1.29]) and hs-CRP level (the multivariable adjusted OR for every 1 mg/L change was 1.08 [95% CI, 1.00-1.27]). Compared with individuals out of the top 25th percentile for both Lp(a) and hs-CRP, the multivariable adjusted OR for HALT was 4.74 (95% CI, 1.65-14.37) for the top 25th percentile. This result remained consistent after excluding patients receiving anticoagulant therapy. CONCLUSIONS The top 25th percentile of Lp(a) level (≥40 mg/dL) combined with the top 25th percentile of hs-CRP level (≥3.5 mg/L) conferred a 4.74-fold risk of HALT.
Collapse
Affiliation(s)
- Wence Shi
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease Chinese Academy of Medical Science and Peking Union Medical College Beijing China
| | - Dejing Feng
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease Chinese Academy of Medical Science and Peking Union Medical College Beijing China
| | - Xiangming Hu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease Chinese Academy of Medical Science and Peking Union Medical College Beijing China
| | - Can Wang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease Chinese Academy of Medical Science and Peking Union Medical College Beijing China
| | - Guannan Niu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease Chinese Academy of Medical Science and Peking Union Medical College Beijing China
| | - Zhenyan Zhao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease Chinese Academy of Medical Science and Peking Union Medical College Beijing China
| | - Hongliang Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease Chinese Academy of Medical Science and Peking Union Medical College Beijing China
| | - Moyang Wang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease Chinese Academy of Medical Science and Peking Union Medical College Beijing China
| | - Yongjian Wu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease Chinese Academy of Medical Science and Peking Union Medical College Beijing China
| |
Collapse
|
2
|
Liao X, Deng J, Du L, Hernández-Wolters B, Prabahar K, Kord-Varkaneh H. Effect of Raloxifene Treatment on Apolipoproteins and Lipoprotein(a) Concentrations in Postmenopausal Women: A Meta-Analysis of Randomized Controlled Trials. Clin Ther 2024; 46:799-807. [PMID: 39181829 DOI: 10.1016/j.clinthera.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND AND AIM Although various randomized controlled trials (RCTs) have evaluated the effect of raloxifene on apolipoproteins and lipoprotein(a) concentrations in postmenopausal women, the results have been inconsistent and inconclusive. Therefore, we conducted this meta-analysis of RCTs to investigate the effect of raloxifene administration on apolipoproteins and lipoprotein(a) [Lp(a)] concentrations in postmenopausal women. METHODS Two independent researchers systematically searched the scientific literature (including PubMed/Medline, Scopus, Web of Science, and EMBASE) for English-language randomized controlled trials (RCTs) published up to June 2024. We included RCTs reporting the impact of raloxifene on apolipoprotein A-I (ApoA-I), apolipoprotein B (ApoB), and Lp(a) levels in postmenopausal women. The primary outcome of interest was change in Lp(a), and the secondary outcomes were changes in ApoA-I and ApoB. FINDINGS The present meta-analysis incorporated 12 publications with 14 RCT arms. The comprehensive outcomes derived from the random-effects model revealed a statistically significant increase in ApoA-I (WMD: 6.06 mg/dL, 95% CI: 4.38, 7.75, P < 0.001) and decrease in ApoB concentrations (WMD: -8.48 mg/dL, 95% CI: -10.60, -6.36, P < 0.001) and Lp(a) (WMD: -3.02 mg/dL, 95% CI: -4.83, -1.21, P < 0.001) following the administration of raloxifene in postmenopausal women. In the subgroup analyses, the increase in ApoA-I and the decrease in ApoB and Lp(a) levels were greater in RCTs with a mean participant age of ≥60 years and a duration of ≤12 weeks. IMPLICATIONS The current meta-analysis of RCTs demonstrates that treatment with raloxifene reduces ApoB and Lp(a) levels while increasing ApoA-I levels in postmenopausal women. Since these effects on lipid components are associated with a reduced risk of cardiovascular disease (CVD), raloxifene could be a suitable therapy for postmenopausal women who are at an increased risk of CVD and have other medical indications for raloxifene administration.
Collapse
Affiliation(s)
- Xinyi Liao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Deng
- Department of Thyroid Breast Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Lei Du
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
| | | | - Kousalya Prabahar
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Hamed Kord-Varkaneh
- Department of Nutrition and Food Hygiene, School of Medicine, Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
3
|
Shi W, Feng D, Hu X, Wang C, Niu G, Zhao Z, Zhang H, Wang M, Wu Y. Prediction of hypoattenuating leaflet thickening in patients undergoing transcatheter aortic valves replacement based on clinical factors and 4D-computed tomography morphological characteristics: A retrospective cross-sectional study. Int J Cardiol 2024; 410:132219. [PMID: 38815674 DOI: 10.1016/j.ijcard.2024.132219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND The rapid increase in the number of transcatheter aortic valve replacement (TAVR) procedures in China and worldwide has led to growing attention to hypoattenuating leaflet thickening (HALT) detected during follow-up by 4D-CT. It's reported that HALT may impact the durability of prosthetic valve. Early identification of these patients and timely deployment of anticoagulant therapy are therefore particularly important. METHODS We retrospectively recruited 234 consecutive patients who underwent TAVR procedure in Fuwai Hospital. We collected clinical information and extracted morphological characteristics parameters of the transcatheter heart valve (THV) post TAVR procedure from 4D-CT. LASSO analysis was conducted to select important features. Three models were constructed, encapsulating clinical factors (Model 1), morphological characteristics parameters (Model 2), and all together (Model 3), to identify patients with HALT. Receiver operating characteristic (ROC) curves and decision curve analysis (DCA) were plotted to evaluate the discriminatory ability of models. A nomogram for HALT was developed and verified by bootstrap resampling. RESULTS In our study patients, Model 3 (AUC = 0.738) showed higher recognition effectiveness compared to Model 1 (AUC = 0.674, p = 0.032) and Model 2 (AUC = 0.675, p = 0.021). Internal bootstrap validation also showed that Model 3 had a statistical power similar to that of the initial stepwise model (AUC = 0.723 95%CI: 0.661-0.786). Overall, Model 3 was rated best for the identification of HALT in TAVR patients. CONCLUSION A comprehensive predictive model combining patient clinical factors with CT-based morphology parameters has superior efficacy in predicting the occurrence of HALT in TAVR patients.
Collapse
Affiliation(s)
- Wence Shi
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Dejing Feng
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiangming Hu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Can Wang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guannan Niu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhenyan Zhao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hongliang Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Moyang Wang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Yongjian Wu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Wang P, Yuan D, Zhao X, Zhu P, Guo X, Jiang L, Xu N, Wang Z, Liu R, Wang Q, Chen Y, Zhang Y, Xu J, Liu Z, Song Y, Zhang Z, Yao Y, Feng Y, Tang X, Wang X, Gao R, Han Y, Yuan J. Inverse Association of Lipoprotein(a) on Long-Term Bleeding Risk in Patients with Coronary Heart Disease: Insight from a Multicenter Cohort in Asia. Thromb Haemost 2024; 124:684-694. [PMID: 37487540 PMCID: PMC11199048 DOI: 10.1055/s-0043-1771188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/08/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Lipoprotein(a), or Lp(a), has been recognized as a strong risk factor for atherosclerotic cardiovascular disease. However, the relationship between Lp(a) and bleeding remains indistinct, especially in the secondary prevention population of coronary artery disease (CAD). This investigation aimed to evaluate the association of Lp(a) with long-term bleeding among patients with CAD. METHODS Based on a prospective multicenter cohort of patients with CAD consecutively enrolled from January 2015 to May 2019 in China, the current analysis included 16,150 participants. Thus, according to Lp(a) quintiles, all subjects were divided into five groups. The primary endpoint was bleeding at 2-year follow-up, and the secondary endpoint was major bleeding at 2-year follow-up. RESULTS A total of 2,747 (17.0%) bleeding and 525 (3.3%) major bleeding were recorded during a median follow-up of 2.0 years. Kaplan-Meier survival analysis showed the highest bleeding incidence in Lp(a) quintile 1, compared with patients in Lp(a) quintiles 2 to 5 (p < 0.001), while the incidence of major bleeding seemed similar between the two groups. Moreover, restricted cubic spline analysis suggested that there was an L-shaped association between Lp(a) and 2-year bleeding after adjustment for potential confounding factors, whereas there was no significant association between Lp(a) and 2-year major bleeding. CONCLUSION There was an inverse and L-shaped association of Lp(a) with bleeding at 2-year follow-up in patients with CAD. More attention and effort should be made to increase the clinician awareness of Lp(a)'s role, as a novel marker for bleeding risk to better guide shared-decision making in clinical practice.
Collapse
Affiliation(s)
- Peizhi Wang
- Department of Cardiology, Center for Coronary Heart Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Deshan Yuan
- Department of Cardiology, Center for Coronary Heart Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xueyan Zhao
- Special Demand Medical Care Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pei Zhu
- Department of Cardiology, Center for Coronary Heart Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaogang Guo
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Lin Jiang
- Department of Cardiology, Center for Coronary Heart Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Na Xu
- Department of Cardiology, Center for Coronary Heart Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhifang Wang
- Department of Cardiology, Xinxiang Central Hospital, Xinxiang, Henan Province, China
| | - Ru Liu
- Department of Cardiology, Center for Coronary Heart Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qingsheng Wang
- Department of Cardiology, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei Province, China
| | - Yan Chen
- Department of Cardiology, Center for Coronary Heart Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongzhen Zhang
- Department of Cardiology, Peking University Third Hospital, Beijing, China
| | - Jingjing Xu
- Department of Cardiology, Center for Coronary Heart Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhenyu Liu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Song
- Department of Cardiology, Center for Coronary Heart Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Zhang
- Department of Cardiology, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | - Yi Yao
- Department of Cardiology, Center for Coronary Heart Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingqing Feng
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangzhou, Guangdong Province, China
| | - Xiaofang Tang
- Department of Cardiology, Center for Coronary Heart Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaozeng Wang
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, Liaoning Province, China
| | - Runlin Gao
- Department of Cardiology, Center for Coronary Heart Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaling Han
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, Liaoning Province, China
| | - Jinqing Yuan
- Department of Cardiology, Center for Coronary Heart Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Wańczura P, Aebisher D, Iwański MA, Myśliwiec A, Dynarowicz K, Bartusik-Aebisher D. The Essence of Lipoproteins in Cardiovascular Health and Diseases Treated by Photodynamic Therapy. Biomedicines 2024; 12:961. [PMID: 38790923 PMCID: PMC11117957 DOI: 10.3390/biomedicines12050961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Lipids, together with lipoprotein particles, are the cause of atherosclerosis, which is a pathology of the cardiovascular system. In addition, it affects inflammatory processes and affects the vessels and heart. In pharmaceutical answer to this, statins are considered a first-stage treatment method to block cholesterol synthesis. Many times, additional drugs are also used with this method to lower lipid concentrations in order to achieve certain values of low-density lipoprotein (LDL) cholesterol. Recent advances in photodynamic therapy (PDT) as a new cancer treatment have gained the therapy much attention as a minimally invasive and highly selective method. Photodynamic therapy has been proven more effective than chemotherapy, radiotherapy, and immunotherapy alone in numerous studies. Consequently, photodynamic therapy research has expanded in many fields of medicine due to its increased therapeutic effects and reduced side effects. Currently, PDT is the most commonly used therapy for treating age-related macular degeneration, as well as inflammatory diseases, and skin infections. The effectiveness of photodynamic therapy against a number of pathogens has also been demonstrated in various studies. Also, PDT has been used in the treatment of cardiovascular diseases, such as atherosclerosis and hyperplasia of the arterial intima. This review evaluates the effectiveness and usefulness of photodynamic therapy in cardiovascular diseases. According to the analysis, photodynamic therapy is a promising approach for treating cardiovascular diseases and may lead to new clinical trials and management standards. Our review addresses the used therapeutic strategies and also describes new therapeutic strategies to reduce the cardiovascular burden that is induced by lipids.
Collapse
Affiliation(s)
- Piotr Wańczura
- Department of Cardiology, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Mateusz A Iwański
- English Division Science Club, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| |
Collapse
|
6
|
Giannakopoulou SP, Chrysohoou C, Antonopoulou S, Damigou E, Barkas F, Vafia C, Kravvariti E, Tsioufis C, Pitsavos C, Liberopoulos E, Sfikakis PP, Panagiotakos D. Discrimination and net-reclassification of cardiovascular disease risk with Lipoprotein(a) levels: The ATTICA study (2002-2022). J Clin Lipidol 2024:S1933-2874(24)00174-0. [PMID: 38908971 DOI: 10.1016/j.jacl.2024.04.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Lipoprotein(a) [Lp(a)] is a recognized as risk factor for atherosclerotic cardiovascular disease (ASCVD). However, its influence on clinical risk evaluations remains unclear. OBJECTIVE This study aimed to determine whether Lp(a) improves CVD risk prediction among apparently healthy adults from the general population. METHODS In 2002, n = 3,042 adults free of CVD, residing in Athens metropolitan area, in Greece, were recruited. A 20-year follow-up was conducted in 2022, comprising n = 2,169 participants, of which n = 1,988 had complete data for CVD incidence. RESULTS Lp(a) levels were significantly associated with 20-year ASCVD incidence in the crude model (Hazard Ratio per 1 mg/dL: 1.004, p = 0.048), but not in multi-adjusted models considering demographic, lifestyle, and clinical factors. Adding Lp(a) to the Reynolds Risk Score (RRS) and Framingham Risk Score (FRS) variables resulted in positive Net Reclassification Improvement (NRI) values (0.159 and 0.160 respectively), indicating improved risk classification. Mediation analysis suggested that C-reactive protein, Interleukin-6, and Fibrinogen mediate the relationship between Lp(a) and ASCVD. No significant interaction was observed between Lp(a) and potential moderators. CONCLUSION Lp(a) levels can predict 20-year CVD outcomes and improve CVD risk prediction within the general population, possibly via the intricate relationship between Lp(a), systemic inflammation, atherothrombosis.
Collapse
Affiliation(s)
- Sofia-Panagiota Giannakopoulou
- Department of Nutrition and Dietetics (Drs Giannakopoulou, Antonopoulou, Damigou, Vafia and Panagiotakos), School of Health Sciences and Education, Harokopio University, 17676 Athens, Greece
| | - Christina Chrysohoou
- First Cardiology Clinic (Drs Chrysohoou, Tsioufis and Pitsavos), Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, 15772 Athens, Greece
| | - Smaragdi Antonopoulou
- Department of Nutrition and Dietetics (Drs Giannakopoulou, Antonopoulou, Damigou, Vafia and Panagiotakos), School of Health Sciences and Education, Harokopio University, 17676 Athens, Greece
| | - Evangelia Damigou
- Department of Nutrition and Dietetics (Drs Giannakopoulou, Antonopoulou, Damigou, Vafia and Panagiotakos), School of Health Sciences and Education, Harokopio University, 17676 Athens, Greece
| | - Fotios Barkas
- Department of Internal Medicine (Dr Barkas), Medical School, University of Ioannina, 45500 Ioannina, Greece
| | - Christina Vafia
- Department of Nutrition and Dietetics (Drs Giannakopoulou, Antonopoulou, Damigou, Vafia and Panagiotakos), School of Health Sciences and Education, Harokopio University, 17676 Athens, Greece
| | - Evrydiki Kravvariti
- First Department of Propaedeutic Internal Medicine (Drs Kravvariti, Liberopoulos and Sfikakis), Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 15772 Athens, Greece
| | - Costas Tsioufis
- First Cardiology Clinic (Drs Chrysohoou, Tsioufis and Pitsavos), Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, 15772 Athens, Greece
| | - Christos Pitsavos
- First Cardiology Clinic (Drs Chrysohoou, Tsioufis and Pitsavos), Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, 15772 Athens, Greece
| | - Evangelos Liberopoulos
- First Department of Propaedeutic Internal Medicine (Drs Kravvariti, Liberopoulos and Sfikakis), Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 15772 Athens, Greece
| | - Petros P Sfikakis
- First Department of Propaedeutic Internal Medicine (Drs Kravvariti, Liberopoulos and Sfikakis), Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 15772 Athens, Greece
| | - Demosthenes Panagiotakos
- Department of Nutrition and Dietetics (Drs Giannakopoulou, Antonopoulou, Damigou, Vafia and Panagiotakos), School of Health Sciences and Education, Harokopio University, 17676 Athens, Greece.
| |
Collapse
|
7
|
Zhang Z, Rodriguez M, Zheng Z. Clot or Not? Reviewing the Reciprocal Regulation Between Lipids and Blood Clotting. Arterioscler Thromb Vasc Biol 2024; 44:533-544. [PMID: 38235555 PMCID: PMC10922732 DOI: 10.1161/atvbaha.123.318286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Both hyperlipidemia and thrombosis contribute to the risks of atherosclerotic cardiovascular diseases, which are the leading cause of death and reduced quality of life in survivors worldwide. The accumulation of lipid-rich plaques on arterial walls eventually leads to the rupture or erosion of vulnerable lesions, triggering excessive blood clotting and leading to adverse thrombotic events. Lipoproteins are highly dynamic particles that circulate in blood, carry insoluble lipids, and are associated with proteins, many of which are involved in blood clotting. A growing body of evidence suggests a reciprocal regulatory relationship between blood clotting and lipid metabolism. In this review article, we summarize the observations that lipoproteins and lipids impact the hemostatic system, and the clotting-related proteins influence lipid metabolism. We also highlight the gaps that need to be filled in this area of research.
Collapse
Affiliation(s)
- Ziyu Zhang
- Blood Research Institute, Versiti Blood Center of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Maya Rodriguez
- Blood Research Institute, Versiti Blood Center of Wisconsin, Milwaukee, Wisconsin 53226, USA
- College of Arts and Sciences, Marquette University, Milwaukee, Wisconsin 53233, USA
| | - Ze Zheng
- Blood Research Institute, Versiti Blood Center of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
8
|
Tasdighi E, Adhikari R, Almaadawy O, Leucker TM, Blaha MJ. LP(a): Structure, Genetics, Associated Cardiovascular Risk, and Emerging Therapeutics. Annu Rev Pharmacol Toxicol 2024; 64:135-157. [PMID: 37506332 DOI: 10.1146/annurev-pharmtox-031023-100609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Lipoprotein(a) [Lp(a)] is a molecule bound to apolipoprotein(a) with some similarity to low-density lipoprotein cholesterol (LDL-C), which has been found to be a risk factor for cardiovascular disease (CVD). Lp(a) appears to induce inflammation, atherogenesis, and thrombosis. Approximately 20% of the world's population has increased Lp(a) levels, determined predominantly by genetics. Current clinical practices for the management of dyslipidemia are ineffective in lowering Lp(a) levels. Evolving RNA-based therapeutics, such as the antisense oligonucleotide pelacarsen and small interfering RNA olpasiran, have shown promising results in reducing Lp(a) levels. Phase III pivotal cardiovascular outcome trials [Lp(a)HORIZON and OCEAN(a)] are ongoing to evaluate their efficacy in secondary prevention of major cardiovascular events in patients with elevated Lp(a). The future of cardiovascular residual risk reduction may transition to a personalized approach where further lowering of either LDL-C, triglycerides, or Lp(a) is selected after high-intensity statin therapy based on the individual risk profile and preferences of each patient.
Collapse
Affiliation(s)
- Erfan Tasdighi
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rishav Adhikari
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Omar Almaadawy
- Department of Medicine, MedStar Union Memorial Hospital, Baltimore, Maryland, USA
| | - Thorsten M Leucker
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael J Blaha
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Bharadwaj AG, Okura GC, Woods JW, Allen EA, Miller VA, Kempster E, Hancock MA, Gujar S, Slibinskas R, Waisman DM. Identification and characterization of calreticulin as a novel plasminogen receptor. J Biol Chem 2024; 300:105465. [PMID: 37979915 PMCID: PMC10770727 DOI: 10.1016/j.jbc.2023.105465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/22/2023] [Accepted: 11/06/2023] [Indexed: 11/20/2023] Open
Abstract
Calreticulin (CRT) was originally identified as a key calcium-binding protein of the endoplasmic reticulum. Subsequently, CRT was shown to possess multiple intracellular functions, including roles in calcium homeostasis and protein folding. Recently, several extracellular functions have been identified for CRT, including roles in cancer cell invasion and phagocytosis of apoptotic and cancer cells by macrophages. In the current report, we uncover a novel function for extracellular CRT and report that CRT functions as a plasminogen-binding receptor that regulates the conversion of plasminogen to plasmin. We show that human recombinant or bovine tissue-derived CRT dramatically stimulated the conversion of plasminogen to plasmin by tissue plasminogen activator or urokinase-type plasminogen activator. Surface plasmon resonance analysis revealed that CRT-bound plasminogen (KD = 1.8 μM) with moderate affinity. Plasminogen binding and activation by CRT were inhibited by ε-aminocaproic acid, suggesting that an internal lysine residue of CRT interacts with plasminogen. We subsequently show that clinically relevant CRT variants (lacking four or eight lysines in carboxyl-terminal region) exhibited decreased plasminogen activation. Furthermore, CRT-deficient fibroblasts generated 90% less plasmin and CRT-depleted MDA MB 231 cells also demonstrated a significant reduction in plasmin generation. Moreover, treatment of fibroblasts with mitoxantrone dramatically stimulated plasmin generation by WT but not CRT-deficient fibroblasts. Our results suggest that CRT is an important cellular plasminogen regulatory protein. Given that CRT can empower cells with plasmin proteolytic activity, this discovery may provide new mechanistic insight into the established role of CRT in cancer.
Collapse
Affiliation(s)
- Alamelu G Bharadwaj
- Departments of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada; Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Gillian C Okura
- Departments of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John W Woods
- Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Erica A Allen
- Departments of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Victoria A Miller
- Departments of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Emma Kempster
- Departments of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mark A Hancock
- McGill SPR-MS Facility, McGill University, Montréal, Québec, Canada
| | - Shashi Gujar
- Departments of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Rimantas Slibinskas
- Life Sciences Center, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - David M Waisman
- Departments of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada; Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
10
|
Marcovina SM. Lipoprotein(a): a genetically determined risk factor for Cardiovascular disease. Crit Rev Clin Lab Sci 2023; 60:560-572. [PMID: 37452525 DOI: 10.1080/10408363.2023.2229915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/11/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
Lipoprotein(a) is a complex lipoprotein with unique characteristics distinguishing it from all the other apolipoprotein B-containing lipoprotein particles. Its lipid composition and the presence of a single molecule of apolipoprotein B per particle, render lipoprotein(a) similar to low-density lipoproteins. However, the presence of a unique, carbohydrate-rich protein termed apolipoprotein(a), linked by a covalent bond to apolipoprotein B imparts unique characteristics to lipoprotein(a) distinguishing it from all the other lipoproteins. Apolipoprotein(a) is highly polymorphic in size ranging in molecular weight from <300 KDa to >800 kDa. Both the size polymorphism and the concentration of lipoprotein(a) in plasma are genetically determined and unlike other lipoproteins, plasma concentration is minimally impacted by lifestyle modifications or lipid-lowering drugs. Many studies involving hundreds of thousands of individuals have provided strong evidence that elevated lipoprotein(a) is genetically determined and a causal risk factor for atherosclerotic cardiovascular disease. The concentration attained in adulthood is already present in children at around 5 years of age and therefore, those with elevated lipoprotein(a) are prematurely exposed to a high risk of cardiovascular disease. Despite the large number of guidelines and consensus statements on the management of lipoprotein(a) in atherosclerotic cardiovascular disease published in the last decade, lipoprotein(a) is still seldom measured in clinical settings. In this review, we provide an overview of the most important features that characterize lipoprotein(a), its role in cardiovascular disease, and the importance of adding the measurement of lipoprotein(a) for screening adults and youths to identify those at increased risk of atherosclerotic cardiovascular disease due to their elevated plasma concentration of lipoprotein(a).
Collapse
|
11
|
Dai W, Castleberry M, Zheng Z. Tale of two systems: the intertwining duality of fibrinolysis and lipoprotein metabolism. J Thromb Haemost 2023; 21:2679-2696. [PMID: 37579878 PMCID: PMC10599797 DOI: 10.1016/j.jtha.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023]
Abstract
Fibrinolysis is an enzymatic process that breaks down fibrin clots, while dyslipidemia refers to abnormal levels of lipids and lipoproteins in the blood. Both fibrinolysis and lipoprotein metabolism are critical mechanisms that regulate a myriad of functions in the body, and the imbalance of these mechanisms is linked to the development of pathologic conditions, such as thrombotic complications in atherosclerotic cardiovascular diseases. Accumulated evidence indicates the close relationship between the 2 seemingly distinct and complicated systems-fibrinolysis and lipoprotein metabolism. Observational studies in humans found that dyslipidemia, characterized by increased blood apoB-lipoprotein and decreased high-density lipoprotein, is associated with lower fibrinolytic potential. Genetic variants of some fibrinolytic regulators are associated with blood lipid levels, supporting a causal relationship between these regulators and lipoprotein metabolism. Mechanistic studies have elucidated many pathways that link the fibrinolytic system and lipoprotein metabolism. Moreover, profibrinolytic therapies improve lipid panels toward an overall cardiometabolic healthier phenotype, while some lipid-lowering treatments increase fibrinolytic potential. The complex relationship between lipoprotein and fibrinolysis warrants further research to improve our understanding of the bidirectional regulation between the mediators of fibrinolysis and lipoprotein metabolism.
Collapse
Affiliation(s)
- Wen Dai
- Versiti Blood Research Institute, Milwaukee, USA.
| | | | - Ze Zheng
- Versiti Blood Research Institute, Milwaukee, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, USA.
| |
Collapse
|
12
|
Wang X, Chen X, Wang Y, Peng S, Pi J, Yue J, Meng Q, Liu J, Zheng L, Chan P, Tomlinson B, Liu Z, Zhang Y. The Association of Lipoprotein(a) and Neutrophil-to-Lymphocyte Ratio Combination with Atherosclerotic Cardiovascular Disease in Chinese Patients. Int J Gen Med 2023; 16:2805-2817. [PMID: 37426518 PMCID: PMC10328105 DOI: 10.2147/ijgm.s410840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023] Open
Abstract
Objective The association of lipoprotein(a) [Lp(a)] with atherosclerotic cardiovascular disease (ASCVD) risk can be modified by chronic systemic inflammation. The neutrophil-to-lymphocyte ratio (NLR) is a reliable and easily available marker of immune response to various infectious and non-infectious stimuli. The purpose of this study was to assess the combined effects of Lp(a) and NLR in predicting the ASCVD risk and coronary artery plaque traits. Methods This study included 1618 patients who had coronary computed tomography angiography (CTA) with risk assessment of ASCVD. CTA was used to evaluate the traits of coronary atherosclerotic plaques, and the association of ASCVD with Lp(a) and NLR was assessed by multivariate logistic regression models. Results Plasma Lp(a) and NLR were significantly increased in patients having plaques. High Lp(a) was defined as the plasma Lp(a) level > 75 nmol/L and high NLR as NLR > 1.686. The patients were grouped into four categories according to normal or high NLR and plasma Lp(a) as nLp(a)/NLR-, hLp(a)/NLR-, nLp(a)/NLR+ and hLp(a)/NLR+. The patients in the latter three groups had higher risk of ASCVD compared to the reference group nLp(a)/NLR-, with the highest ASCVD risk in the hLp(a)/NLR+ group (OR = 2.39, 95% CI = 1.49-3.83, P = 0.000). The occurrence of unstable plaques was 29.94% in the hLp(a)/NLR+ group, which was significantly higher than groups nLp(a)/NLR+, hLp(a)/NLR- and nLp(a)/NLR- with 20.83%, 26.54% and 22.58%, respectively, and there was a significantly increased risk of unstable plaque in the hLp(a)/NLR+ group compared to the nLp(a)/NLR- group (OR = 1.67, 95% CI = 1.04-2.68, P = 0.035). The risk of stable plaque was not significantly increased in the hLp(a)/NLR+ group compared to the nLp(a)/NLR- group (OR = 1.73, 95% CI = 0.96-3.10, P = 0.066). Conclusion The concomitant presence of elevated Lp(a) and higher NLR is associated with increased unstable coronary artery plaques in patients with ASCVD.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai Heart Failure Research Center, Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, People’s Republic of China
| | - Xiaoli Chen
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai Heart Failure Research Center, Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, People’s Republic of China
| | - Yanfang Wang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai Heart Failure Research Center, Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, People’s Republic of China
| | - Sheng Peng
- Department of Trauma, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, People’s Republic of China
| | - Jingjiang Pi
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Jinnan Yue
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai Heart Failure Research Center, Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, People’s Republic of China
| | - Qingshu Meng
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai Heart Failure Research Center, Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, People’s Republic of China
| | - Jie Liu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai Heart Failure Research Center, Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, People’s Republic of China
| | - Liang Zheng
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai Heart Failure Research Center, Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, People’s Republic of China
- Jian hospital, Shanghai East Hospital, Tongji University School of Medicine, Jian, 343006, People’s Republic of China
| | - Paul Chan
- Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Brian Tomlinson
- Faculty of Medicine, Macau University of Science and Technology, Macau, People’s Republic of China
| | - Zhongmin Liu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai Heart Failure Research Center, Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, People’s Republic of China
| | - Yuzhen Zhang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai Heart Failure Research Center, Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, People’s Republic of China
| |
Collapse
|
13
|
Lorey MB, Youssef A, Äikäs L, Borrelli M, Hermansson M, Assini JM, Kemppainen A, Ruhanen H, Ruuth M, Matikainen S, Kovanen PT, Käkelä R, Boffa MB, Koschinsky ML, Öörni K. Lipoprotein(a) induces caspase-1 activation and IL-1 signaling in human macrophages. Front Cardiovasc Med 2023; 10:1130162. [PMID: 37293282 PMCID: PMC10244518 DOI: 10.3389/fcvm.2023.1130162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction Lipoprotein(a) (Lp(a)) is an LDL-like particle with an additional apolipoprotein (apo)(a) covalently attached. Elevated levels of circulating Lp(a) are a risk factor for atherosclerosis. A proinflammatory role for Lp(a) has been proposed, but its molecular details are incompletely defined. Methods and results To explore the effect of Lp(a) on human macrophages we performed RNA sequencing on THP-1 macrophages treated with Lp(a) or recombinant apo(a), which showed that especially Lp(a) induces potent inflammatory responses. Thus, we stimulated THP-1 macrophages with serum containing various Lp(a) levels to investigate their correlations with cytokines highlighted by the RNAseq, showing significant correlations with caspase-1 activity and secretion of IL-1β and IL-18. We further isolated both Lp(a) and LDL particles from three donors and then compared their atheroinflammatory potentials together with recombinant apo(a) in primary and THP-1 derived macrophages. Compared with LDL, Lp(a) induced a robust and dose-dependent caspase-1 activation and release of IL-1β and IL-18 in both macrophage types. Recombinant apo(a) strongly induced caspase-1 activation and IL-1β release in THP-1 macrophages but yielded weak responses in primary macrophages. Structural analysis of these particles revealed that the Lp(a) proteome was enriched in proteins associated with complement activation and coagulation, and its lipidome was relatively deficient in polyunsaturated fatty acids and had a high n-6/n-3 ratio promoting inflammation. Discussion Our data show that Lp(a) particles induce the expression of inflammatory genes, and Lp(a) and to a lesser extent apo(a) induce caspase-1 activation and IL-1 signaling. Major differences in the molecular profiles between Lp(a) and LDL contribute to Lp(a) being more atheroinflammatory.
Collapse
Affiliation(s)
- Martina B. Lorey
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Amer Youssef
- Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Lauri Äikäs
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
| | - Matthew Borrelli
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Martin Hermansson
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
| | - Julia M. Assini
- Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
- Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Aapeli Kemppainen
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
| | - Hanna Ruhanen
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE) and Biocenter Finland, Helsinki, Finland
| | - Maija Ruuth
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
| | - Sampsa Matikainen
- Helsinki Rheumatic Disease and Inflammation Research Group, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Petri T. Kovanen
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
| | - Reijo Käkelä
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute of Life Science (HiLIFE) and Biocenter Finland, Helsinki, Finland
| | - Michael B. Boffa
- Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
- Department of Biochemistry, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Marlys L. Koschinsky
- Robarts Research Institute, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Katariina Öörni
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Torres M, Schenk A. Lipoprotein (a): Does It Play a Role in Pediatric Ischemic Stroke and Thrombosis? Curr Atheroscler Rep 2023:10.1007/s11883-023-01102-5. [PMID: 37160656 DOI: 10.1007/s11883-023-01102-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
PURPOSE OF REVIEW The goal of this paper is to describe the current understanding of lipoprotein (a) (Lp(a)), clinical practice guidelines, and the potential pathophysiological mechanisms that appear to increase the risk of cardiovascular and thromboembolic events, specifically within the pediatric population. RECENT FINDINGS The proatherogenic and pro-thrombotic properties of Lp(a) may increase the risk of atherothrombotic disease. In adults, atherosclerotic plaques increase thrombotic risk, but antifibrinolytic and proinflammatory properties appear to have an important role in children. Although it is not well established in neonates, recent studies indicate the risk of incident thrombosis and ischemic stroke are approximately fourfold higher in children with elevated Lp(a) which also increases their risk of recurrent events. Despite this higher risk, Pediatric Lp(a) screening guidelines continue to vary among different medical societies and countries. The inconsistency is likely related to inconclusive evidence outside of observational studies and the lack of specific therapies for children with elevated levels. Additional research is needed to improve understanding of the pro-thrombotic mechanisms of Lp(a), appropriate screening guidelines for Lp(a) in the pediatric population, and to elucidate the short and long term effects of elevated Lp(a) on the risk of pediatric thrombosis and stroke.
Collapse
Affiliation(s)
- Marcela Torres
- Department of Hematology and Oncology, Cook Children's Medical Center, 1500 Cooper St, Fort Worth, TX, 76104, USA.
| | - Allyson Schenk
- Department of Research Data Science and Analytics, Cook Children's Medical Center, 801 Seventh Avenue, Fort Worth, TX, 76104, USA
| |
Collapse
|
15
|
Song J, Zhang X, Wei M, Bo Y, Zhou X, Tang B. Association between lipoprotein(a) and thromboembolism in patients with non-valvular atrial fibrillation: a cross-sectional study. Lipids Health Dis 2022; 21:78. [PMID: 36002888 PMCID: PMC9404645 DOI: 10.1186/s12944-022-01682-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lipoprotein(a) [Lp(a)] is a recognized risk factor for ischemic stroke (IS); however, its role in thromboembolism in patients with non-valvular atrial fibrillation (NVAF) remains controversial. We aimed to assess the association of Lp(a) and IS and systemic embolism (SEE) in NVAF patients. METHODS In total, 16,357 patients with NVAF were recruited from the First Affiliated Hospital of Xinjiang Medical University from January 1, 2009, to December 31, 2021, and were divided into groups based on Lp(a) quartiles. Logistic regression models analyzed the association between Lp(a), IS, and SEE. The restriction cubic spline was used to assess the potential nonlinear relationship between Lp(a), IS, and SEE. We conducted subgroup analyses and estimated the multiplicative interaction between the stratified variables and Lp(a) to investigate whether the association between Lp(a) and IS and SEE was affected by age, sex, anticoagulants, and CHA2DS2-VASc score. RESULTS We identified 1319 IS and 133 SEE events. After correcting for CHA2DS2-VASc score and other potential confounders, each 1-standard deviation (SD) increase in log-Lp(a) was related to a 23% increased risk of IS (odds ratios [OR], 1.23; 95% confidence intervals [CI], 1.07-1.41). NVAF patients in the highest Lp(a) quartile were 1.23-fold more likely to have IS than those in the lowest quartile (OR, 1.23; 95% CI, 1.04-1.45). A positive linear relationship between Lp(a) and IS risk was observed (P for nonlinear = 0.341). In the fully adjusted model, subjects had a 1.78-fold increased risk of SEE for each 1-SD increase in log-Lp(a) (OR, 2.78; 95% CI, 1.78-4.36). Subjects in the highest Lp(a) quartile had a 2.38-fold elevated risk of SEE (OR, 3.38; 95% CI, 1.85-6.19) compared with the lowest quartile. Furthermore, Lp(a) had a nonlinear relationship with the risk of SEE (P for nonlinear = 0.005). CONCLUSIONS Elevated Lp(a) concentration was significantly associated with IS and SEE, suggesting that Lp(a) may be an emerging biomarker that can help clinicians identify patients at high risk of thromboembolism in this population.
Collapse
Affiliation(s)
- Jie Song
- Department of Cardiac Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan Road, Urumqi, 830054, PR China.,Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, PR China
| | - Xiaoxue Zhang
- Department of Cardiac Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan Road, Urumqi, 830054, PR China.,Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, PR China
| | - Meng Wei
- Department of outpatient, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, PR China
| | - Yakun Bo
- Department of Cardiac Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan Road, Urumqi, 830054, PR China.,Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, PR China
| | - Xianhui Zhou
- Department of Cardiac Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan Road, Urumqi, 830054, PR China. .,Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, PR China.
| | - Baopeng Tang
- Department of Cardiac Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan Road, Urumqi, 830054, PR China. .,Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, PR China.
| |
Collapse
|
16
|
Abstract
Apolipoproteins, the protein component of lipoproteins, play an important role in lipid transport, lipoprotein assembly, and receptor recognition. Apolipoproteins are glycosylated and the glycan moieties play an integral role in apolipoprotein function. Changes in apolipoprotein glycosylation correlate with several diseases manifesting in dyslipidemias. Despite their relevance in apolipoprotein function and diseases, the total glycan repertoire of most apolipoproteins remains undefined. This review summarizes the current knowledge and knowledge gaps regarding human apolipoprotein glycan composition, structure, glycosylation site, and functions. Given the relevance of glycosylation to apolipoprotein function, we expect that future studies of apolipoprotein glycosylation will contribute new understanding of disease processes and uncover relevant biomarkers and therapeutic targets. Considering these future efforts, we also provide a brief overview of current mass spectrometry based technologies that can be applied to define detailed glycan structures, site-specific compositions, and the role of emerging approaches for clinical applications in biomarker discovery and personalized medicine.
Collapse
|
17
|
Mueller PA, Yerkes E, Bergstrom P, Rosario S, Hay J, Pamir N. A method for lipoprotein (a) Isolation from a small volume of plasma with applications for clinical research. Sci Rep 2022; 12:9138. [PMID: 35650291 PMCID: PMC9160242 DOI: 10.1038/s41598-022-13040-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 04/20/2022] [Indexed: 11/08/2022] Open
Abstract
High levels of circulating Lipoprotein (a) [Lp(a)] are an independent risk factor for CVD. One of the major limitations to investigating Lp(a) biology is the need for large volumes of plasma (4-10 mL) for its isolation. We developed an isolation technique requiring only 0.4 mL of plasma yielding an enriched Lp(a) fraction suitable for compositional and functional studies. We collected plasma from patients (n = 9) in EDTA presenting to our Center for Preventive Cardiology for CVD risk management and with circulating Lp(a) > 66 mg/dL. 0.4 mL of plasma was added to 90 µL of potassium bromide (1.33 g/mL) and subjected to our two-step density-gradient ultracentrifugation method. The first step separates VLDL and LDL from the Lp(a) and HDL fractions and the second step further separates VLDL from LDL and Lp(a) from HDL. Lp(a) is then dialyzed for up to 24 h in potassium phosphate buffer. We performed cholesterol gel electrophoresis, immunoblotting and LC-MS/MS proteomics on isolated lipoprotein fractions to confirm fraction enrichment. Functional studies including Lp(a)-dependent induction of macrophage gene expression and cholesterol efflux inhibition were performed on isolated Lp(a) to confirm its preserved bioactivity. Lp(a) yields (264 ± 82.3 µg/mL on average) correlated with Lp(a) plasma concentrations (r2 = 0.75; p < 0.01) and represented the relative distribution of circulating apo(a) isoforms. Proteomic analyses confirm lipoprotein fraction separation. Functional integrity was confirmed by the findings that isolated Lp(a) inhibited plasminogen-dependent cholesterol efflux in HEK293T cells expressing ABCA1 and increased expressions of Il1b, Nos2 and Ccl2. We developed a small-volume isolation technique for Lp(a) suited for a range of applications used in biomedical research. The use of this technique circumvents volume-dependent limitations and expands our ability to investigate the mysteries of this deleterious lipoprotein.
Collapse
Affiliation(s)
- Paul A Mueller
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, 3161 SW Pavilion Loop, Mail Code UHN62, Portland, OR, 97239, USA
| | - Elisabeth Yerkes
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, 3161 SW Pavilion Loop, Mail Code UHN62, Portland, OR, 97239, USA
| | - Paige Bergstrom
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, 3161 SW Pavilion Loop, Mail Code UHN62, Portland, OR, 97239, USA
| | - Sara Rosario
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, 3161 SW Pavilion Loop, Mail Code UHN62, Portland, OR, 97239, USA
| | - Joshua Hay
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, 3161 SW Pavilion Loop, Mail Code UHN62, Portland, OR, 97239, USA
| | - Nathalie Pamir
- Center for Preventive Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, 3161 SW Pavilion Loop, Mail Code UHN62, Portland, OR, 97239, USA.
| |
Collapse
|
18
|
Boffa MB. Beyond fibrinolysis: The confounding role of Lp(a) in thrombosis. Atherosclerosis 2022; 349:72-81. [DOI: 10.1016/j.atherosclerosis.2022.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/24/2022] [Accepted: 04/05/2022] [Indexed: 12/20/2022]
|
19
|
Ugovšek S, Šebeštjen M. Lipoprotein(a)—The Crossroads of Atherosclerosis, Atherothrombosis and Inflammation. Biomolecules 2021; 12:biom12010026. [PMID: 35053174 PMCID: PMC8773759 DOI: 10.3390/biom12010026] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022] Open
Abstract
Increased lipoprotein(a) (Lp(a)) levels are an independent predictor of coronary artery disease (CAD), degenerative aortic stenosis (DAS), and heart failure independent of CAD and DAS. Lp(a) levels are genetically determinated in an autosomal dominant mode, with great intra- and inter-ethnic diversity. Most variations in Lp(a) levels arise from genetic variations of the gene that encodes the apolipoprotein(a) component of Lp(a), the LPA gene. LPA is located on the long arm of chromosome 6, within region 6q2.6–2.7. Lp(a) levels increase cardiovascular risk through several unrelated mechanisms. Lp(a) quantitatively carries all of the atherogenic risk of low-density lipoprotein cholesterol, although it is even more prone to oxidation and penetration through endothelia to promote the production of foam cells. The thrombogenic properties of Lp(a) result from the homology between apolipoprotein(a) and plasminogen, which compete for the same binding sites on endothelial cells to inhibit fibrinolysis and promote intravascular thrombosis. LPA has up to 70% homology with the human plasminogen gene. Oxidized phospholipids promote differentiation of pro-inflammatory macrophages that secrete pro-inflammatory cytokines (e. g., interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor-α). The aim of this review is to define which of these mechanisms of Lp(a) is predominant in different groups of patients.
Collapse
Affiliation(s)
- Sabina Ugovšek
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Miran Šebeštjen
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
- Department of Cardiology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Department of Vascular Diseases, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
20
|
Durlach V, Bonnefont-Rousselot D, Boccara F, Varret M, Di-Filippo Charcosset M, Cariou B, Valero R, Charriere S, Farnier M, Morange PE, Meilhac O, Lambert G, Moulin P, Gillery P, Beliard-Lasserre S, Bruckert E, Carrié A, Ferrières J, Collet X, Chapman MJ, Anglés-Cano E. Lipoprotein(a): Pathophysiology, measurement, indication and treatment in cardiovascular disease. A consensus statement from the Nouvelle Société Francophone d'Athérosclérose (NSFA). Arch Cardiovasc Dis 2021; 114:828-847. [PMID: 34840125 DOI: 10.1016/j.acvd.2021.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 10/19/2022]
Abstract
Lipoprotein(a) is an apolipoprotein B100-containing low-density lipoprotein-like particle that is rich in cholesterol, and is associated with a second major protein, apolipoprotein(a). Apolipoprotein(a) possesses structural similarity to plasminogen but lacks fibrinolytic activity. As a consequence of its composite structure, lipoprotein(a) may: (1) elicit a prothrombotic/antifibrinolytic action favouring clot stability; and (2) enhance atherosclerosis progression via its propensity for retention in the arterial intima, with deposition of its cholesterol load at sites of plaque formation. Equally, lipoprotein(a) may induce inflammation and calcification in the aortic leaflet valve interstitium, leading to calcific aortic valve stenosis. Experimental, epidemiological and genetic evidence support the contention that elevated concentrations of lipoprotein(a) are causally related to atherothrombotic risk and equally to calcific aortic valve stenosis. The plasma concentration of lipoprotein(a) is principally determined by genetic factors, is not influenced by dietary habits, remains essentially constant over the lifetime of a given individual and is the most powerful variable for prediction of lipoprotein(a)-associated cardiovascular risk. However, major interindividual variations (up to 1000-fold) are characteristic of lipoprotein(a) concentrations. In this context, lipoprotein(a) assays, although currently insufficiently standardized, are of considerable interest, not only in stratifying cardiovascular risk, but equally in the clinical follow-up of patients treated with novel lipid-lowering therapies targeted at lipoprotein(a) (e.g. antiapolipoprotein(a) antisense oligonucleotides and small interfering ribonucleic acids) that markedly reduce circulating lipoprotein(a) concentrations. We recommend that lipoprotein(a) be measured once in subjects at high cardiovascular risk with premature coronary heart disease, in familial hypercholesterolaemia, in those with a family history of coronary heart disease and in those with recurrent coronary heart disease despite lipid-lowering treatment. Because of its clinical relevance, the cost of lipoprotein(a) testing should be covered by social security and health authorities.
Collapse
Affiliation(s)
- Vincent Durlach
- Champagne-Ardenne University, UMR CNRS 7369 MEDyC & Cardio-Thoracic Department, Reims University Hospital, 51092 Reims, France
| | - Dominique Bonnefont-Rousselot
- Metabolic Biochemistry Department, Hôpital Pitié-Salpêtrière, AP-HP, 75013 Paris, France; Université de Paris, CNRS, INSERM, UTCBS, 75006 Paris, France
| | - Franck Boccara
- Sorbonne University, GRC n(o) 22, C(2)MV, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, IHU ICAN, 75012 Paris, France; Service de Cardiologie, Hôpital Saint-Antoine, AP-HP, 75012 Paris, France
| | - Mathilde Varret
- Laboratory for Vascular Translational Science (LVTS), INSERM U1148, Centre Hospitalier Universitaire Xavier Bichat, 75018 Paris, France; Université de Paris, 75018 Paris, France
| | - Mathilde Di-Filippo Charcosset
- Hospices Civils de Lyon, UF Dyslipidémies, 69677 Bron, France; Laboratoire CarMen, INSERM, INRA, INSA, Université Claude-Bernard Lyon 1, 69495 Pierre-Bénite, France
| | - Bertrand Cariou
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'Institut du Thorax, 44000 Nantes, France
| | - René Valero
- Endocrinology Department, La Conception Hospital, AP-HM, Aix-Marseille University, INSERM, INRAE, C2VN, 13005 Marseille, France
| | - Sybil Charriere
- Hospices Civils de Lyon, INSERM U1060, Laboratoire CarMeN, Université Lyon 1, 69310 Pierre-Bénite, France
| | - Michel Farnier
- PEC2, EA 7460, University of Bourgogne Franche-Comté, 21079 Dijon, France; Department of Cardiology, CHU Dijon Bourgogne, 21000 Dijon, France
| | - Pierre E Morange
- Aix-Marseille University, INSERM, INRAE, C2VN, 13385 Marseille, France
| | - Olivier Meilhac
- INSERM, UMR 1188 DéTROI, Université de La Réunion, 97744 Saint-Denis de La Réunion, Reunion; CHU de La Réunion, CIC-EC 1410, 97448 Saint-Pierre, Reunion
| | - Gilles Lambert
- INSERM, UMR 1188 DéTROI, Université de La Réunion, 97744 Saint-Denis de La Réunion, Reunion; CHU de La Réunion, CIC-EC 1410, 97448 Saint-Pierre, Reunion
| | - Philippe Moulin
- Hospices Civils de Lyon, INSERM U1060, Laboratoire CarMeN, Université Lyon 1, 69310 Pierre-Bénite, France
| | - Philippe Gillery
- Laboratory of Biochemistry-Pharmacology-Toxicology, Reims University Hospital, University of Reims Champagne-Ardenne, UMR CNRS/URCA n(o) 7369, 51092 Reims, France
| | - Sophie Beliard-Lasserre
- Endocrinology Department, La Conception Hospital, AP-HM, Aix-Marseille University, INSERM, INRAE, C2VN, 13005 Marseille, France
| | - Eric Bruckert
- Service d'Endocrinologie-Métabolisme, Hôpital Pitié-Salpêtrière, AP-HP, 75013 Paris, France; IHU ICAN, Sorbonne University, 75013 Paris, France
| | - Alain Carrié
- Sorbonne University, UMR INSERM 1166, IHU ICAN, Laboratory of Endocrine and Oncological Biochemistry, Obesity and Dyslipidaemia Genetic Unit, Hôpital Pitié-Salpêtrière, AP-HP, 75013 Paris, France
| | - Jean Ferrières
- Department of Cardiology and INSERM UMR 1295, Rangueil University Hospital, TSA 50032, 31059 Toulouse, France
| | - Xavier Collet
- INSERM U1048, Institute of Metabolic and Cardiovascular Diseases, Rangueil University Hospital, BP 84225, 31432 Toulouse, France
| | - M John Chapman
- Sorbonne University, Hôpital Pitié-Salpêtrière and National Institute for Health and Medical Research (INSERM), 75013 Paris, France
| | - Eduardo Anglés-Cano
- Université de Paris, INSERM, Innovative Therapies in Haemostasis, 75006 Paris, France.
| |
Collapse
|
21
|
Bharadwaj AG, Kempster E, Waisman DM. The ANXA2/S100A10 Complex—Regulation of the Oncogenic Plasminogen Receptor. Biomolecules 2021; 11:biom11121772. [PMID: 34944416 PMCID: PMC8698604 DOI: 10.3390/biom11121772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
The generation of the serine protease plasmin is initiated by the binding of its zymogenic precursor, plasminogen, to cell surface receptors. The proteolytic activity of plasmin, generated at the cell surface, plays a crucial role in several physiological processes, including fibrinolysis, angiogenesis, wound healing, and the invasion of cells through both the basement membrane and extracellular matrix. The seminal observation by Albert Fischer that cancer cells, but not normal cells in culture, produce large amounts of plasmin formed the basis of current-day observations that plasmin generation can be hijacked by cancer cells to allow tumor development, progression, and metastasis. Thus, the cell surface plasminogen-binding receptor proteins are critical to generating plasmin proteolytic activity at the cell surface. This review focuses on one of the twelve well-described plasminogen receptors, S100A10, which, when in complex with its regulatory partner, annexin A2 (ANXA2), forms the ANXA2/S100A10 heterotetrameric complex referred to as AIIt. We present the theme that AIIt is the quintessential cellular plasminogen receptor since it regulates the formation and the destruction of plasmin. We also introduce the term oncogenic plasminogen receptor to define those plasminogen receptors directly activated during cancer progression. We then discuss the research establishing AIIt as an oncogenic plasminogen receptor-regulated during EMT and activated by oncogenes such as SRC, RAS, HIF1α, and PML-RAR and epigenetically by DNA methylation. We further discuss the evidence derived from animal models supporting the role of S100A10 in tumor progression and oncogenesis. Lastly, we describe the potential of S100A10 as a biomarker for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Alamelu G. Bharadwaj
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (A.G.B.); (E.K.)
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| | - Emma Kempster
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (A.G.B.); (E.K.)
| | - David M. Waisman
- Departments of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (A.G.B.); (E.K.)
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
- Correspondence: ; Tel.: +1-(902)-494-1803; Fax: +1-(902)-494-1355
| |
Collapse
|
22
|
Lipoprotein(a), an Opsonin, Enhances the Phagocytosis of Nontypeable Haemophilus influenzae by Macrophages. J Immunol Res 2021; 2021:2185568. [PMID: 34765679 PMCID: PMC8577944 DOI: 10.1155/2021/2185568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022] Open
Abstract
We recently showed that both nontypeable Haemophilus influenzae (NTHi) and its surface plasminogen- (Plg-) binding proteins interact with lipoprotein(a) (Lp(a)) in a lysine-dependent manner. Because Lp(a) can be taken up by macrophages, we postulated that it serves as an opsonin to enhance phagocytosis of NTHi by macrophages. Based on colony-forming unit (CFU) counts, Lp(a) was found to increase U937 macrophage-mediated phagocytosis of NTHi49247 and NTHi49766 by 34% and 43%, respectively, after 120 min. In contrast, Lp(a) did not enhance phagocytosis of Escherichia coli BL21 or E. coli JM109, which were unable to bind to Lp(a). As with U937 macrophages, Lp(a) was capable of increasing phagocytosis of NTHi49247 by peripheral blood mononuclear cell-derived macrophages. Opsonic phagocytosis by Lp(a) was inhibited by the addition of recombinant kringle IV type 10 (rKIV10), a lysine-binding competitor; moreover, Lp(a) did not increase phagocytosis of NTHi by U937 macrophages that were pretreated with a monoclonal antibody against the scavenger receptor CD36. Taken together, our observation suggests that Lp(a) might serve as a lysine-binding opsonin to assist macrophages in rapid recognition and phagocytosis of NTHi.
Collapse
|
23
|
Bourgeois R, Bourgault J, Despres AA, Perrot N, Guertin J, Girard A, Mitchell PL, Gotti C, Bourassa S, Scipione CA, Gaudreault N, Boffa MB, Koschinsky ML, Pibarot P, Droit A, Thériault S, Mathieu P, Bossé Y, Arsenault BJ. Lipoprotein Proteomics and Aortic Valve Transcriptomics Identify Biological Pathways Linking Lipoprotein(a) Levels to Aortic Stenosis. Metabolites 2021; 11:metabo11070459. [PMID: 34357353 PMCID: PMC8307014 DOI: 10.3390/metabo11070459] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/17/2022] Open
Abstract
Lipoprotein(a) (Lp(a)) is one of the most important risk factors for the development of calcific aortic valve stenosis (CAVS). However, the mechanisms through which Lp(a) causes CAVS are currently unknown. Our objectives were to characterize the Lp(a) proteome and to identify proteins that may be differentially associated with Lp(a) in patients with versus without CAVS. Our second objective was to identify genes that may be differentially regulated by exposure to high versus low Lp(a) levels in explanted aortic valves from patients with CAVS. We isolated Lp(a) from the blood of 21 patients with CAVS and 22 volunteers and performed untargeted label-free analysis of the Lp(a) proteome. We also investigated the transcriptomic signature of calcified aortic valves from patients who underwent aortic valve replacement with high versus low Lp(a) levels (n = 118). Proteins involved in the protein activation cascade, platelet degranulation, leukocyte migration, and response to wounding may be associated with Lp(a) depending on CAVS status. The transcriptomic analysis identified genes involved in cardiac aging, chondrocyte development, and inflammation as potentially influenced by Lp(a). Our multi-omic analyses identified biological pathways through which Lp(a) may cause CAVS, as well as key molecular events that could be triggered by Lp(a) in CAVS development.
Collapse
Affiliation(s)
- Raphaëlle Bourgeois
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (R.B.); (J.B.); (A.-A.D.); (N.P.); (J.G.); (A.G.); (P.L.M.); (N.G.); (P.P.); (S.T.); (P.M.); (Y.B.)
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Jérôme Bourgault
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (R.B.); (J.B.); (A.-A.D.); (N.P.); (J.G.); (A.G.); (P.L.M.); (N.G.); (P.P.); (S.T.); (P.M.); (Y.B.)
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Audrey-Anne Despres
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (R.B.); (J.B.); (A.-A.D.); (N.P.); (J.G.); (A.G.); (P.L.M.); (N.G.); (P.P.); (S.T.); (P.M.); (Y.B.)
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Nicolas Perrot
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (R.B.); (J.B.); (A.-A.D.); (N.P.); (J.G.); (A.G.); (P.L.M.); (N.G.); (P.P.); (S.T.); (P.M.); (Y.B.)
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Jakie Guertin
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (R.B.); (J.B.); (A.-A.D.); (N.P.); (J.G.); (A.G.); (P.L.M.); (N.G.); (P.P.); (S.T.); (P.M.); (Y.B.)
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Arnaud Girard
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (R.B.); (J.B.); (A.-A.D.); (N.P.); (J.G.); (A.G.); (P.L.M.); (N.G.); (P.P.); (S.T.); (P.M.); (Y.B.)
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Patricia L. Mitchell
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (R.B.); (J.B.); (A.-A.D.); (N.P.); (J.G.); (A.G.); (P.L.M.); (N.G.); (P.P.); (S.T.); (P.M.); (Y.B.)
| | - Clarisse Gotti
- Proteomics Platform of the CHU de Québec, QC G1V 4G2, Canada; (C.G.); (S.B.); (A.D.)
| | - Sylvie Bourassa
- Proteomics Platform of the CHU de Québec, QC G1V 4G2, Canada; (C.G.); (S.B.); (A.D.)
| | - Corey A. Scipione
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada;
| | - Nathalie Gaudreault
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (R.B.); (J.B.); (A.-A.D.); (N.P.); (J.G.); (A.G.); (P.L.M.); (N.G.); (P.P.); (S.T.); (P.M.); (Y.B.)
| | - Michael B. Boffa
- Robarts Research Institute, London, ON N6A 5B7, Canada; (M.B.B.); (M.L.K.)
| | | | - Philippe Pibarot
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (R.B.); (J.B.); (A.-A.D.); (N.P.); (J.G.); (A.G.); (P.L.M.); (N.G.); (P.P.); (S.T.); (P.M.); (Y.B.)
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Arnaud Droit
- Proteomics Platform of the CHU de Québec, QC G1V 4G2, Canada; (C.G.); (S.B.); (A.D.)
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada
| | - Sébastien Thériault
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (R.B.); (J.B.); (A.-A.D.); (N.P.); (J.G.); (A.G.); (P.L.M.); (N.G.); (P.P.); (S.T.); (P.M.); (Y.B.)
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Patrick Mathieu
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (R.B.); (J.B.); (A.-A.D.); (N.P.); (J.G.); (A.G.); (P.L.M.); (N.G.); (P.P.); (S.T.); (P.M.); (Y.B.)
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Yohan Bossé
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (R.B.); (J.B.); (A.-A.D.); (N.P.); (J.G.); (A.G.); (P.L.M.); (N.G.); (P.P.); (S.T.); (P.M.); (Y.B.)
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Benoit J. Arsenault
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada; (R.B.); (J.B.); (A.-A.D.); (N.P.); (J.G.); (A.G.); (P.L.M.); (N.G.); (P.P.); (S.T.); (P.M.); (Y.B.)
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-656-8711 (ext. 3498)
| |
Collapse
|
24
|
Plasmin and Plasminogen System in the Tumor Microenvironment: Implications for Cancer Diagnosis, Prognosis, and Therapy. Cancers (Basel) 2021; 13:cancers13081838. [PMID: 33921488 PMCID: PMC8070608 DOI: 10.3390/cancers13081838] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In this review, we present a detailed discussion of how the plasminogen-activation system is utilized by tumor cells in their unrelenting attack on the tissues surrounding them. Plasmin is an enzyme which is responsible for digesting several proteins that hold the tissues surrounding solid tumors together. In this process tumor cells utilize the activity of plasmin to digest tissue barriers in order to leave the tumour site and spread to other parts of the body. We specifically focus on the role of plasminogen receptor—p11 which is an important regulatory protein that facilitates the conversion of plasminogen to plasmin and by this means promotes the attack by the tumour cells on their surrounding tissues. Abstract The tumor microenvironment (TME) is now being widely accepted as the key contributor to a range of processes involved in cancer progression from tumor growth to metastasis and chemoresistance. The extracellular matrix (ECM) and the proteases that mediate the remodeling of the ECM form an integral part of the TME. Plasmin is a broad-spectrum, highly potent, serine protease whose activation from its precursor plasminogen is tightly regulated by the activators (uPA, uPAR, and tPA), the inhibitors (PAI-1, PAI-2), and plasminogen receptors. Collectively, this system is called the plasminogen activation system. The expression of the components of the plasminogen activation system by malignant cells and the surrounding stromal cells modulates the TME resulting in sustained cancer progression signals. In this review, we provide a detailed discussion of the roles of plasminogen activation system in tumor growth, invasion, metastasis, and chemoresistance with specific emphasis on their role in the TME. We particularly review the recent highlights of the plasminogen receptor S100A10 (p11), which is a pivotal component of the plasminogen activation system.
Collapse
|
25
|
Ding WY, Protty MB, Davies IG, Lip GYH. Relationship between lipoproteins, thrombosis and atrial fibrillation. Cardiovasc Res 2021; 118:716-731. [PMID: 33483737 PMCID: PMC8859639 DOI: 10.1093/cvr/cvab017] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/14/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022] Open
Abstract
The prothrombotic state in atrial fibrillation (AF) occurs as a result of multifaceted interactions, known as Virchow’s triad of hypercoagulability, structural abnormalities, and blood stasis. More recently, there is emerging evidence that lipoproteins are implicated in this process, beyond their traditional role in atherosclerosis. In this review, we provide an overview of the various lipoproteins and explore the association between lipoproteins and AF, the effects of lipoproteins on haemostasis, and the potential contribution of lipoproteins to thrombogenesis in AF. There are several types of lipoproteins based on size, lipid composition, and apolipoprotein category, namely: chylomicrons, very low-density lipoprotein, low-density lipoprotein (LDL), intermediate-density lipoprotein, and high-density lipoprotein. Each of these lipoproteins may contain numerous lipid species and proteins with a variety of different functions. Furthermore, the lipoprotein particles may be oxidized causing an alteration in their structure and content. Of note, there is a paradoxical inverse relationship between total cholesterol and LDL cholesterol (LDL-C) levels, and incident AF. The mechanism by which this occurs may be related to the stabilizing effect of cholesterol on myocardial membranes, along with its role in inflammation. Overall, specific lipoproteins may interact with haemostatic pathways to promote excess platelet activation and thrombin generation, as well as inhibiting fibrinolysis. In this regard, LDL-C has been shown to be an independent risk factor for thromboembolic events in AF. The complex relationship between lipoproteins, thrombosis and AF warrants further research with an aim to improve our knowledge base and contribute to our overall understanding of lipoprotein-mediated thrombosis.
Collapse
Affiliation(s)
- Wern Yew Ding
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom
| | - Majd B Protty
- Systems Immunity University Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Ian G Davies
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom.,Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
26
|
Bourgeois R, Girard A, Perrot N, Guertin J, Mitchell PL, Couture C, Gotti C, Bourassa S, Poggio P, Mass E, Capoulade R, Scipione CA, Després AA, Couture P, Droit A, Pibarot P, Boffa MB, Thériault S, Koschinsky ML, Mathieu P, Arsenault BJ. A Comparative Analysis of the Lipoprotein(a) and Low-Density Lipoprotein Proteomic Profiles Combining Mass Spectrometry and Mendelian Randomization. CJC Open 2020; 3:450-459. [PMID: 34027348 PMCID: PMC8129481 DOI: 10.1016/j.cjco.2020.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 11/28/2020] [Indexed: 12/30/2022] Open
Abstract
Background Lipoprotein(a) (Lp[a]), which consists of a low-density lipoprotein (LDL) bound to apolipoprotein(a), is one of the strongest genetic risk factors for atherosclerotic cardiovascular diseases. Few studies have performed hypothesis-free direct comparisons of the Lp(a) and the LDL proteomes. Our objectives were to compare the Lp(a) and the LDL proteomic profiles and to evaluate the effect of lifelong exposure to elevated Lp(a) or LDL cholesterol levels on the plasma proteomic profile. Methods We performed a label-free analysis of the Lp(a) and LDL proteomic profiles of healthy volunteers in a discovery (n = 6) and a replication (n = 9) phase. We performed inverse variance weighted Mendelian randomization to document the effect of lifelong exposure to elevated Lp(a) or LDL cholesterol levels on the plasma proteomic profile of participants of the INTERVAL study. Results We identified 15 proteins that were more abundant on Lp(a) compared with LDL (serping1, pi16, itih1, itih2, itih3, pon1, podxl, cd44, cp, ptprg, vtn, pcsk9, igfals, vcam1, and ttr). We found no proteins that were more abundant on LDL compared with Lp(a). After correction for multiple testing, lifelong exposure to elevated LDL cholesterol levels was associated with the variation of 18 plasma proteins whereas Lp(a) did not appear to influence the plasma proteome. Conclusions Results of this study highlight marked differences in the proteome of Lp(a) and LDL as well as in the effect of lifelong exposure to elevated LDL cholesterol or Lp(a) on the plasma proteomic profile.
Collapse
Affiliation(s)
- Raphaëlle Bourgeois
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Quebec, Canada.,Department of Medicine, Faculty of Medicine, Université Laval, Quebec, Canada
| | - Arnaud Girard
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Quebec, Canada.,Department of Medicine, Faculty of Medicine, Université Laval, Quebec, Canada
| | - Nicolas Perrot
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Quebec, Canada.,Department of Medicine, Faculty of Medicine, Université Laval, Quebec, Canada
| | - Jakie Guertin
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Quebec, Canada.,Department of Medicine, Faculty of Medicine, Université Laval, Quebec, Canada
| | - Patricia L Mitchell
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Quebec, Canada
| | - Christian Couture
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Quebec, Canada
| | - Clarisse Gotti
- Proteomics platform of the CHU de Québec, Quebec, Canada
| | | | | | - Elvira Mass
- University of Bonn, Developmental Biology of the Immune System, Life and Medical Sciences Institute (LIMES), Bonn, Germany
| | - Romain Capoulade
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Corey A Scipione
- Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Audrey-Anne Després
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Quebec, Canada.,Department of Medicine, Faculty of Medicine, Université Laval, Quebec, Canada
| | - Patrick Couture
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec, Canada.,Centre de recherche du CHU de Québec, Quebec, Canada
| | - Arnaud Droit
- Proteomics platform of the CHU de Québec, Quebec, Canada.,Centre de recherche du CHU de Québec, Quebec, Canada
| | - Philippe Pibarot
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Quebec, Canada.,Department of Medicine, Faculty of Medicine, Université Laval, Quebec, Canada
| | - Michael B Boffa
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Sébastien Thériault
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Quebec, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Quebec, Canada
| | - Marlys L Koschinsky
- Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Patrick Mathieu
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Quebec, Canada.,Department of Surgery, Faculty of Medicine, Université Laval, Quebec, Canada
| | - Benoit J Arsenault
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Quebec, Canada.,Department of Medicine, Faculty of Medicine, Université Laval, Quebec, Canada
| |
Collapse
|
27
|
Lim J, Aguilan JT, Sellers RS, Nagajyothi F, Weiss LM, Angeletti RH, Bortnick AE. Lipid mass spectrometry imaging and proteomic analysis of severe aortic stenosis. J Mol Histol 2020; 51:559-571. [PMID: 32794037 DOI: 10.1007/s10735-020-09905-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/09/2020] [Indexed: 12/19/2022]
Abstract
Severe aortic stenosis (AS) is prevalent in adults ≥ 65 years, a significant cause of morbidity and mortality, with no medical therapy. Lipid and proteomic alterations of human AS tissue were determined using mass spectrometry imaging (MSI) and liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) to understand histopathology, potential biomarkers of disease, and progression from non-calcified to calcified phenotype. A reproducible MSI method was developed using healthy murine aortic valves (n = 3) and subsequently applied to human AS (n = 2). Relative lipid levels were spatially mapped and associated with different microdomains. Proteomics for non-calcified and calcified microdomains were performed to ascertain differences in expression. Increased pro-osteogenic and inflammatory lysophosphatidylcholine (LPC) 16:0 and 18:0 were co-localized with calcified microdomains. Proteomics analysis identified differential patterns in calcified microdomains with high LPC and low cholesterol as compared to non-calcified microdomains with low LPC and high cholesterol. Calcified microdomains had higher levels of: apolipoproteins (Apo) B-100 (p < 0.001) and Apo A-IV (p < 0.001), complement C3 and C4-B (p < 0.001), C5 (p = 0.007), C8 beta chain (p = 0.013) and C9 (p = 0.010), antithrombotic proteins alpha-2-macroglobulin (p < 0.0001) and antithrombin III (p = 0.002), and higher anti-calcific fetuin-A (p = 0.02), while the osteoblast differentiating factor transgelin (p < 0.0001), extracellular matrix proteins versican, prolargin, and lumican ( p < 0.001) and regulator protein complement factor H (p < 0.001) were higher in non-calcified microdomains. A combined lipidomic and proteomic approach provided insight into factors potentially contributing to progression from non-calcified to calcific disease in severe AS. Additional studies of these candidates and protein networks could yield new targets for slowing progression of AS.
Collapse
Affiliation(s)
- Jihyeon Lim
- Janssen Research and Development, Malvern, PA, USA
| | - Jennifer T Aguilan
- Laboratory for Macromolecular Analysis & Proteomics, Bronx, NY, USA.,Department of Pathology, Montefiore Health System and Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Fnu Nagajyothi
- Department of Pathology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Louis M Weiss
- Laboratory for Macromolecular Analysis & Proteomics, Bronx, NY, USA
| | - Ruth Hogue Angeletti
- Laboratory for Macromolecular Analysis & Proteomics, Bronx, NY, USA.,Department of Biochemistry, Montefiore Health System and Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Developmental and Molecular Biology, Montefiore Health System and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anna E Bortnick
- Department of Medicine, Division of Cardiology, Montefiore Health System and Albert Einstein College of Medicine, Bronx, NY, USA. .,Department of Medicine, Division of Geriatrics, Montefiore Health System and Albert Einstein College of Medicine, Bronx, NY, USA. .,Jack D. Weiler Hospital, 1825 Eastchester Road, Suite 2S-46, Bronx, NY, 10461, USA.
| |
Collapse
|
28
|
Langsted A, Nordestgaard BG, Kamstrup PR. Elevated Lipoprotein(a) and Risk of Ischemic Stroke. J Am Coll Cardiol 2020; 74:54-66. [PMID: 31272552 DOI: 10.1016/j.jacc.2019.03.524] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/21/2019] [Accepted: 03/24/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND High lipoprotein(a) is associated with increased risk of myocardial infarction and aortic valve stenosis. Previous studies have examined the association of lipoprotein(a) and risk of stroke; however, the results are conflicting. OBJECTIVES The purpose of this study was to test if high lipoprotein(a) is associated with high risk of ischemic stroke observationally and causally from human genetics. METHODS The study included 49,699 individuals from the Copenhagen General Population Study and 10,813 individuals from the Copenhagen City Heart Study with measurements of plasma lipoprotein(a), LPA kringle-IV type 2 number of repeats, and LPA rs10455872. The endpoint of ischemic stroke was ascertained from Danish national health registries and validated by medical doctors. RESULTS Compared with individuals with lipoprotein(a) levels <10 mg/dl (<18 nmol/l: first to 50th percentile), the multivariable-adjusted hazard ratio for ischemic stroke was 1.60 (95% confidence interval [CI]:1.24 to 2.05) for individuals with lipoprotein(a) levels >93mg/dl (>199 nmol/L: 96th to 100th percentile). In observational analyses for a 50 mg/dl (105 nmol/l) higher lipoprotein(a) level the age- and sex-adjusted hazard ratio for ischemic stroke was 1.20 (95% CI: 1.13 to 1.28), while the corresponding age- and sex-adjusted genetic causal risk ratio for KIV-2 number of repeats was 1.20 (95% CI: 1.02 to 1.43) and for rs10455872 was 1.27 (95% CI: 1.06 to 1.51). The highest absolute 10-year risk of ischemic stroke was 17% in active smoking individuals >70 years of age with hypertension and lipoprotein(a) levels >93 mg/dl (>199 nmol/l: 96th to 100th percentile). In the Copenhagen City Heart Study, risk estimates for high levels of lipoprotein(a) were in the same direction but did not reach statistical significance. CONCLUSIONS In a large contemporary general population study, high plasma levels of lipoprotein(a) were associated with increased risk of ischemic stroke both observationally and causally from human genetics.
Collapse
Affiliation(s)
- Anne Langsted
- Department of Clinical Biochemistry and the Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry and the Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Copenhagen City Heart Study, Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Pia R Kamstrup
- Department of Clinical Biochemistry and the Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark.
| |
Collapse
|
29
|
Apolipoprotein(a), an enigmatic anti-angiogenic glycoprotein in human plasma: A curse or cure? Pharmacol Res 2020; 158:104858. [PMID: 32430285 DOI: 10.1016/j.phrs.2020.104858] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/09/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023]
Abstract
Angiogenesis is a finely co-ordinated, multi-step developmental process of the new vascular structure. Even though angiogenesis is regularly occurring in physiological events such as embryogenesis, in adults, it is restricted to specific tissue sites where rapid cell-turnover and membrane synthesis occurs. Both excessive and insufficient angiogenesis lead to vascular disorders such as cancer, ocular diseases, diabetic retinopathy, atherosclerosis, intra-uterine growth restriction, ischemic heart disease, stroke etc. Occurrence of altered lipid profile and vascular lipid deposition along with vascular disorders is a hallmark of impaired angiogenesis. Among lipoproteins, lipoprotein(a) needs special attention due to the presence of a multi-kringle protein subunit, apolipoprotein(a) [apo(a)], which is structurally homologous to many naturally occurring anti-angiogenic proteins such as plasminogen and angiostatin. Researchers have constructed different recombinant forms of apo(a) (rhLK68, rhLK8, RHACK2, KV-11, and AU-6) and successfully exploited its potential to inhibit unwanted angiogenesis during tumor metastasis and retinal neovascularization. Similar to naturally occurring anti-angiogenic proteins, apo(a) can directly interfere with angiogenic signaling pathways. Besides this, apo(a) can also exert its anti-angiogenic effect indirectly by inducing endothelial cell apoptosis, by inhibiting endothelial progenitor cell functions or by upregulating nuclear factors in endothelial cells via apo(a)-bound oxPLs. However, the impact of the anti-angiogenic potential of native apo(a) during physiological angiogenesis in embryos and wounded tissues is not yet explored. In this context, we review the studies so far done to demonstrate the anti-angiogenic activity of apo(a) and the recent developments in using apo(a) as a therapeutic agent to treat impaired angiogenesis during vascular disorders, with emphasis on the gaps in the literature.
Collapse
|
30
|
El Samad G, Bazzi S, Karam M, Boudjeltia KZ, Vanhamme L, Daher J. Effect of myeloperoxidase modified LDL on bovine and human aortic endothelial cells. Exp Ther Med 2019; 18:4567-4574. [PMID: 31777556 PMCID: PMC6862712 DOI: 10.3892/etm.2019.8109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/06/2019] [Indexed: 01/01/2023] Open
Abstract
Cardiovascular disease associated with atherosclerosis is a leading cause of death worldwide. Atherosclerosis is primarily caused by the dysfunction of vascular endothelial cells and the subendothelial accumulation of oxidized forms of low-density lipoproteins (LDL). Early observations have associated fibrin deposition with atheroma plaque formation, which has led to the proposition that a decrease in endothelial cell fibrinolysis may negatively influence atherogenesis. It has been recently demonstrated that myeloperoxidase modified LDL (MoxLDL) decreases endothelial cell profibrinolytic capacity in real-time. The present study investigated the role of MoxLDL in endothelial cell dysfunction by determining the molecules that may be involved in decreasing the fibrinolysis of human aortic endothelial cells (HAEC). Accordingly, reverse transcription-quantitative PCR was performed to screen for the differential expression of major genes that are implicated in the fibrinolytic process. In addition, the response of the latter cell type to MoxLDL was compared with bovine aortic endothelial (BAE) cells. Furthermore, the effect of the treatment on the generation of reactive oxygen species (ROS) was also determined. Although the current study did not demonstrate an association between MoxLDL treatment and a change in the expression of any major fibrinolytic factor in HAEC, a discrepancy between HAEC and BAE cells with respect to their response to modified LDL treatment was observed. The result have also demonstrated that MoxLDL does not increase ROS generation in HAEC as opposed to the other major type of modified LDL, cupper oxidized LDL (CuoxLDL) that was reported to exhibit a positive effect at this level. The present study provided important insight into the different effects of MoxLDL and CuoxLDL in endothelial cells, which may aid future studies to determine the various signaling pathways that are promoted by these molecules. The results of the present study may be utilized to identify potential molecular drug targets for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Ghadir El Samad
- Department of Biology, Faculty of Sciences, University of Balamand, Tripoli 100, Lebanon
| | - Samer Bazzi
- Department of Biology, Faculty of Sciences, University of Balamand, Tripoli 100, Lebanon
| | - Marc Karam
- Department of Biology, Faculty of Sciences, University of Balamand, Tripoli 100, Lebanon
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul 6110, Belgium
| | - Luc Vanhamme
- Laboratory of Molecular Biology of Inflammation, IBMM, Faculty of Sciences, Université Libre de Bruxelles, Gosselies 6041, Belgium
| | - Jalil Daher
- Department of Biology, Faculty of Sciences, University of Balamand, Tripoli 100, Lebanon
| |
Collapse
|
31
|
Sabbah N, Jaisson S, Garnotel R, Anglés-Cano E, Gillery P. Small size apolipoprotein(a) isoforms enhance inflammatory and proteolytic potential of collagen-primed monocytes. Lipids Health Dis 2019; 18:166. [PMID: 31470857 PMCID: PMC6717332 DOI: 10.1186/s12944-019-1106-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/14/2019] [Indexed: 01/03/2023] Open
Abstract
Background Atherosclerosis is an inflammatory process involving activation of monocytes recruited by various chemoattractant factors, among which lipoprotein(a) and its specific apolipoprotein apo(a). Lp(a) contains a specific apolipoprotein apo(a) which size is determined by a variable number of repeats of a specific structural domain, the kringle IV type 2 (IV-2). Lp(a) plasma concentration and apo(a) size is inversely correlated, and smaller apo(a) are major risk factors for coronary heart disease. Design and methods The aim of this study was to evaluate the effect of recombinant apo(a) isoforms (containing 10, 18 or 34 kringles) on monocytes interacting with type I collagen. Results Apo(a) isoforms stimulated reactive oxygen species (ROS) and matrix metalloproteinase-9 (MMP-9) production by monocytes, and not modified monocytes adhesion on type I collagen. This effect was specific of apo(a) since no effect was observed in the presence of plasminogen and was inversely related to apo(a) size. The lysine analogue 6-aminohexanoic acid which blocks the lysine binding sites (LBS), and carboxypeptidase B (CpB) which cleaves carboxy-terminal lysine residues, abolished apo(a)-induced ROS and MMP-9 production, highlighting an effect mediated by apo(a) lysing-binding sites. Conclusions These results indicate that activation of collagen-primed monocytes stimulated with apo(a) is a Kringle number-dependent effect and reinforce the hypothesis of a role for small size apo(a) isoforms in atherothrombosis.
Collapse
Affiliation(s)
- Nadia Sabbah
- University of Reims- Champagne-Ardenne, CNRS, MEDyC UMR 7369, Reims, France. .,Endocrinology and Metabolic Diseases Department, Cayenne hospital, Cayenne, French Guiana. .,Clinical Investigation Center Antilles French Guiana (INSERM CIC 1424), Cayenne, French Guiana.
| | - Stéphane Jaisson
- University of Reims- Champagne-Ardenne, CNRS, MEDyC UMR 7369, Reims, France.,Laboratory of Biochemisry-Pharmacology-Toxicology, University Hospital of Reims, Maison Blanche Hospital, Reims, France
| | - Roselyne Garnotel
- Laboratory of Biochemisry-Pharmacology-Toxicology, University Hospital of Reims, Maison Blanche Hospital, Reims, France
| | - Eduardo Anglés-Cano
- Inserm UMR_S1140 "Innovative Therapies in Haemostasis"Faculté de Pharmacie de Paris, Paris, France
| | - Philippe Gillery
- University of Reims- Champagne-Ardenne, CNRS, MEDyC UMR 7369, Reims, France.,Laboratory of Biochemisry-Pharmacology-Toxicology, University Hospital of Reims, Maison Blanche Hospital, Reims, France
| |
Collapse
|
32
|
Rawther T, Tabet F. Biology, pathophysiology and current therapies that affect lipoprotein (a) levels. J Mol Cell Cardiol 2019; 131:1-11. [DOI: 10.1016/j.yjmcc.2019.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/22/2019] [Accepted: 04/09/2019] [Indexed: 12/11/2022]
|
33
|
Apolipoprotein(a) inhibits the conversion of Glu-plasminogen to Lys-plasminogen on the surface of vascular endothelial and smooth muscle cells. Thromb Res 2018; 169:1-7. [DOI: 10.1016/j.thromres.2018.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 05/31/2018] [Accepted: 07/03/2018] [Indexed: 11/24/2022]
|
34
|
Romagnuolo R, Scipione CA, Bazzi ZA, Boffa MB, Koschinsky ML. Inhibition of pericellular plasminogen activation by apolipoprotein(a): Roles of urokinase plasminogen activator receptor and integrins α Mβ 2 and α Vβ 3. Atherosclerosis 2018; 275:11-21. [PMID: 29852400 DOI: 10.1016/j.atherosclerosis.2018.05.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 05/10/2018] [Accepted: 05/16/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND AIMS Lipoprotein(a) (Lp(a)) is a causal risk factor for cardiovascular disorders including coronary heart disease and calcific aortic valve stenosis. Apolipoprotein(a) (apo(a)), the unique glycoprotein component of Lp(a), contains sequences homologous to plasminogen. Plasminogen activation is markedly accelerated in the presence of cell surface receptors and can be inhibited in this context by apo(a). METHODS We evaluated the role of potential receptors in regulating plasminogen activation and the ability of apo(a) to mediate inhibition of plasminogen activation on vascular and monocytic/macrophage cells through knockdown (siRNA or blocking antibodies) or overexpression of various candidate receptors. Binding assays were conducted to determine apo(a) and plasminogen receptor interactions. RESULTS The urokinase-type plasminogen activator receptor (uPAR) modulates plasminogen activation as well as plasminogen and apo(a) binding on human umbilical vein endothelial cells (HUVECs), human acute monocytic leukemia (THP-1) cells, and THP-1 macrophages as determined through uPAR knockdown and overexpression. Apo(a) variants lacking either the kringle V or the strong lysine binding site in kringle IV type 10 are not able to bind to uPAR to the same extent as wild-type apo(a). Plasminogen activation is also modulated, albeit to a lower extent, through the Mac-1 (αMβ2) integrin on HUVECs and THP-1 monocytes. Integrin αVβ3 can regulate plasminogen activation on THP-1 monocytes and to a lesser extent on HUVECs. CONCLUSIONS These results indicate cell type-specific roles for uPAR, αMβ2, and αVβ3 in promoting plasminogen activation and mediate the inhibitory effects of apo(a) in this process.
Collapse
Affiliation(s)
- Rocco Romagnuolo
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, Ontario, N9B 3P4, Canada.
| | - Corey A Scipione
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| | - Zainab A Bazzi
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| | - Michael B Boffa
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| | - Marlys L Koschinsky
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| |
Collapse
|
35
|
Scipione CA, Koschinsky ML, Boffa MB. Lipoprotein(a) in clinical practice: New perspectives from basic and translational science. Crit Rev Clin Lab Sci 2017; 55:33-54. [PMID: 29262744 DOI: 10.1080/10408363.2017.1415866] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Elevated plasma concentrations of lipoprotein(a) (Lp(a)) are a causal risk factor for coronary heart disease (CHD) and calcific aortic valve stenosis (CAVS). Genetic, epidemiological and in vitro data provide strong evidence for a pathogenic role for Lp(a) in the progression of atherothrombotic disease. Despite these advancements and a race to develop new Lp(a) lowering therapies, there are still many unanswered and emerging questions about the metabolism and pathophysiology of Lp(a). New studies have drawn attention to Lp(a) as a contributor to novel pathogenic processes, yet the mechanisms underlying the contribution of Lp(a) to CVD remain enigmatic. New therapeutics show promise in lowering plasma Lp(a) levels, although the complete mechanisms of Lp(a) lowering are not fully understood. Specific agents targeted to apolipoprotein(a) (apo(a)), namely antisense oligonucleotide therapy, demonstrate potential to decrease Lp(a) to levels below the 30-50 mg/dL (75-150 nmol/L) CVD risk threshold. This therapeutic approach should aid in assessing the benefit of lowering Lp(a) in a clinical setting.
Collapse
Affiliation(s)
- Corey A Scipione
- a Department of Advanced Diagnostics , Toronto General Hospital Research Institute, UHN , Toronto , Canada
| | - Marlys L Koschinsky
- b Robarts Research Institute , Western University , London , Canada.,c Department of Physiology & Pharmacology , Schulich School of Medicine & Dentistry, Western University , London , Canada
| | - Michael B Boffa
- d Department of Biochemistry , Western University , London , Canada
| |
Collapse
|
36
|
Ellis KL, Boffa MB, Sahebkar A, Koschinsky ML, Watts GF. The renaissance of lipoprotein(a): Brave new world for preventive cardiology? Prog Lipid Res 2017; 68:57-82. [DOI: 10.1016/j.plipres.2017.09.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 12/24/2022]
|
37
|
Langsted A, Kamstrup PR, Nordestgaard BG. High Lipoprotein(a) and Low Risk of Major Bleeding in Brain and Airways in the General Population: a Mendelian Randomization Study. Clin Chem 2017; 63:1714-1723. [PMID: 28877919 DOI: 10.1373/clinchem.2017.276931] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/21/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND The physiological role of lipoprotein(a) is unclear; however, lipoprotein(a) may play a role in hemostasis and wound healing. We tested the hypothesis that high lipoprotein(a) concentrations are associated with low risk of major bleeding in the brain and airways both observationally and causally (from human genetics). METHODS We examined 109169 individuals from the Copenhagen City Heart Study and the Copenhagen General Population study, 2 similar prospective studies conducted in the Danish general population. Individuals had information on plasma lipoprotein(a) concentrations (n = 59980), LPA kringle-IV type 2 (KIV-2) number of repeats (n = 98965), and/or LPA single-nucleotide polymorphism rs10455872 associated with high lipoprotein(a) concentrations (n = 109 169), and information on hospital contacts or death due to major bleeding in brain and airways from registers. RESULTS Using extreme phenotypes or genotypes, the multifactorially adjusted hazard ratio for major bleeding in the brain and airways was 0.84 (95%CI: 0.71-0.99) for lipoprotein(a), >800 mg/L vs <110 mg/L; 0.83 (0.73-0.96) for KIV-2, <24 vs >35 number of repeats; and 0.89 (0.81-0.97) for rs10455872 carriers (heterozygotes + homozygotes) vs noncarriers. The corresponding hazard ratios were 0.89 (0.82-0.98) for heterozygotes and 0.59 (0.36-0.98) for homozygotes separately vs rs10455872 noncarriers. Also, for a 1 standard deviation higher lipoprotein(a) (= 310 mg/L), the hazard ratio for major bleeding in the brain and airways was 0.95 (95%CI: 0.91-1.00) observationally, 0.89 (0.80-0.98) causally based on LPA KIV-2 number of repeats, and 0.94 (0.87-1.02) causally based on LPA rs10455872. CONCLUSIONS High lipoprotein(a) concentrations were associated with lower risk of major bleeding in the brain and airways observationally and causally. This indicates that lipoprotein(a) may play a role in hemostasis and wound healing.
Collapse
Affiliation(s)
- Anne Langsted
- Department of Clinical Biochemistry and.,The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Pia R Kamstrup
- Department of Clinical Biochemistry and.,The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry and .,The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,The Copenhagen City Heart Study, Frederiksberg Hospital, Copenhagen University Hospital, Denmark
| |
Collapse
|
38
|
Mathieu P, Arsenault BJ, Boulanger MC, Bossé Y, Koschinsky ML. Pathobiology of Lp(a) in calcific aortic valve disease. Expert Rev Cardiovasc Ther 2017; 15:797-807. [DOI: 10.1080/14779072.2017.1367286] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Patrick Mathieu
- Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, Quebec, QC, Canada
| | - Benoit J. Arsenault
- Quebec Heart and Lung Institute/Department of Medicine, Laval University, Quebec, QC, Canada
| | - Marie-Chloé Boulanger
- Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, Quebec, QC, Canada
| | - Yohan Bossé
- Quebec Heart and Lung Institute/Department of Molecular Medicine, Laval University, Quebec, QC, Canada
| | | |
Collapse
|
39
|
Pamir N, Hutchins PM, Ronsein GE, Wei H, Tang C, Das R, Vaisar T, Plow E, Schuster V, Koschinsky ML, Reardon CA, Weinberg R, Dichek DA, Marcovina S, Getz GS, Heinecke JW. Plasminogen promotes cholesterol efflux by the ABCA1 pathway. JCI Insight 2017; 2:92176. [PMID: 28768900 DOI: 10.1172/jci.insight.92176] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 06/20/2017] [Indexed: 12/20/2022] Open
Abstract
Using genetic and biochemical approaches, we investigated proteins that regulate macrophage cholesterol efflux capacity (CEC) and ABCA1-specific CEC (ABCA1 CEC), 2 functional assays that predict cardiovascular disease (CVD). Macrophage CEC and the concentration of HDL particles were markedly reduced in mice deficient in apolipoprotein A-I (APOA1) or apolipoprotein E (APOE) but not apolipoprotein A-IV (APOA4). ABCA1 CEC was markedly reduced in APOA1-deficient mice but was barely affected in mice deficient in APOE or APOA4. High-resolution size-exclusion chromatography of plasma produced 2 major peaks of ABCA1 CEC activity. The early-eluting peak, which coeluted with HDL, was markedly reduced in APOA1- or APOE-deficient mice. The late-eluting peak was modestly reduced in APOA1-deficient mice but little affected in APOE- or APOA4-deficient mice. Ion-exchange chromatography and shotgun proteomics suggested that plasminogen (PLG) accounted for a substantial fraction of the ABCA1 CEC activity in the peak not associated with HDL. Human PLG promoted cholesterol efflux by the ABCA1 pathway, and PLG-dependent efflux was inhibited by lipoprotein(a) [Lp(a)]. Our observations identify APOA1, APOE, and PLG as key determinants of CEC. Because PLG and Lp(a) associate with human CVD risk, interplay among the proteins might affect atherosclerosis by regulating cholesterol efflux from macrophages.
Collapse
Affiliation(s)
- Nathalie Pamir
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Patrick M Hutchins
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | - Hao Wei
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Chongren Tang
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Riku Das
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Tomas Vaisar
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Edward Plow
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Volker Schuster
- Hospital for Children and Adolescents, Medical Faculty of Leipzig University, Leipzig, Germany
| | - Marlys L Koschinsky
- Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | | | - Richard Weinberg
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - David A Dichek
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Santica Marcovina
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Godfrey S Getz
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Jay W Heinecke
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
40
|
Ferretti G, Bacchetti T, Johnston TP, Banach M, Pirro M, Sahebkar A. Lipoprotein(a): A missing culprit in the management of athero-thrombosis? J Cell Physiol 2017; 233:2966-2981. [DOI: 10.1002/jcp.26050] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/12/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Gianna Ferretti
- Department of Clinical Sciences (DISCO); Polytechnic University of Marche; Marche Italy
| | - Tiziana Bacchetti
- Department of Life and Environmental Sciences (DISVA); Polytechnic University of Marche; Marche Italy
| | - Thomas P. Johnston
- Division of Pharmaceutical Sciences; School of Pharmacy; University of Missouri-Kansas City; Kansas City Missouri
| | - Maciej Banach
- Department of Hypertension; WAM University Hospital in Lodz; Medical University of Lodz; Lodz Poland
- Polish Mother's Memorial Hospital Research Institute (PMMHRI); Lodz Poland
| | - Matteo Pirro
- Unit of Internal Medicine; Angiology and Arteriosclerosis Diseases; Department of Medicine; University of Perugia; Perugia Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center; Mashhad University of Medical Sciences; Mashhad Iran
- Neurogenic Inflammation Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
41
|
Bazzi ZA, Balun J, Cavallo-Medved D, Porter LA, Boffa MB. Activated thrombin-activatable fibrinolysis inhibitor attenuates the angiogenic potential of endothelial cells: potential relevance to the breast tumour microenvironment. Clin Exp Metastasis 2017; 34:155-169. [PMID: 28124276 DOI: 10.1007/s10585-017-9837-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 01/16/2017] [Indexed: 11/26/2022]
Abstract
Thrombin-activatable fibrinolysis inhibitor (TAFI) is a basic carboxypeptidase zymogen present in blood plasma. Proteolytic activation of TAFI by thrombin, thrombin in complex with the endothelial cell cofactor thrombomodulin, or plasmin results in an enzyme (TAFIa) that removes carboxyl-terminal lysine residues from protein and peptide substrates, including cell-surface plasminogen receptors. TAFIa is therefore capable of inhibiting plasminogen activation in the pericellular milieu. Since plasminogen activation has been linked to angiogenesis, TAFIa could therefore have anti-angiogenic properties, and indeed TAFIa has been shown to inhibit endothelial tube formation in a fibrin matrix. In this study, the TAFI pathway was manipulated by providing exogenous TAFI or TAFIa or by adding a potent and specific inhibitor of TAFIa. We found that TAFIa elicited a series of anti-angiogenic responses by endothelial cells, including decreased endothelial cell proliferation, cell invasion, cell migration, tube formation, and collagen degradation. Moreover, TAFIa decreased tube formation and proteolysis in endothelial cell culture grown alone and in co-culture with breast cancer cell lines. In accordance with these findings, inhibition of TAFIa increased secretion of matrix metalloprotease proenzymes by endothelial and breast cancer cells. Finally, treatment of endothelial cells with TAFIa significantly inhibited plasminogen activation. Taken together our results suggest a novel role for TAFI in inhibiting tumour angiogenic behaviors in breast cancer.
Collapse
Affiliation(s)
- Zainab A Bazzi
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
- Department of Biochemistry, Room 4245A Robarts Research Institute, University of Western Ontario, 1151 Richmond Street North, London, ON, N5B 3P7, Canada
| | - Jennifer Balun
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Dora Cavallo-Medved
- Department of Biological Sciences, University of Windsor, Windsor, ON, Canada
| | - Lisa A Porter
- Department of Biological Sciences, University of Windsor, Windsor, ON, Canada
| | - Michael B Boffa
- Department of Biochemistry, Room 4245A Robarts Research Institute, University of Western Ontario, 1151 Richmond Street North, London, ON, N5B 3P7, Canada.
| |
Collapse
|
42
|
Bucci M, Tana C, Giamberardino MA, Cipollone F. Lp(a) and cardiovascular risk: Investigating the hidden side of the moon. Nutr Metab Cardiovasc Dis 2016; 26:980-986. [PMID: 27514608 DOI: 10.1016/j.numecd.2016.07.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/21/2016] [Accepted: 07/06/2016] [Indexed: 12/21/2022]
Abstract
AIMS This article reports current evidence on the association between Lp(a) and cardiovascular (CV) disease and on pathophysiological mechanisms. The available information on therapy for reduction of lipoprotein(a) is also discussed. DATA SYNTHESIS Although some evidence is conflicting, Lp(a) seems to increase CV risk through stimulation of platelet aggregation, inhibition of tissue factor pathway inhibitor, alteration of fibrin clot structure and promotion of endothelial dysfunction and phospholipid oxidation. Lp(a) 3.5-fold higher than normal increases the risk of coronary heart disease and general CV events, particularly in those with LDL cholesterol ≥ 130 mg/dl. High Lp(a) values represent also an independent risk factor for ischemic stroke (more relevant in young stroke patients), peripheral artery disease (PAD) and aortic and mitral stenosis. Furthermore, high Lp(a) levels seem to be associated with increased risk of cardiovascular events in patients with chronic kidney disease, particularly in those undergoing percutaneous coronary intervention. CONCLUSIONS Lipoprotein (a) (Lp[a]) seems to significantly influence the risk of cardiovascular events. The effects of statins and fibrates on Lp(a) are limited and extremely variable. Nicotinic acid was shown effective in reducing Lp(a) but, due to its side effects and serious adverse events during clinical trials, it is no longer considered a possible option for treatment. To date, the treatment of choice for high levels of Lp(a) in high CV risk patients is represented by LDL-Apheresis. Thanks to innovative technologies, new selectively inhibiting LPA drugs are being developed and tested.
Collapse
Affiliation(s)
- M Bucci
- Regional Center for the Study of Atherosclerosis, Hypertension and Dyslipidemia, "SS Annunziata" Hospital - ASL Chieti, Italy; Ce.S.I.-Met, "G. D'Annunzio" University of Chieti, Italy
| | - C Tana
- Internal Medicine Unit, Guastalla Hospital, AUSL Reggio Emilia, Italy
| | - M A Giamberardino
- Ce.S.I.-Met, "G. D'Annunzio" University of Chieti, Italy; Geriatrics Clinic, Department of Medicine and Science of Aging, "G. D'Annunzio" University of Chieti, Italy
| | - F Cipollone
- Regional Center for the Study of Atherosclerosis, Hypertension and Dyslipidemia, "SS Annunziata" Hospital - ASL Chieti, Italy; Ce.S.I.-Met, "G. D'Annunzio" University of Chieti, Italy; Geriatrics Clinic, Department of Medicine and Science of Aging, "G. D'Annunzio" University of Chieti, Italy.
| |
Collapse
|
43
|
Bazzi ZA, Lanoue D, El-Youssef M, Romagnuolo R, Tubman J, Cavallo-Medved D, Porter LA, Boffa MB. Activated thrombin-activatable fibrinolysis inhibitor (TAFIa) attenuates breast cancer cell metastatic behaviors through inhibition of plasminogen activation and extracellular proteolysis. BMC Cancer 2016; 16:328. [PMID: 27221823 PMCID: PMC4879731 DOI: 10.1186/s12885-016-2359-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 05/11/2016] [Indexed: 11/23/2022] Open
Abstract
Background Thrombin activatable fibrinolysis inhibitor (TAFI) is a plasma zymogen, which can be converted to activated TAFI (TAFIa) through proteolytic cleavage by thrombin, plasmin, and most effectively thrombin in complex with the endothelial cofactor thrombomodulin (TM). TAFIa is a carboxypeptidase that cleaves carboxyl terminal lysine and arginine residues from protein and peptide substrates, including plasminogen-binding sites on cell surface receptors. Carboxyl terminal lysine residues play a pivotal role in enhancing cell surface plasminogen activation to plasmin. Plasmin has many critical functions including cleaving components of the extracellular matrix (ECM), which enhances invasion and migration of cancer cells. We therefore hypothesized that TAFIa could act to attenuate metastasis. Methods To assess the role of TAFIa in breast cancer metastasis, in vitro migration and invasion assays, live cell proteolysis and cell proliferation using MDA-MB-231 and SUM149 cells were carried out in the presence of a TAFIa inhibitor, recombinant TAFI variants, or soluble TM. Results Inhibition of TAFIa with potato tuber carboxypeptidase inhibitor increased cell invasion, migration and proteolysis of both cell lines, whereas addition of TM resulted in a decrease in all these parameters. A stable variant of TAFIa, TAFIa-CIIYQ, showed enhanced inhibitory effects on cell invasion, migration and proteolysis. Furthermore, pericellular plasminogen activation was significantly decreased on the surface of MDA-MB-231 and SUM149 cells following treatment with various concentrations of TAFIa. Conclusions Taken together, these results indicate a vital role for TAFIa in regulating pericellular plasminogen activation and ultimately ECM proteolysis in the breast cancer microenvironment. Enhancement of TAFI activation in this microenvironment may be a therapeutic strategy to inhibit invasion and prevent metastasis of breast cancer cells.
Collapse
Affiliation(s)
- Zainab A Bazzi
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, N9J 3P4, Canada
| | - Danielle Lanoue
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, N9J 3P4, Canada
| | - Mouhanned El-Youssef
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, N9J 3P4, Canada
| | - Rocco Romagnuolo
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, N9J 3P4, Canada
| | - Janice Tubman
- Department of Biological Sciences, University of Windsor, Windsor, ON, N9J 3P4, Canada
| | - Dora Cavallo-Medved
- Department of Biological Sciences, University of Windsor, Windsor, ON, N9J 3P4, Canada
| | - Lisa A Porter
- Department of Biological Sciences, University of Windsor, Windsor, ON, N9J 3P4, Canada
| | - Michael B Boffa
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, N9J 3P4, Canada.
| |
Collapse
|
44
|
Boffa MB, Koschinsky ML. Lipoprotein (a): truly a direct prothrombotic factor in cardiovascular disease? J Lipid Res 2015; 57:745-57. [PMID: 26647358 DOI: 10.1194/jlr.r060582] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Indexed: 01/13/2023] Open
Abstract
Elevated plasma concentrations of lipoprotein (a) [Lp(a)] have been determined to be a causal risk factor for coronary heart disease, and may similarly play a role in other atherothrombotic disorders. Lp(a) consists of a lipoprotein moiety indistinguishable from LDL, as well as the plasminogen-related glycoprotein, apo(a). Therefore, the pathogenic role for Lp(a) has traditionally been considered to reflect a dual function of its similarity to LDL, causing atherosclerosis, and its similarity to plasminogen, causing thrombosis through inhibition of fibrinolysis. This postulate remains highly speculative, however, because it has been difficult to separate the prothrombotic/antifibrinolytic functions of Lp(a) from its proatherosclerotic functions. This review surveys the current landscape surrounding these issues: the biochemical basis for procoagulant and antifibrinolytic effects of Lp(a) is summarized and the evidence addressing the role of Lp(a) in both arterial and venous thrombosis is discussed. While elevated Lp(a) appears to be primarily predisposing to thrombotic events in the arterial tree, the fact that most of these are precipitated by underlying atherosclerosis continues to confound our understanding of the true pathogenic roles of Lp(a) and, therefore, the most appropriate therapeutic target through which to mitigate the harmful effects of this lipoprotein.
Collapse
Affiliation(s)
- Michael B Boffa
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Marlys L Koschinsky
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada Robarts Research Institute, Western University, London, ON, Canada
| |
Collapse
|
45
|
Scipione CA, Sayegh SE, Romagnuolo R, Tsimikas S, Marcovina SM, Boffa MB, Koschinsky ML. Mechanistic insights into Lp(a)-induced IL-8 expression: a role for oxidized phospholipid modification of apo(a). J Lipid Res 2015; 56:2273-85. [PMID: 26474593 DOI: 10.1194/jlr.m060210] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Indexed: 12/14/2022] Open
Abstract
Elevated lipoprotein (a) [Lp(a)] levels are a causal risk factor for coronary heart disease. Accumulating evidence suggests that Lp(a) can stimulate cellular inflammatory responses through the kringle-containing apolipoprotein (a) [apo(a)] component. Here, we report that recombinant apo(a) containing 17 kringle (17K) IV domains elicits a dose-dependent increase in interleukin (IL)-8 mRNA and protein expression in THP-1 and U937 macrophages. This effect was blunted by mutation of the lysine binding site in apo(a) kringle IV type 10, which resulted in the loss of oxidized phospholipid (oxPL) on apo(a). Trypsin-digested 17K had the same stimulatory effect on IL-8 expression as intact apo(a), while enzymatic removal of oxPL from apo(a) significantly blunted this effect. Using siRNA to assess candidate receptors, we found that CD36 and TLR2 may play roles in apo(a)-mediated IL-8 stimulation. Downstream of these receptors, inhibitors of MAPKs, Jun N-terminal kinase and ERK1/2, abolished the effect of apo(a) on IL-8 gene expression. To assess the roles of downstream transcription factors, luciferase reporter gene experiments were conducted using an IL-8 promoter fragment. The apo(a)-induced expression of this reporter construct was eliminated by mutation of IL-8 promoter binding sites for either NF-κB or AP-1. Our results provide a mechanistic link between oxPL modification of apo(a) and stimulation of proinflammatory intracellular signaling pathways.
Collapse
Affiliation(s)
- Corey A Scipione
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Sera E Sayegh
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Rocco Romagnuolo
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Sotirios Tsimikas
- Vascular Medicine Program, University of California San Diego, La Jolla, CA
| | - Santica M Marcovina
- Department of Medicine, Northwest Lipid Research Laboratories, University of Washington, Seattle, WA
| | - Michael B Boffa
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Marlys L Koschinsky
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
46
|
Romagnuolo R, Scipione CA, Boffa MB, Marcovina SM, Seidah NG, Koschinsky ML. Lipoprotein(a) catabolism is regulated by proprotein convertase subtilisin/kexin type 9 through the low density lipoprotein receptor. J Biol Chem 2015; 290:11649-62. [PMID: 25778403 DOI: 10.1074/jbc.m114.611988] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Indexed: 01/07/2023] Open
Abstract
Elevated levels of lipoprotein(a) (Lp(a)) have been identified as an independent risk factor for coronary heart disease. Plasma Lp(a) levels are reduced by monoclonal antibodies targeting proprotein convertase subtilisin/kexin type 9 (PCSK9). However, the mechanism of Lp(a) catabolism in vivo and the role of PCSK9 in this process are unknown. We report that Lp(a) internalization by hepatic HepG2 cells and primary human fibroblasts was effectively reduced by PCSK9. Overexpression of the low density lipoprotein (LDL) receptor (LDLR) in HepG2 cells dramatically increased the internalization of Lp(a). Internalization of Lp(a) was markedly reduced following treatment of HepG2 cells with a function-blocking monoclonal antibody against the LDLR or the use of primary human fibroblasts from an individual with familial hypercholesterolemia; in both cases, Lp(a) internalization was not affected by PCSK9. Optimal Lp(a) internalization in both hepatic and primary human fibroblasts was dependent on the LDL rather than the apolipoprotein(a) component of Lp(a). Lp(a) internalization was also dependent on clathrin-coated pits, and Lp(a) was targeted for lysosomal and not proteasomal degradation. Our data provide strong evidence that the LDLR plays a role in Lp(a) catabolism and that this process can be modulated by PCSK9. These results provide a direct mechanism underlying the therapeutic potential of PCSK9 in effectively lowering Lp(a) levels.
Collapse
Affiliation(s)
- Rocco Romagnuolo
- From the Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Corey A Scipione
- From the Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Michael B Boffa
- From the Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Santica M Marcovina
- the Northwest Lipid Metabolism and Diabetes Research Laboratories, University of Washington, Seattle, Washington 98109, and
| | - Nabil G Seidah
- the Laboratory of Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Marlys L Koschinsky
- From the Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada,
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Despite being both the longest known and the most prevalent genetic risk marker for atherosclerotic cardiovascular disease (CVD), little progress has been made in agreeing a role for lipoprotein (a) [Lp(a)] in clinical practice and developing therapies with specific Lp(a)-lowering activity. We review barriers to progress, and discuss areas of controversy which are important to future research. RECENT FINDINGS Epidemiological and genetic studies have supported a causal role for Lp(a) in accelerated atherosclerosis, independent of other risk factors. Progress continues to be made in the understanding of Lp(a) metabolism, and Lp(a) levels, rather than apolipoprotein (a) isoform size, have been shown to be more closely related to CVD risk. Selective Lp(a) apheresis has offered some evidence that Lp(a)-lowering can improve cardiovascular end-points. SUMMARY We have acquired a great deal of knowledge about Lp(a), but this has not yet led to reductions in CVD. This is at least partially due to disagreement over Lp(a) measurement methodologies, its physiological role and the importance of the elevations seen in renal diseases, diabetes mellitus and familial hypercholesterolaemia. Renewed focus is required to bring assays into clinical practice to accompany new classes of therapeutic agents with Lp(a)-lowering effects.
Collapse
Affiliation(s)
- Paul N Durrington
- aCardiovascular Research Group, School of Biomedicine, University of Manchester bCardiovascular Trials Unit, University Department of Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | | | | | | |
Collapse
|