1
|
Merrill AH. Don't Be Surprised When These Surprise You: Some Infrequently Studied Sphingoid Bases, Metabolites, and Factors That Should Be Kept in Mind During Sphingolipidomic Studies. Int J Mol Sci 2025; 26:650. [PMID: 39859363 PMCID: PMC11765627 DOI: 10.3390/ijms26020650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Sphingolipidomic mass spectrometry has provided valuable information-and surprises-about sphingolipid structures, metabolism, and functions in normal biological processes and disease. Nonetheless, many noteworthy compounds are not routinely determined, such as the following: most of the sphingoid bases that mammals biosynthesize de novo other than sphingosine (and sometimes sphinganine) or acquire from exogenous sources; infrequently considered metabolites of sphingoid bases, such as N-(methyl)n-derivatives; "ceramides" other than the most common N-acylsphingosines; and complex sphingolipids other than sphingomyelins and simple glycosphingolipids, including glucosyl- and galactosylceramides, which are usually reported as "monohexosylceramides". These and other subspecies are discussed, as well as some of the circumstances when they are likely to be seen (or present and missed) due to experimental conditions that can influence sphingolipid metabolism, uptake from the diet or from the microbiome, or as artifacts produced during extraction and analysis. If these compounds and factors are kept in mind during the design and interpretation of lipidomic studies, investigators are likely to be surprised by how often they appear and thereby advance knowledge about them.
Collapse
Affiliation(s)
- Alfred H Merrill
- School of Biological Sciences and The Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
2
|
Nicolaou A, Kendall AC. Bioactive lipids in the skin barrier mediate its functionality in health and disease. Pharmacol Ther 2024; 260:108681. [PMID: 38897295 DOI: 10.1016/j.pharmthera.2024.108681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/11/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Our skin protects us from external threats including ultraviolet radiation, pathogens and chemicals, and prevents excessive trans-epidermal water loss. These varied activities are reliant on a vast array of lipids, many of which are unique to skin, and that support physical, microbiological and immunological barriers. The cutaneous physical barrier is dependent on a specific lipid matrix that surrounds terminally-differentiated keratinocytes in the stratum corneum. Sebum- and keratinocyte-derived lipids cover the skin's surface and support and regulate the skin microbiota. Meanwhile, lipids signal between resident and infiltrating cutaneous immune cells, driving inflammation and its resolution in response to pathogens and other threats. Lipids of particular importance include ceramides, which are crucial for stratum corneum lipid matrix formation and therefore physical barrier functionality, fatty acids, which contribute to the acidic pH of the skin surface and regulate the microbiota, as well as the stratum corneum lipid matrix, and bioactive metabolites of these fatty acids, involved in cell signalling, inflammation, and numerous other cutaneous processes. These diverse and complex lipids maintain homeostasis in healthy skin, and are implicated in many cutaneous diseases, as well as unrelated systemic conditions with skin manifestations, and processes such as ageing. Lipids also contribute to the gut-skin axis, signalling between the two barrier sites. Therefore, skin lipids provide a valuable resource for exploration of healthy cutaneous processes, local and systemic disease development and progression, and accessible biomarker discovery for systemic disease, as well as an opportunity to fully understand the relationship between the host and the skin microbiota. Investigation of skin lipids could provide diagnostic and prognostic biomarkers, and help identify new targets for interventions. Development and improvement of existing in vitro and in silico approaches to explore the cutaneous lipidome, as well as advances in skin lipidomics technologies, will facilitate ongoing progress in skin lipid research.
Collapse
Affiliation(s)
- Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK; Lydia Becker Institute of Immunology and Inflammation; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK.
| | - Alexandra C Kendall
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9NT, UK
| |
Collapse
|
3
|
Koo BI, Lee DJ, Rahman RT, Nam YS. Biomimetic Multilayered Lipid Nanovesicles for Potent Protein Vaccination. Adv Healthc Mater 2024; 13:e2304109. [PMID: 38849130 DOI: 10.1002/adhm.202304109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/15/2024] [Indexed: 06/09/2024]
Abstract
Lipid vesicles are widely used for drug and gene delivery, but their structural instability reduces in vivo efficacy and requires specialized handling. To address these limitations, strategies like lipid cross-linking and polymer-lipid conjugation are suggested to enhance stability and biological efficacy. However, the in vivo metabolism of these altered lipids remains unclear, necessitating further studies. A new stabilization technique without chemical modification is urgently needed. Here, a bio-mimetic approach for fabricating robust multilamellar lipid vesicles to enhance in vivo delivery and stabilization of protein antigens is presented. This method leverages 1-O-acylceramide, a natural skin lipid, to facilitate the self-assembly of lipid nanovesicles. Incorporating 1-O-acylceramide, anchoring lipid bilayers akin to its role in the stratum corneum, provides excellent stability under environmental stresses, including freeze-thaw cycles. Encapsulating ovalbumin as a model antigen and the adjuvant monophosphoryl lipid A demonstrates the vesicle's potential as a nanovaccine platform. In vitro studies show enhanced immune responses with both unilamellar and multilamellar vesicles, but in vivo analyses highlight the superior efficiency of multilamellar vesicles in inducing higher antibody and cytokine levels. This work suggests ceramide-induced multilamellar lipid vesicles as an effective nanovaccine platform for enhanced antigen delivery and stability.
Collapse
Affiliation(s)
- Bon Il Koo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Dong Jae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Rafia Tasnim Rahman
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yoon Sung Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
4
|
Wilkerson JL, Tatum SM, Holland WL, Summers SA. Ceramides are fuel gauges on the drive to cardiometabolic disease. Physiol Rev 2024; 104:1061-1119. [PMID: 38300524 PMCID: PMC11381030 DOI: 10.1152/physrev.00008.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
Ceramides are signals of fatty acid excess that accumulate when a cell's energetic needs have been met and its nutrient storage has reached capacity. As these sphingolipids accrue, they alter the metabolism and survival of cells throughout the body including in the heart, liver, blood vessels, skeletal muscle, brain, and kidney. These ceramide actions elicit the tissue dysfunction that underlies cardiometabolic diseases such as diabetes, coronary artery disease, metabolic-associated steatohepatitis, and heart failure. Here, we review the biosynthesis and degradation pathways that maintain ceramide levels in normal physiology and discuss how the loss of ceramide homeostasis drives cardiometabolic pathologies. We highlight signaling nodes that sense small changes in ceramides and in turn reprogram cellular metabolism and stimulate apoptosis. Finally, we evaluate the emerging therapeutic utility of these unique lipids as biomarkers that forecast disease risk and as targets of ceramide-lowering interventions that ameliorate disease.
Collapse
Affiliation(s)
- Joseph L Wilkerson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Sean M Tatum
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
5
|
Yang MY, Lee E, Park CS, Nam YS. Molecular Dynamics Investigation into CerENP's Effect on the Lipid Matrix of Stratum Corneum. J Phys Chem B 2024; 128:5378-5386. [PMID: 38805566 DOI: 10.1021/acs.jpcb.4c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The extracellular lipid matrix in the stratum corneum (SC) plays a critical role in skin barrier functionality, comprising three primary components: ceramides, cholesterol, and free fatty acids. The diverse ceramides, differentiated by molecular structures such as hydroxylations and varying chain lengths, are essential for the lipid matrix's structural integrity. Recently, a new subclass of ceramide, 1-O-acylceramide NP (CerENP), has been identified; however, its precise role in the lipid matrix of the SC is still elusive. Herein, we investigate the role of CerENP on the structure and permeability of the SC using molecular dynamics simulations. Our findings indicate that CerENP contributes to a compact lipid matrix in the lateral dimension of our SC model with a repeat distance of about 13 nm. Additionally, ethanol permeability assessments show that CerENP effectively reduces molecular penetration through the lipid matrix. This study provides an insight into the role of a new subclass of ceramide in the SC, enhancing our understanding of skin structure and the mechanisms behind barrier dysfunction in skin diseases.
Collapse
Affiliation(s)
- Moon Young Yang
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Eunok Lee
- LCS Biotech Co. Ltd., 11-2, Deokseongsandan 2-ro 50, Idong-eup, Cheoin-gu, Yongin-si 17130, Gyeonggi-do, Republic of Korea
| | - Chang Seo Park
- LCS Biotech Co. Ltd., 11-2, Deokseongsandan 2-ro 50, Idong-eup, Cheoin-gu, Yongin-si 17130, Gyeonggi-do, Republic of Korea
| | - Yoon Sung Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
6
|
Yamaji M, Ohno Y, Shimada M, Kihara A. Alteration of epidermal lipid composition as a result of deficiency in the magnesium transporter Nipal4. J Lipid Res 2024; 65:100550. [PMID: 38692573 PMCID: PMC11153242 DOI: 10.1016/j.jlr.2024.100550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024] Open
Abstract
Lipids in the stratum corneum play an important role in the formation of the skin permeability barrier. The causative gene for congenital ichthyosis, NIPAL4, encodes a Mg2+ transporter and is involved in increases in intracellular Mg2+ concentrations that depend on keratinocyte differentiation. However, the role of this increased Mg2+ concentration in skin barrier formation and its effect on the lipid composition of the stratum corneum has remained largely unknown. Therefore, in the present study, we performed a detailed analysis of epidermal lipids in Nipal4 KO mice via TLC and MS. Compared with WT mice, the Nipal4 KO mice showed compositional changes in many ceramide classes (including decreases in ω-O-acylceramides and increases in ω-hydroxy ceramides), together with increases in ω-hydroxy glucosylceramides, triglycerides, and free fatty acids and decreases in ω-O-acyl hydroxy fatty acids containing a linoleic acid. We also found increases in unusual ω-O-acylceramides containing oleic acid or palmitic acid in the KO mice. However, there was little change in levels of cholesterol or protein-bound ceramides. The TLC analysis showed that some unidentified lipids were increased, and the MS analysis showed that these were special ceramides called 1-O-acylceramides. These results suggest that elevated Mg2+ concentrations in differentiated keratinocytes affect the production of various lipids, resulting in the lipid composition necessary for skin barrier formation.
Collapse
Affiliation(s)
- Marino Yamaji
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yusuke Ohno
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| | - Madoka Shimada
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
7
|
Hernandez-Corbacho M, Canals D. Drug Targeting of Acyltransferases in the Triacylglyceride and 1-O-AcylCeramide Biosynthetic Pathways. Mol Pharmacol 2024; 105:166-178. [PMID: 38164582 DOI: 10.1124/molpharm.123.000763] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Acyltransferase enzymes (EC 2.3.) are a large group of enzymes that transfer acyl groups to a variety of substrates. This review focuses on fatty acyltransferases involved in the biosynthetic pathways of glycerolipids and sphingolipids and how these enzymes have been pharmacologically targeted in their biologic context. Glycerolipids and sphingolipids, commonly treated independently in their regulation and biologic functions, are put together to emphasize the parallelism in their metabolism and bioactive roles. Furthermore, a newly considered signaling molecule, 1-O-acylceramide, resulting from the acylation of ceramide by DGAT2 enzyme, is discussed. Finally, the implications of DGAT2 as a putative ceramide acyltransferase (CAT) enzyme, with a putative dual role in TAG and 1-O-acylceramide generation, are explored. SIGNIFICANCE STATEMENT: This manuscript reviews the current status of drug development in lipid acyltransferases. These are current targets in metabolic syndrome and other diseases, including cancer. A novel function for a member in this group of lipids has been recently reported in cancer cells. The responsible enzyme and biological implications of this added member are discussed.
Collapse
Affiliation(s)
| | - Daniel Canals
- Department of Medicine, Stony Brook University, Stony Brook, New York
| |
Collapse
|
8
|
Bouwstra JA, Nădăban A, Bras W, McCabe C, Bunge A, Gooris GS. The skin barrier: An extraordinary interface with an exceptional lipid organization. Prog Lipid Res 2023; 92:101252. [PMID: 37666282 PMCID: PMC10841493 DOI: 10.1016/j.plipres.2023.101252] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
The barrier function of the skin is primarily located in the stratum corneum (SC), the outermost layer of the skin. The SC is composed of dead cells with highly organized lipid lamellae in the intercellular space. As the lipid matrix forms the only continuous pathway, the lipids play an important role in the permeation of compounds through the SC. The main lipid classes are ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs). Analysis of the SC lipid matrix is of crucial importance in understanding the skin barrier function, not only in healthy skin, but also in inflammatory skin diseases with an impaired skin barrier. In this review we provide i) a historical overview of the steps undertaken to obtain information on the lipid composition and organization in SC of healthy skin and inflammatory skin diseases, ii) information on the role CERs, CHOL and FFAs play in the lipid phase behavior of very complex lipid model systems and how this knowledge can be used to understand the deviation in lipid phase behavior in inflammatory skin diseases, iii) knowledge on the role of both, CER subclasses and chain length distribution, on lipid organization and lipid membrane permeability in complex and simple model systems with synthetic CERs, CHOL and FFAs, iv) similarity in lipid phase behavior in SC of different species and complex model systems, and vi) future directions in modulating lipid composition that is expected to improve the skin barrier in inflammatory skin diseases.
Collapse
Affiliation(s)
- Joke A Bouwstra
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| | - Andreea Nădăban
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Wim Bras
- Chemical Sciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, United States of America
| | - Clare McCabe
- School of Engineering & Physical Science, Heriot-Watt University, Edinburgh, Scotland, UK
| | - Annette Bunge
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, United States of America
| | - Gerrit S Gooris
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
9
|
de Szalay S, Wertz PW. Protective Barriers Provided by the Epidermis. Int J Mol Sci 2023; 24:ijms24043145. [PMID: 36834554 PMCID: PMC9961209 DOI: 10.3390/ijms24043145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
The skin is the largest organ of the body and consists of an epidermis, dermis and subcutaneous adipose tissue. The skin surface area is often stated to be about 1.8 to 2 m2 and represents our interface with the environment; however, when one considers that microorganisms live in the hair follicles and can enter sweat ducts, the area that interacts with this aspect of the environment becomes about 25-30 m2. Although all layers of the skin, including the adipose tissue, participate in antimicrobial defense, this review will focus mainly on the role of the antimicrobial factors in the epidermis and at the skin surface. The outermost layer of the epidermis, the stratum corneum, is physically tough and chemically inert which protects against numerous environmental stresses. It provides a permeability barrier which is attributable to lipids in the intercellular spaces between the corneocytes. In addition to the permeability barrier, there is an innate antimicrobial barrier at the skin surface which involves antimicrobial lipids, peptides and proteins. The skin surface has a low surface pH and is poor in certain nutrients, which limits the range of microorganisms that can survive there. Melanin and trans-urocanic acid provide protection from UV radiation, and Langerhans cells in the epidermis are poised to monitor the local environment and to trigger an immune response as needed. Each of these protective barriers will be discussed.
Collapse
Affiliation(s)
- Sarah de Szalay
- Sarah de Szalay Consulting, LLC, Wesy Milford, NJ 07480, USA
| | - Philip W. Wertz
- Dows Institute for Dental Research, College of Dentistry, University of Iowa, Iowa City, IA 52240, USA
- Correspondence:
| |
Collapse
|
10
|
Positive Correlation of Triacylglycerols with Increased Chain Length and Unsaturation with ω-O-Acylceramide and Ceramide-NP as Well as Acidic pH in the Skin Surface of Healthy Korean Adults. Metabolites 2022; 13:metabo13010031. [PMID: 36676956 PMCID: PMC9861786 DOI: 10.3390/metabo13010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Triacylglycerols (TG) play an important role in skin homeostasis including the synthesis of ω-O-acylceramides (acylCER) required for skin barrier formation by providing linoleic acid (C18:2n6). However, the overall relationships of TG species with various ceramides (CER) including CER-NP, the most abundant CER, ω-O-acylCER, and another acylCER, 1-O-acylCER in human SC, remain unclear. Therefore, we investigated these relationships and their influence on skin health status in healthy Korean adults. Twelve CER subclasses including two ω-O-acylCER and two 1-O-acylCER were identified with CER-NP consisting of approximately half of the total CER. The ω-O-acylCER species exhibited positive relationships with TG 52:4 and TG 54:2 containing C18:2, while interestingly, 1-O-acylCER containing ester-linked C14:0 and C16:0 demonstrated positive relationships with TG 46-50 including C14:0 and C16:0, respectively. In addition, CER-NP and CER-NH showed positive correlations with TG 52-54 containing C18:2 or C18:3. A lipid pattern with higher levels of CER including CER-NP and ω-O-acylCER with TG 54 and TG with 5-6 double bonds was related to good skin health status, especially with acidic skin pH. Collectively, TG with increased chain length and unsaturation seemed to improve CER content, and profiles such as higher acylCER and CER-NP improved skin health status by fortifying skin barrier structure.
Collapse
|
11
|
Badhe Y, Schmitt T, Gupta R, Rai B, Neubert RH. Investigating the nanostructure of a CER[NP]/CER[AP]-based stratum corneum lipid matrix model: A combined neutron diffraction & molecular dynamics simulations approach. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - BIOMEMBRANES 2022; 1864:184007. [PMID: 35863424 DOI: 10.1016/j.bbamem.2022.184007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
Abstract
The human skin provides a physiochemical and biological protective barrier due to the unique structure of its outermost layer known as the Stratum corneum. This layer consists of corneocytes and a multi-lamellar lipid matrix forming a composite, which is a major determining factor for the barrier function of the Stratum corneum. A substantiated understanding of this barrier is necessary, as controlled breaching or modulation of the same is also essential for various health and personal care applications such as topical drug delivery and cosmetics to a name few. In this study, we discuss the state-of-the-art of neutron diffraction techniques, using specifically deuterated lipids, combined with the information obtained from molecular models using molecular dynamics simulations, to understand the structure and barrier function of the Stratum corneum lipid matrix. As an example, the effect of ceramide concentration on a lipid lamella system consisting of CER[NP]/CER[AP]/Cholesterol/free fatty acid (deprotonated) is studied. This study demonstrates the usefulness of the combined approach of neutron diffraction and molecular dynamics simulations for effective analysis of the model systems created for the Stratum corneum lipid matrix. The optimization of force fields by comparison with experimental data is furthermore an important step in the direction of providing a predictive quality.
Collapse
|
12
|
Shamaprasad P, Frame CO, Moore TC, Yang A, Iacovella CR, Bouwstra JA, Bunge AL, McCabe C. Using molecular simulation to understand the skin barrier. Prog Lipid Res 2022; 88:101184. [PMID: 35988796 PMCID: PMC10116345 DOI: 10.1016/j.plipres.2022.101184] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/15/2022]
Abstract
Skin's effectiveness as a barrier to permeation of water and other chemicals rests almost entirely in the outermost layer of the epidermis, the stratum corneum (SC), which consists of layers of corneocytes surrounded by highly organized lipid lamellae. As the only continuous path through the SC, transdermal permeation necessarily involves diffusion through these lipid layers. The role of the SC as a protective barrier is supported by its exceptional lipid composition consisting of ceramides (CERs), cholesterol (CHOL), and free fatty acids (FFAs) and the complete absence of phospholipids, which are present in most biological membranes. Molecular simulation, which provides molecular level detail of lipid configurations that can be connected with barrier function, has become a popular tool for studying SC lipid systems. We review this ever-increasing body of literature with the goals of (1) enabling the experimental skin community to understand, interpret and use the information generated from the simulations, (2) providing simulation experts with a solid background in the chemistry of SC lipids including the composition, structure and organization, and barrier function, and (3) presenting a state of the art picture of the field of SC lipid simulations, highlighting the difficulties and best practices for studying these systems, to encourage the generation of robust reproducible studies in the future. This review describes molecular simulation methodology and then critically examines results derived from simulations using atomistic and then coarse-grained models.
Collapse
Affiliation(s)
- Parashara Shamaprasad
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235-1604, United States of America; Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN 37235-1604, United States of America
| | - Chloe O Frame
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235-1604, United States of America; Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN 37235-1604, United States of America
| | - Timothy C Moore
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235-1604, United States of America; Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN 37235-1604, United States of America
| | - Alexander Yang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235-1604, United States of America; Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN 37235-1604, United States of America
| | - Christopher R Iacovella
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235-1604, United States of America; Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN 37235-1604, United States of America
| | - Joke A Bouwstra
- Division of BioTherapeutics, LACDR, Leiden University, 2333 CC Leiden, the Netherlands
| | - Annette L Bunge
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, United States of America
| | - Clare McCabe
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235-1604, United States of America; Multiscale Modeling and Simulation (MuMS) Center, Vanderbilt University, Nashville, TN 37235-1604, United States of America; School of Engineering and Physical Science, Heriot-Watt University, Edinburgh, United Kingdom.
| |
Collapse
|
13
|
Poljšak N, Kočevar Glavač N. Vegetable Butters and Oils as Therapeutically and Cosmetically Active Ingredients for Dermal Use: A Review of Clinical Studies. Front Pharmacol 2022; 13:868461. [PMID: 35548366 PMCID: PMC9083541 DOI: 10.3389/fphar.2022.868461] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
While the chemical composition of vegetable butters and oils has been studied in detail, there is limited knowledge about their mechanisms of action after application on the skin. To understand their dermal effects better, 27 clinical studies evaluating 17 vegetable oils (almond, argan, avocado, borage, coconut, evening primrose, kukui, marula, mustard, neem, olive, rapeseed, sacha inchi, safflower, shea butter, soybean and sunflower oils) were reviewed in this research. The reviewed studies focused on non-affected skin, infant skin, psoriasis, xerosis, UVB-induced erythema, atopic dermatitis, molluscum contagiosum, tungiasis, scars, striae and striae gravidarum. We conclude that in inflammation-affected skin, vegetable oils with a high content of oleic acid, together with the lack of or a low linoleic acid content, may cause additional structural damage of the stratum corneum, while oils high in linoleic acid and saturated fatty acids may express positive effects. Non-affected skin, in contrast, may not react negatively to oils high in oleic acid. However, the frequency and duration of an oil's use must be considered an important factor that may accelerate or enhance the negative effects on the skin's structural integrity.
Collapse
Affiliation(s)
- Nina Poljšak
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Kočevar Glavač
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
14
|
Rabionet M, Bernard P, Pichery M, Marsching C, Bayerle A, Dworski S, Kamani MA, Chitraju C, Gluchowski NL, Gabriel KR, Asadi A, Ebel P, Hoekstra M, Dumas S, Ntambi JM, Jacobsson A, Willecke K, Medin JA, Jonca N, Sandhoff R. Epidermal 1-O-acylceramides appear with the establishment of the water permeability barrier in mice and are produced by maturating keratinocytes. Lipids 2022; 57:183-195. [PMID: 35318678 DOI: 10.1002/lipd.12342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 12/17/2022]
Abstract
1-O-Acylceramides (1-OACs) have a fatty acid esterified to the 1-hydroxyl of the sphingosine head group of the ceramide, and recently we identified these lipids as natural components of human and mouse epidermis. Here we show epidermal 1-OACs arise shortly before birth during the establishment of the water permeability barrier in mice. Fractionation of human epidermis indicates 1-OACs concentrate in the stratum corneum. During in vitro maturation into reconstructed human epidermis, human keratinocytes dramatically increase 1-OAC levels indicating they are one source of epidermal 1-OACs. In search of potential enzymes responsible for 1-OAC synthesis in vivo, we analyzed mutant mice with deficiencies of ceramide synthases (Cers2, Cers3, or Cers4), diacylglycerol acyltransferases (Dgat1 or Dgat2), elongase of very long fatty acids 3 (Elovl3), lecithin cholesterol acyltransferase (Lcat), stearoyl-CoA desaturase 1 (Scd1), or acidic ceramidase (Asah1). Overall levels of 1-OACs did not decrease in any mouse model. In Cers3 and Dgat2-deficient epidermis they even increased in correlation with deficient skin barrier function. Dagt2 deficiency reshapes 1-OAC synthesis with an increase in 1-OACs with N-linked non-hydroxylated fatty acids and a 60% decrease compared to control in levels of 1-OACs with N-linked hydroxylated palmitate. As none of the single enzyme deficiencies we examined resulted in a lack of 1-OACs, we conclude that either there is functional redundancy in forming 1-OAC and more than one enzyme is involved, and/or an unknown acyltransferase of the epidermis performs the final step of 1-OAC synthesis, the implications of which are discussed.
Collapse
Affiliation(s)
- Mariona Rabionet
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Pauline Bernard
- Infinity, Université Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Melanie Pichery
- Infinity, Université Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Christian Marsching
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany.,Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS), Mannheim, Germany.,Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany.,Instrumental Analytics and Bioanalytics, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Aline Bayerle
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Shaalee Dworski
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | - Chandramohan Chitraju
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Nina L Gluchowski
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.,Division of Gastroenterology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Katlyn R Gabriel
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.,Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Abolfazl Asadi
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories, Stockholm University, Stockholm, Sweden
| | - Philipp Ebel
- Molecular Genetics, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Menno Hoekstra
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, Leiden, Netherlands
| | - Sabrina Dumas
- Department of Nutritional sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - James M Ntambi
- Department of Nutritional sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Anders Jacobsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories, Stockholm University, Stockholm, Sweden
| | - Klaus Willecke
- Molecular Genetics, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Jeffrey A Medin
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Nathalie Jonca
- Infinity, Université Toulouse, CNRS, Inserm, UPS, Toulouse, France.,CHU Toulouse, Hôpital Purpan, Laboratoire de Biologie Cellulaire et Cytologie, Institut Fédératif de Biologie, Toulouse, France
| | - Roger Sandhoff
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany.,Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS), Mannheim, Germany
| |
Collapse
|
15
|
Bakar J, Michael-Jubeli R, Libong D, Baillet-Guffroy A, Tfayli A. Stratum corneum ceramide profiles in vitro, ex vivo, and in vivo: characterization of the α-hydroxy double esterified ceramides. Anal Bioanal Chem 2022; 414:3675-3685. [PMID: 35314876 DOI: 10.1007/s00216-022-04011-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/16/2022] [Accepted: 03/07/2022] [Indexed: 11/26/2022]
Abstract
The presence of a new ceramide subclass, the 1-O-acyl omega-linoleoyloxy ceramides [1-O-E (EO) Cer], has been previously highlighted in reconstructed human epidermis (RHE). These ceramides are double esterified on two positions. The first is the 1-O position of the sphingoid base moiety with a long to very long chain of acyl residues (1-O-E), and the second is the position of the ω-hydroxyl group of the fatty acid moiety with linoleic acid (EO). Considering its chemical structure and hydrophobicity, this subclass can contribute to the skin barrier. Thus, it is important to determine whether this subclass is also present in native human stratum corneum (SC). This work compares ceramide structures of this novel subclass between RHE (in vitro) and two sources of human SC (in vivo and ex vivo) using normal-phase high-performance liquid chromatography coupled to high-resolution mass spectrometry (NP-HPLC/HR-MSn). The results confirm the presence of this double esterified ceramide subclass [1-O-E (EO) Cer] in human SC. The molecular profile obtained from the RHE was very close to that found in the human SC (in vivo and ex vivo). In addition, thanks to the targeted MS2/MS3 analysis, a new ceramide subclass was discovered and characterized in the three studied samples. We propose to name it [A-1-O-E (EO) Cer] because in these ceramides species, the fatty acid-esterified with the sphingoid base on the 1-O position-is hydroxylated on the α position. These results highlight the potential of both the analytical method and the characterization approach employed in this study.
Collapse
Affiliation(s)
- Joudi Bakar
- Lipides: systèmes analytiques et biologiques, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, 92296, Châtenay-Malabry, France
| | - Rime Michael-Jubeli
- Lipides: systèmes analytiques et biologiques, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, 92296, Châtenay-Malabry, France.
| | - Danielle Libong
- Lipides: systèmes analytiques et biologiques, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, 92296, Châtenay-Malabry, France
| | - Arlette Baillet-Guffroy
- Lipides: systèmes analytiques et biologiques, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, 92296, Châtenay-Malabry, France
| | - Ali Tfayli
- Lipides: systèmes analytiques et biologiques, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, 92296, Châtenay-Malabry, France
| |
Collapse
|
16
|
Choi HK, Hwang K, Hong YD, Cho YH, Kim JW, Lee EO, Park WS, Park CS. Ceramide NPs Derived from Natural Oils of Korean Traditional Plants Enhance Skin Barrier Functions and Stimulate Expressions of Genes for Epidermal Homeostasis. J Cosmet Dermatol 2022; 21:4931-4941. [PMID: 35262269 DOI: 10.1111/jocd.14905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/06/2022] [Accepted: 03/01/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND New ceramide (CER) NPs were prepared by linking fatty acids derived from oils of Korean traditional plants to phytosphingosine(PHS). The oils of Korean traditional plants were extracted from the seeds of Panax ginseng, Camellia sinensis, Glycine max napjakong, Glycine max seoritae and Camellia japonica as sources of diverse fatty acids AIMS: To investigate signaling bioactivities of HP-C. sinensis ceramide NP that was column purified to remove any residual PHS and to evaluate the skin barrier functions of the HP-C. sinensis ceramide NP in human skin. METHODS The expressions of genes related with epidermal differentiation was analyzed in vitro by qPCR. Human studies were also performed to determine the skin barrier functions with respect of TEWL and SC cohesion. RESULTS The HP-C. sinensis CER NP significantly enhanced the expressions of FLG, CASP14 and INV indicates that the signaling biological activities of oil-derived ceramide NPs could be different depend on the natural oils. The control ceramide, C18-CER NP had no effect on the expression of the three genes. HP-C. sinensis CER NP was selected for the in vivo human studies. Application of 0.5% HP-C. sinensis CER NP cream stimulated significantly faster recovery of a disrupted skin barrier than that of the control C18-CER NP. A significant enhancement of SC cohesion of the skin treated with 0.5% HP-C. sinensis CER NP was also observed. CONCLUSION Taken all together, our results clearly demonstrate that HP-C. sinensis CER NP, P. ginseng CER NP and other oil-derived CER NP could be a better choice for developing moisturizers to improve skin barrier function as they more closely mimic the endogenous CER composition of the actual human skin barrier.
Collapse
Affiliation(s)
- Hyun Kyung Choi
- Department of Chemical Engineering, Dongguk University, 3-26, Pil-dong, Chung-gu, Seoul, 100-715, Republic of Korea
| | - Kyeonghwan Hwang
- Department of Chemical Engineering, Dongguk University, 3-26, Pil-dong, Chung-gu, Seoul, 100-715, Republic of Korea.,Department of R&D center, Amorepacific, Republic of Korea
| | | | - Young Hoon Cho
- Department of Chemical Engineering, Dongguk University, 3-26, Pil-dong, Chung-gu, Seoul, 100-715, Republic of Korea
| | - Jin Wook Kim
- SNU Business Incubator, 5-105, 89 Sehoro, Gwonseon-gu, Suwon, Gyeonggi-do, 16614, Republic of Korea
| | - Eun Ok Lee
- SNU Business Incubator, 5-105, 89 Sehoro, Gwonseon-gu, Suwon, Gyeonggi-do, 16614, Republic of Korea
| | - Won-Seok Park
- Department of R&D center, Amorepacific, Republic of Korea
| | - Chang Seo Park
- Department of Chemical Engineering, Dongguk University, 3-26, Pil-dong, Chung-gu, Seoul, 100-715, Republic of Korea.,SNU Business Incubator, 5-105, 89 Sehoro, Gwonseon-gu, Suwon, Gyeonggi-do, 16614, Republic of Korea
| |
Collapse
|
17
|
Simard M, Tremblay A, Morin S, Martin C, Julien P, Fradette J, Flamand N, Pouliot R. α-Linolenic acid and linoleic acid modulate the lipidome and the skin barrier of a tissue-engineered skin model. Acta Biomater 2022; 140:261-274. [PMID: 34808417 DOI: 10.1016/j.actbio.2021.11.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) play an important role in the establishment and the maintenance of the skin barrier function. However, the impact of their derived lipid mediators remains unclear. Skin substitutes were engineered according to the self-assembly method with a culture medium supplemented with 10 μM of both α-linolenic acid (ALA) and linoleic acid (LA). The supplementation with ALA and LA decreased testosterone absorption through a tissue-engineered reconstructed skin model, thus indicating an improved skin barrier function following supplementation. The exogenously provided fatty acids were incorporated into the phospholipid and triglyceride fractions of the skin substitutes. Indeed, the dual supplementation increased the levels of eicosapentaenoic acid (EPA) (15-fold), docosapentaenoic acid (DPA) (3-fold), and LA (1.5-fold) in the epidermal phospholipids while it increased the levels of ALA (>20-fold), DPA (3-fold) and LA (1.5-fold) in the epidermal triglycerides. The bioactive lipid mediator profile of the skin substitutes, including prostaglandins, hydroxy-fatty acids, N-acylethanolamines and monoacylglycerols, was next analyzed using liquid chromatography-tandem mass spectrometry. The lipid supplementation further modulated bioactive lipid mediator levels of the reconstructed skin substitutes, leading to a lipid mediator profile more representative of the one found in normal human skin. These findings show that an optimized supply of PUFAs via culture media is essential for the establishment of improved barrier function in vitro. STATEMENT OF SIGNIFICANCE: Supplementation of the culture medium with 10 μM of both α-linolenic acid (ALA) and linoleic acid (LA) improved the skin barrier function of a tissue-engineered skin model. The exogenously provided fatty acids were incorporated into the phospholipid and triglyceride fractions of the skin substitutes and further modulated bioactive lipid mediator levels, including prostaglandins, hydroxy-fatty acids, N-acylethanolamines and monoacylglycerols. These findings highlight the important role of ALA and LA in skin homeostasis and show that an optimized supply of polyunsaturated fatty acids via culture media is essential for the establishment of improved barrier function in vitro.
Collapse
Affiliation(s)
- Mélissa Simard
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1Z4, Canada; Faculté de pharmacie de l'Université Laval, Québec, QC, G1J 1A4, Canada
| | - Andréa Tremblay
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1Z4, Canada; Faculté de pharmacie de l'Université Laval, Québec, QC, G1J 1A4, Canada
| | - Sophie Morin
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1Z4, Canada; Faculté de pharmacie de l'Université Laval, Québec, QC, G1J 1A4, Canada
| | - Cyril Martin
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, QC, G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, QC, Canada
| | - Pierre Julien
- Département de médecine, Faculté de médecine de l'Université Laval, Québec, QC, G1V 0A6, Canada; Axe Endocrinologie et Néphrologie, Centre de recherche du CHU de Québec, Université Laval, Québec, QC, G1J 1A4, Canada
| | - Julie Fradette
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1Z4, Canada; Département de chirurgie, Faculté de médecine de l'Université Laval, Québec, QC, G1V 0A6, Canada
| | - Nicolas Flamand
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, QC, G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, QC, Canada
| | - Roxane Pouliot
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1Z4, Canada; Faculté de pharmacie de l'Université Laval, Québec, QC, G1J 1A4, Canada.
| |
Collapse
|
18
|
Pilz R, Opálka L, Majcher A, Grimm E, Van Maldergem L, Mihalceanu S, Schäkel K, Enk A, Aubin F, Bursztejn AC, Brischoux-Boucher E, Fischer J, Sandhoff R. Formation of keto-type ceramides in palmoplantar keratoderma based on biallelic KDSR mutations in patients. Hum Mol Genet 2021; 31:1105-1114. [PMID: 34686882 DOI: 10.1093/hmg/ddab309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/14/2022] Open
Abstract
Functional skin barrier requires sphingolipid homeostasis. 3-ketodihydrosphingosine reductase or KDSR is a key enzyme of sphingolipid anabolism catalyzing the reduction of 3-ketodihydrosphingosine to sphinganine. Biallelic mutations in the KDSR gene may cause erythrokeratoderma variabilis et progressive-4, later specified as PERIOPTER syndrome, emphasizing a characteristic periorifical and ptychotropic erythrokeratoderma. We report another patient with compound heterozygous mutations in KDSR, born with generalized harlequin ichthyosis, which progressed into palmoplantar keratoderma. To determine whether patient-associated KDSR mutations lead to KDSR substrate accumulation and/or unrecognized sphingolipid downstream products in stratum corneum we analyzed lipids of this and previously published patients with non-identical biallelic mutations in KDSR. In stratum corneum of both patients we identified hitherto unobserved skin ceramides with an unusual keto-type sphingoid base in lesional and non-lesional areas, which accounted for up to 10% of the measured ceramide species. Furthermore, an overall shorter mean chain length of free and bound sphingoid bases was observed-shorter mean chain length of free sphingoid bases was also observed in lesional psoriasis vulgaris SC, but not generally in lesional atopic dermatitis SC. Formation of keto-type ceramides is probably due to a bottle neck in metabolic flux through KDSR and a bypass by ceramide synthases, which highlights the importance of tight intermediate regulation during sphingolipid anabolism and reveals substrate deprivation as potential therapy.
Collapse
Affiliation(s)
- Robert Pilz
- Lipid Pathobiochemistry Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Lukáš Opálka
- Lipid Pathobiochemistry Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Skin Barrier Research Group, Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic
| | - Adam Majcher
- Lipid Pathobiochemistry Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Skin Barrier Research Group, Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic
| | - Elisabeth Grimm
- Lipid Pathobiochemistry Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Lionel Van Maldergem
- Centre de Génétique Humaine, Université de Franche-Comté, 25000, Besançon, France.,Clinical Investigation Center 1431, National Institute of Health and Medical Research (INSERM), University Hospital, 25000, Besançon, France
| | - Silvia Mihalceanu
- Department of Dermatology, Medical Faculty of the University of Heidelberg, 69120, Heidelberg, Germany
| | - Knut Schäkel
- Department of Dermatology, Medical Faculty of the University of Heidelberg, 69120, Heidelberg, Germany
| | - Alexander Enk
- Department of Dermatology, Medical Faculty of the University of Heidelberg, 69120, Heidelberg, Germany
| | - François Aubin
- Service de Dermatologie et INSERM 1098 RIGHT, CHU et UFR Santé, 25000, Besançon France
| | | | | | - Judith Fischer
- Institute of Human Genetics, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg im Breisgau, Germany
| | - Roger Sandhoff
- Lipid Pathobiochemistry Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| |
Collapse
|
19
|
Zwara A, Wertheim-Tysarowska K, Mika A. Alterations of Ultra Long-Chain Fatty Acids in Hereditary Skin Diseases-Review Article. Front Med (Lausanne) 2021; 8:730855. [PMID: 34497816 PMCID: PMC8420999 DOI: 10.3389/fmed.2021.730855] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/30/2021] [Indexed: 11/27/2022] Open
Abstract
The skin is a flexible organ that forms a barrier between the environment and the body's interior; it is involved in the immune response, in protection and regulation, and is a dynamic environment in which skin lipids play an important role in maintaining homeostasis. The different layers of the skin differ in both the composition and amount of lipids. The epidermis displays the best characteristics in this respect. The main lipids in this layer are cholesterol, fatty acids (FAs) and ceramides. FAs can occur in free form and as components of complex molecules. The most poorly characterized FAs are very long-chain fatty acids (VLCFAs) and ultra long-chain fatty acids (ULCFAs). VLCFAs and ULCFAs are among the main components of ceramides and are part of the free fatty acid (FFA) fraction. They are most abundant in the brain, liver, kidneys, and skin. VLCFAs and ULCFAs are responsible for the rigidity and impermeability of membranes, forming the mechanically and chemically strong outer layer of cell membranes. Any changes in the composition and length of the carbon chains of FAs result in a change in their melting point and therefore a change in membrane permeability. One of the factors causing a decrease in the amount of VLCFAs and ULCFAs is an improper diet. Another much more important factor is mutations in the genes which code proteins involved in the metabolism of VLCFAs and ULCFAs—regarding their elongation, their attachment to ceramides and their transformation. These mutations have their clinical consequences in the form of inborn errors in metabolism and neurodegenerative disorders, among others. Some of them are accompanied by skin symptoms such as ichthyosis and ichthyosiform erythroderma. In the following review, the structure of the skin is briefly characterized and the most important lipid components of the skin are presented. The focus is also on providing an overview of selected proteins involved in the metabolism of VLCFAs and ULCFAs in the skin.
Collapse
Affiliation(s)
- Agata Zwara
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | | | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
20
|
Fujii M. The Pathogenic and Therapeutic Implications of Ceramide Abnormalities in Atopic Dermatitis. Cells 2021; 10:2386. [PMID: 34572035 PMCID: PMC8468445 DOI: 10.3390/cells10092386] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
Ceramides play an essential role in forming a permeability barrier in the skin. Atopic dermatitis (AD) is a common chronic skin disease associated with skin barrier dysfunction and immunological abnormalities. In patients with AD, the amount and composition of ceramides in the stratum corneum are altered. This suggests that ceramide abnormalities are involved in the pathogenesis of AD. The mechanism underlying lipid abnormalities in AD has not yet been fully elucidated, but the involvement of Th2 and Th1 cytokines is implicated. Ceramide-dominant emollients have beneficial effects on skin barrier function; thus, they have been approved as an adjunctive barrier repair agent for AD. This review summarizes the current understanding of the mechanisms of ceramide abnormalities in AD. Furthermore, the potential therapeutic approaches for correcting ceramide abnormalities in AD are discussed.
Collapse
Affiliation(s)
- Masanori Fujii
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| |
Collapse
|
21
|
Strati F, Oliveira JSL, Opalka L, Mukhina T, Dobner B, Neubert RHH, Brezesinski G. Two- and Three-Dimensional Physical-Chemical Characterization of CER[AP]: A Study of Stereochemistry and Chain Symmetry. J Phys Chem B 2021; 125:9960-9969. [PMID: 34463098 DOI: 10.1021/acs.jpcb.1c05572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The stratum corneum represents the first skin barrier against chemical and physical damage. These unique properties are based on its peculiar lipid composition with ceramides (CERs) as the main protagonists. In this study, the structural and chemical properties of the α-OH phytosphingosine [AP] CER class have been investigated. α-OH CERs are present in the stratum corneum in their d-forms; however, in most model systems the diastereomer mixture with the synthetically produced l-form is used. The d-form is well-known to form a hydrogen bonding network that helps to reduce the permeability of the lipid matrix, while the l-form does not show any hydrogen bonding network formation. In this paper, 2D (monolayers) and 3D (aqueous dispersions) models have been used to thoroughly study the physical-chemical behaviors of CER[AP] diastereomers taking into account how the symmetry of the chain pattern influences the behavior of the molecules. The chains of both diastereomers arrange in an oblique unit cell, but only the d-CER[AP] forms a supramolecular lattice (subgel phase) in both model systems. Interestingly, the chain pattern does not play any role in structure formation since the hydrogen bonding network dictates the packing properties. The 1:1 mixture of the diastereomers phase separates into two domains: one is composed of practically pure d-form and the other one is composed of a mixture of the l-form with a certain amount of d-form molecules.
Collapse
Affiliation(s)
- Fabio Strati
- Institute of Applied Dermatopharmacy at Martin Luther University Halle-Wittenberg, Weinbergweg 23, 06120 Halle (Saale), Germany
| | - Joana S L Oliveira
- Max Planck Institute of Colloids and Interfaces, Potsdam Science Park, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Lukas Opalka
- Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Tetiana Mukhina
- Institute for Condensed Matter Physics, Technical University Darmstadt, Hochschulstrasse 8, 64289 Darmstadt, Germany
| | - Bodo Dobner
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Reinhard H H Neubert
- Institute of Applied Dermatopharmacy at Martin Luther University Halle-Wittenberg, Weinbergweg 23, 06120 Halle (Saale), Germany
| | - Gerald Brezesinski
- Institute of Applied Dermatopharmacy at Martin Luther University Halle-Wittenberg, Weinbergweg 23, 06120 Halle (Saale), Germany
| |
Collapse
|
22
|
Berdyshev E, Bronova I, Leung DYM, Goleva E. Methodological Considerations for Lipid and Polar Component Analyses in Human Skin Stratum Corneum. Cell Biochem Biophys 2021; 79:659-668. [PMID: 34264438 PMCID: PMC8551066 DOI: 10.1007/s12013-021-01016-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 10/20/2022]
Abstract
Collection of skin very top layer, called stratum corneum, by tape stripping and the analysis of stratum corneum components by mass spectrometry provides multiple advantages for clinical studies that aim to understand the origins of allergic skin diseases and food allergy. However, such a methodology has multiple challenges on the way of complex stratum corneum analysis when molecules of different polarity are needed to be analyzed from minimal amount of skin tape strips. This review provides an overview of current knowledge about lipid and polar molecules in the skin, discusses challenging aspects of sample processing when dealing with skin tape strips, and provides some guidance towards approaches that generate complex, quantitative, normalized to total sample protein data that fit best the purpose of analysis of stratum corneum components for the purpose of clinical trials.
Collapse
Affiliation(s)
- E Berdyshev
- National Jewish Health, 1400 Jackson Street, Goodman Building, K924b, Denver, CO, 80206, USA.
| | - I Bronova
- National Jewish Health, 1400 Jackson Street, Goodman Building, K924b, Denver, CO, 80206, USA
| | - D Y M Leung
- National Jewish Health, 1400 Jackson Street, Goodman Building, K924b, Denver, CO, 80206, USA
| | - E Goleva
- National Jewish Health, 1400 Jackson Street, Goodman Building, K924b, Denver, CO, 80206, USA
| |
Collapse
|
23
|
Lam BWS, Yam TYA, Chen CP, Lai MKP, Ong WY, Herr DR. The noncanonical chronicles: Emerging roles of sphingolipid structural variants. Cell Signal 2020; 79:109890. [PMID: 33359087 DOI: 10.1016/j.cellsig.2020.109890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/08/2023]
Abstract
Sphingolipids (SPs) are structurally diverse and represent one of the most quantitatively abundant classes of lipids in mammalian cells. In addition to their structural roles, many SP species are known to be bioactive mediators of essential cellular processes. Historically, studies have focused on SP species that contain the canonical 18‑carbon, mono-unsaturated sphingoid backbone. However, increasingly sensitive analytical technologies, driven by advances in mass spectrometry, have facilitated the identification of previously under-appreciated, molecularly distinct SP species. Many of these less abundant species contain noncanonical backbones. Interestingly, a growing number of studies have identified clinical associations between these noncanonical SPs and disease, suggesting that there is functional significance to the alteration of SP backbone structure. For example, associations have been found between SP chain length and cardiovascular disease, pain, diabetes, and dementia. This review will provide an overview of the processes that are known to regulate noncanonical SP accumulation, describe the clinical correlations reported for these molecules, and review the experimental evidence for the potential functional implications of their dysregulation. It is likely that further scrutiny of noncanonical SPs may provide new insight into pathophysiological processes, serve as useful biomarkers for disease, and lead to the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- Brenda Wan Shing Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ting Yu Amelia Yam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Memory Aging and Cognition Centre, Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Memory Aging and Cognition Centre, Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Deron R Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biology, San Diego State University, San Diego, CA, USA; American University of Health Sciences, Long Beach, CA, USA.
| |
Collapse
|
24
|
Kawana M, Miyamoto M, Ohno Y, Kihara A. Comparative profiling and comprehensive quantification of stratum corneum ceramides in humans and mice by LC/MS/MS. J Lipid Res 2020; 61:884-895. [PMID: 32265320 PMCID: PMC7269764 DOI: 10.1194/jlr.ra120000671] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/01/2020] [Indexed: 12/21/2022] Open
Abstract
Ceramides are the predominant lipids in the stratum corneum (SC) and are crucial components for normal skin barrier function. Although the composition of various ceramide classes in the human SC has been reported, that in mice is still unknown, despite mice being widely used as animal models of skin barrier function. Here, we performed LC/MS/MS analyses using recently available ceramide class standards to measure 25 classes of free ceramides and 5 classes of protein-bound ceramides from human and mouse SC. Phytosphingosine- and 6-hydroxy sphingosine-type ceramides, which both contain an additional hydroxyl group, were abundant in the human SC (35% and 45% of total ceramides, respectively). In contrast, in mice, phytosph-ingosine- and 6-hydroxy sphingosine-type ceramides were present at ∼1% and undetectable levels, respectively, and sphingosine-type ceramides accounted for ∼90%. In humans, ceramides containing α-hydroxy FA were abundant, whereas ceramides containing β-hydroxy or ω-hydroxy FA were abundant in mice. The hydroxylated β-carbon in β-hydroxy ceramides was in the (R) configuration. Genetic knockout of β-hydroxy acyl-CoA dehydratases in HAP1 cells increased β-hydroxy ceramide levels, suggesting that β-hydroxy acyl-CoA, an FA-elongation cycle intermediate in the ER, is a substrate for β-hydroxy ceramide synthesis. We anticipate that our methods and findings will help to elucidate the role of each ceramide class in skin barrier formation and in the pathogenesis of skin disorders.
Collapse
Affiliation(s)
- Momoko Kawana
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Masatoshi Miyamoto
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yusuke Ohno
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
25
|
Bayerle A, Marsching C, Rabionet M, Dworski S, Kamani MA, Chitraju C, Gluchowski NL, Gabriel KR, Herzer S, Jennemann R, Levade T, Medin JA, Sandhoff R. Endogenous levels of 1-O-acylceramides increase upon acidic ceramidase deficiency and decrease due to loss of Dgat1 in a tissue-dependent manner. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158741. [PMID: 32474112 DOI: 10.1016/j.bbalip.2020.158741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/19/2020] [Accepted: 05/15/2020] [Indexed: 02/03/2023]
Abstract
Except for epidermis and liver, little is known about endogenous expression of 1-O-acylceramides (1-OACs) in mammalian tissue. Therefore, we screened several organs (brain, lung, liver, spleen, lymph nodes, heart, kidney, thymus, small intestine, and colon) from mice for the presence of 1-OACs by LC-MS2. In most organs, low levels of about 0.25-1.3 pmol 1-OACs/mg wet weight were recorded. Higher levels were detected in liver, small and large intestines, with about 4-13 pmol 1-OACs/mg wet weight. 1-OACs were esterified mainly with palmitic, stearic, or oleic acids. Esterification with saturated very long-chain fatty acids, as in epidermis, was not observed. Western-type diet induced 3-fold increased 1-OAC levels in mice livers while ceramides were unaltered. In a mouse model of Farber disease with a decrease of acid ceramidase activity, we observed a strong, up to 50-fold increase of 1-OACs in lung, thymus, and spleen. In contrast, 1-OAC levels were reduced 0.54-fold in liver. Only in lung 1-OAC levels correlated to changes in ceramide levels - indicating tissue-specific mechanisms of regulation. Glucosylceramide synthase deficiency in liver did not cause changes in 1-OAC or ceramide levels, whereas increased ceramide levels in glucosylceramide synthase-deficient small intestine caused an increase in 1-OAC levels. Deficiency of Dgat1 in mice resulted in a reduction of 1-OACs to 30% in colon, but not in small intestine and liver, going along with constant free ceramides levels. From these data, we conclude that Dgat1 as well as lysosomal lipid metabolism contribute in vivo to homeostatic 1-OAC levels in an organ-specific manner.
Collapse
Affiliation(s)
- Aline Bayerle
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Christian Marsching
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany; Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS), Mannheim, Germany; Instrumental Analytics and Bioanalytics, Mannheim University of Applied Sciences, Mannheim, Germany; Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany
| | - Mariona Rabionet
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Shaalee Dworski
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | - Chandramohan Chitraju
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Nina L Gluchowski
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA; Division of Gastroenterology and Nutrition, Boston Children's Hospital, Boston, MA, USA
| | - Katlyn R Gabriel
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston, MA, USA
| | - Silke Herzer
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Richard Jennemann
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Thierry Levade
- Laboratoire de Biochimie Métabolique, Institut Fédératif de Biologie, CHU Purpan, INSERM UMR1037 CRCT, Toulouse, France
| | - Jeffrey A Medin
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; University Health Network, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Roger Sandhoff
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany; Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS), Mannheim, Germany.
| |
Collapse
|
26
|
Assi A, Bakar J, Libong D, Sarkees E, Solgadi A, Baillet-Guffroy A, Michael-Jubeli R, Tfayli A. Comprehensive characterization and simultaneous analysis of overall lipids in reconstructed human epidermis using NPLC/HR-MSn: 1-O-E (EO) Cer, a new ceramide subclass. Anal Bioanal Chem 2019; 412:777-793. [DOI: 10.1007/s00216-019-02301-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/05/2019] [Accepted: 11/22/2019] [Indexed: 10/25/2022]
|
27
|
Poljšak N, Kreft S, Kočevar Glavač N. Vegetable butters and oils in skin wound healing: Scientific evidence for new opportunities in dermatology. Phytother Res 2019; 34:254-269. [PMID: 31657094 DOI: 10.1002/ptr.6524] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/13/2019] [Accepted: 09/21/2019] [Indexed: 12/13/2022]
Abstract
The use of vegetable butters and oils shows promising results in the treatment of skin wounds, as they have an effective impact on the phases of the wound-healing process through their antimicrobial, anti-inflammatory, and antioxidative activities and by promoting cell proliferation, increasing collagen synthesis, stimulating dermal reconstruction, and repairing the skin's lipid barrier function. In this article, in vitro and in vivo studies of argan (Argania spinosa), avocado (Persea americana), black cumin (Nigella sativa), calophyllum (Calophyllum inophyllum), coconut (Cocos nucifera), cranberry (Vaccinium macrocarpon), grape (Vitis vinifera), green coffee (Coffea arabica), lentisk (Pistacia lentiscus), linseed (Linum usitatissimum), lucuma (Pouteria lucuma), mango (Mangifera indica), olive (Olea europaea), pomegranate (Punica granatum), pumpkin (Cucurbita pepo), rapeseed (Brassica napus), sea buckthorn (Hippophae rhamnoides), and sunflower (Helianthus annuus) oils were reviewed. In many cases, vegetable oils proved to be more effective than synthetic wound-healing compounds used as controls. The fatty-acid components of vegetable oils are assumed to play a major role in the wound-healing process, in particular polyunsaturated fatty acids such as linoleic acid. Evidence shows that oils with a higher linoleic to oleic acid ratio are more effective for lipid barrier repair. However, in depth studies are needed to gain knowledge about vegetable oils' effects on the skin and vice versa.
Collapse
Affiliation(s)
- Nina Poljšak
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Samo Kreft
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | | |
Collapse
|
28
|
Lin MH, Hsu FF, Crumrine D, Meyer J, Elias PM, Miner JH. Fatty acid transport protein 4 is required for incorporation of saturated ultralong-chain fatty acids into epidermal ceramides and monoacylglycerols. Sci Rep 2019; 9:13254. [PMID: 31519952 PMCID: PMC6744566 DOI: 10.1038/s41598-019-49684-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/29/2019] [Indexed: 01/15/2023] Open
Abstract
Fatty acid transport protein 4 (FATP4) is an acyl-CoA synthetase that is required for normal permeability barrier in mammalian skin. FATP4 (SLC27A4) mutations cause ichthyosis prematurity syndrome, a nonlethal disorder. In contrast, Fatp4-/- mice die neonatally from a defective barrier. Here we used electron microscopy and lipidomics to characterize defects in Fatp4-/- mice. Mutants showed lamellar body, corneocyte lipid envelope, and cornified envelope abnormalities. Lipidomics identified two lipids previously speculated to be present in mouse epidermis, sphingosine β-hydroxyceramide and monoacylglycerol; mutants displayed decreased proportions of these and the two ceramide classes that carry ultralong-chain, amide-linked fatty acids (FAs) thought to be critical for barrier function, unbound ω-O-acylceramide and bound ω-hydroxyceramide, the latter constituting the major component of the corneocyte lipid envelope. Other abnormalities included elevated amounts of sphingosine α-hydroxyceramide, phytosphingosine non-hydroxyceramide, and 1-O-acylceramide. Acyl chain length alterations in ceramides also suggested roles for FATP4 in esterifying saturated non-hydroxy and β-hydroxy FAs with at least 25 carbons and saturated or unsaturated ω-hydroxy FAs with at least 30 carbons to CoA. Our lipidomic analysis is the most thorough such study of the Fatp4-/- mouse skin barrier to date, providing information about how FATP4 can contribute to barrier function by regulating fatty acyl moieties in various barrier lipids.
Collapse
Affiliation(s)
- Meei-Hua Lin
- Division of Nephrology, Washington University School of Medicine, 4523 Clayton Ave., St. Louis, MO, 63110, United States
| | - Fong-Fu Hsu
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, 4523 Clayton Ave., St. Louis, MO, 63110, United States
| | - Debra Crumrine
- Dermatology Service, VA Medical Center and Department of Dermatology, University of California-San Francisco, 4150 Clement St., San Francisco, CA, 94121, United States
| | - Jason Meyer
- Dermatology Service, VA Medical Center and Department of Dermatology, University of California-San Francisco, 4150 Clement St., San Francisco, CA, 94121, United States
| | - Peter M Elias
- Dermatology Service, VA Medical Center and Department of Dermatology, University of California-San Francisco, 4150 Clement St., San Francisco, CA, 94121, United States
| | - Jeffrey H Miner
- Division of Nephrology, Washington University School of Medicine, 4523 Clayton Ave., St. Louis, MO, 63110, United States.
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, 4523 Clayton Ave., St. Louis, MO, 63110, United States.
- Department of Cell Biology and Physiology, Washington University School of Medicine, 4523 Clayton Ave., St. Louis, MO, 63110, United States.
| |
Collapse
|
29
|
Harrison IP, Spada F. Breaking the Itch-Scratch Cycle: Topical Options for the Management of Chronic Cutaneous Itch in Atopic Dermatitis. MEDICINES (BASEL, SWITZERLAND) 2019; 6:medicines6030076. [PMID: 31323753 PMCID: PMC6789602 DOI: 10.3390/medicines6030076] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 04/13/2023]
Abstract
Chronic itch is an unpleasant sensation that triggers a desire to scratch that lasts for six weeks or more. It is a major diagnostic symptom of myriad diseases, including atopic dermatitis for which it is the most prominent feature. Chronic itch can be hugely debilitating for the sufferer, damaging in terms of both the monetary cost of treatment and its socioeconomic effects, and few treatment options exist that can adequately control it. Corticosteroids remain the first line treatment strategy for atopic dermatitis, but due to the risks associated with long-term use of corticosteroids, and the drawbacks of other topical options such as topical calcineurin inhibitors and capsaicin, topical options for itch management that are efficacious and can be used indefinitely are needed. In this review, we detail the pathophysiology of chronic pruritus, its key features, and the disease most commonly associated with it. We also assess the role of the skin and its components in maintaining a healthy barrier function, thus reducing dryness and the itch sensation. Lastly, we briefly detail examples of topical options for the management of chronic pruritus that can be used indefinitely, overcoming the risk associated with long-term use of corticosteroids.
Collapse
Affiliation(s)
- Ian P Harrison
- Department of Research and Development, Ego Pharmaceuticals Pty Ltd., 21-31 Malcolm Road, Braeside VIC 3195, Australia
| | - Fabrizio Spada
- Department of Research and Development, Ego Pharmaceuticals Pty Ltd., 21-31 Malcolm Road, Braeside VIC 3195, Australia.
| |
Collapse
|
30
|
Pullmannová P, Ermakova E, Kováčik A, Opálka L, Maixner J, Zbytovská J, Kučerka N, Vávrová K. Long and very long lamellar phases in model stratum corneum lipid membranes. J Lipid Res 2019; 60:963-971. [PMID: 30885924 PMCID: PMC6495169 DOI: 10.1194/jlr.m090977] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/25/2019] [Indexed: 11/20/2022] Open
Abstract
Membrane models of the stratum corneum (SC) lipid barrier, either healthy or affected by recessive X-linked ichthyosis, constructed from ceramide [Cer; nonhydroxyacyl sphingosine N-tetracosanoyl-d-erythro-sphingosine (CerNS24) alone or with omega-O-acylceramide N-(32-linoleyloxy)dotriacontanoyl-d-erythro-sphingosine (CerEOS)], FFAs(C16-24), cholesterol (Chol), and sodium cholesteryl sulfate (CholS) were investigated. X-ray diffraction (XRD) revealed a previously unreported polymorphism of the membranes. In the absence of CerEOS, the membranes formed a short lamellar phase (SLP; the repeat distance d = 5.3 nm), a medium lamellar phase (MLP; d = 10.6 nm), or very long lamellar phases (VLLP; d = 15.9 and 21.2 nm). An increased CholS-to-Chol ratio modulated the membrane polymorphism, although the CholS phase separated at ≥ 7 weight% (of total lipids). The presence of CerEOS led to the stable long lamellar phase (LLP) with d = 12.2 nm and prevented VLLP formation. Our XRD results agree well with recently published cryo-electron microscopy data for vitreous skin sections, while also revealing new structures. Thus, lamellar phases with long repeat distances (MLP and VLLP) may be formed in the absence of omega-O-acylceramide, whereas these ultralong Cer species likely stabilize the final SC lipid architecture of LLP by riveting the adjacent lipid layers.
Collapse
Affiliation(s)
- Petra Pullmannová
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic.
| | - Elena Ermakova
- Frank Laboratory of Neutron Physics Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - Andrej Kováčik
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic
| | - Lukáš Opálka
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic
| | - Jaroslav Maixner
- University of Chemistry and Technology Prague 166 28 Prague, Czech Republic
| | - Jarmila Zbytovská
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic; University of Chemistry and Technology Prague 166 28 Prague, Czech Republic
| | - Norbert Kučerka
- Frank Laboratory of Neutron Physics Joint Institute for Nuclear Research, Dubna 141980, Russia; Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, 832 32 Bratislava, Slovak Republic
| | - Kateřina Vávrová
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
31
|
Structural and barrier properties of the skin ceramide lipid bilayer: a molecular dynamics simulation study. J Mol Model 2019; 25:140. [PMID: 31041534 DOI: 10.1007/s00894-019-4008-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/29/2019] [Indexed: 10/26/2022]
Abstract
Skin provides excellent protection against the harsh external environment and foreign substances. The lipid matrix of the stratum corneum, which contains various kinds of ceramides, plays a major role in the barrier function of the skin. Here we report a study of the effects of ceramide type on the structural and transport properties of ceramide bilayers using molecular dynamics (MD) simulations. Specifically, the effects of headgroup chemistry (number and positions of hydroxyl groups) and tail structure (unsaturation of the sphingoid moiety) on the structural and transport properties of various ceramide bilayers at 310 K were analyzed. Theoretical results for structural properties such as area per lipid, bilayer thickness, lateral arrangement, order parameter, and hydrogen bonding are reported here and compared with corresponding experimental data. Our study revealed that the presence of a double bond disrupts the bilayer packing, which leads to a low area compressibility modulus, a large area per lipid, and low bilayer thickness. Furthermore, the effect of structural changes on water permeation was studied using steered MD simulations. Water permeation was found to be influenced by headgroup polarity, chain packing, and the ability of the water to hydrogen bond with the ceramides. The molecular-level information obtained from the current study should aid the design of mixed bilayer systems with desired properties and provide the basis for the development of higher order coarse-grained models.
Collapse
|
32
|
Hernández-Corbacho MJ, Obeid LM. A novel role for DGATs in cancer. Adv Biol Regul 2018; 72:89-101. [PMID: 30579761 DOI: 10.1016/j.jbior.2018.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023]
Affiliation(s)
- María José Hernández-Corbacho
- Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, NY, 11794, USA
| | - Lina M Obeid
- Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, NY, 11794, USA; The Northport VA Medical Center, Northport, NY, 11768, USA.
| |
Collapse
|
33
|
Murakami M, Yamamoto K, Taketomi Y. Phospholipase A 2 in skin biology: new insights from gene-manipulated mice and lipidomics. Inflamm Regen 2018; 38:31. [PMID: 30546811 PMCID: PMC6284315 DOI: 10.1186/s41232-018-0089-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/21/2018] [Indexed: 01/24/2023] Open
Abstract
The skin represents one of the tissues that are most profoundly influenced by alterations in the quality of lipids (lipoquality). Lipids not only constitute cellular membranes, but also serve as bioactive lipid mediators and essential components of the skin barrier. Phospholipase A2 (PLA2) enzymes supply fatty acids and lysophospholipids from membrane phospholipids, thereby variably affecting cutaneous homeostasis. Accordingly, perturbation of particular PLA2-driven lipid pathways can be linked to various forms of skin disease. In this review article, we highlight the roles of several PLA2 subtypes in cutaneous pathophysiology, as revealed by transgenic/knockout studies in combination with comprehensive lipidomics. We focus mainly on secreted PLA2 group IIF (sPLA2-IIF), which is associated with epidermal hyperplasia through mobilization of a unique lipid metabolite. We also address the distinct roles of sPLA2-IIE in hair follicles and sPLA2-IID in lymphoid immune cells that secondarily affect cutaneous inflammation, and provide some insights into species differences in sPLA2s. Additionally, we briefly overview the patatin-like phospholipase PNPLA1, which belongs to the Ca2+-independent PLA2 (iPLA2) family, as a key regulator of skin barrier function through catalysis of a unique non-PLA2 reaction. These knowledges on lipid metabolism driven by various PLA2 subtypes will open novel opportunities for translated studies toward diagnosis and therapy of human skin diseases.
Collapse
Affiliation(s)
- Makoto Murakami
- 1Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan.,2AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004 Japan
| | - Kei Yamamoto
- 3PRIME, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004 Japan.,4Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, 770-8513 Japan
| | - Yoshitaka Taketomi
- 1Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| |
Collapse
|
34
|
Harazim E, Vrkoslav V, Buděšínský M, Harazim P, Svoboda M, Plavka R, Bosáková Z, Cvačka J. Nonhydroxylated 1- O-acylceramides in vernix caseosa. J Lipid Res 2018; 59:2164-2173. [PMID: 30254076 PMCID: PMC6210899 DOI: 10.1194/jlr.m088864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/21/2018] [Indexed: 01/22/2023] Open
Abstract
Vernix caseosa, the waxy substance that coats the skin of newborn babies, has an extremely complex lipid composition. We have explored these lipids and identified nonhydroxylated 1-O-acylceramides (1-O-ENSs) as a new class of lipids in vernix caseosa. These ceramides mostly contain saturated C11-C38 ester-linked (1-O) acyls, saturated C12-C39 amide-linked acyls, and C16-C24 sphingoid bases. Because their fatty acyl chains are frequently branched, numerous molecular species were separable and detectable by HPLC/MS: we found more than 2,300 molecular species, 972 of which were structurally characterized. The most abundant 1-O-ENSs contained straight-chain and branched fatty acyls with 20, 22, 24, or 26 carbons in the 1-O position, 24 or 26 carbons in the N position, and sphingosine. The 1-O-ENSs were isolated using multistep TLC and HPLC and they accounted for 1% of the total lipid extract. The molecular species of 1-O-ENSs were separated on a C18 HPLC column using an acetonitrile/propan-2-ol gradient and detected by APCI-MS, and the structures were elucidated by high-resolution and tandem MS. Medium-polarity 1-O-ENSs likely contribute to the cohesiveness and to the waterproofing and moisturizing properties of vernix caseosa.
Collapse
Affiliation(s)
- Eva Harazim
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, CZ-166 10 Praha 6, Czech Republic
- Department of Analytical Chemistry, Faculty of Science, Charles University, CZ-128 43 Praha 2, Czech Republic
| | - Vladimír Vrkoslav
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, CZ-166 10 Praha 6, Czech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, CZ-166 10 Praha 6, Czech Republic
| | - Petr Harazim
- Department of Concrete and Masonry Structures, Faculty of Civil Engineering, Czech Technical University in Prague, CZ-166 29 Praha 6, Czech Republic
| | - Martin Svoboda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, CZ-166 10 Praha 6, Czech Republic
| | - Richard Plavka
- Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University and General University Hospital in Prague, CZ-128 00 Praha 2, Czech Republic
| | - Zuzana Bosáková
- Department of Analytical Chemistry, Faculty of Science, Charles University, CZ-128 43 Praha 2, Czech Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, CZ-166 10 Praha 6, Czech Republic
- Department of Analytical Chemistry, Faculty of Science, Charles University, CZ-128 43 Praha 2, Czech Republic
| |
Collapse
|
35
|
Trinconi CT, Miguel DC, Silber AM, Brown C, Mina JGM, Denny PW, Heise N, Uliana SRB. Tamoxifen inhibits the biosynthesis of inositolphosphorylceramide in Leishmania. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:475-487. [PMID: 30399513 PMCID: PMC6216108 DOI: 10.1016/j.ijpddr.2018.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/21/2018] [Accepted: 10/23/2018] [Indexed: 11/19/2022]
Abstract
Previous work from our group showed that tamoxifen, an oral drug that has been in use for the treatment of breast cancer for over 40 years, is active both in vitro and in vivo against several species of Leishmania, the etiological agent of leishmaniasis. Using a combination of metabolic labeling with [3H]-sphingosine and myo-[3H]-inositol, alkaline hydrolysis, HPTLC fractionations and mass spectrometry analyses, we observed a perturbation in the metabolism of inositolphosphorylceramides (IPCs) and phosphatidylinositols (PIs) after treatment of L. amazonensis promastigotes with tamoxifen, with a significant reduction in the biosynthesis of the major IPCs (composed of d16:1/18:0-IPC, t16:0/C18:0-IPC, d18:1/18:0-IPC and t16:0/20:0-IPC) and PIs (sn-1-O-(C18:0)alkyl -2-O-(C18:1)acylglycerol-3-HPO4-inositol and sn-1-O-(C18:0)acyl-2-O-(C18:1)acylglycerol-3-HPO4-inositol) species. Substrate saturation kinetics of myo-inositol uptake analyses indicated that inhibition of inositol transport or availability were not the main reasons for the reduced biosynthesis of IPC and PI observed in tamoxifen treated parasites. An in vitro enzymatic assay was used to show that tamoxifen was able to inhibit the Leishmania IPC synthase with an IC50 value of 8.48 μM (95% CI 7.68–9.37), suggesting that this enzyme is most likely one of the targets for this compound in the parasites. Tamoxifen alters the sphingolipid metabolism of L. amazonensis. Tamoxifen treated parasites show a significant reduction of IPC and PI species. Tamoxifen-treated parasites present a reduction of inositol transport. Tamoxifen is an inhibitor of L. major's IPC synthase in a micromolar range.
Collapse
Affiliation(s)
- Cristiana T Trinconi
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, SP, 05508-000, Brazil
| | - Danilo C Miguel
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, SP, 05508-000, Brazil
| | - Ariel M Silber
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, SP, 05508-000, Brazil
| | - Christopher Brown
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - John G M Mina
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Paul W Denny
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Norton Heise
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Silvia R B Uliana
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
36
|
State of the art in Stratum Corneum research: The biophysical properties of ceramides. Chem Phys Lipids 2018; 216:91-103. [PMID: 30291856 DOI: 10.1016/j.chemphyslip.2018.09.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/10/2018] [Accepted: 09/29/2018] [Indexed: 11/20/2022]
Abstract
This review is summarizing an important part of the state of the art in stratum corneum research. A complete overview on discoveries about the general biophysical and physicochemical properties of the known ceramide species' is provided. The ceramides are one of the three major components of the lipid matrix and mainly govern its properties and structure. They are shown to exhibit very little redundancy, despite the minor differences in their chemical structure. The results are discussed, compared to each other as well as the current base of knowledge. New interesting aspects and concepts are concluded or suggested. A novel interpretation of the 3-dimensional structure of the lipid matrix and its influence on the barrier function will be discussed. The most important conclusion is the presentation of a new and up to date theoretical model of the nanostructure of the short periodicity phase. The model suggests three perpendicular layers: The rigid head group region, the rigid chain region and, a liquid-like overlapping middle layer. The general principle of the skin barrier function is highlighted in regard to this structure and the ceramides biophysical and physicochemical properties. As a result of these considerations, the entropy vs. enthalpy principle is introduced, shedding light on the function as well as the effectiveness of the skin barrier. Additionally, general ideas to effectively overcome this barrier principle for dermal and transdermal delivery of actives or how to use it for specific targeting of the stratum corneum are proposed.
Collapse
|
37
|
Hirabayashi T, Murakami M, Kihara A. The role of PNPLA1 in ω-O-acylceramide synthesis and skin barrier function. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:869-879. [PMID: 30290227 DOI: 10.1016/j.bbalip.2018.09.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/21/2018] [Accepted: 09/23/2018] [Indexed: 12/14/2022]
Abstract
The human genome encodes nine enzymes belonging to the patatin-like phospholipase domain-containing lipase (PNPLA)/Ca2+-independent phospholipase A2 (iPLA2) family. Although most PNPLA/iPLA2 enzymes are widely distributed and act on phospholipids or neutral lipids as (phospho)lipases to play homeostatic roles in lipid metabolism, the function of PNPLA1 remained a mystery until a few years ago. However, the recent finding that mutations in the human PNPLA1 gene are linked to autosomal recessive congenital ichthyosis (ARCI), as well as evidence obtained from biochemical and gene knockout studies, has shed light on the function of this enzyme in skin-specific sphingolipid metabolism rather than glycerophospholipid metabolism. PNPLA1 is specifically expressed in differentiated keratinocytes and plays a crucial role in the biosynthesis of ω-O-acylceramide, a particular class of sphingolipids that is essential for skin barrier function. PNPLA1 acts as a unique transacylase that specifically transfers linoleic acid from triglyceride to ω-hydroxy fatty acid in ceramide, thus giving rise to ω-O-acylceramide. In this review, we overview the biosynthetic route and biological role of epidermal ω-O-acylceramide, highlight the function of PNPLA1 as a bona fide acylceramide synthase required for proper skin barrier function and keratinocyte differentiation, and summarize the mutations of PNPLA1 currently identified in ARCI patients. This article is part of a Special Issue entitled Novel functions of phospholipase A2 Guest Editors: Makoto Murakami and Gerard Lambeau.
Collapse
Affiliation(s)
- Tetsuya Hirabayashi
- Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
38
|
The long periodicity phase (LPP) controversy part I: The influence of a natural-like ratio of the CER[EOS] analogue [EOS]-br in a CER[NP]/[AP] based stratum corneum modelling system: A neutron diffraction study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1861:306-315. [PMID: 29924985 DOI: 10.1016/j.bbamem.2018.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 05/07/2018] [Accepted: 06/11/2018] [Indexed: 01/01/2023]
Abstract
This study used neutron diffraction to investigate a ceramide-[NP] C24/[AP] C24 /[EOS]-br C30/cholesterol/lignoceric acid (0.6: 0.3: 0.1: 0.7: 1) based stratum corneum modelling system. By adding specifically deuterated ceramides-[NP]-D3, [AP]-D3, and [EOS]-br-D3, detailed information on the lamellar and the nanostructure of the system was obtained. For the short periodicity phase a natural-like lamellar repeat distance of 5.47 ± 0.02 nm was observed, similar to the [NP]/[AP] base system without the [EOS]-br. Unlike in this system the ceramides here were slightly tilted, hinting towards a slightly less natural arrangement. Due to the deuteration it was possible to observe that the long ceramide chains were overlapping in the lamellar mid-plane. This is considered to be an important feature for the natural stratum corneum. Despite the presence of a ceramide [EOS] analogue - able to form a long phase arrangement - no distinct long periodicity phase was formed, despite a slightly higher than natural ω-acyl ceramide ratio of 10 mol%. The deuterated variant of this ceramide determined that the very long ceramide was integrated into the short periodicity phase, spanning multiple layers instead. The - compared to the base system - unchanged repeat distance highlights the stability of this structure. Furthermore, the localisation of the very long ceramide in the short periodicity phase indicates the possibility of a crosslinking effect and thus a multilayer stabilizing role for the ceramide [EOS]. It can be concluded, that additionally to the mere presence of ceramide-[EOS] more complex conditions have to be met in order to form this long phase. This has to be further investigated in the future.
Collapse
|
39
|
Schmitt T, Gupta R, Lange S, Sonnenberger S, Dobner B, Hauß T, Rai B, Neubert RHH. Impact of the ceramide subspecies on the nanostructure of stratum corneum lipids using neutron scattering and molecular dynamics simulations. Part I: impact of CER[NS]. Chem Phys Lipids 2018; 214:58-68. [PMID: 29859142 DOI: 10.1016/j.chemphyslip.2018.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/18/2018] [Accepted: 05/28/2018] [Indexed: 11/19/2022]
Abstract
For this study mixtures based on the ceramides [NS] (NS = non-hydroxy-sphingosine) and [AP] (AP = α-hydroxy-phytosphingosine) in a 2:1 and 1:2 ratio, together with cholesterol and lignoceric acid, were investigated. These mixtures are modelling the uppermost skin layer, the stratum corneum. Neutron diffraction, utilizing specifically deuterated ceramide molecules, was used to obtain a maximum amount of experimental detail. Highly detailed molecular dynamics simulations were used to generate even more information from the experimental data. It was possible to observe a single lamellar phase for both systems. They had a lamellar repeat distance of 5.43 ± 0.05 nm for the [NS]/[AP] 2:1 and a slightly shorter one of 5.34 ± 0.05 nm for the 1:2 system. The structure and water content was uninfluenced by excess humidity. Both the experimental and simulation data indicated slightly tilted ceramides, with their C24 chains overlapping in the lamellar mid-plane. This arrangement is well comparable to systems investigated before. The structure of both systems, except for the differing repeat distance, looks similar at first. However, on a smaller scale there were various distinct differences, demonstrating only low redundancy between the different ceramide species, despite only minor chemical differences. The mainly ceramide [AP] determined 1:2 system has a slightly smaller repeat distance. This is a result of a tighter arrangement of the lipids chain along the bilayer normal and increased overlapping of the long chains in the lamellar middle. For the CER[NS] some novel features could be shown, despite it being the overall most investigated ceramide. These include the low adaptability to changed lateral interactions, leading to an increased chain opening. This effect could explain its low miscibility with other lipids. The investigated model systems allows it to directly compare results from the literature which have used ceramide [NS] to the most recent studies using the phytosphingosine ceramides such as ceramide [AP].
Collapse
Affiliation(s)
- Thomas Schmitt
- Institute of Applied Dermatopharmacy at the Martin Luther University Halle-Wittenberg (IADP), Weinbergweg 23, 06120 Halle/Saale, Germany
| | - Rakesh Gupta
- Physical Science Research Area, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services, 54B, Hadapsar Industrial Estate, Pune, 411013, India
| | - Stefan Lange
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Stefan Sonnenberger
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg (MLU), Wolfgang-Langenbeck-Str. 4, 06120 Halle/Saale, Germany
| | - Bodo Dobner
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg (MLU), Wolfgang-Langenbeck-Str. 4, 06120 Halle/Saale, Germany
| | - Thomas Hauß
- Helmholtz-Zentrum Berlin für Materialien und Energie (HZB), Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Beena Rai
- Physical Science Research Area, TCS Research, Tata Research Development and Design Centre, Tata Consultancy Services, 54B, Hadapsar Industrial Estate, Pune, 411013, India
| | - Reinhard H H Neubert
- Institute of Applied Dermatopharmacy at the Martin Luther University Halle-Wittenberg (IADP), Weinbergweg 23, 06120 Halle/Saale, Germany; Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany.
| |
Collapse
|
40
|
Laffet GP, Genette A, Gamboa B, Auroy V, Voegel JJ. Determination of fatty acid and sphingoid base composition of eleven ceramide subclasses in stratum corneum by UHPLC/scheduled-MRM. Metabolomics 2018; 14:69. [PMID: 30830395 DOI: 10.1007/s11306-018-1366-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/02/2018] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Ceramides play a key role in skin barrier function in homeostatic and pathological conditions and can be sampled non-invasively through stratum corneum collection. OBJECTIVES To develop a novel UHPLC/Scheduled MRM method for the identification and relative distribution of eleven classes of ceramides, which are separated by UHPLC and determined by their specific retention times. The precise composition of the fatty acid and sphingoid base parts of each individual ceramide is determined via mass fragmentation. METHODS More than 1000 human and pig ceramides were identified. Three human and minipig ceramide classes, CER[AS], CER[NS] and CER[EOS] have been investigated in depth. RESULTS Sphingoid bases were characterized by a prevalence of chain lengths with sizes from C16 to C22, whereas fatty acids were mainly observed in the range of C22-C26. Overall, the ceramide profiles between human and minipig stratum corneum were similar. Differences in the CER[AS] and CER[NS] classes included a more homogeneous distribution of fatty acids (16-30 carbon atoms) in minipig, whereas in human longer fatty acid chains (> 24 carbon atoms) predominated. CONCLUSION The method will be useful for the analysis of healthy and pathological skin in various specie, and the measurement of the relative distribution of ceramides as biomarkers for pharmacodynamic studies.
Collapse
Affiliation(s)
- Gilbert P Laffet
- Molecular Dermatology, Department of Research, Galderma R&D - Nestlé Skin Health, 2300 Route des Colles, 06902, Sophia Antipolis, France.
| | - Alexandre Genette
- Molecular Dermatology, Department of Research, Galderma R&D - Nestlé Skin Health, 2300 Route des Colles, 06902, Sophia Antipolis, France
| | - Bastien Gamboa
- Molecular Dermatology, Department of Research, Galderma R&D - Nestlé Skin Health, 2300 Route des Colles, 06902, Sophia Antipolis, France
| | - Virginie Auroy
- Albhades Provence, 940 avenue de Traversetolo, 04700, Oraison, France
| | - Johannes J Voegel
- Molecular Dermatology, Department of Research, Galderma R&D - Nestlé Skin Health, 2300 Route des Colles, 06902, Sophia Antipolis, France.
| |
Collapse
|
41
|
Kendall AC, Koszyczarek MM, Jones EA, Hart PJ, Towers M, Griffiths CEM, Morris M, Nicolaou A. Lipidomics for translational skin research: A primer for the uninitiated. Exp Dermatol 2018; 27:721-728. [DOI: 10.1111/exd.13558] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Alexandra C. Kendall
- Laboratory for Lipidomics and Lipid Biology; Division of Pharmacy and Optometry; School of Health Sciences; Faculty of Biology, Medicine and Health; University of Manchester; Manchester Academic Health Science Centre; Manchester UK
| | - Marta M. Koszyczarek
- Laboratory for Lipidomics and Lipid Biology; Division of Pharmacy and Optometry; School of Health Sciences; Faculty of Biology, Medicine and Health; University of Manchester; Manchester Academic Health Science Centre; Manchester UK
| | | | | | | | - Christopher E. M. Griffiths
- Dermatology Centre; Salford Royal Hospital; University of Manchester; Manchester Academic Health Science Centre; Manchester UK
| | | | - Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology; Division of Pharmacy and Optometry; School of Health Sciences; Faculty of Biology, Medicine and Health; University of Manchester; Manchester Academic Health Science Centre; Manchester UK
| |
Collapse
|
42
|
Gooris GS, Kamran M, Kros A, Moore DJ, Bouwstra JA. Interactions of dipalmitoylphosphatidylcholine with ceramide-based mixtures. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1272-1281. [PMID: 29499188 DOI: 10.1016/j.bbamem.2018.02.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/22/2018] [Accepted: 02/26/2018] [Indexed: 12/21/2022]
Abstract
The outermost layer of the skin, the stratum corneum (SC), acts as the natural physical barrier. The SC consists of corneocytes embedded in a crystalline lipid matrix consisting of ceramides, free fatty acids and cholesterol. Although phospholipids are frequently present in topical formulations, no detailed information is reported on the interactions between phospholipids and SC lipids. The aim of this study was to examine the interactions between a model phospholipid, dipalmitoylphosphatidylcholine (DPPC) and synthetic ceramide-based mixtures (referred to as SC lipids). (Perdeuterated) DPPC was mixed with SC lipids and the lipid organization and mixing properties were examined. The studies revealed that DPPC participates in the same lattice as SC lipids thereby enhancing a hexagonal packing. Even at a high DPPC level, no phase separated pure DPPC was observed. When a DPPC containing formulation is applied to the skin surface it must partition into the SC lipid matrix prior to any mixing with the SC lipids. To mimic this, DPPC was applied on top of a SC lipid membrane. DPPC applied in a liquid crystalline state was able to mix with the SC lipids and participated in the same lattice as the SC lipids. However, when DPPC was applied in a rippled gel-state very limited partitioning of DPPC into the SC lipid matrix occurred. Thus, when applied to the skin, liquid crystalline DPPC will have very different interactions with SC lipids than DPPC in a (rippled-)gel phase.
Collapse
Affiliation(s)
- G S Gooris
- Leiden Academic Centre for Drug Research, Leiden University, Gorlaeus laboratories, 2333 CC Leiden, The Netherlands
| | - M Kamran
- Leiden Academic Centre for Drug Research, Leiden University, Gorlaeus laboratories, 2333 CC Leiden, The Netherlands
| | - A Kros
- Leiden Institute of Chemistry, Leiden University, Gorleaus laboratories, 2333 CC Leiden, The Netherlands
| | - D J Moore
- GSK Consumer Healthcare, 184 Liberty Corner Road, Warren, NJ, United States of America
| | - J A Bouwstra
- Leiden Academic Centre for Drug Research, Leiden University, Gorlaeus laboratories, 2333 CC Leiden, The Netherlands.
| |
Collapse
|
43
|
Schmitt T, Lange S, Dobner B, Sonnenberger S, Hauß T, Neubert RHH. Investigation of a CER[NP]- and [AP]-Based Stratum Corneum Modeling Membrane System: Using Specifically Deuterated CER Together with a Neutron Diffraction Approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1742-1749. [PMID: 28949139 DOI: 10.1021/acs.langmuir.7b01848] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Neutron diffraction was used as a tool to investigate the lamellar as well as molecular nanostructure of ceramide-[NP]/ceramide-[AP]/cholesterol/lignoceric acid model systems with a nativelike 2:1 ratio and a 1:2 ratio to study the influence of the ceramide-[AP]. By using mixtures together with cholesterol and free fatty acids as well as a humidity and temperature chamber while measuring, natural conditions were simulated as closely as possible. Despite its simplicity, the system simulated the native stratum corneum lipid matrix fairly closely, showing a similar lamellar thickness with a repeat distance of 5.45 ± 0.1 nm and a similar arrangement with overlapping long C24 chains. Furthermore, despite the very minor chemical difference between ceramide-[NP] and ceramide-[AP], which is only a single OH group, it was possible to demonstrate substantial differences between the structural influence of the two ceramides. Ceramide-[AP] could be concluded to be arranged in such a way that its C24 chain in both ratios is somehow shorter than that of ceramide-[NP], not overlapping as much with the opposite lamellar leaflet. Furthermore, in the unnatural 1:2 ratio, the higher ceramide-[AP] content causes an increased tilt of the ceramide acyl chains. This leads to even less overlapping within the lamellar midplane, whereas the repeat distance stays the same as for the ceramide-[NP]-rich system. In this nativelike 2:1 ratio, the chains are arranged mostly straight, and the long C24 chains show a broad overlapping region in the lamellar midplane.
Collapse
Affiliation(s)
- Thomas Schmitt
- Institute of Applied Dermatopharmacy, Martin Luther University Halle-Wittenberg (IADP) , Weinbergweg 23, 06120 Halle/Saale, Germany
| | - Stefan Lange
- Institute of Medical Physics and Biophysics, University of Leipzig , Härtelstraße 16-18, 04107 Leipzig, Germany
| | - Bodo Dobner
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg (MLU) , Wolfgang-Langenbeck-Str. 4, 06120 Halle/Saale, Germany
| | - Stefan Sonnenberger
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg (MLU) , Wolfgang-Langenbeck-Str. 4, 06120 Halle/Saale, Germany
| | - Thomas Hauß
- Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) , Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Reinhard H H Neubert
- Institute of Applied Dermatopharmacy, Martin Luther University Halle-Wittenberg (IADP) , Weinbergweg 23, 06120 Halle/Saale, Germany
| |
Collapse
|
44
|
Schmitt T, Lange S, Sonnenberger S, Dobner B, Demé B, Neubert RHH, Gooris G, Bouwstra JA. Determination of the influence of C24 D/(2R)- and L/(2S)-isomers of the CER[AP] on the lamellar structure of stratum corneum model systems using neutron diffraction. Chem Phys Lipids 2017; 209:29-36. [PMID: 29103906 DOI: 10.1016/j.chemphyslip.2017.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/01/2017] [Accepted: 11/01/2017] [Indexed: 10/18/2022]
Abstract
This study was able to investigate the different influence of the d- and l-ceramide [AP] on the lamellar as well as molecular nanostructure of stratum corneum simulating lipid model mixtures. In this case, neutron diffraction together with specifically deuterated ceramide was used as an effective tool to investigate the lamellar and the molecular nanostructure of the mixtures. It could clearly be demonstrated, that both isomers show distinctly different characteristics, even though the variation between both is only a single differently arranged OH-group. The l-ceramide [AP] promotes a crystalline like phase behaviour even if mixed with ceramide [NP], cholesterol and free fatty acids. The d-ceramide [AP] only shows crystalline-like features if mixed only with cholesterol and free fatty acids but adopts a native-like behaviour if additionally mixed with ceramide [NP]. It furthermore demonstrates that the l-ceramide [AP] should not be used for any applications concerning ceramide substitution. It could however possibly serve its own purpose, if this crystalline like behaviour has some kind of positive influence on the SC or can be utilized for any practical applications. The results obtained in this study demonstrate that the diastereomers of ceramide [AP] are an attractive target for further research because their influence on the lamellar as well as the nanostructure is exceptionally strong. Additionally, the results furthermore show a very strong influence on hydration of the model membrane. With these properties, the d-ceramide [AP] could be effectively used to simulate native like behaviour even in very simple mixtures and could also have a strong impact on the native stratum corneum as well as high relevance for dermal ceramide substitution. The unnatural l-ceramide [AP] on the other hand should be investigated further, to assess its applicability.
Collapse
Affiliation(s)
- Thomas Schmitt
- Institute of Applied Dermatopharmacy at the Martin Luther University Halle-Wittenberg (IADP), Weinbergweg 23, 06120 Halle/Saale, Germany
| | - Stefan Lange
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany; Institute of Pharmacy, Martin Luther University Halle-Wittenberg (MLU), Wolfgang-Langenbeck-Str. 4, 06120 Halle/Saale, Germany
| | - Stefan Sonnenberger
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg (MLU), Wolfgang-Langenbeck-Str. 4, 06120 Halle/Saale, Germany
| | - Bodo Dobner
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg (MLU), Wolfgang-Langenbeck-Str. 4, 06120 Halle/Saale, Germany
| | - Bruno Demé
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble CEDEX 9, France
| | - Reinhard H H Neubert
- Institute of Applied Dermatopharmacy at the Martin Luther University Halle-Wittenberg (IADP), Weinbergweg 23, 06120 Halle/Saale, Germany.
| | - Gert Gooris
- Leiden Academic Centre for Drug Research, Department of Drug Delivery Technology, Gorlaeus Laboratories, University of Leiden, Max Planckweg 8 2333 CE Leiden, The Netherlands
| | - Joke A Bouwstra
- Leiden Academic Centre for Drug Research, Department of Drug Delivery Technology, Gorlaeus Laboratories, University of Leiden, Max Planckweg 8 2333 CE Leiden, The Netherlands
| |
Collapse
|
45
|
Pichery M, Huchenq A, Sandhoff R, Severino-Freire M, Zaafouri S, Opálka L, Levade T, Soldan V, Bertrand-Michel J, Lhuillier E, Serre G, Maruani A, Mazereeuw-Hautier J, Jonca N. PNPLA1 defects in patients with autosomal recessive congenital ichthyosis and KO mice sustain PNPLA1 irreplaceable function in epidermal omega-O-acylceramide synthesis and skin permeability barrier. Hum Mol Genet 2017; 26:1787-1800. [PMID: 28369476 DOI: 10.1093/hmg/ddx079] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/27/2017] [Indexed: 12/17/2022] Open
Abstract
Autosomal recessive congenital ichthyosis (ARCI) is a heterogeneous group of monogenic genodermatoses that encompasses non-syndromic disorders of keratinization. The pathophysiology of ARCI has been linked to a disturbance in epidermal lipid metabolism that impaired the stratum corneum function, leading to permeability barrier defects. Functional characterization of some genes involved in ARCI contributed to the identification of molecular actors involved in epidermal lipid synthesis, transport or processing. Recently, PNPLA1 has been identified as a gene causing ARCI. While other members of PNPLA family are key elements in lipid metabolism, the function of PNPLA1 remained unclear. We identified 5 novel PNPLA1 mutations in ARCI patients, mainly localized in the putative active enzymatic domain of PNPLA1. To investigate Pnpla1 biological role, we analysed Pnpla1-deficient mice. KO mice died soon after birth from severe epidermal permeability defects. Pnpla1-deficient skin presented an important impairment in the composition and organization of the epidermal lipids. Quantification of epidermal ceramide species highlighted a blockade in the production of ω-O-acylceramides with a concomitant accumulation of their precursors in the KO. The virtually loss of ω-O-acylceramides in the stratum corneum was linked to a defective lipid coverage of the resistant pericellular shell encapsulating corneocytes, the so-called cornified envelope, and most probably disorganized the extracellular lipid matrix. Finally, these defects in ω-O-acylceramides synthesis and cornified envelope formation were also evidenced in the stratum corneum from PNPLA1-mutated patients. Overall, our data support that PNPLA1/Pnpla1 is a key player in the formation of ω-O-acylceramide, a crucial process for the epidermal permeability barrier function.
Collapse
Affiliation(s)
- Mélanie Pichery
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), UMR 1056 Inserm - Université de Toulouse, Place du Dr Baylac, Hôpital Purpan, TSA 40031, F-31059 Toulouse, Cedex 9, France
| | - Anne Huchenq
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), UMR 1056 Inserm - Université de Toulouse, Place du Dr Baylac, Hôpital Purpan, TSA 40031, F-31059 Toulouse, Cedex 9, France
| | - Roger Sandhoff
- Lipid Pathobiochemistry Group within the Department of Cellular and Molecular Pathology, German CanCer Research Centre (DKFZ), 69120 Heidelberg, Germany.,Centre for Applied Sciences at Technical Universities (ZAFH)-Applied Biomedical Mass Spectrometry (ABIMAS), 68163 Mannheim, Germany
| | - Maella Severino-Freire
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), UMR 1056 Inserm - Université de Toulouse, Place du Dr Baylac, Hôpital Purpan, TSA 40031, F-31059 Toulouse, Cedex 9, France.,Reference Centre for Rare Skin Diseases, Larrey Hospital, Toulouse, France
| | - Sarra Zaafouri
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), UMR 1056 Inserm - Université de Toulouse, Place du Dr Baylac, Hôpital Purpan, TSA 40031, F-31059 Toulouse, Cedex 9, France
| | - Lukáš Opálka
- Department of Inorganic and Organic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Hradec Králové 50005, Czech Republic
| | - Thierry Levade
- Laboratoire de Biochimie Métabolique, IFB, CHU Purpan, 31059 Toulouse, France; INSERM UMR 1037, CRCT, Université Paul Sabatier Toulouse-III, 31062 Toulouse, France
| | - Vanessa Soldan
- Plateforme de Microscopie Électronique Intégrative (METi), CBI (Centre de Biologie Intégrative) CNRS FR3743, Bat IBCG, F-31062, Toulouse, France
| | | | - Emeline Lhuillier
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), UMR 1056 Inserm - Université de Toulouse, Place du Dr Baylac, Hôpital Purpan, TSA 40031, F-31059 Toulouse, Cedex 9, France.,Plateau de Génomique GeT-Purpan, Genotoul, Hôpital Purpan, Place du Dr Baylac - TSA 40031, F-31059 Toulouse, Cedex 9, France
| | - Guy Serre
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), UMR 1056 Inserm - Université de Toulouse, Place du Dr Baylac, Hôpital Purpan, TSA 40031, F-31059 Toulouse, Cedex 9, France
| | - Annabel Maruani
- University François Rabelais Tours, 37000 Tours, CHRU Tours, Department of Dermatology, Unit of Paediatric Dermatology, 37044 Tours, France
| | - Juliette Mazereeuw-Hautier
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), UMR 1056 Inserm - Université de Toulouse, Place du Dr Baylac, Hôpital Purpan, TSA 40031, F-31059 Toulouse, Cedex 9, France.,Reference Centre for Rare Skin Diseases, Larrey Hospital, Toulouse, France
| | - Nathalie Jonca
- Unité Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), UMR 1056 Inserm - Université de Toulouse, Place du Dr Baylac, Hôpital Purpan, TSA 40031, F-31059 Toulouse, Cedex 9, France
| |
Collapse
|
46
|
Moore DJ, Rawlings AV. The chemistry, function and (patho)physiology of stratum corneum barrier ceramides. Int J Cosmet Sci 2017; 39:366-372. [DOI: 10.1111/ics.12399] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 03/19/2017] [Indexed: 11/28/2022]
Affiliation(s)
- D. J. Moore
- GSK Consumer Healthcare; Skin Health R&D; 184 Liberty Corner Road Warren NJ 07059 USA
| | - A. V. Rawlings
- AVR Consulting Ltd; 26 Shavington Way Kingsmead Northwich Cheshire CW9 8FH UK
| |
Collapse
|
47
|
Mieremet A, Rietveld M, Absalah S, van Smeden J, Bouwstra JA, El Ghalbzouri A. Improved epidermal barrier formation in human skin models by chitosan modulated dermal matrices. PLoS One 2017; 12:e0174478. [PMID: 28333992 PMCID: PMC5363943 DOI: 10.1371/journal.pone.0174478] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/09/2017] [Indexed: 01/15/2023] Open
Abstract
Full thickness human skin models (FTMs) contain an epidermal and a dermal equivalent. The latter is composed of a collagen dermal matrix which harbours fibroblasts. Current epidermal barrier properties of FTMs do not fully resemble that of native human skin (NHS), which makes these human skin models less suitable for barrier related studies. To further enhance the resemblance of NHS for epidermal morphogenesis and barrier formation, we modulated the collagen dermal matrix with the biocompatible polymer chitosan. Herein, we report that these collagen-chitosan FTMs (CC-FTMs) possess a well-organized epidermis and maintain both the early and late differentiation programs as in FTMs. Distinctively, the epidermal cell activation is reduced in CC-FTMs to levels observed in NHS. Dermal-epidermal interactions are functional in both FTM types, based on the formation of the basement membrane. Evaluation of the barrier structure by the organization of the extracellular lipid matrix of the stratum corneum revealed an elongated repeat distance of the long periodicity phase. The ceramide composition exhibited a higher resemblance of the NHS, based on the carbon chain-length distribution and subclass profile. The inside-out barrier functionality indicated by the transepidermal water loss is significantly improved in the CC-FTMs. The expression of epidermal barrier lipid processing enzymes is marginally affected, although more restricted to a single granular layer. The novel CC-FTM resembles the NHS more closely, which makes them a promising tool for epidermal barrier related studies.
Collapse
Affiliation(s)
- Arnout Mieremet
- Department of Dermatology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Marion Rietveld
- Department of Dermatology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Samira Absalah
- Division of Drug Delivery Technology, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - Jeroen van Smeden
- Division of Drug Delivery Technology, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - Joke A. Bouwstra
- Division of Drug Delivery Technology, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | | |
Collapse
|
48
|
Lin MH, Miner JH, Turk J, Hsu FF. Linear ion-trap MS n with high-resolution MS reveals structural diversity of 1-O-acylceramide family in mouse epidermis. J Lipid Res 2017; 58:772-782. [PMID: 28154204 DOI: 10.1194/jlr.d071647] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 01/27/2017] [Indexed: 12/30/2022] Open
Abstract
1-O-acylceramide is a new class of epidermal cer-amide (Cer) found in humans and mice. Here, we report an ESI linear ion-trap (LIT) multiple-stage MS (MSn) approach with high resolution toward structural characterization of this lipid family isolated from mice. Molecular species desorbed as the [M + H]+ ions were subjected to LIT MS2 to yield predominately the [M + H - H2O]+ ions, followed by MS3 to cleave the 1-O-acyl residue to yield the [M + H - H2O - (1-O-FA)]+ ions. The structures of the N-acyl chain and long-chain base (LCB) of the molecule were determined by MS4 on [M + H - H2O - (1-O-FA)]+ ions that yielded multiple sets of specific ions. Using this approach, isomers varied in the 1-O-acyl (from 14:0- to 30:0-O-acyl) and N-acyl chains (from 14:0- to 34:1-N-acyl) with 18:1-sphingosine as the major LCB were found for the entire family. Minor isomers consisting of 16:1-, 17:1-, 18:2-, and 19:1-sphingosine LCBs with odd fatty acyl chain or with monounsaturated N- or O-fatty acyl substituents were also identified. An estimation of more than 700 1-O-acylceramide species, largely isobaric isomers, are present, underscoring the complexity of this Cer family.
Collapse
Affiliation(s)
- Meei-Hua Lin
- Division of Nephrology Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Jeffrey H Miner
- Division of Nephrology Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - John Turk
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO.
| |
Collapse
|
49
|
Opálka L, Kováčik A, Maixner J, Vávrová K. Omega-O-Acylceramides in Skin Lipid Membranes: Effects of Concentration, Sphingoid Base, and Model Complexity on Microstructure and Permeability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12894-12904. [PMID: 27934529 DOI: 10.1021/acs.langmuir.6b03082] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Omega-O-acylceramides (acylCer), a subclass of sphingolipids with an ultralong N-acyl chain (from 20 to 38 carbons, most usually 30 and 32 carbons), are crucial components of the skin permeability barrier. AcylCer are involved in the formation of the long periodicity lamellar phase (LPP, 12-13 nm), which is essential for preventing water loss from the body. Lower levels of acylCer and LPP accompany skin diseases, such as atopic dermatitis, lamellar ichthyosis, and psoriasis. We studied how the concentration and structure of acylCer influence the organization and permeability barrier properties of model lipid membranes. For simple model membranes composed of the sphingosine-containing acylCer (EOS), N-lignoceroyl sphingosine, lignoceric acid, cholesterol (Chol), and cholesteryl sulfate (CholS), the LPP formed at 10% Cer EOS (of the total Cer) and the short periodicity phase disappeared at 30% Cer EOS. Surprisingly, membranes with the LPP had higher permeabilities than the control membrane without acylCer. In the complex models consisting of acylCer (EOS, phytosphingosine EOP, dihydrosphingosine EOdS, or their mixture; at 10% of the total Cer), a six-component Cer mixture, a free fatty acid mixture, cholesterol (Chol), and cholesteryl sulfate (CholS), acylCer decreased the membrane permeability to model permeants (with the strongest effects for acylCer EOP and EOdS) when compared with the permeability of the control membrane without acylCer. However, in the complex model, only a mixture of acylCer EOS, EOdS, and EOP and not the individual acylCer formed both the LPP and orthorhombic chain packing at the 10% level. Thus, the relationships between acylCer, LPP formation, and permeability barrier function are not trivial. Lipid heterogeneity is essential-only the most complex model with nine Cer subclasses mimicked both the organization and permeability of stratum corneum lipid membranes.
Collapse
Affiliation(s)
- Lukáš Opálka
- Faculty of Pharmacy, Charles University , Hradec Králové 500 05, Czech Republic
| | - Andrej Kováčik
- Faculty of Pharmacy, Charles University , Hradec Králové 500 05, Czech Republic
| | - Jaroslav Maixner
- University of Chemistry and Technology Prague , Prague 166 28, Czech Republic
| | - Kateřina Vávrová
- Faculty of Pharmacy, Charles University , Hradec Králové 500 05, Czech Republic
| |
Collapse
|
50
|
Eichner A, Sonnenberger S, Dobner B, Hauß T, Schroeter A, Neubert RH. Localization of methyl-branched ceramide [EOS] species within the long-periodicity phase in stratum corneum lipid model membranes: A neutron diffraction study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2911-2922. [DOI: 10.1016/j.bbamem.2016.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/25/2016] [Accepted: 09/03/2016] [Indexed: 01/03/2023]
|