1
|
Dingjan T, Futerman AH. Fine-tuned protein-lipid interactions in biological membranes: exploration and implications of the ORMDL-ceramide negative feedback loop in the endoplasmic reticulum. Front Cell Dev Biol 2024; 12:1457209. [PMID: 39170919 PMCID: PMC11335536 DOI: 10.3389/fcell.2024.1457209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Biological membranes consist of a lipid bilayer in which integral membrane proteins are embedded. Based on the compositional complexity of the lipid species found in membranes, and on their specific and selective interactions with membrane proteins, we recently suggested that membrane bilayers can be best described as "finely-tuned molecular machines." We now discuss one such set of lipid-protein interactions by describing a negative feedback mechanism operating in the de novo sphingolipid biosynthetic pathway, which occurs in the membrane of the endoplasmic reticulum, and describe the atomic interactions between the first enzyme in the pathway, namely serine palmitoyl transferase, and the product of the fourth enzyme in the pathway, ceramide. We explore how hydrogen-bonding and hydrophobic interactions formed between Asn13 and Phe63 in the serine palmitoyl transferase complex and ceramide can influence the ceramide content of the endoplasmic reticulum. This example of finely-tuned biochemical interactions raises intriguing mechanistic questions about how sphingolipids and their biosynthetic enzymes could have evolved, particularly in light of their metabolic co-dependence.
Collapse
Affiliation(s)
- Tamir Dingjan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
2
|
Brown RDR, Mahawar U, Wattenberg BW, Spiegel S. ORMDL mislocalization by impaired autophagy in Niemann-Pick type C disease leads to increased de novo sphingolipid biosynthesis. J Lipid Res 2024; 65:100556. [PMID: 38719150 PMCID: PMC11170278 DOI: 10.1016/j.jlr.2024.100556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 06/04/2024] Open
Abstract
Niemann-Pick type C1 (NPC1) disease is a rare neurodegenerative cholesterol and sphingolipid storage disorder primarily due to mutations in the cholesterol-trafficking protein NPC1. In addition to catabolic-derived sphingolipids, NPC1 dysfunction also leads to an increase in de novo sphingolipid biosynthesis, yet little is known about the cellular mechanism involved. Although deletion of NPC1 or inhibition of the NPC1 sterol binding domain enhanced de novo sphingolipid biosynthesis, surprisingly levels of the ORMDLs, the regulatory subunits of serine palmitoyltransferase (SPT), the rate-limiting step in sphingolipid biosynthesis, were also greatly increased. Nevertheless, less ORMDL was bound in the SPT-ORMDL complex despite elevated ceramide levels. Instead, ORMDL colocalized with p62, the selective autophagy receptor, and accumulated in stalled autophagosomes due to defective autophagy in NPC1 disease cells. Restoration of autophagic flux with N-acetyl-L-leucine in NPC1 deleted cells decreased ORMDL accumulation in autophagosomes and reduced de novo sphingolipid biosynthesis and their accumulation. This study revealed a previously unknown link between de novo sphingolipid biosynthesis, ORMDL, and autophagic defects present in NCP1 disease. In addition, we provide further evidence and mechanistic insight for the beneficial role of N-acetyl-L-leucine treatment for NPC1 disease which is presently awaiting approval from the Food and Drug Administration and the European Medicines Agency.
Collapse
Affiliation(s)
- Ryan D R Brown
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Usha Mahawar
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Binks W Wattenberg
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
3
|
Zhang H, Zhang P, Lin X, Tan L, Wang Y, Jia X, Wang K, Li X, Sun D. Integrative single-cell analysis of LUAD: elucidating immune cell dynamics and prognostic modeling based on exhausted CD8+ T cells. Front Immunol 2024; 15:1366096. [PMID: 38596689 PMCID: PMC11002145 DOI: 10.3389/fimmu.2024.1366096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
Background The tumor microenvironment (TME) plays a pivotal role in the progression and metastasis of lung adenocarcinoma (LUAD). However, the detailed characteristics of LUAD and its associated microenvironment are yet to be extensively explored. This study aims to delineate a comprehensive profile of the immune cells within the LUAD microenvironment, including CD8+ T cells, CD4+ T cells, and myeloid cells. Subsequently, based on marker genes of exhausted CD8+ T cells, we aim to establish a prognostic model for LUAD. Method Utilizing the Seurat and Scanpy packages, we successfully constructed an immune microenvironment atlas for LUAD. The Monocle3 and PAGA algorithms were employed for pseudotime analysis, pySCENIC for transcription factor analysis, and CellChat for analyzing intercellular communication. Following this, a prognostic model for LUAD was developed, based on the marker genes of exhausted CD8+ T cells, enabling effective risk stratification in LUAD patients. Our study included a thorough analysis to identify differences in TME, mutation landscape, and enrichment across varying risk groups. Moreover, by integrating risk scores with clinical features, we developed a new nomogram. The expression of model genes was validated via RT-PCR, and a series of cellular experiments were conducted, elucidating the potential oncogenic mechanisms of GALNT2. Results Our study developed a single-cell atlas for LUAD from scRNA-seq data of 19 patients, examining crucial immune cells in LUAD's microenvironment. We underscored pDCs' role in antigen processing and established a Cox regression model based on CD8_Tex-LAYN genes for risk assessment. Additionally, we contrasted prognosis and tumor environments across risk groups, constructed a new nomogram integrating clinical features, validated the expression of model genes via RT-PCR, and confirmed GALNT2's function in LUAD through cellular experiments, thereby enhancing our understanding and approach to LUAD treatment. Conclusion The creation of a LUAD single-cell atlas in our study offered new insights into its tumor microenvironment and immune cell interactions, highlighting the importance of key genes associated with exhausted CD8+ T cells. These discoveries have enabled the development of an effective prognostic model for LUAD and identified GALNT2 as a potential therapeutic target, significantly contributing to the improvement of LUAD diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Han Zhang
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
| | - Pengpeng Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | | | - Lin Tan
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao Municipal Hospital, Qingdao, China
| | - Yuhang Wang
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
| | - Xiaoteng Jia
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
| | - Kai Wang
- Tianjin Chest Hospital, Tianjin University, Tianjin, China
| | - Xin Li
- Tianjin Chest Hospital, Tianjin University, Tianjin, China
| | - Daqiang Sun
- Tianjin Chest Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
4
|
Stefanović M, Stojković L, Životić I, Dinčić E, Stanković A, Živković M. Expression levels of GSDMB and ORMDL3 are associated with relapsing-remitting multiple sclerosis and IKZF3 rs12946510 variant. Heliyon 2024; 10:e25033. [PMID: 38314276 PMCID: PMC10837620 DOI: 10.1016/j.heliyon.2024.e25033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/06/2024] Open
Abstract
Multiple sclerosis (MS), a noncurable autoimmune neurodegenerative disease, requires constant research that could improve understanding of both environmental and genetic factors that lead to its occurrence and/or progression. Recognition of the genetic basis of MS further leads to an investigation of the regulatory role of genetic variants on gene expression. Among risk variants for MS, Ikaros zinc finger 3 (IKZF3) gene variant rs12946510 was identified as one of the top-ranked and the expression quantitative trait loci (eQTL) for genes residing in chromosomal locus 17q12-21. The study aimed to investigate the association of gene expression of the immunologically relevant genes, which map to indicated locus, ORMDL3, GSDMB, and IKZF3, with MS and rs12946510 genotype, taking into account disease phase, clinical parameters of disease progression, and severity and immunomodulatory therapy. We used TaqMan® technology for both allelic discrimination and gene expression determination in 67 relapsing MS patients and 50 healthy controls. Decreased ORMDL3 and GSDMB mRNA levels had significant associations with MS and rs12946510 TT rare homozygote among patients. Significant positive correlations between ORMDL3 and GSDMB mRNA expression were observed in both patients and controls. We detected the significant between-effect of sex and rs12946510 on the expression of ORMDL3 in the patient group and interferon β therapy and rs12946510 on GSDMB expression. Our results show the association of ORMDL3 and GSDMB mRNA expression with the clinical manifestation of MS and confirm that IKZF3 rs12946510 exerts the eQTL effect on both genes in multiple sclerosis. Besides providing novel insight related to MS phases and interferon β therapy, the study results confirm previous studies on regulatory genetic variants, autoimmunity, and MS.
Collapse
Affiliation(s)
- Milan Stefanović
- VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Ljiljana Stojković
- VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Ivan Životić
- VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Evica Dinčić
- Military Medical Academy, Clinic for Neurology, Belgrade, Serbia
| | - Aleksandra Stanković
- VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Maja Živković
- VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
5
|
Mughram MHA, Kellogg GE, Wattenberg BW. Three kingdoms and one ceramide to rule them all. A comparison of the structural basis of ceramide-dependent regulation of sphingolipid biosynthesis in animals, plants, and fungi. Adv Biol Regul 2024; 91:101010. [PMID: 38135565 PMCID: PMC10922298 DOI: 10.1016/j.jbior.2023.101010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Sphingolipids are a diverse class of lipids with essential functions as determinants of membrane physical properties and as intra- and intercellular signaling agents. Disruption of the normal biochemical processes that establish the levels of individual sphingolipids is associated with a variety of human diseases including cancer, cardiovascular disease, metabolic disease, skin diseases, and lysosomal storage diseases. A unique aspect of this metabolic network is that there is a single enzymatic step that initiates the biosynthetic pathway for all sphingolipids. This step is catalyzed by the enzyme serine palmitoyltranserase (SPT). Under most circumstances SPT condenses serine and the 16-carbon acyl-CoA, palmitoyl-CoA to produce the precursor of all sphingolipids. SPT, a four-subunit protein complex, is subject to classic feedback regulation: when cellular sphingolipids are elevated, SPT activity is inhibited. Ceramide is the sphingolipid sensed by this system and it regulates SPT by directly binding to the complex. The ceramide binding site in the SPT complex, and how ceramide binding results in SPT inhibition, has now been determined in vertebrates, plants, and yeast using molecular modeling and cryo-electron microscopy. Here we discuss the similarities and differences revealed by these resolved structures and the surprising result that ceramide binds at almost identical positions in the SPT complex of these divergent organisms, but accomplishes SPT regulation in very different ways.
Collapse
Affiliation(s)
- Mohammed H Al Mughram
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University School of Pharmacy, Richmond, VA, USA
| | - Glen E Kellogg
- Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University School of Pharmacy, Richmond, VA, USA
| | - Binks W Wattenberg
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
6
|
Almacioglu M, Keskin O, Ozkars MY, Balci SO, Kucukosmanoglu E, Pehlivan S, Keskin M. Association of childhood asthma with Gasdermin B (GSDMB) and Oromucoid-like 3 (ORMDL3) genes. North Clin Istanb 2023; 10:769-777. [PMID: 38328715 PMCID: PMC10846573 DOI: 10.14744/nci.2023.22120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Accepted: 01/29/2023] [Indexed: 02/17/2023] Open
Abstract
OBJECTIVE Genome-length association studies have shown that Gasdermin B (GSDMB) and Orosomucoid-like 3 (ORMDL3) genes located on the long arm of chromosome 17 are associated with asthma. In this study, it was aimed to determine the possible relationship between asthma control test (ACT), exercise provocation test (ECT), and fractional nitric oxide (FENO) levels and GSDMB and ORMDL3 gene expressions. METHODS 59 asthmatic and 38 non-asthmatic children were included in the study. We divided the patient group into two subgroups as mild persistent asthma (29 patients) and moderate persistent asthma (30 patients). ORMDL3, GSDMB gene expression levels, ECT, total IgE levels, and eosinophil counts were measured in all cases. In addition, ACT and FeNO levels were measured in children with asthma. Afterward, the relationship of ORMDL3 and GSDMB gene expression coefficient changes with ECT, ACT, and FeNO was examined. RESULTS When patients with ACT ≤15 were compared with patients with ACT ≥20, ORMDL3 and GSDMB gene expressions were increased 6.74 and 11.74 times, respectively. Comparing patients with ACT ≥20 and ACT ≤15 in terms of coefficient changes (ΔCq), higher change values were observed for ΔCq ORMDL3 in patients with ACT ≤15 (p=0.015). Similarly, when patients with FENO ≤25 ppb were compared with patients with FENO >25 ppb, ORMDL3 and GSDMB gene expressions were increased by 2.93 and 3.56 times, respectively. When the coefficient changes were compared, no significant difference was found between FENO≤25 and FENO >25 patients. There was a slight negative correlation between ΔCq values and ACT score (p=0.003, r=-0.418 for ORMDL3, and p=0.016, r=-0.345 for GSDMB). In addition, we observed a statistically significant positive correlation between ORMDL3 and GSDMB gene expressions (r=0.80, p<0.001). CONCLUSION We showed that increased ORMDL3 and GSDMB gene expression levels may be associated with ACT scores, FeNO and ECT in asthma. These findings may encourage future studies with larger numbers of subjects that can use gene expression levels in various asthma phenotypes for prognostic prediction.
Collapse
Affiliation(s)
- Mehmet Almacioglu
- Department of Pediatrics, SANKO University Faculty of Medicine, Gaziantep, Turkiye
| | - Ozlem Keskin
- Department of Pediatric Allergy and Immunology, Gaziantep University Faculty of Medicine, Gaziantep, Turkiye
| | - Mehmet Yasar Ozkars
- Department of Pediatric Allergy and Immunology, Gaziantep University Faculty of Medicine, Gaziantep, Turkiye
| | - Sibel Oguzkan Balci
- Department of Biology, Gaziantep University Faculty of Medicine, Gaziantep, Turkiye
| | - Ercan Kucukosmanoglu
- Department of Pediatric Allergy and Immunology, Gaziantep University Faculty of Medicine, Gaziantep, Turkiye
| | - Sacide Pehlivan
- Department of Biology, Istanbul University Faculty of Medicine, Istanbul, Turkiye
| | - Mehmet Keskin
- Department of Pediatrics, Gaziantep University Faculty of Medicine, Gaziantep, Turkiye
| |
Collapse
|
7
|
Antonisamy B, Shailesh H, Hani Y, Ahmed LHM, Noor S, Ahmed SY, Alfaki M, Muhayimana A, Jacob SS, Balayya SK, Soloviov O, Liu L, Mathew LS, Wang K, Tomei S, Al Massih A, Mathew R, Karim MY, Ramanjaneya M, Worgall S, Janahi IA. Sphingolipids in Childhood Asthma and Obesity (SOAP Study): A Protocol of a Cross-Sectional Study. Metabolites 2023; 13:1146. [PMID: 37999242 PMCID: PMC10673587 DOI: 10.3390/metabo13111146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
Asthma and obesity are two of the most common chronic conditions in children and adolescents. There is increasing evidence that sphingolipid metabolism is altered in childhood asthma and is linked to airway hyperreactivity. Dysregulated sphingolipid metabolism is also reported in obesity. However, the functional link between sphingolipid metabolism, asthma, and obesity is not completely understood. This paper describes the protocol of an ongoing study on sphingolipids that aims to examine the pathophysiology of sphingolipids in childhood asthma and obesity. In addition, this study aims to explore the novel biomarkers through a comprehensive multi-omics approach including genomics, genome-wide DNA methylation, RNA-Seq, microRNA (miRNA) profiling, lipidomics, metabolomics, and cytokine profiling. This is a cross-sectional study aiming to recruit 440 children from different groups: children with asthma and normal weight (n = 100), asthma with overweight or obesity (n = 100), overweight or obesity (n = 100), normal weight (n = 70), and siblings of asthmatic children with normal weight, overweight, or obesity (n = 70). These participants will be recruited from the pediatric pulmonology, pediatric endocrinology, and general pediatric outpatient clinics at Sidra Medicine, Doha, Qatar. Information will be obtained from self-reported questionnaires on asthma, quality of life, food frequency (FFQ), and a 3-day food diary that are completed by the children and their parents. Clinical measurements will include anthropometry, blood pressure, biochemistry, bioelectrical impedance, and pulmonary function tests. Blood samples will be obtained for sphingolipid analysis, serine palmitoyltransferase (SPT) assay, whole-genome sequencing (WGS), genome-wide DNA methylation study, RNA-Seq, miRNA profiling, metabolomics, lipidomics, and cytokine analysis. Group comparisons of continuous outcome variables will be carried out by a one-way analysis of variance or the Kruskal-Wallis test using an appropriate pairwise multiple comparison test. The chi-squared test or a Fisher's exact test will be used to test the associations between categorical variables. Finally, multivariate analysis will be carried out to integrate the clinical data with multi-omics data. This study will help us to understand the role of dysregulated sphingolipid metabolism in obesity and asthma. In addition, the multi-omics data from the study will help to identify novel genetic and epigenetic signatures, inflammatory markers, and mechanistic pathways that link asthma and obesity in children. Furthermore, the integration of clinical and multi-omics data will help us to uncover the potential interactions between these diseases and to offer a new paradigm for the treatment of pediatric obesity-associated asthma.
Collapse
Affiliation(s)
- Belavendra Antonisamy
- Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar; (B.A.); (H.S.); (Y.H.); (L.H.M.A.); (S.N.); (S.Y.A.); (M.A.); (A.M.)
| | - Harshita Shailesh
- Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar; (B.A.); (H.S.); (Y.H.); (L.H.M.A.); (S.N.); (S.Y.A.); (M.A.); (A.M.)
| | - Yahya Hani
- Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar; (B.A.); (H.S.); (Y.H.); (L.H.M.A.); (S.N.); (S.Y.A.); (M.A.); (A.M.)
| | - Lina Hayati M. Ahmed
- Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar; (B.A.); (H.S.); (Y.H.); (L.H.M.A.); (S.N.); (S.Y.A.); (M.A.); (A.M.)
| | - Safa Noor
- Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar; (B.A.); (H.S.); (Y.H.); (L.H.M.A.); (S.N.); (S.Y.A.); (M.A.); (A.M.)
| | - Salma Yahya Ahmed
- Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar; (B.A.); (H.S.); (Y.H.); (L.H.M.A.); (S.N.); (S.Y.A.); (M.A.); (A.M.)
| | - Mohamed Alfaki
- Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar; (B.A.); (H.S.); (Y.H.); (L.H.M.A.); (S.N.); (S.Y.A.); (M.A.); (A.M.)
| | - Abidan Muhayimana
- Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar; (B.A.); (H.S.); (Y.H.); (L.H.M.A.); (S.N.); (S.Y.A.); (M.A.); (A.M.)
| | - Shana Sunny Jacob
- Analytical Chemistry Core, Advanced Diagnostic Core Facilities, Sidra Medicine, Doha P.O. Box 26999, Qatar; (S.S.J.); (S.K.B.)
| | - Saroja Kotegar Balayya
- Analytical Chemistry Core, Advanced Diagnostic Core Facilities, Sidra Medicine, Doha P.O. Box 26999, Qatar; (S.S.J.); (S.K.B.)
| | - Oleksandr Soloviov
- Clinical Genomics Laboratory, Integrated Genomics Services, Sidra Medicine, Doha P.O. Box 26999, Qatar; (O.S.); (L.L.); (L.S.M.); (K.W.)
| | - Li Liu
- Clinical Genomics Laboratory, Integrated Genomics Services, Sidra Medicine, Doha P.O. Box 26999, Qatar; (O.S.); (L.L.); (L.S.M.); (K.W.)
| | - Lisa Sara Mathew
- Clinical Genomics Laboratory, Integrated Genomics Services, Sidra Medicine, Doha P.O. Box 26999, Qatar; (O.S.); (L.L.); (L.S.M.); (K.W.)
| | - Kun Wang
- Clinical Genomics Laboratory, Integrated Genomics Services, Sidra Medicine, Doha P.O. Box 26999, Qatar; (O.S.); (L.L.); (L.S.M.); (K.W.)
| | - Sara Tomei
- Omics Core, Integrated Genomics Services, Sidra Medicine, Doha P.O. Box 26999, Qatar; (S.T.); (A.A.M.); (R.M.)
| | - Alia Al Massih
- Omics Core, Integrated Genomics Services, Sidra Medicine, Doha P.O. Box 26999, Qatar; (S.T.); (A.A.M.); (R.M.)
| | - Rebecca Mathew
- Omics Core, Integrated Genomics Services, Sidra Medicine, Doha P.O. Box 26999, Qatar; (S.T.); (A.A.M.); (R.M.)
| | - Mohammed Yousuf Karim
- Department of Pathology, Sidra Medicine, Doha P.O. Box 26999, Qatar;
- College of Medicine, Qatar University, Doha P.O. Box 2713, Qatar
| | - Manjunath Ramanjaneya
- Qatar Metabolic Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar;
- Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
| | - Stefan Worgall
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10021, USA;
| | - Ibrahim A. Janahi
- Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar; (B.A.); (H.S.); (Y.H.); (L.H.M.A.); (S.N.); (S.Y.A.); (M.A.); (A.M.)
- Department of Pediatrics, Weill Cornell Medicine-Qatar, Doha P.O. Box 24144, Qatar
| |
Collapse
|
8
|
Xie T, Liu P, Wu X, Dong F, Zhang Z, Yue J, Mahawar U, Farooq F, Vohra H, Fang Q, Liu W, Wattenberg BW, Gong X. Ceramide sensing by human SPT-ORMDL complex for establishing sphingolipid homeostasis. Nat Commun 2023; 14:3475. [PMID: 37308477 DOI: 10.1038/s41467-023-39274-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/02/2023] [Indexed: 06/14/2023] Open
Abstract
The ORM/ORMDL family proteins function as regulatory subunits of the serine palmitoyltransferase (SPT) complex, which is the initiating and rate-limiting enzyme in sphingolipid biosynthesis. This complex is tightly regulated by cellular sphingolipid levels, but the sphingolipid sensing mechanism is unknown. Here we show that purified human SPT-ORMDL complexes are inhibited by the central sphingolipid metabolite ceramide. We have solved the cryo-EM structure of the SPT-ORMDL3 complex in a ceramide-bound state. Structure-guided mutational analyses reveal the essential function of this ceramide binding site for the suppression of SPT activity. Structural studies indicate that ceramide can induce and lock the N-terminus of ORMDL3 into an inhibitory conformation. Furthermore, we demonstrate that childhood amyotrophic lateral sclerosis (ALS) variants in the SPTLC1 subunit cause impaired ceramide sensing in the SPT-ORMDL3 mutants. Our work elucidates the molecular basis of ceramide sensing by the SPT-ORMDL complex for establishing sphingolipid homeostasis and indicates an important role of impaired ceramide sensing in disease development.
Collapse
Affiliation(s)
- Tian Xie
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Peng Liu
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Xinyue Wu
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Feitong Dong
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Zike Zhang
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jian Yue
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Usha Mahawar
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Faheem Farooq
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Hisham Vohra
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Qi Fang
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Wenchen Liu
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Binks W Wattenberg
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
| | - Xin Gong
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
9
|
Srivastava S, Shaked HM, Gable K, Gupta SD, Pan X, Somashekarappa N, Han G, Mohassel P, Gotkine M, Doney E, Goldenberg P, Tan QKG, Gong Y, Kleinstiver B, Wishart B, Cope H, Pires CB, Stutzman H, Spillmann RC, Sadjadi R, Elpeleg O, Lee CH, Bellen HJ, Edvardson S, Eichler F, Dunn TM, Dai H, Dhar SU, Emrick LT, Goldman AM, Hanchard NA, Jamal F, Karaviti L, Lalani SR, Lee BH, Lewis RA, Marom R, Moretti PM, Murdock DR, Nicholas SK, Orengo JP, Posey JE, Potocki L, Rosenfeld JA, Samson SL, Scott DA, Tran AA, Vogel TP, Wangler MF, Yamamoto S, Eng CM, Liu P, Ward PA, Behrens E, Deardorff M, Falk M, Hassey K, Sullivan K, Vanderver A, Goldstein DB, Cope H, McConkie-Rosell A, Schoch K, Shashi V, Smith EC, Spillmann RC, Sullivan JA, Tan QKG, Walley NM, Agrawal PB, Beggs AH, Berry GT, Briere LC, Cobban LA, Coggins M, Cooper CM, Fieg EL, High F, Holm IA, Korrick S, Krier JB, Lincoln SA, Loscalzo J, Maas RL, MacRae CA, Pallais JC, Rao DA, Rodan LH, Silverman EK, Stoler JM, Sweetser DA, Walker M, Walsh CA, Esteves C, Kelley EG, Kohane IS, LeBlanc K, McCray AT, Nagy A, Dasari S, Lanpher BC, Lanza IR, Morava E, Oglesbee D, Bademci G, Barbouth D, Bivona S, Carrasquillo O, Chang TCP, Forghani I, Grajewski A, Isasi R, Lam B, Levitt R, Liu XZ, McCauley J, Sacco R, Saporta M, Schaechter J, Tekin M, Telischi F, Thorson W, Zuchner S, Colley HA, Dayal JG, Eckstein DJ, Findley LC, Krasnewich DM, Mamounas LA, Manolio TA, Mulvihill JJ, LaMoure GL, Goldrich MP, Urv TK, Doss AL, Acosta MT, Bonnenmann C, D’Souza P, Draper DD, Ferreira C, Godfrey RA, Groden CA, Macnamara EF, Maduro VV, Markello TC, Nath A, Novacic D, Pusey BN, Toro C, Wahl CE, Baker E, Burke EA, Adams DR, Gahl WA, Malicdan MCV, Tifft CJ, Wolfe LA, Yang J, Power B, Gochuico B, Huryn L, Latham L, Davis J, Mosbrook-Davis D, Rossignol F, Solomon B, MacDowall J, Thurm A, Zein W, Yousef M, Adam M, Amendola L, Bamshad M, Beck A, Bennett J, Berg-Rood B, Blue E, Boyd B, Byers P, Chanprasert S, Cunningham M, Dipple K, Doherty D, Earl D, Glass I, Golden-Grant K, Hahn S, Hing A, Hisama FM, Horike-Pyne M, Jarvik GP, Jarvik J, Jayadev S, Lam C, Maravilla K, Mefford H, Merritt JL, Mirzaa G, Nickerson D, Raskind W, Rosenwasser N, Scott CR, Sun A, Sybert V, Wallace S, Wener M, Wenger T, Ashley EA, Bejerano G, Bernstein JA, Bonner D, Coakley TR, Fernandez L, Fisher PG, Fresard L, Hom J, Huang Y, Kohler JN, Kravets E, Majcherska MM, Martin BA, Marwaha S, McCormack CE, Raja AN, Reuter CM, Ruzhnikov M, Sampson JB, Smith KS, Sutton S, Tabor HK, Tucker BM, Wheeler MT, Zastrow DB, Zhao C, Byrd WE, Crouse AB, Might M, Nakano-Okuno M, Whitlock J, Brown G, Butte MJ, Dell’Angelica EC, Dorrani N, Douine ED, Fogel BL, Gutierrez I, Huang A, Krakow D, Lee H, Loo SK, Mak BC, Martin MG, Martínez-Agosto JA, McGee E, Nelson SF, Nieves-Rodriguez S, Palmer CGS, Papp JC, Parker NH, Renteria G, Signer RH, Sinsheimer JS, Wan J, Wang LK, Perry KW, Woods JD, Alvey J, Andrews A, Bale J, Bohnsack J, Botto L, Carey J, Pace L, Longo N, Marth G, Moretti P, Quinlan A, Velinder M, Viskochi D, Bayrak-Toydemir P, Mao R, Westerfield M, Bican A, Brokamp E, Duncan L, Hamid R, Kennedy J, Kozuira M, Newman JH, PhillipsIII JA, Rives L, Robertson AK, Solem E, Cogan JD, Cole FS, Hayes N, Kiley D, Sisco K, Wambach J, Wegner D, Baldridge D, Pak S, Schedl T, Shin J, Solnica-Krezel L, Sadjadi R, Elpeleg O, Lee CH, Bellen HJ, Edvardson S, Eichler F, Dunn TM. SPTSSA variants alter sphingolipid synthesis and cause a complex hereditary spastic paraplegia. Brain 2023; 146:1420-1435. [PMID: 36718090 PMCID: PMC10319774 DOI: 10.1093/brain/awac460] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/03/2022] [Accepted: 11/19/2022] [Indexed: 02/01/2023] Open
Abstract
Sphingolipids are a diverse family of lipids with critical structural and signalling functions in the mammalian nervous system, where they are abundant in myelin membranes. Serine palmitoyltransferase, the enzyme that catalyses the rate-limiting reaction of sphingolipid synthesis, is composed of multiple subunits including an activating subunit, SPTSSA. Sphingolipids are both essential and cytotoxic and their synthesis must therefore be tightly regulated. Key to the homeostatic regulation are the ORMDL proteins that are bound to serine palmitoyltransferase and mediate feedback inhibition of enzymatic activity when sphingolipid levels become excessive. Exome sequencing identified potential disease-causing variants in SPTSSA in three children presenting with a complex form of hereditary spastic paraplegia. The effect of these variants on the catalytic activity and homeostatic regulation of serine palmitoyltransferase was investigated in human embryonic kidney cells, patient fibroblasts and Drosophila. Our results showed that two different pathogenic variants in SPTSSA caused a hereditary spastic paraplegia resulting in progressive motor disturbance with variable sensorineural hearing loss and language/cognitive dysfunction in three individuals. The variants in SPTSSA impaired the negative regulation of serine palmitoyltransferase by ORMDLs leading to excessive sphingolipid synthesis based on biochemical studies and in vivo studies in Drosophila. These findings support the pathogenicity of the SPTSSA variants and point to excessive sphingolipid synthesis due to impaired homeostatic regulation of serine palmitoyltransferase as responsible for defects in early brain development and function.
Collapse
Affiliation(s)
- Siddharth Srivastava
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, BostonChildren's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hagar Mor Shaked
- Department of Genetics, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Kenneth Gable
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Sita D Gupta
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Niranjanakumari Somashekarappa
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Gongshe Han
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Payam Mohassel
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
| | - Marc Gotkine
- Department of Genetics, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | | | - Paula Goldenberg
- Department of Pediatrics, Section on Medical Genetics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Queenie K G Tan
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yi Gong
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Benjamin Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Brian Wishart
- Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Heidi Cope
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Claudia Brito Pires
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hannah Stutzman
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rebecca C Spillmann
- Department of Pediatrics, Division of Medical Genetics, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Reza Sadjadi
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Orly Elpeleg
- Department of Genetics, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Chia-Hsueh Lee
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Simon Edvardson
- Pediatric Neurology Unit, Hadassah University Hospital, Mount Scopus, Jerusalem 91240, Israel
| | - Florian Eichler
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Teresa M Dunn
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Reza Sadjadi
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School , Boston, MA 02114 , USA
| | - Orly Elpeleg
- Department of Genetics, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem , Jerusalem 91120 , Israel
| | - Chia-Hsueh Lee
- Department of Structural Biology, St. Jude Children’s Research Hospital , Memphis, TN 38105 , USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine , Houston, TX 77030 , USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital , Houston, TX 77030 , USA
| | - Simon Edvardson
- Pediatric Neurology Unit, Hadassah University Hospital, Mount Scopus , Jerusalem 91240 , Israel
| | - Florian Eichler
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School , Boston, MA 02114 , USA
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School , Boston, MA 02114 , USA
| | - Teresa M Dunn
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences , Bethesda, MD 20814 , USA
| | | |
Collapse
|
10
|
Liu P, Xie T, Wu X, Han G, Gupta SD, Zhang Z, Yue J, Dong F, Gable K, Niranjanakumari S, Li W, Wang L, Liu W, Yao R, Cahoon EB, Dunn TM, Gong X. Mechanism of sphingolipid homeostasis revealed by structural analysis of Arabidopsis SPT-ORM1 complex. SCIENCE ADVANCES 2023; 9:eadg0728. [PMID: 36989369 PMCID: PMC10058238 DOI: 10.1126/sciadv.adg0728] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
The serine palmitoyltransferase (SPT) complex catalyzes the first and rate-limiting step in sphingolipid biosynthesis in all eukaryotes. ORM/ORMDL proteins are negative regulators of SPT that respond to cellular sphingolipid levels. However, the molecular basis underlying ORM/ORMDL-dependent homeostatic regulation of SPT is not well understood. We determined the cryo-electron microscopy structure of Arabidopsis SPT-ORM1 complex, composed of LCB1, LCB2a, SPTssa, and ORM1, in an inhibited state. A ceramide molecule is sandwiched between ORM1 and LCB2a in the cytosolic membrane leaflet. Ceramide binding is critical for the ORM1-dependent SPT repression, and dihydroceramides and phytoceramides differentially affect this repression. A hybrid β sheet, formed by the amino termini of ORM1 and LCB2a and induced by ceramide binding, stabilizes the amino terminus of ORM1 in an inhibitory conformation. Our findings provide mechanistic insights into sphingolipid homeostatic regulation via the binding of ceramide to the SPT-ORM/ORMDL complex that may have implications for plant-specific processes such as the hypersensitive response for microbial pathogen resistance.
Collapse
Affiliation(s)
- Peng Liu
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Tian Xie
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xinyue Wu
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Gongshe Han
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Sita D. Gupta
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Zike Zhang
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jian Yue
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Feitong Dong
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Kenneth Gable
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Somashekarappa Niranjanakumari
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Wanyuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Lin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Wenchen Liu
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ruifeng Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Edgar B. Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Teresa M. Dunn
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Xin Gong
- Department of Chemical Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
11
|
Lee JH, Son SH, Kim NJ, Im DS. NJK14047 Suppression of the p38 MAPK Ameliorates OVA-Induced Allergic Asthma during Sensitization and Challenge Periods. Biomol Ther (Seoul) 2023; 31:183-192. [PMID: 36171179 PMCID: PMC9970832 DOI: 10.4062/biomolther.2022.078] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/15/2022] [Accepted: 08/01/2022] [Indexed: 11/05/2022] Open
Abstract
p38 MAPK has been implicated in the pathogenesis of asthma as well as pro-allergic Th2 cytokines, orosomucoid-like protein isoform 3 (ORMDL3), regulation of sphingolipid biosynthesis, and regulatory T cell-derived IL-35. To elucidate the role of p38 MAPK in the pathogenesis of asthma, we examined the effect of NJK14047, an inhibitor of p38 MAPK, against ovalbumin (OVA)-induced allergic asthma; we administrated NJK14047 before OVA sensitization or challenge in BALB/c mice. As ORMDL3 regulation of sphingolipid biosynthesis has been implicated in childhood asthma, ORMDL3 expression and sphingolipids contents were also analyzed. NJK14047 inhibited antigen-induced degranulation of RBL-2H3 mast cells. NJK14047 administration both before OVA sensitization and challenge strongly inhibited the increase in eosinophil and lymphocyte counts in the bronchoalveolar lavage fluid. In addition, NJK14047 administration inhibited the increase in the levels of Th2 cytokines. Moreover, NJK14047 reduced the inflammatory score and the number of periodic acid-Schiff-stained cells in the lungs. Further, OVA-induced increase in the levels of C16:0 and C24:1 ceramides was not altered by NJK14047. These results suggest that p38 MAPK plays crucial roles in activation of dendritic and mast cells during sensitization and challenge periods, but not in ORMDL3 and sphingolipid biosynthesis.
Collapse
Affiliation(s)
- Ju-Hyun Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02446, Republic of Korea
| | - Seung-Hwan Son
- Department of Basic Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02446, Republic of Korea
| | - Nam-Jung Kim
- Department of Basic Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02446, Republic of Korea
| | - Dong-Soon Im
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02446, Republic of Korea
- Department of Basic Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02446, Republic of Korea
| |
Collapse
|
12
|
Targeting the Sphingolipid Rheostat in Gliomas. Int J Mol Sci 2022; 23:ijms23169255. [PMID: 36012521 PMCID: PMC9408832 DOI: 10.3390/ijms23169255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/26/2022] Open
Abstract
Gliomas are highly aggressive cancer types that are in urgent need of novel drugs and targeted therapies. Treatment protocols have not improved in over a decade, and glioma patient survival remains among the worst of all cancer types. As a result, cancer metabolism research has served as an innovative approach to identifying novel glioma targets and improving our understanding of brain tumors. Recent research has uncovered a unique metabolic vulnerability in the sphingolipid pathways of gliomas that possess the IDH1 mutation. Sphingolipids are a family of lipid signaling molecules that play a variety of second messenger functions in cellular regulation. The two primary metabolites, sphingosine-1-phosphate (S1P) and ceramide, maintain a rheostat balance and play opposing roles in cell survival and proliferation. Altering the rheostat such that the pro-apoptotic signaling of the ceramides outweighs the pro-survival S1P signaling in glioma cells diminishes the hallmarks of cancer and enhances tumor cell death. Throughout this review, we discuss the sphingolipid pathway and identify the enzymes that can be most effectively targeted to alter the sphingolipid rheostat and enhance apoptosis in gliomas. We discuss each pathway’s steps based on their site of occurrence in the organelles and postulate novel targets that can effectively exploit this vulnerability.
Collapse
|
13
|
Kuo A, Checa A, Niaudet C, Jung B, Fu Z, Wheelock CE, Singh SA, Aikawa M, Smith LE, Proia RL, Hla T. Murine endothelial serine palmitoyltransferase 1 (SPTLC1) is required for vascular development and systemic sphingolipid homeostasis. eLife 2022; 11:78861. [PMID: 36197001 PMCID: PMC9578713 DOI: 10.7554/elife.78861] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 10/04/2022] [Indexed: 02/04/2023] Open
Abstract
Serine palmitoyl transferase (SPT), the rate-limiting enzyme in the de novo synthesis of sphingolipids (SL), is needed for embryonic development, physiological homeostasis, and response to stress. The functions of de novo SL synthesis in vascular endothelial cells (EC), which line the entire circulatory system, are not well understood. Here, we show that the de novo SL synthesis in EC not only regulates vascular development but also maintains circulatory and peripheral organ SL levels. Mice with an endothelial-specific gene knockout of SPTLC1 (Sptlc1 ECKO), an essential subunit of the SPT complex, exhibited reduced EC proliferation and tip/stalk cell differentiation, resulting in delayed retinal vascular development. In addition, Sptlc1 ECKO mice had reduced retinal neovascularization in the oxygen-induced retinopathy model. Mechanistic studies suggest that EC SL produced from the de novo pathway are needed for lipid raft formation and efficient VEGF signaling. Post-natal deletion of the EC Sptlc1 also showed rapid reduction of several SL metabolites in plasma, red blood cells, and peripheral organs (lung and liver) but not in the retina, part of the central nervous system (CNS). In the liver, EC de novo SL synthesis was important for acetaminophen-induced rapid ceramide elevation and hepatotoxicity. These results suggest that EC-derived SL metabolites are in constant flux between the vasculature, circulatory elements, and parenchymal cells of non-CNS organs. Taken together, our data point to the central role of the endothelial SL biosynthesis in maintaining vascular development, neovascular proliferation, non-CNS tissue metabolic homeostasis, and hepatocyte response to stress.
Collapse
Affiliation(s)
- Andrew Kuo
- Vascular Biology Program, Boston Children’s Hospital, Department of Surgery, Harvard Medical SchoolBostonUnited States
| | - Antonio Checa
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska InstituteStockholmSweden
| | - Colin Niaudet
- Vascular Biology Program, Boston Children’s Hospital, Department of Surgery, Harvard Medical SchoolBostonUnited States
| | - Bongnam Jung
- Vascular Biology Program, Boston Children’s Hospital, Department of Surgery, Harvard Medical SchoolBostonUnited States
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical SchoolBostonUnited States
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska InstituteStockholmSweden,Department of Respiratory Medicine and Allergy, Karolinska University HospitalStockholmSweden,Gunma University Initiative for Advanced Research, Gunma UniversityMaebashiJapan
| | - Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
| | - Lois E Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical SchoolBostonUnited States
| | - Richard L Proia
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUnited States
| | - Timothy Hla
- Vascular Biology Program, Boston Children’s Hospital, Department of Surgery, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
14
|
Worgall TS. Sphingolipids and Asthma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:145-155. [DOI: 10.1007/978-981-19-0394-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Wasserman E, Gomi R, Sharma A, Hong S, Bareja R, Gu J, Balaji U, Veerappan A, Kim BI, Wu W, Heras A, Perez-Zoghbi J, Sung B, Gueye-Ndiaye S, Worgall TS, Worgall S. Human Rhinovirus Infection of the Respiratory Tract Affects Sphingolipid Synthesis. Am J Respir Cell Mol Biol 2021; 66:302-311. [PMID: 34851798 DOI: 10.1165/rcmb.2021-0443oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The 17q21 asthma susceptibility locus includes asthma risk alleles associated with decreased sphingolipid synthesis, likely resulting from increased expression of ORMDL3. ORMDL3 inhibits serine-palmitoyl transferase (SPT), the rate limiting enzyme of de novo sphingolipid synthesis. There is evidence that decreased sphingolipid synthesis is critical to asthma pathogenesis. Children with asthma and 17q21 asthma risk alleles display decreased sphingolipid synthesis in blood cells. Reduced SPT activity results in airway hyperreactivity, a hallmark feature of asthma. 17q21 asthma risk alleles are also linked to childhood infections with human rhinovirus (RV). This study evaluates the interaction of RV with the de novo sphingolipid synthesis pathway, and the alterative effects of concurrent SPT inhibition in SPT-deficient mice and human airway epithelial cells. In mice, RV infection shifted lung sphingolipid synthesis gene expression to a pattern that resembles genetic SPT deficiency, including decreased expression of Sptssa, a small SPT subunit. This pattern was pronounced in lung EpCAM+ epithelial cells and reproduced in human bronchial epithelial cells. RV did not affect Sptssa expression in lung CD45+ immune cells. RV increased sphingolipids unique to the de novo synthesis pathway in mouse lung and human airway epithelial cells. Interestingly, these de novo sphingolipid species were reduced in the blood of RV infected, wild-type mice. RV exacerbated SPT-deficiency-associated airway hyperreactivity. Airway inflammation was similar in RV-infected wild-type and SPT deficient mice. This study reveals the effects of RV infection on the de novo sphingolipid synthesis pathway, elucidating a potential mechanistic link between 17q21 asthma risk alleles and rhinoviral infection.
Collapse
Affiliation(s)
- Emily Wasserman
- Weill Cornell Medical College, 12295, Pediatrics, New York, New York, United States
| | - Rika Gomi
- Weill Cornell Medical College, 12295, Pediatrics, New York, New York, United States
| | - Anurag Sharma
- Weill Cornell Medical College, 12295, Pediatrics, New York, New York, United States
| | - Seunghee Hong
- Weill Cornell Medical College, 12295, Pediatrics, New York, New York, United States
| | - Rohan Bareja
- Weill Cornell Medical College, 12295, Precision Medicine, New York, New York, United States
| | - Jinghua Gu
- Weill Cornell Medical College, 12295, Pediatrics, New York, New York, United States
| | - Uthra Balaji
- Weill Cornell Medical College, 12295, Pediatrics, New York, New York, United States
| | - Arul Veerappan
- New York University, 5894, Medicine, New York, New York, United States
| | - Benjamin I Kim
- Columbia University, 5798, Pathology, New York, New York, United States
| | - Wenzhu Wu
- Weill Cornell Medical College, 12295, New York, New York, United States
| | - Andrea Heras
- Weill Cornell Medical College, 12295, Pediatrics , New York, New York, United States
| | - Jose Perez-Zoghbi
- Columbia University, 5798, Department of Anesthesiology , New York, New York, United States
| | - Biin Sung
- Weill Cornell Medical College, 12295, Pediatrics, New York, New York, United States
| | - Seyni Gueye-Ndiaye
- Weill Cornell Medical College, 12295, Pediatrics, New York, New York, United States
| | - Tilla S Worgall
- Columbia University Irving Medical Center, 21611, Dept. of Pathology, New York, New York, United States
| | - Stefan Worgall
- Weill Cornell Medical College, 12295, Pediatrics, New York, New York, United States;
| |
Collapse
|
16
|
Green CD, Weigel C, Oyeniran C, James BN, Davis D, Mahawar U, Newton J, Wattenberg BW, Maceyka M, Spiegel S. CRISPR/Cas9 deletion of ORMDLs reveals complexity in sphingolipid metabolism. J Lipid Res 2021; 62:100082. [PMID: 33939982 PMCID: PMC8167824 DOI: 10.1016/j.jlr.2021.100082] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/16/2021] [Indexed: 12/26/2022] Open
Abstract
The serine palmitoyltransferase (SPT) complex catalyzes the rate-limiting step in the de novo biosynthesis of ceramides, the precursors of sphingolipids. The mammalian ORMDL isoforms (ORMDL1-3) are negative regulators of SPT. However, the roles of individual ORMDL isoforms are unclear. Using siRNA against individual ORMDLs, only single siORMDL3 had modest effects on dihydroceramide and ceramide levels, whereas downregulation of all three ORMDLs induced more pronounced increases. With the CRISPR/Cas9-based genome-editing strategy, we established stable single ORMDL3 KO (ORMDL3-KO) and ORMDL1/2/3 triple-KO (ORMDL-TKO) cell lines to further understand the roles of ORMDL proteins in sphingolipid biosynthesis. While ORMDL3-KO modestly increased dihydroceramide and ceramide levels, ORMDL-TKO cells had dramatic increases in the accumulation of these sphingolipid precursors. SPT activity was increased only in ORMDL-TKO cells. In addition, ORMDL-TKO but not ORMDL3-KO dramatically increased levels of galactosylceramides, glucosylceramides, and lactosylceramides, the elevated N-acyl chain distributions of which broadly correlated with the increases in ceramide species. Surprisingly, although C16:0 is the major sphingomyelin species, it was only increased in ORMDL3-KO, whereas all other N-acyl chain sphingomyelin species were significantly increased in ORMDL-TKO cells. Analysis of sphingoid bases revealed that although sphingosine was only increased 2-fold in ORMDL-TKO cells, levels of dihydrosphingosine, dihydrosphingosine-1-phosphate, and sphingosine-1-phosphate were hugely increased in ORMDL-TKO cells and not in ORMDL3-KO cells. Thus, ORMDL proteins may have a complex, multifaceted role in the biosynthesis and regulation of cellular sphingolipids.
Collapse
Affiliation(s)
- Christopher D Green
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, Richmond, VA, USA
| | - Cynthia Weigel
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, Richmond, VA, USA
| | - Clement Oyeniran
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, Richmond, VA, USA
| | - Briana N James
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, Richmond, VA, USA
| | - Deanna Davis
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, Richmond, VA, USA
| | - Usha Mahawar
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, Richmond, VA, USA
| | - Jason Newton
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, Richmond, VA, USA
| | - Binks W Wattenberg
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, Richmond, VA, USA
| | - Michael Maceyka
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, Richmond, VA, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, Richmond, VA, USA.
| |
Collapse
|
17
|
Rago D, Pedersen CET, Huang M, Kelly RS, Gürdeniz G, Brustad N, Knihtilä H, Lee-Sarwar KA, Morin A, Rasmussen MA, Stokholm J, Bønnelykke K, Litonjua AA, Wheelock CE, Weiss ST, Lasky-Su J, Bisgaard H, Chawes BL. Characteristics and Mechanisms of a Sphingolipid-associated Childhood Asthma Endotype. Am J Respir Crit Care Med 2021; 203:853-863. [PMID: 33535020 DOI: 10.1164/rccm.202008-3206oc] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rationale: A link among sphingolipids, 17q21 genetic variants, and childhood asthma has been suggested, but the underlying mechanisms and characteristics of such an asthma endotype remain to be elucidated.Objectives: To study the sphingolipid-associated childhood asthma endotype using multiomic data.Methods: We used untargeted liquid chromatography-mass spectrometry plasma metabolomic profiles at the ages of 6 months and 6 years from more than 500 children in the COPSAC2010 (Copenhagen Prospective Studies on Asthma in Childhood) birth cohort focusing on sphingolipids, and we integrated the 17q21 genotype and nasal gene expression of SPT (serine palmitoyl-CoA transferase) (i.e., the rate-limiting enzyme in de novo sphingolipid synthesis) in relation to asthma development and lung function traits from infancy until the age 6 years. Replication was sought in the independent VDAART (Vitamin D Antenatal Asthma Reduction Trial) cohort.Measurements and Main Results: Lower concentrations of ceramides and sphingomyelins at the age of 6 months were associated with an increased risk of developing asthma before age 3, which was also observed in VDAART. At the age of 6 years, lower concentrations of key phosphosphingolipids (e.g., sphinganine-1-phosphate) were associated with increased airway resistance. This relationship was dependent on the 17q21 genotype and nasal SPT gene expression, with significant interactions occurring between the genotype and the phosphosphingolipid concentrations and between the genotype and SPT expression, in which lower phosphosphingolipid concentrations and reduced SPT expression were associated with increasing numbers of at-risk alleles. However, the findings did not pass the false discovery rate threshold of <0.05.Conclusions: This exploratory study suggests the existence of a childhood asthma endotype with early onset and increased airway resistance that is characterized by reduced sphingolipid concentrations, which are associated with 17q21 genetic variants and expression of the SPT enzyme.
Collapse
Affiliation(s)
- Daniela Rago
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital-University of Copenhagen, Gentofte, Denmark
| | - Casper-Emil T Pedersen
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital-University of Copenhagen, Gentofte, Denmark
| | - Mengna Huang
- Channing Division of Network Medicine, Brigham and Women's Hospital-Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital-Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Gözde Gürdeniz
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital-University of Copenhagen, Gentofte, Denmark
| | - Nicklas Brustad
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital-University of Copenhagen, Gentofte, Denmark
| | - Hanna Knihtilä
- Channing Division of Network Medicine, Brigham and Women's Hospital-Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Kathleen A Lee-Sarwar
- Channing Division of Network Medicine, Brigham and Women's Hospital-Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Andréanne Morin
- Department of Human Genetics, University of Chicago, Chicago, Illinois
| | - Morten A Rasmussen
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital-University of Copenhagen, Gentofte, Denmark
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital-University of Copenhagen, Gentofte, Denmark
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital-University of Copenhagen, Gentofte, Denmark
| | - Augusto A Litonjua
- Division of Pediatric Pulmonary Medicine, Golisano Children's Hospital, University of Rochester Medical Center, Rochester, New York; and
| | - Craig E Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital-Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital-Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Hans Bisgaard
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital-University of Copenhagen, Gentofte, Denmark
| | - Bo L Chawes
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital-University of Copenhagen, Gentofte, Denmark
| |
Collapse
|
18
|
Ono JG, Worgall S. More Evidence for Inborn Dysregulation of Sphingolipid Metabolism in Children with Asthma? Am J Respir Crit Care Med 2021; 203:792-793. [PMID: 33617753 PMCID: PMC8017576 DOI: 10.1164/rccm.202102-0419ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jennie G Ono
- Department of Pediatrics Weill Cornell Medicine New York, New York
| | - Stefan Worgall
- Department of Pediatrics Department of Genetic Medicine and.,Drukier Institute for Children's Health Weill Cornell Medicine New York, New York
| |
Collapse
|
19
|
Structural insights into the regulation of human serine palmitoyltransferase complexes. Nat Struct Mol Biol 2021; 28:240-248. [PMID: 33558761 PMCID: PMC9812531 DOI: 10.1038/s41594-020-00551-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/16/2020] [Indexed: 01/31/2023]
Abstract
Sphingolipids are essential lipids in eukaryotic membranes. In humans, the first and rate-limiting step of sphingolipid synthesis is catalyzed by the serine palmitoyltransferase holocomplex, which consists of catalytic components (SPTLC1 and SPTLC2) and regulatory components (ssSPTa and ORMDL3). However, the assembly, substrate processing and regulation of the complex are unclear. Here, we present 8 cryo-electron microscopy structures of the human serine palmitoyltransferase holocomplex in various functional states at resolutions of 2.6-3.4 Å. The structures reveal not only how catalytic components recognize the substrate, but also how regulatory components modulate the substrate-binding tunnel to control enzyme activity: ssSPTa engages SPTLC2 and shapes the tunnel to determine substrate specificity. ORMDL3 blocks the tunnel and competes with substrate binding through its amino terminus. These findings provide mechanistic insights into sphingolipid biogenesis governed by the serine palmitoyltransferase complex.
Collapse
|
20
|
Structural insights into the assembly and substrate selectivity of human SPT-ORMDL3 complex. Nat Struct Mol Biol 2021; 28:249-257. [PMID: 33558762 DOI: 10.1038/s41594-020-00553-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/16/2020] [Indexed: 01/31/2023]
Abstract
Human serine palmitoyltransferase (SPT) complex catalyzes the initial and rate-limiting step in the de novo biosynthesis of all sphingolipids. ORMDLs regulate SPT function, with human ORMDL3 being related to asthma. Here we report three high-resolution cryo-EM structures: the human SPT complex, composed of SPTLC1, SPTLC2 and SPTssa; the SPT-ORMDL3 complex; and the SPT-ORMDL3 complex bound to two substrates, PLP-L-serine (PLS) and a non-reactive palmitoyl-CoA analogue. SPTLC1 and SPTLC2 form a dimer of heterodimers as the catalytic core. SPTssa participates in acyl-CoA coordination, thereby stimulating the SPT activity and regulating the substrate selectivity. ORMDL3 is located in the center of the complex, serving to stabilize the SPT assembly. Our structural and biochemical analyses provide a molecular basis for the assembly and substrate selectivity of the SPT and SPT-ORMDL3 complexes, and lay a foundation for mechanistic understanding of sphingolipid homeostasis and for related therapeutic drug development.
Collapse
|
21
|
Alsiyabi A, Solis AG, Cahoon EB, Saha R. Dissecting the regulatory roles of ORM proteins in the sphingolipid pathway of plants. PLoS Comput Biol 2021; 17:e1008284. [PMID: 33507896 PMCID: PMC7872301 DOI: 10.1371/journal.pcbi.1008284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/09/2021] [Accepted: 12/14/2020] [Indexed: 01/05/2023] Open
Abstract
Sphingolipids are a vital component of plant cellular endomembranes and carry out multiple functional and regulatory roles. Different sphingolipid species confer rigidity to the membrane structure, facilitate trafficking of secretory proteins, and initiate programmed cell death. Although the regulation of the sphingolipid pathway is yet to be uncovered, increasing evidence has pointed to orosomucoid proteins (ORMs) playing a major regulatory role and potentially interacting with a number of components in the pathway, including both enzymes and sphingolipids. However, experimental exploration of new regulatory interactions is time consuming and often infeasible. In this work, a computational approach was taken to address this challenge. A metabolic network of the sphingolipid pathway in plants was reconstructed. The steady-state rates of reactions in the network were then determined through measurements of growth and cellular composition of the different sphingolipids in Arabidopsis seedlings. The Ensemble modeling framework was modified to accurately account for activation mechanisms and subsequently used to generate sets of kinetic parameters that converge to the measured steady-state fluxes in a thermodynamically consistent manner. In addition, the framework was appended with an additional module to automate screening the parameters and to output models consistent with previously reported network responses to different perturbations. By analyzing the network's response in the presence of different combinations of regulatory mechanisms, the model captured the experimentally observed repressive effect of ORMs on serine palmitoyltransferase (SPT). Furthermore, predictions point to a second regulatory role of ORM proteins, namely as an activator of class II (or LOH1 and LOH3) ceramide synthases. This activating role was found to be modulated by the concentration of free ceramides, where an accumulation of these sphingolipid species dampened the activating effect of ORMs on ceramide synthase. The predictions pave the way for future guided experiments and have implications in engineering crops with higher biotic stress tolerance.
Collapse
Affiliation(s)
- Adil Alsiyabi
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Ariadna Gonzalez Solis
- Center for Plant Science Innovation & Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Edgar B. Cahoon
- Center for Plant Science Innovation & Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| |
Collapse
|
22
|
Luthers CR, Dunn TM, Snow AL. ORMDL3 and Asthma: Linking Sphingolipid Regulation to Altered T Cell Function. Front Immunol 2020; 11:597945. [PMID: 33424845 PMCID: PMC7793773 DOI: 10.3389/fimmu.2020.597945] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
Orosomucoid like 3 (ORMDL3) encodes an ER-resident transmembrane protein that regulates the activity of serine palmitoyltransferase (SPT), the first and rate-limiting enzyme for sphingolipid biosynthesis in cells. A decade ago, several genome wide association studies revealed single nucleotide polymorphisms associated with increased ORMDL3 protein expression and susceptibility to allergic asthma. Since that time, numerous studies have investigated how altered ORMDL3 expression might predispose to asthma and other autoimmune/inflammatory diseases. In this brief review, we focus on growing evidence suggesting that heightened ORMDL3 expression specifically in CD4+ T lymphocytes, the central orchestrators of adaptive immunity, constitutes a major underlying mechanism of asthma pathogenesis by skewing their differentiation and function. Furthermore, we explore how sphingolipid modulation in T cells might be responsible for these effects, and how further studies may interrogate this intriguing hypothesis.
Collapse
Affiliation(s)
- Christopher R Luthers
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Teresa M Dunn
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
23
|
Dang H, Polineni D, Pace RG, Stonebraker JR, Corvol H, Cutting GR, Drumm ML, Strug LJ, O’Neal WK, Knowles MR. Mining GWAS and eQTL data for CF lung disease modifiers by gene expression imputation. PLoS One 2020; 15:e0239189. [PMID: 33253230 PMCID: PMC7703903 DOI: 10.1371/journal.pone.0239189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/02/2020] [Indexed: 12/18/2022] Open
Abstract
Genome wide association studies (GWAS) have identified several genomic loci with candidate modifiers of cystic fibrosis (CF) lung disease, but only a small proportion of the expected genetic contribution is accounted for at these loci. We leveraged expression data from CF cohorts, and Genotype-Tissue Expression (GTEx) reference data sets from multiple human tissues to generate predictive models, which were used to impute transcriptional regulation from genetic variance in our GWAS population. The imputed gene expression was tested for association with CF lung disease severity. By comparing and combining results from alternative approaches, we identified 379 candidate modifier genes. We delved into 52 modifier candidates that showed consensus between approaches, and 28 of them were near known GWAS loci. A number of these genes are implicated in the pathophysiology of CF lung disease (e.g., immunity, infection, inflammation, HLA pathways, glycosylation, and mucociliary clearance) and the CFTR protein biology (e.g., cytoskeleton, microtubule, mitochondrial function, lipid metabolism, endoplasmic reticulum/Golgi, and ubiquitination). Gene set enrichment results are consistent with current knowledge of CF lung disease pathogenesis. HLA Class II genes on chr6, and CEP72, EXOC3, and TPPP near the GWAS peak on chr5 are most consistently associated with CF lung disease severity across the tissues tested. The results help to prioritize genes in the GWAS regions, predict direction of gene expression regulation, and identify new candidate modifiers throughout the genome for potential therapeutic development.
Collapse
Affiliation(s)
- Hong Dang
- Marsico Lung Institute, University of North Carolina at Chapel Hill School of Medicine Cystic Fibrosis/Pulmonary Research & Treatment Center, Chapel Hill, North Carolina, United States of America
| | - Deepika Polineni
- University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Rhonda G. Pace
- Marsico Lung Institute, University of North Carolina at Chapel Hill School of Medicine Cystic Fibrosis/Pulmonary Research & Treatment Center, Chapel Hill, North Carolina, United States of America
| | - Jaclyn R. Stonebraker
- Marsico Lung Institute, University of North Carolina at Chapel Hill School of Medicine Cystic Fibrosis/Pulmonary Research & Treatment Center, Chapel Hill, North Carolina, United States of America
| | - Harriet Corvol
- Pediatric Pulmonary Department, Assistance Publique-Hôpitaux sde Paris (AP-HP), Hôpital Trousseau, Institut National de la Santé et la Recherche Médicale (INSERM) U938, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), Paris 6, Paris, France
| | - Garry R. Cutting
- McKusick-Nathans Institute of Genetic Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Mitchell L. Drumm
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Lisa J. Strug
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Wanda K. O’Neal
- Marsico Lung Institute, University of North Carolina at Chapel Hill School of Medicine Cystic Fibrosis/Pulmonary Research & Treatment Center, Chapel Hill, North Carolina, United States of America
| | - Michael R. Knowles
- Marsico Lung Institute, University of North Carolina at Chapel Hill School of Medicine Cystic Fibrosis/Pulmonary Research & Treatment Center, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
24
|
Liu Y, Bochkov YA, Eickhoff JC, Hu T, Zumwalde NA, Tan JW, Lopez C, Fichtinger PS, Reddy TR, Overmyer KA, Gumperz JE, Coon J, Mathur SK, Gern JE, Smith JA. Orosomucoid-like 3 Supports Rhinovirus Replication in Human Epithelial Cells. Am J Respir Cell Mol Biol 2020; 62:783-792. [PMID: 32078788 DOI: 10.1165/rcmb.2019-0237oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Polymorphism at the 17q21 gene locus and wheezing responses to rhinovirus (RV) early in childhood conspire to increase the risk of developing asthma. However, the mechanisms mediating this gene-environment interaction remain unclear. In this study, we investigated the impact of one of the 17q21-encoded genes, ORMDL3 (orosomucoid-like 3), on RV replication in human epithelial cells. ORMDL3 knockdown inhibited RV-A16 replication in HeLa, BEAS-2B, A549, and NCI-H358 epithelial cell lines and primary nasal and bronchial epithelial cells. Inhibition varied by RV species, as both minor and major group RV-A subtypes RV-B52 and RV-C2 were inhibited but not RV-C15 or RV-C41. ORMDL3 siRNA did not affect expression of the major group RV-A receptor ICAM-1 or initial internalization of RV-A16. The two major outcomes of ORMDL3 activity, SPT (serine palmitoyl-CoA transferase) inhibition and endoplasmic reticulum (ER) stress induction, were further examined: silencing ORMDL3 decreased RV-induced ER stress and IFN-β mRNA expression. However, pharmacologic induction of ER stress and concomitant increased IFN-β inhibited RV-A16 replication. Conversely, blockade of ER stress with tauroursodeoxycholic acid augmented replication, pointing to an alternative mechanism for the effect of ORMDL3 knockdown on RV replication. In comparison, the SPT inhibitor myriocin increased RV-A16 but not RV-C15 replication and negated the inhibitory effect of ORMDL3 knockdown. Furthermore, lipidomics analysis revealed opposing regulation of specific sphingolipid species (downstream of SPT) by myriocin and ORMDL3 siRNA, correlating with the effect of these treatments on RV replication. Together, these data revealed a requirement for ORMDL3 in supporting RV replication in epithelial cells via SPT inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Paul S Fichtinger
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | | - Katherine A Overmyer
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin; and.,Morgridge Institute for Research, Madison, Wisconsin
| | | | - Joshua Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin; and.,Morgridge Institute for Research, Madison, Wisconsin
| | - Sameer K Mathur
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | | - Judith A Smith
- Department of Pediatrics.,Department of Medical Microbiology and Immunology, and
| |
Collapse
|
25
|
Lee H, Fenske RJ, Akcan T, Domask E, Davis DB, Kimple ME, Engin F. Differential Expression of Ormdl Genes in the Islets of Mice and Humans with Obesity. iScience 2020; 23:101324. [PMID: 32659722 PMCID: PMC7358727 DOI: 10.1016/j.isci.2020.101324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 05/05/2020] [Accepted: 06/25/2020] [Indexed: 12/28/2022] Open
Abstract
The orosomucoid-like (Ormdl) proteins play a critical role in sphingolipid homeostasis, inflammation, and ER stress, all of which are associated with obesity and βcell dysfunction. However, their roles in β cells and obesity remain unknown. Here, we show that islets from overweight/obese human donors displayed marginally reduced ORMDL1-2 expression, whereas ORMDL3 expression was significantly downregulated compared with islets from lean donors. In contrast, Ormdl3 was substantially upregulated in the islets of leptin-deficient obese (ob/ob) mice compared with lean mice. Treatment of ob/ob mice and their islets with leptin markedly reduced islet Ormld3 expression. Ormdl3 knockdown in a β cell line induced expression of pro-apoptotic markers, which was rescued by ceramide synthase inhibitor fumonisin B1. Our results reveal differential expression of Ormdl3 in the islets of a mouse model and humans with obesity, highlight the potential effect of leptin in this differential regulation, and suggest a role for Ormdl3 in β cell apoptosis. Islets of overweight/obese human donors display markedly reduced ORMDL3 expression Ormdl3 expression was significantly upregulated in the islets of ob/ob mice Leptin treatment markedly reduced Ormld3 expression in the islets of ob/ob mice Fumonisin B1 restores increased apoptotic marker levels induced by Ormdl3 silencing
Collapse
Affiliation(s)
- Hugo Lee
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, WI 53706, USA
| | - Rachel J Fenske
- Interdepartmental Graduate Program in Nutritional Sciences, Madison, WI 53706, USA; Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, School of Medicine and Public Health, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Tugce Akcan
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, WI 53706, USA
| | - Elliot Domask
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, WI 53706, USA
| | - Dawn B Davis
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, School of Medicine and Public Health, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Michelle E Kimple
- Interdepartmental Graduate Program in Nutritional Sciences, Madison, WI 53706, USA; Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, School of Medicine and Public Health, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, Madison, WI 53705, USA; Department of Academic Affairs, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Feyza Engin
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, WI 53706, USA; Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, School of Medicine and Public Health, WI 53705, USA.
| |
Collapse
|
26
|
Kannan M, Davis DL, Suemitsu J, Oltorik CD, Wattenberg B. Preparation of HeLa Total Membranes and Assay of Lipid-inhibition of Serine Palmitoyltransferase Activity. Bio Protoc 2020; 10:e3656. [PMID: 33659326 DOI: 10.21769/bioprotoc.3656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 11/02/2022] Open
Abstract
Serine palmitoyltranferase (SPT) is a pyridoxal 5' phosphate (PLP)-dependent enzyme that catalyzes the first and rate-limiting step of de novo synthesis of sphingolipids. SPT activity is homeostatically regulated in response to increased levels of sphingolipids. This homeostatic regulation of SPT is mediated through small ER membrane proteins termed the ORMDLs. Here we describe a procedure to assay ORMDL dependent lipid inhibition of SPT activity. The assay of SPT activity using radiolabeled L-serine was developed from the procedure established by the Hornemann laboratory. The activity of SPT can also be measured using deuterated L-serine but it requires mass spectrometry, which consumes money, time and instrumentation. The ORMDL dependent lipid inhibition of SPT activity can be studied in both cells and in a cell free system. This assay procedure is applicable to any type of mammalian cell. Here we provide the detailed protocol to measure SPT activity in the presence of either short chain (C8-ceramide) or long chain ceramide (C24-ceramide). One of the greatest advantages of this protocol is the ability to test insoluble long chain ceramides. We accomplished this by generating long chain ceramide through endogenous ceramide synthase by providing exogenous sphingosine and 24:1 acyl CoA in HeLa cell membranes. This SPT assay procedure is simple and easy to perform and does not require sophisticated instruments.
Collapse
Affiliation(s)
- Muthukumar Kannan
- Dept. of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Deanna L Davis
- Dept. of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - John Suemitsu
- Dept. of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Christopher D Oltorik
- Dept. of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Binks Wattenberg
- Dept. of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| |
Collapse
|
27
|
Hagen-Euteneuer N, Alam S, Rindsfuesser H, Meyer Zu Heringdorf D, van Echten-Deckert G. S1P-lyase deficiency uncouples ganglioside formation - Potential contribution to tumorigenic capacity. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158708. [PMID: 32283310 DOI: 10.1016/j.bbalip.2020.158708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/13/2020] [Accepted: 03/31/2020] [Indexed: 12/01/2022]
Abstract
Sphingosine-1-phosphate (S1P) is not only a catabolic intermediate of all sphingolipids but also an evolutionary conserved bioactive lipid with critical functions in cell survival, differentiation, and migration as well as in immunity and angiogenesis. S1P-lyase (SGPL1) irreversibly cleaves S1P in the final step of sphingolipid catabolism. As sphingoid bases and their 1-phosphates are not only metabolic intermediates but also highly bioactive lipids that modulate a wide range of physiological processes, it would be predicted that their elevation might induce adjustments in other facets of sphingolipid metabolism and/or alter cell behavior. We actually found in a previous study that in terminally differentiated neurons SGPL1 deficiency increases sphingolipid formation via recycling at the expense of de novo synthesis. We now investigated whether and how SGPL1 deficiency affects the metabolism of (glyco)sphingolipids in mouse embryonic fibroblasts (MEFs). According to our previous experiments in neurons, we found a strong accumulation of S1P in SGPL1-deficient MEFs. Surprisingly, a completely different situation arose as we analyzed sphingolipid metabolism in this non-differentiated cell type. The production of biosynthetic precursors of complex glycosphingolipids including ceramide, glucosylceramide and also ganglioside GM3 via de novo synthesis and recycling pathway was substantially increased whereas the amount of more complex gangliosides dropped significantly.
Collapse
Affiliation(s)
| | - Shah Alam
- LIMES Institute Membrane Biology and Lipid Biochemistry, University Bonn, Germany
| | - Hannah Rindsfuesser
- LIMES Institute Membrane Biology and Lipid Biochemistry, University Bonn, Germany
| | - Dagmar Meyer Zu Heringdorf
- Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität, Frankfurt am Main, Germany
| | | |
Collapse
|
28
|
Clarke BA, Majumder S, Zhu H, Lee YT, Kono M, Li C, Khanna C, Blain H, Schwartz R, Huso VL, Byrnes C, Tuymetova G, Dunn TM, Allende ML, Proia RL. The Ormdl genes regulate the sphingolipid synthesis pathway to ensure proper myelination and neurologic function in mice. eLife 2019; 8:51067. [PMID: 31880535 PMCID: PMC6934382 DOI: 10.7554/elife.51067] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/09/2019] [Indexed: 12/23/2022] Open
Abstract
Sphingolipids are membrane and bioactive lipids that are required for many aspects of normal mammalian development and physiology. However, the importance of the regulatory mechanisms that control sphingolipid levels in these processes is not well understood. The mammalian ORMDL proteins (ORMDL1, 2 and 3) mediate feedback inhibition of the de novo synthesis pathway of sphingolipids by inhibiting serine palmitoyl transferase in response to elevated ceramide levels. To understand the function of ORMDL proteins in vivo, we studied mouse knockouts (KOs) of the Ormdl genes. We found that Ormdl1 and Ormdl3 function redundantly to suppress the levels of bioactive sphingolipid metabolites during myelination of the sciatic nerve. Without proper ORMDL-mediated regulation of sphingolipid synthesis, severe dysmyelination results. Our data indicate that the Ormdls function to restrain sphingolipid metabolism in order to limit levels of dangerous metabolic intermediates that can interfere with essential physiological processes such as myelination.
Collapse
Affiliation(s)
- Benjamin A Clarke
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Saurav Majumder
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Hongling Zhu
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Y Terry Lee
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Mari Kono
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Cuiling Li
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Caroline Khanna
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Hailey Blain
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Ronit Schwartz
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Vienna L Huso
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Colleen Byrnes
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Galina Tuymetova
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Teresa M Dunn
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, United States
| | - Maria L Allende
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Richard L Proia
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| |
Collapse
|
29
|
Wang HC, Wong TH, Wang LT, Su HH, Yu HY, Wu AH, Lin YC, Chen HL, Suen JL, Hsu SH, Chen LC, Zhou Y, Huang SK. Aryl hydrocarbon receptor signaling promotes ORMDL3-dependent generation of sphingosine-1-phosphate by inhibiting sphingosine-1-phosphate lyase. Cell Mol Immunol 2019; 16:783-790. [PMID: 29572542 PMCID: PMC6804566 DOI: 10.1038/s41423-018-0022-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/16/2018] [Accepted: 02/18/2018] [Indexed: 01/17/2023] Open
Abstract
Aryl hydrocarbon receptor (AhR), a cellular chemical sensor, controls cellular homeostasis, and sphingosine-1-phosphate (S1P), a bioactive intermediate of sphingolipid metabolism, is believed to have a role in immunity and inflammation, but their potential crosstalk is currently unknown. We aimed to determine whether there is a functional linkage between AhR signaling and sphingolipid metabolism. We showed that AhR ligands, including an environmental polycyclic aromatic hydrocarbon (PAH), induced S1P generation, and inhibited S1P lyase (S1PL) activity in resting cells, antigen/IgE-activated mast cells, and mouse lungs exposed to the AhR ligand alone or in combination with antigen challenge. The reduction of S1PL activity was due to AhR-mediated oxidation of S1PL at residue 317, which was reversible by the addition of an antioxidant or in cells with knockdown of the ORMDL3 gene encoding an ER transmembrane protein, whereas C317A S1PL mutant-transfected cells were resistant to the AhR-mediated effect. Furthermore, analysis of AhR ligand-treated cells showed a time-dependent increase of the ORMDL3-S1PL complex, which was confirmed by FRET analysis. This change increased the S1P levels, which in turn, induced mast cell degranulation via S1PR2 signaling. In addition, elevated levels of plasma S1P were found in children with asthma compared to non-asthmatic subjects. These results suggest a new regulatory pathway whereby the AhR-ligand axis induces ORMDL3-dependent S1P generation by inhibiting S1PL, which may contribute to the expression of allergic diseases.
Collapse
Affiliation(s)
- Hsueh-Chun Wang
- Department of Medical Research, China Medical University Hospital, China Medical University, 40402, Taichung, Taiwan, China
| | - Tzu-Hsuan Wong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, China
| | - Li-Ting Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, China
| | - Hsiang-Han Su
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, China
| | - Hsiu-Yueh Yu
- Division of Allergy, Asthma and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan, China
| | - Ai-Hsuan Wu
- Division of Allergy, Asthma and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan, China
| | - Yu-Chun Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan, China
| | - Hua-Ling Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan, China
| | - Jau-Ling Suen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, China
- Research Center of Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, China
- Center for Research Resources and Development, Kaohsiung Medical University, Kaohsiung, Taiwan, China
| | - Shih-Hsien Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, China
- Research Center of Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, China
| | - Li-Chen Chen
- Division of Allergy, Asthma and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan, China
- Community Medicine Research Center, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan, China
- Department of Pediatrics, Xiamen Chang Gung Hospital, Xiamen, China
| | - Yufeng Zhou
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Key Laboratory of Neonatal Disease, Children's Hospital and Institute of Biomedical Sciences, Ministry of Health, Fudan University, 201102, Shanghai, China
| | - Shau-Ku Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, China.
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan, China.
- Research Center of Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, China.
- Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Lou-Hu Hospital, Shen-Zhen University, Shen-Zhen, China.
| |
Collapse
|
30
|
Chang ML, Moussette S, Gamero-Estevez E, Gálvez JH, Chiwara V, Gupta IR, Ryan AK, Naumova AK. Regulatory interaction between the ZPBP2-ORMDL3/Zpbp2-Ormdl3 region and the circadian clock. PLoS One 2019; 14:e0223212. [PMID: 31560728 PMCID: PMC6764692 DOI: 10.1371/journal.pone.0223212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/15/2019] [Indexed: 11/18/2022] Open
Abstract
Genome-wide association study (GWAS) loci for several immunity-mediated diseases (early onset asthma, inflammatory bowel disease (IBD), primary biliary cholangitis, and rheumatoid arthritis) map to chromosomal region 17q12-q21. The predominant view is that association between 17q12-q21 alleles and increased risk of developing asthma or IBD is due to regulatory variants. ORM sphingolipid biosynthesis regulator (ORMDL3) residing in this region is the most promising gene candidate for explaining association with disease. However, the relationship between 17q12-q21 alleles and disease is complex suggesting contributions from other factors, such as trans-acting genetic and environmental modifiers or circadian rhythms. Circadian rhythms regulate expression levels of thousands of genes and their dysregulation is implicated in the etiology of several common chronic inflammatory diseases. However, their role in the regulation of the 17q12-q21 genes has not been investigated. Moreover, the core clock gene nuclear receptor subfamily 1, group D, member 1 (NR1D1) resides about 200 kb distal to the GWAS region. We hypothesized that circadian rhythms influenced gene expression levels in 17q12-q21 region and conversely, regulatory elements in this region influenced transcription of the core clock gene NR1D1 in cis. To test these hypotheses, we examined the diurnal expression profiles of zona pellucida binding protein 2 (ZPBP2/Zpbp2), gasdermin B (GSDMB), and ORMDL3/Ormdl3 in human and mouse tissues and analyzed the impact of genetic variation in the ZPBP2/Zpbp2 region on NR1D1/Nr1d1 expression. We found that Ormdl3 and Zpbp2 were controlled by the circadian clock in a tissue-specific fashion. We also report that deletion of the Zpbp2 region altered the expression profile of Nr1d1 in lungs and ileum in a time-dependent manner. In liver, the deletion was associated with enhanced expression of Ormdl3. We provide the first evidence that disease-associated genes Zpbp2 and Ormdl3 are regulated by circadian rhythms and the Zpbp2 region influences expression of the core clock gene Nr1d1.
Collapse
Affiliation(s)
- Matthew L. Chang
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Sanny Moussette
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | | | | | - Victoria Chiwara
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Indra R. Gupta
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Paediatrics, McGill University, Montreal, Quebec, Canada
| | - Aimee K. Ryan
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Paediatrics, McGill University, Montreal, Quebec, Canada
| | - Anna K. Naumova
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
31
|
James B, Milstien S, Spiegel S. ORMDL3 and allergic asthma: From physiology to pathology. J Allergy Clin Immunol 2019; 144:634-640. [PMID: 31376405 DOI: 10.1016/j.jaci.2019.07.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/18/2019] [Accepted: 07/26/2019] [Indexed: 01/10/2023]
Abstract
There is a strong genetic component to asthma, and numerous genome-wide association studies have identified ORM1 (yeast)-like protein 3 (ORMDL3) as a gene associated with asthma susceptibility. However, how ORMDL3 contributes to asthma pathogenesis and its physiologic functions is not well understood and a matter of great debate. This rostrum describes recent advances and new insights in understanding of the multifaceted functions of ORMDL3 in patients with allergic asthma. We also suggest a potential unifying paradigm and discuss molecular mechanisms for the pathologic functions of ORMDL3 in asthma related to its evolutionarily conserved role in regulation of sphingolipid homeostasis. Finally, we briefly survey the utility of sphingolipid metabolites as potential biomarkers for allergic asthma.
Collapse
Affiliation(s)
- Briana James
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Sheldon Milstien
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Va.
| |
Collapse
|
32
|
Hammoudeh S, Gadelhak W, Janahi IA. Asthma and obesity in the Middle East region: An overview. Ann Thorac Med 2019; 14:116-121. [PMID: 31007762 PMCID: PMC6467016 DOI: 10.4103/atm.atm_115_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/07/2018] [Indexed: 01/03/2023] Open
Abstract
This paper aims to cover the current status of asthma and obesity in the Middle East, as well as to introduce the various studies tying the two diseases; further expanding on the proposed mechanisms. Finally, the paper covers recent literature related to sphingolipids and its role in asthma, followed by recommendations and future directions. In preparation of this paper, we searched PubMed and Google Scholar, with no restrictions, using the following terms; asthma, obesity, Middle East, sphingolipids. We also used the reference list of retrieved articles to further expand on the pool of articles that were used for this review.
Collapse
Affiliation(s)
- Samer Hammoudeh
- Medical Research Center, Research Affairs, Hamad Medical Corporation, Doha, Qatar
| | - Wessam Gadelhak
- Medical Research Center, Research Affairs, Hamad Medical Corporation, Doha, Qatar
| | - Ibrahim A. Janahi
- Medical Research Center, Research Affairs, Hamad Medical Corporation, Doha, Qatar
- Pediatric Pulmonology, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
33
|
Snider JM, Luberto C, Hannun YA. Approaches for probing and evaluating mammalian sphingolipid metabolism. Anal Biochem 2019; 575:70-86. [PMID: 30917945 DOI: 10.1016/j.ab.2019.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 01/02/2023]
Abstract
Sphingolipid metabolism plays a critical role in regulating processes that control cellular fate. This dynamic pathway can generate and degrade the central players: ceramide, sphingosine and sphingosine-1-phosphate in almost any membrane in the cell, adding an unexpected level of complexity in deciphering signaling events. While in vitro assays have been developed for most enzymes in SL metabolism, these assays are setup for optimal activity conditions and can fail to take into account regulatory components such as compartmentalization, substrate limitations, and binding partners that can affect cellular enzymatic activity. Therefore, many in-cell assays have been developed to derive results that are authentic to the cellular situation which may give context to alteration in SL mass. This review will discuss approaches for utilizing probes for mammalian in-cell assays to interrogate most enzymatic steps central to SL metabolism. The use of inhibitors in conjunction with these probes can verify the specificity of cellular assays as well as provide valuable insight into flux in the SL network. The use of inhibitors specific to each of the central sphingolipid enzymes are also discussed to assist researchers in further interrogation of these pathways.
Collapse
Affiliation(s)
- Justin M Snider
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Chiara Luberto
- The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Departments of Biochemistry, Pathology and Pharmacology, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
34
|
Davis DL, Gable K, Suemitsu J, Dunn TM, Wattenberg BW. The ORMDL/Orm-serine palmitoyltransferase (SPT) complex is directly regulated by ceramide: Reconstitution of SPT regulation in isolated membranes. J Biol Chem 2019; 294:5146-5156. [PMID: 30700557 DOI: 10.1074/jbc.ra118.007291] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/25/2019] [Indexed: 01/15/2023] Open
Abstract
Sphingolipids compose a lipid family critical for membrane structure as well as intra- and intercellular signaling. De novo sphingolipid biosynthesis is initiated by the enzyme serine palmitoyltransferase (SPT), which resides in the endoplasmic reticulum (ER) membrane. In both yeast and mammalian species, SPT activity is homeostatically regulated through small ER membrane proteins, the Orms in yeast and the ORMDLs in mammalian cells. These proteins form stable complexes with SPT. In yeast, the homeostatic regulation of SPT relies, at least in part, on phosphorylation of the Orms. However, this does not appear to be the case for the mammalian ORMDLs. Here, we accomplished a cell-free reconstitution of the sphingolipid regulation of the ORMDL-SPT complex to probe the underlying regulatory mechanism. Sphingolipid and ORMDL-dependent regulation of SPT was demonstrated in isolated membranes, essentially free of cytosol. This suggests that this regulation does not require soluble cytosolic proteins or small molecules such as ATP. We found that this system is particularly responsive to the pro-apoptotic sphingolipid ceramide and that this response is strictly stereospecific, indicating that ceramide regulates the ORMDL-SPT complex via a specific binding interaction. Yeast membranes harboring the Orm-SPT system also directly responded to sphingolipid, suggesting that yeast cells have, in addition to Orm phosphorylation, an additional Orm-dependent SPT regulatory mechanism. Our results indicate that ORMDL/Orm-mediated regulation of SPT involves a direct interaction of sphingolipid with the membrane-bound components of the SPT-regulatory apparatus.
Collapse
Affiliation(s)
- Deanna L Davis
- From the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298
| | - Kenneth Gable
- the Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, and
| | - John Suemitsu
- From the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298
| | - Teresa M Dunn
- the Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, and
| | - Binks W Wattenberg
- From the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, .,the James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky 40202
| |
Collapse
|
35
|
Transmembrane topology of mammalian ORMDL proteins in the endoplasmic reticulum as revealed by the substituted cysteine accessibility method (SCAM™). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:382-395. [PMID: 30639427 DOI: 10.1016/j.bbapap.2019.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/19/2018] [Accepted: 01/06/2019] [Indexed: 01/05/2023]
Abstract
Sphingolipids are diverse lipids with essential, and occasionally opposing, functions in the cell and therefore tight control over biosynthesis is vital. Mechanisms governing this regulation are not understood. Initial steps in sphingolipid biosynthesis take place on the cytosolic face of the endoplasmic reticulum (ER). Serine palmitoyltransferase (SPT) is an ER-resident enzyme catalyzing the first-committed step in sphingolipid biosynthesis. Not surprisingly, SPT activity is tightly regulated. ORMDLs are ER-resident proteins recently identified as regulators of SPT activity. ORMDL proteins interact directly with SPT but the nature of this interaction is unknown. ORMDL protein sequences contain hydrophobic regions, yet algorithm-based predictions of transmembrane segments are highly ambiguous, making topology of this key regulator unclear. Here we report use of substituted cysteine accessibility to analyze topology of mammalian ORMDLs. We constructed multiple mutant ORMDLs, each containing a single cysteine strategically placed along the protein length. Combined use of selective membrane permeabilization with an impermeant cysteine modification reagent allowed us to assign transmembrane and cytosolic segments of ORMDL. We confirmed that mammalian ORMDL proteins transit the membrane four times, with amino- and carboxy termini facing the cytosol along with a large cytosolic loop. This model will allow us to determine details of the ORMDL-SPT interaction and identify regions acting as the "lipid sensor" to detect changes in cellular sphingolipid levels. We also observe that SPT and ORMDL are substantially resistant to extraction from membranes with non-ionic detergent, indirectly suggesting that both proteins reside in a specialized subdomain of the ER.
Collapse
|
36
|
Han G, Gupta SD, Gable K, Bacikova D, Sengupta N, Somashekarappa N, Proia RL, Harmon JM, Dunn TM. The ORMs interact with transmembrane domain 1 of Lcb1 and regulate serine palmitoyltransferase oligomerization, activity and localization. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:245-259. [PMID: 30529276 DOI: 10.1016/j.bbalip.2018.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/30/2018] [Accepted: 11/24/2018] [Indexed: 10/27/2022]
Abstract
Serine palmitoyltransferase (SPT), an endoplasmic reticulum-localized membrane enzymecomposed of acatalytic LCB1/LCB2 heterodimer and a small activating subunit (Tsc3 in yeast; ssSPTs in mammals), is negatively regulated by the evolutionarily conserved family of proteins known as the ORMs. In yeast, SPT, the ORMs, and the PI4P phosphatase Sac1, copurify in the "SPOTs" complex. However, neither the mechanism of ORM inhibition of SPT nor details of the interactions of the ORMs and Sac1 with SPT are known. Here we report that the first transmembrane domain (TMD1) of Lcb1 is required for ORM binding to SPT. Loss of binding is not due to altered membrane topology of Lcb1 since replacing TMD1 with a heterologous TMD restores membrane topology but not ORM binding. TMD1 deletion also eliminates ORM-dependent formation of SPT oligomers as assessed by co-immunoprecipitation assays and in vivo imaging. Expression of ORMs lacking derepressive phosphorylation sites results in constitutive SPT oligomerization, while phosphomimetic ORMs fail to induce oligomerization under any conditions. Significantly, when LCB1-RFP and LCB1ΔTMD1-GFP were coexpressed, more LCB1ΔTMD1-GFP was in the peripheral ER, suggesting ORM regulation is partially accomplished by SPT redistribution. Tsc3 deletion does not abolish ORM inhibition of SPT, indicating the ORMs do not simply prevent activation by Tsc3. Binding of Sac1 to SPT requires Tsc3, but not the ORMs, and Sac1 does not influence ORM-mediated oligomerization of SPT. Finally, yeast mutants lacking ORM regulation of SPT require the LCB-P lyase Dpl1 to maintain long-chain bases at sublethal levels.
Collapse
Affiliation(s)
- Gongshe Han
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, United States of America
| | - Sita D Gupta
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, United States of America
| | - Kenneth Gable
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, United States of America
| | - Dagmar Bacikova
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, United States of America
| | - Nivedita Sengupta
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, United States of America
| | - Niranjanakumari Somashekarappa
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, United States of America
| | - Richard L Proia
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, United States of America
| | - Jeffrey M Harmon
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, United States of America
| | - Teresa M Dunn
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, United States of America.
| |
Collapse
|
37
|
Ma X, Long F, Yun Y, Dang J, Wei S, Zhang Q, Li J, Zhang H, Zhang W, Wang Z, Liu Q, Zou C. ORMDL3 and its implication in inflammatory disorders. Int J Rheum Dis 2018; 21:1154-1162. [PMID: 29879314 DOI: 10.1111/1756-185x.13324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A growing body of evidence has suggested the genetic association of ORMDL3 gene (ORMDL Sphingolipid Biosynthesis Regulator 3) polymorphisms with a diverse set of inflammatory disorders that include bronchial asthma, inflammatory bowel disease, ankylosing spondylitis and atherosclerosis. Gene functional investigations have revealed the particular relevance of ORMDL3 in endoplasmic reticulum stress, lipid metabolism and inflammatory reactions. Additionally, several reports have recently added a new dimension to our understanding of the modulation of ORMDL3 gene expression in inflammation. This mini-review summarizes the pertinent publications regarding the genetic association studies and mechanistic exploration of ORMDL3 in common inflammatory disorders.
Collapse
Affiliation(s)
- Xiaochun Ma
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China.,Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, China
| | - Feng Long
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, China
| | - Yan Yun
- Brain Research Institute, Qilu Hospital of Shandong University, Jinan, China
| | - Jie Dang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, China.,Department of Medical Genetics and Cell Biology, Ningxia Medical University, Yinchuan, China
| | - Shijun Wei
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, China
| | - Qian Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Jinzhang Li
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Haizhou Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Wenlong Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Zhengjun Wang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Qiji Liu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, Shandong University School of Medicine, Jinan, China
| | - Chengwei Zou
- Department of Cardiovascular Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| |
Collapse
|
38
|
Davis D, Kannan M, Wattenberg B. Orm/ORMDL proteins: Gate guardians and master regulators. Adv Biol Regul 2018; 70:3-18. [PMID: 30193828 DOI: 10.1016/j.jbior.2018.08.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 08/26/2018] [Accepted: 08/28/2018] [Indexed: 12/22/2022]
Abstract
Sphingolipids comprise a diverse family of lipids that perform multiple functions in both structure of cellular membranes and intra- and inter-cellular signaling. The diversity of this family is generated by an array of enzymes that produce individual classes and molecular species of family members and enzymes which catabolize those lipids for recycling pathways. However, all of these lipids begin their lives with a single step, the condensation of an amino acid, almost always serine, and a fatty acyl-CoA, almost always the 16-carbon, saturated fatty acid, palmitate. The enzyme complex that accomplishes this condensation is serine palmitoyltransferase (SPT), a membrane-bound component of the endoplasmic reticulum. This places SPT in the unique position of regulating the production of the entire sphingolipid pool. Understanding how SPT activity is regulated is currently a central focus in the field of sphingolipid biology. In this review we examine the regulation of SPT activity by a set of small, membrane-bound proteins of the endoplasmic reticulum, the Orms (in yeast) and ORMDLs (in vertebrates). We discuss what is known about how these proteins act as homeostatic regulators by monitoring cellular levels of sphingolipid, but also how the Orms/ORMDLs regulate SPT in response to other stimuli. Finally, we discuss the intriguing connection between one of the mammalian ORMDL isoforms, ORMDL3, and the pervasive pulmonary disease, asthma, in humans.
Collapse
Affiliation(s)
- Deanna Davis
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Muthukumar Kannan
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Binks Wattenberg
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
39
|
Holm LJ, Krogvold L, Hasselby JP, Kaur S, Claessens LA, Russell MA, Mathews CE, Hanssen KF, Morgan NG, Koeleman BPC, Roep BO, Gerling IC, Pociot F, Dahl-Jørgensen K, Buschard K. Abnormal islet sphingolipid metabolism in type 1 diabetes. Diabetologia 2018; 61:1650-1661. [PMID: 29671030 PMCID: PMC6445476 DOI: 10.1007/s00125-018-4614-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/15/2018] [Indexed: 12/17/2022]
Abstract
AIMS/HYPOTHESIS Sphingolipids play important roles in beta cell physiology, by regulating proinsulin folding and insulin secretion and in controlling apoptosis, as studied in animal models and cell cultures. Here we investigate whether sphingolipid metabolism may contribute to the pathogenesis of human type 1 diabetes and whether increasing the levels of the sphingolipid sulfatide would prevent models of diabetes in NOD mice. METHODS We examined the amount and distribution of sulfatide in human pancreatic islets by immunohistochemistry, immunofluorescence and electron microscopy. Transcriptional analysis was used to evaluate expression of sphingolipid-related genes in isolated human islets. Genome-wide association studies (GWAS) and a T cell proliferation assay were used to identify type 1 diabetes related polymorphisms and test how these affect cellular islet autoimmunity. Finally, we treated NOD mice with fenofibrate, a known activator of sulfatide biosynthesis, to evaluate the effect on experimental autoimmune diabetes development. RESULTS We found reduced amounts of sulfatide, 23% of the levels in control participants, in pancreatic islets of individuals with newly diagnosed type 1 diabetes, which were associated with reduced expression of enzymes involved in sphingolipid metabolism. Next, we discovered eight gene polymorphisms (ORMDL3, SPHK2, B4GALNT1, SLC1A5, GALC, PPARD, PPARG and B4GALT1) involved in sphingolipid metabolism that contribute to the genetic predisposition to type 1 diabetes. These gene polymorphisms correlated with the degree of cellular islet autoimmunity in a cohort of individuals with type 1 diabetes. Finally, using fenofibrate, which activates sulfatide biosynthesis, we completely prevented diabetes in NOD mice and even reversed the disease in half of otherwise diabetic animals. CONCLUSIONS/INTERPRETATION These results indicate that islet sphingolipid metabolism is abnormal in type 1 diabetes and suggest that modulation may represent a novel therapeutic approach. DATA AVAILABILITY The RNA expression data is available online at https://www.dropbox.com/s/93mk5tzl5fdyo6b/Abnormal%20islet%20sphingolipid%20metabolism%20in%20type%201%20diabetes%2C%20RNA%20expression.xlsx?dl=0 . A list of SNPs identified is available at https://www.dropbox.com/s/yfojma9xanpp2ju/Abnormal%20islet%20sphingolipid%20metabolism%20in%20type%201%20diabetes%20SNP.xlsx?dl=0 .
Collapse
Affiliation(s)
- Laurits J Holm
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen Biocenter, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Lars Krogvold
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Odontology, University of Oslo, Oslo, Norway
| | - Jane P Hasselby
- Department of Pathology, Rigshospitalet, Copenhagen, Denmark
| | | | - Laura A Claessens
- Department of Immunohaematology & Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
- Department of Medical Genetics, University Medical Center, Utrecht, the Netherlands
| | - Mark A Russell
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Clayton E Mathews
- Department of Pathology, University of Florida, Gainesville, FL, USA
| | - Kristian F Hanssen
- Faculty of Odontology, University of Oslo, Oslo, Norway
- Department of Endocrinology, Oslo University Hospital, Oslo, Norway
| | - Noel G Morgan
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, UK
| | - Bobby P C Koeleman
- Department of Medical Genetics, University Medical Center, Utrecht, the Netherlands
| | - Bart O Roep
- Department of Immunohaematology & Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
- Department of Diabetes Immunology, Diabetes & Metabolism Research Institute, Beckman Research Institute at the City of Hope, Duarte, CA, USA
| | - Ivan C Gerling
- Department of Medicine, University of Tennessee, Memphis, TN, USA
| | | | - Knut Dahl-Jørgensen
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Karsten Buschard
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen Biocenter, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.
| |
Collapse
|
40
|
|
41
|
Cheng Q, Shang Y. ORMDL3 may participate in the pathogenesis of bronchial epithelial‑mesenchymal transition in asthmatic mice with airway remodeling. Mol Med Rep 2017; 17:995-1005. [PMID: 29115563 DOI: 10.3892/mmr.2017.7972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/24/2017] [Indexed: 11/05/2022] Open
Abstract
Asthma is a common chronic respiratory disease in children that is caused by a complex interaction between genetic and environmental factors. Orosomucoid‑like 3 (ORMDL3) is a candidate gene that has been strongly associated with asthma; however, the underlying mechanisms are unknown. ORMDL3 regulates the expression of metalloproteinases and transforming growth factor‑β, and ORMDL3 transgenic mice exhibit increased airway remodeling. Therefore, ORMDL3 may be associated with airway remodeling. The present study attempted to examine the associations between ORMDL3 and the severity of airway remodeling in asthmatic mice, and also to determine whether ORMDL3 induces epithelial‑mesenchymal transition (EMT) in the bronchial epithelium. For this purpose, BALB/c mice were randomly assigned to control and asthma groups. Lung tissues were collected on days 3, 7 and 14 of the ovalbumin (OVA) challenge. Airway remodeling in asthmatic mice was then observed by hematoxylin and eosin, and Masson staining. Morphological changes in the bronchial epithelium were assessed by transmission electron microscopy. The EMT‑associated indicators E‑cadherin (E‑cad), fibroblast‑specific protein 1 (FSP1) and Vimentin (VIM) were assessed by western blotting and reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) at different time points of airway remodeling in asthmatic mice to detect the trend in EMT. Then, the localization of ORMDL3 was observed by immunohistochemistry, and its protein and mRNA expression was examined by western blotting and RT‑qPCR, respectively. Furthermore, the bronchial epithelial cell line 16HBE14o‑was transfected with an ORMDL3‑expressing plasmid, and the differences in E‑cad, FSP‑1 and VIM expression were detected by immunofluorescence, western blotting and RT‑qPCR; the cell invasive ability was assessed by microscopy. The results revealed that ORMDL3 expression in the bronchial epithelium was associated with airway remodeling and EMT progression in vivo. Transfection of ORMDL3 into 16HBE 14o‑cells in vitro induced EMT. Taken together, these findings suggest that ORMDL3 may regulate EMT in the bronchial epithelium, thereby affecting airway remodeling in asthma.
Collapse
Affiliation(s)
- Qi Cheng
- Pediatric Pulmonology Department, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yunxiao Shang
- Pediatric Pulmonology Department, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
42
|
Das S, Miller M, Broide DH. Chromosome 17q21 Genes ORMDL3 and GSDMB in Asthma and Immune Diseases. Adv Immunol 2017; 135:1-52. [PMID: 28826527 DOI: 10.1016/bs.ai.2017.06.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chromosome 17q21 contains a cluster of genes including ORMDL3 and GSDMB, which have been highly linked to asthma in genome-wide association studies. ORMDL3 is localized to the endoplasmic reticulum and regulates downstream pathways including sphingolipids, metalloproteases, remodeling genes, and chemokines. ORMDL3 inhibits serine palmitoyl-CoA transferase, the rate-limiting enzyme for sphingolipid biosynthesis. In addition, ORMDL3 activates the ATF6α branch of the unfolded protein response which regulates SERCA2b and IL-6, pathways of potential importance to asthma. The SNP-linking chromosome 17q21 to asthma is associated with increased ORMDL3 and GSDMB expression. Mice expressing either increased levels of human ORMDL3, or human GSDMB, have an asthma phenotype characterized by increased airway responsiveness and increased airway remodeling (increased smooth muscle and fibrosis) in the absence of airway inflammation. GSDMB regulates expression of 5-LO and TGF-β1 which are known pathways involved in the pathogenesis of asthma. GSDMB is one of four members of the GSDM family (GSDMA, GSDMB, GSDMC, and GSDMD). GSDMD (located on chromosome 8q24 and not linked to asthma) has emerged as a key mediator of pyroptosis. GSDMD is a key component of the NLPR3 inflammasome and is required for its activation. GSDMD undergoes proteolytic cleavage by caspase-1 to release its N-terminal fragment, which in turn mediates pyroptosis and IL-1β secretion. Chromosome 17q21 has not only been linked to asthma but also to type 1 diabetes, inflammatory bowel disease, and primary biliary cirrhosis suggesting that future insights into the biology of genes located in this region will increase our understanding of these diseases.
Collapse
Affiliation(s)
- Sudipta Das
- University of California, San Diego, CA, United States
| | - Marina Miller
- University of California, San Diego, CA, United States
| | | |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Genome-wide association studies identified ORMDL3, a protein of the endoplasmic reticulum, as a significant asthma risk factor. ORMDL3 is one of three ORMDL proteins that integrate multiple signals to maintain sphingolipid homeostasis. Studies that investigated potential mechanisms for how increased ORMDL3 might affect asthma are summarized. RECENT FINDINGS Investigations focused on decreased sphingolipid synthesis and on the unfolded protein response because ORMDL3 had been implicated in both.Airway reactivity is increased in a genetic model with decreased de-novo sphingolipid synthesis and in wild-type mice treated with myriocin, a sphingolipid synthesis inhibitor. Inflammation, mucus production and airway smooth muscle hypertrophy are absent. ORMDL3 was not evaluated directly but results suggest that decreased sphingolipid synthesis is sufficient to induce airway hyperreactivity (AHR).Direct effects of ORMDL3 were investigated in allergic asthma models. Sensitization with ovalbumin, house dust mites and Alternaria alternata increase ORMDL3 mRNA. Universal overexpression of ORMDL3 decreases serum sphingolipids, increases inflammatory markers, airway remodeling and AHR in response to allergic stimuli. Addition of myriocin during sensitization drastically exacerbates house dust mites-induced AHR.ORMDL3 knockout mice are protected from developing A. alternata-induced AHR. The effect is specific to Alternaria and limited to smooth muscle contraction, as inflammation persists. ORMDL3 might have a critical role for smooth muscle contraction.Little is known about how the different ORMDL3 single nucleotide polymorphisms affect human blood and tissue sphingolipid profiles. One group measured total sphingoid levels and found no association with ORMDL3 single nucleotide polymorphisms in a general population. Others evaluated sphingolipid profiles in 7-8-year old children with mild asthma and found significantly higher C18 and C20 ceramides in those with persistence of asthma symptoms 3 years later, suggesting that sphingolipid profiles might predict asthma persistence. SUMMARY Possible mechanisms how ORMDL3 affects asthma include inhibition of sphingolipid synthesis, synergistic effects with known allergens and a combination of both.
Collapse
Affiliation(s)
- Tilla S Worgall
- Columbia University Medical Center, New York City, New York, USA
| |
Collapse
|
44
|
Miller M, Rosenthal P, Beppu A, Gordillo R, Broide DH. Oroscomucoid like protein 3 (ORMDL3) transgenic mice have reduced levels of sphingolipids including sphingosine-1-phosphate and ceramide. J Allergy Clin Immunol 2016; 139:1373-1376.e4. [PMID: 27826095 DOI: 10.1016/j.jaci.2016.08.053] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/19/2016] [Accepted: 08/09/2016] [Indexed: 01/30/2023]
Affiliation(s)
- Marina Miller
- Department of Medicine, University of California San Diego, La Jolla, Calif
| | - Peter Rosenthal
- Department of Medicine, University of California San Diego, La Jolla, Calif
| | - Andrew Beppu
- Department of Medicine, University of California San Diego, La Jolla, Calif
| | - Ruth Gordillo
- Internal Medicine, Touchstone Diabetes Center, the University of Texas Southwestern Medical Center, Dallas, Tex
| | - David H Broide
- Department of Medicine, University of California San Diego, La Jolla, Calif.
| |
Collapse
|
45
|
Maekawa M, Lee M, Wei K, Ridgway ND, Fairn GD. Staurosporines decrease ORMDL proteins and enhance sphingomyelin synthesis resulting in depletion of plasmalemmal phosphatidylserine. Sci Rep 2016; 6:35762. [PMID: 27805006 PMCID: PMC5090970 DOI: 10.1038/srep35762] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 10/05/2016] [Indexed: 12/03/2022] Open
Abstract
Accumulation of phosphatidylserine in the inner leaflet of the plasma membrane is a hallmark of eukaryotes. Sublethal levels of staurosporine and related compounds deplete phosphatidylserine from the plasma membrane and abrogate K-Ras signaling. Here, we report that low-dose staurosporine and related compounds increase sphingomyelin mass. Mass-spectrometry and metabolic tracer analysis revealed an increase in both the levels and rate of synthesis of sphingomyelin in response to sublethal staurosporine. Mechanistically, it was determined that the abundance of the ORMDL proteins, which negatively regulate serine-palmitoyltransferase, are decreased by low-dose staurosporine. Finally, inhibition of ceramide synthesis, and thus sphingomyelin, prevented the displacement of phosphatidylserine and cholesterol from the inner leaflet of the plasma membrane. The results establish that an optimal level of sphingomyelin is required to maintain the distribution of phosphatidylserine and cholesterol in the plasma membrane and further demonstrate a complex relationship between the trafficking of phosphatidylserine and sphingomyelin.
Collapse
Affiliation(s)
- Masashi Maekawa
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Minhyoung Lee
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Kuiru Wei
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Neale D Ridgway
- Departments of Pediatrics, and Biochemistry &Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Gregory D Fairn
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
46
|
Sphingosine 1-Phosphate Activation of EGFR As a Novel Target for Meningitic Escherichia coli Penetration of the Blood-Brain Barrier. PLoS Pathog 2016; 12:e1005926. [PMID: 27711202 PMCID: PMC5053521 DOI: 10.1371/journal.ppat.1005926] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 09/11/2016] [Indexed: 12/24/2022] Open
Abstract
Central nervous system (CNS) infection continues to be an important cause of mortality and morbidity, necessitating new approaches for investigating its pathogenesis, prevention and therapy. Escherichia coli is the most common Gram-negative bacillary organism causing meningitis, which develops following penetration of the blood-brain barrier (BBB). By chemical library screening, we identified epidermal growth factor receptor (EGFR) as a contributor to E. coli invasion of the BBB in vitro. Here, we obtained the direct evidence that CNS-infecting E. coli exploited sphingosine 1-phosphate (S1P) for EGFR activation in penetration of the BBB in vitro and in vivo. We found that S1P was upstream of EGFR and participated in EGFR activation through S1P receptor as well as through S1P-mediated up-regulation of EGFR-related ligand HB-EGF, and blockade of S1P function through targeting sphingosine kinase and S1P receptor inhibited EGFR activation, and also E. coli invasion of the BBB. We further found that both S1P and EGFR activations occurred in response to the same E. coli proteins (OmpA, FimH, NlpI), and that S1P and EGFR promoted E. coli invasion of the BBB by activating the downstream c-Src. These findings indicate that S1P and EGFR represent the novel host targets for meningitic E. coli penetration of the BBB, and counteracting such targets provide a novel approach for controlling E. coli meningitis in the era of increasing resistance to conventional antibiotics.
Collapse
|
47
|
Zhakupova A, Debeuf N, Krols M, Toussaint W, Vanhoutte L, Alecu I, Kutalik Z, Vollenweider P, Ernst D, von Eckardstein A, Lambrecht BN, Janssens S, Hornemann T. ORMDL3 expression levels have no influence on the activity of serine palmitoyltransferase. FASEB J 2016; 30:4289-4300. [PMID: 27645259 DOI: 10.1096/fj.201600639r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/01/2016] [Indexed: 01/21/2023]
Abstract
ORMDL proteins are believed to be negative regulators of serine palmitoyltransferase (SPT), which catalyzes the first and rate limiting step in sphingolipid (SL) de novo synthesis. Several single-nucleotide polymorphisms (SNPs) that are close to the ORMDL3 locus have been reported to increase ORMDL3 expression and to be associated with an elevated risk for early childhood asthma; however, the direct effect of ORMDL3 expression on SPT activity and its link to asthma remains elusive. In this study, we investigated whether ORMDL3 expression is associated with changes in SPT activity and total SL levels. Ormdl3-knockout (Ormdl3-/-) and transgenic (Ormdl3Tg/wt) mice were generated to study the effect of ORMDL3 on total SL levels in plasma and tissues. Cellular SPT activity was measured in mouse embryonic fibroblasts from Ormdl3-/- mice, as well as in HEK293 cells in which ORMDL3 was overexpressed and silenced. Furthermore, we analyzed the association of the reported ORMDL3 asthma SNPs with plasma sphingoid bases in a population-based cohort of 971 individuals. Total C18-long chain bases were not significantly altered in the plasma and tissues of Ormdl3-/- mice, whereas C18-sphinganine showed a small and significant increase in plasma, lung, and liver tissues. Mouse embryonic fibroblast cells from Ormdl3-/- mice did not show an altered SPT activity compared with Ormdl3+/- and Ormdl3+/+ mice. Overexpression or knockdown of ORMDL3 in HEK293 cells did not alter SPT activity; however, parallel knockdown of all 3 ORMDL isoforms increased enzyme activity significantly. A significant association of the annotated ORMDL3 asthma SNPs with plasma long-chain sphingoid base levels could not be confirmed. ORMDL3 expression levels seem not to be directly associated with changes in SPT activity. ORMDL3 might influence de novo sphingolipid metabolism downstream of SPT.-Zhakupova, A., Debeuf, N., Krols, M., Toussaint, W., Vanhoutte, L., Alecu, I., Kutalik, Z., Vollenweider, P., Ernst, D., von Eckardstein, A., Lambrecht, B. N., Janssens, S., Hornemann, T. ORMDL3 expression levels have no influence on the activity of serine palmitoyltransferase.
Collapse
Affiliation(s)
- Assem Zhakupova
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Nincy Debeuf
- Laboratory of Immunoregulation and Mucosal Immunology, Vlaams Instituut voor Biotechnologie (VIB) Inflammation Research Center, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Michiel Krols
- Department of Molecular Genetics, VIB Antwerp University, Antwerp, Belgium
| | - Wendy Toussaint
- Laboratory of Immunoregulation and Mucosal Immunology, Vlaams Instituut voor Biotechnologie (VIB) Inflammation Research Center, Ghent, Belgium
| | - Leen Vanhoutte
- Laboratory of Immunoregulation and Mucosal Immunology, Vlaams Instituut voor Biotechnologie (VIB) Inflammation Research Center, Ghent, Belgium
| | - Irina Alecu
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Zoltán Kutalik
- Institute of Social and Preventive Medicine, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Peter Vollenweider
- Department of Medicine, Internal Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; and
| | - Daniela Ernst
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, Vlaams Instituut voor Biotechnologie (VIB) Inflammation Research Center, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium.,Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sophie Janssens
- Laboratory of Immunoregulation and Mucosal Immunology, Vlaams Instituut voor Biotechnologie (VIB) Inflammation Research Center, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland;
| |
Collapse
|
48
|
Kabesch M. Early origins of asthma (and allergy). Mol Cell Pediatr 2016; 3:31. [PMID: 27510897 PMCID: PMC4980323 DOI: 10.1186/s40348-016-0056-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/15/2016] [Indexed: 11/10/2022] Open
Abstract
Asthma is the most common chronic disease starting in childhood and persisting into adulthood in many cases. During childhood, different forms of asthma and wheezing disorders exist that can be discriminated by the mechanisms they are caused by. Specific genetic constellations and exposure against environmental factors during early childhood and in utero play a decisive role in the early development of the disease. Epigenetic mechanisms which are master regulators of gene transcription and thus govern the accessibility and use of genome information, have recently been identified as a "third power" determining many features in the early development of asthma and allergy.
Collapse
Affiliation(s)
- Michael Kabesch
- Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg (KUNO), Campus St. Hedwig, Steinmetzstr. 1-3, 93049, Regensburg, Germany.
| |
Collapse
|
49
|
Paulenda T, Draber P. The role of ORMDL proteins, guardians of cellular sphingolipids, in asthma. Allergy 2016; 71:918-30. [PMID: 26969910 DOI: 10.1111/all.12877] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2016] [Indexed: 12/29/2022]
Abstract
A family of widely expressed ORM-like (ORMDL) proteins has been recently linked to asthma in genomewide association studies in humans and extensively explored in in vivo studies in mice. ORMDL proteins are key regulators of serine palmitoyltransferase, an enzyme catalyzing the initial step of sphingolipid biosynthesis. Sphingolipids play prominent roles in cell signaling and response to stress, and they affect the mechanistic properties of cellular membranes. Deregulation of sphingolipid biosynthesis and their recycling has been proven to support and even cause several diseases including allergy, inflammation, and asthma. ORMDL3, the most extensively studied member of the ORMDL family, has been shown to be important for endoplasmic reticulum homeostasis by regulating the unfolded protein response and calcium response. In immune cells, ORMDL3 is involved in migration and in the production of proinflammatory cytokines. Furthermore, changes in the expression level of ORMDL3 are important in allergen-induced asthma pathologies. This review focuses on functional aspects of the ORMDL family proteins, which may serve as new therapeutic targets for the treatment of asthma and some other life-threatening diseases.
Collapse
Affiliation(s)
- T. Paulenda
- Laboratory of Signal Transduction; Institute of Molecular Genetics; Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - P. Draber
- Laboratory of Signal Transduction; Institute of Molecular Genetics; Academy of Sciences of the Czech Republic; Prague Czech Republic
| |
Collapse
|
50
|
Cai L, Oyeniran C, Biswas DD, Allegood J, Milstien S, Kordula T, Maceyka M, Spiegel S. ORMDL proteins regulate ceramide levels during sterile inflammation. J Lipid Res 2016; 57:1412-22. [PMID: 27313060 DOI: 10.1194/jlr.m065920] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Indexed: 12/21/2022] Open
Abstract
The bioactive sphingolipid metabolite, ceramide, regulates physiological processes important for inflammation and elevated levels of ceramide have been implicated in IL-1-mediated events. Although much has been learned about ceramide generation by activation of sphingomyelinases in response to IL-1, the contribution of the de novo pathway is not completely understood. Because yeast ORM1 and ORM2 proteins negatively regulate ceramide levels through inhibition of serine palmitoyltransferase, the first committed step in ceramide biosynthesis, we examined the functions of individual mammalian ORM orthologs, ORM (yeast)-like (ORMDL)1-3, in regulation of ceramide levels. In HepG2 liver cells, downregulation of ORMDL3 markedly increased the ceramide precursors, dihydrosphingosine and dihydroceramide, primarily from de novo biosynthesis based on [U-(13)C]palmitate incorporation into base-labeled and dual-labeled dihydroceramides, whereas downregulation of each isoform increased dihydroceramides [(13)C]labeled in only the amide-linked fatty acid. IL-1 and the IL-6 family cytokine, oncostatin M, increased dihydroceramide and ceramide levels in HepG2 cells and concomitantly decreased ORMDL proteins. Moreover, during irritant-induced sterile inflammation in mice leading to induction of the acute-phase response, which is dependent on IL-1, expression of ORMDL proteins in the liver was strongly downregulated and accompanied by increased ceramide levels in the liver and accumulation in the blood. Together, our results suggest that ORMDLs may be involved in regulation of ceramides during IL-1-mediated sterile inflammation.
Collapse
Affiliation(s)
- Lin Cai
- School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Clement Oyeniran
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Debolina D Biswas
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Jeremy Allegood
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Sheldon Milstien
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Tomasz Kordula
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Michael Maceyka
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| |
Collapse
|