1
|
Guo J, Chen S, Zhang Y, Liu J, Jiang L, Hu L, Yao K, Yu Y, Chen X. Cholesterol metabolism: physiological regulation and diseases. MedComm (Beijing) 2024; 5:e476. [PMID: 38405060 PMCID: PMC10893558 DOI: 10.1002/mco2.476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 02/27/2024] Open
Abstract
Cholesterol homeostasis is crucial for cellular and systemic function. The disorder of cholesterol metabolism not only accelerates the onset of cardiovascular disease (CVD) but is also the fundamental cause of other ailments. The regulation of cholesterol metabolism in the human is an extremely complex process. Due to the dynamic balance between cholesterol synthesis, intake, efflux and storage, cholesterol metabolism generally remains secure. Disruption of any of these links is likely to have adverse effects on the body. At present, increasing evidence suggests that abnormal cholesterol metabolism is closely related to various systemic diseases. However, the exact mechanism by which cholesterol metabolism contributes to disease pathogenesis remains unclear, and there are still unknown factors. In this review, we outline the metabolic process of cholesterol in the human body, especially reverse cholesterol transport (RCT). Then, we discuss separately the impact of abnormal cholesterol metabolism on common diseases and potential therapeutic targets for each disease, including CVD, tumors, neurological diseases, and immune system diseases. At the end of this review, we focus on the effect of cholesterol metabolism on eye diseases. In short, we hope to provide more new ideas for the pathogenesis and treatment of diseases from the perspective of cholesterol.
Collapse
Affiliation(s)
- Jiarui Guo
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Silong Chen
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Ying Zhang
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
- Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Jinxia Liu
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Luyang Jiang
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Lidan Hu
- National Clinical Research Center for Child HealthThe Children's HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Ke Yao
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Yibo Yu
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| | - Xiangjun Chen
- Eye Center of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
- Institute of Translational MedicineZhejiang University School of MedicineHangzhouZhejiang ProvinceChina
| |
Collapse
|
2
|
Mong MA. Vitamin K and the Visual System-A Narrative Review. Nutrients 2023; 15:nu15081948. [PMID: 37111170 PMCID: PMC10143727 DOI: 10.3390/nu15081948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Vitamin K occupies a unique and often obscured place among its fellow fat-soluble vitamins. Evidence is mounting, however, that vitamin K (VK) may play an important role in the visual system apart from the hepatic carboxylation of hemostatic-related proteins. However, to our knowledge, no review covering the topic has appeared in the medical literature. Recent studies have confirmed that matrix Gla protein (MGP), a vitamin K-dependent protein (VKDP), is essential for the regulation of intraocular pressure in mice. The PREDIMED (Prevención con Dieta Mediterránea) study, a randomized trial involving 5860 adults at risk for cardiovascular disease, demonstrated a 29% reduction in the risk of cataract surgery in participants with the highest tertile of dietary vitamin K1 (PK) intake compared with those with the lowest tertile. However, the specific requirements of the eye and visual system (EVS) for VK, and what might constitute an optimized VK status, is currently unknown and largely unexplored. It is, therefore, the intention of this narrative review to provide an introduction concerning VK and the visual system, review ocular VK biology, and provide some historical context for recent discoveries. Potential opportunities and gaps in current research efforts will be touched upon in the hope of raising awareness and encouraging continued VK-related investigations in this important and highly specialized sensory system.
Collapse
Affiliation(s)
- Michael A Mong
- Department of Ophthalmology, Veteran Affairs North Texas Health Care Medical Center, Dallas, TX 75216, USA
| |
Collapse
|
3
|
Faulkner R, Jo Y. Synthesis, function, and regulation of sterol and nonsterol isoprenoids. Front Mol Biosci 2022; 9:1006822. [PMID: 36275615 PMCID: PMC9579336 DOI: 10.3389/fmolb.2022.1006822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Cholesterol, the bulk end-product of the mevalonate pathway, is a key component of cellular membranes and lipoproteins that transport lipids throughout the body. It is also a precursor of steroid hormones, vitamin D, and bile acids. In addition to cholesterol, the mevalonate pathway yields a variety of nonsterol isoprenoids that are essential to cell survival. Flux through the mevalonate pathway is tightly controlled to ensure cells continuously synthesize nonsterol isoprenoids but avoid overproducing cholesterol and other sterols. Endoplasmic reticulum (ER)-localized 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase (HMGCR), the rate limiting enzyme in the mevalonate pathway, is the focus of a complex feedback regulatory system governed by sterol and nonsterol isoprenoids. This review highlights transcriptional and post-translational regulation of HMGCR. Transcriptional regulation of HMGCR is mediated by the Scap-SREBP pathway. Post-translational control is initiated by the intracellular accumulation of sterols, which causes HMGCR to become ubiquitinated and subjected to proteasome-mediated ER-associated degradation (ERAD). Sterols also cause a subfraction of HMGCR molecules to bind the vitamin K2 synthetic enzyme, UbiA prenyltransferase domain-containing protein-1 (UBIAD1). This binding inhibits ERAD of HMGCR, which allows cells to continuously synthesize nonsterol isoprenoids such as geranylgeranyl pyrophosphate (GGPP), even when sterols are abundant. Recent studies reveal that UBIAD1 is a GGPP sensor, dissociating from HMGCR when GGPP thresholds are met to allow maximal ERAD. Animal studies using genetically manipulated mice disclose the physiological significance of the HMGCR regulatory system and we describe how dysregulation of these pathways contributes to disease.
Collapse
|
4
|
Chen H, Qi X, Faulkner RA, Schumacher MM, Donnelly LM, DeBose-Boyd RA, Li X. Regulated degradation of HMG CoA reductase requires conformational changes in sterol-sensing domain. Nat Commun 2022; 13:4273. [PMID: 35879350 PMCID: PMC9314443 DOI: 10.1038/s41467-022-32025-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/12/2022] [Indexed: 01/20/2023] Open
Abstract
3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) is the rate-limiting enzyme in cholesterol synthesis and target of cholesterol-lowering statin drugs. Accumulation of sterols in endoplasmic reticulum (ER) membranes accelerates degradation of HMGCR, slowing the synthesis of cholesterol. Degradation of HMGCR is inhibited by its binding to UBIAD1 (UbiA prenyltransferase domain-containing protein-1). This inhibition contributes to statin-induced accumulation of HMGCR, which limits their cholesterol-lowering effects. Here, we report cryo-electron microscopy structures of the HMGCR-UBIAD1 complex, which is maintained by interactions between transmembrane helix (TM) 7 of HMGCR and TMs 2-4 of UBIAD1. Disrupting this interface by mutagenesis prevents complex formation, enhancing HMGCR degradation. TMs 2-6 of HMGCR contain a 170-amino acid sterol sensing domain (SSD), which exists in two conformations-one of which is essential for degradation. Thus, our data supports a model that rearrangement of the TMs in the SSD permits recruitment of proteins that initate HMGCR degradation, a key reaction in the regulatory system that governs cholesterol synthesis.
Collapse
Affiliation(s)
- Hongwen Chen
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaofeng Qi
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rebecca A Faulkner
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marc M Schumacher
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Linda M Donnelly
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Russell A DeBose-Boyd
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
5
|
Arslanbaeva L, Tosi G, Ravazzolo M, Simonato M, Tucci FA, Pece S, Cogo P, Santoro MM. UBIAD1 and CoQ10 protect melanoma cells from lipid peroxidation-mediated cell death. Redox Biol 2022; 51:102272. [PMID: 35255427 PMCID: PMC8902599 DOI: 10.1016/j.redox.2022.102272] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/28/2022] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
Cutaneous melanoma is the deadliest type of skin cancer, although it accounts for a minority of all skin cancers. Oxidative stress is involved in all stages of melanomagenesis and cutaneous melanoma can sustain a much higher load of Reactive Oxygen Species (ROS) than normal tissues. Melanoma cells exploit specific antioxidant machinery to support redox homeostasis. The enzyme UBIA prenyltransferase domain-containing protein 1 (UBIAD1) is responsible for the biosynthesis of non-mitochondrial CoQ10 and plays an important role as antioxidant enzyme. Whether UBIAD1 is involved in melanoma progression has not been addressed, yet. Here, we provide evidence that UBIAD1 expression is associated with poor overall survival (OS) in human melanoma patients. Furthermore, UBIAD1 and CoQ10 levels are upregulated in melanoma cells with respect to melanocytes. We show that UBIAD1 and plasma membrane CoQ10 sustain melanoma cell survival and proliferation by preventing lipid peroxidation and cell death. Additionally, we show that the NAD(P)H Quinone Dehydrogenase 1 (NQO1), responsible for the 2-electron reduction of CoQ10 on plasma membranes, acts downstream of UBIAD1 to support melanoma survival. By showing that the CoQ10-producing enzyme UBIAD1 counteracts oxidative stress and lipid peroxidation events in cutaneous melanoma, this work may open to new therapeutic investigations based on UBIAD1/CoQ10 loss to cure melanoma.
Collapse
Affiliation(s)
- Liaisan Arslanbaeva
- Laboratory of Angiogenesis and Cancer Metabolism, DiBio, University of Padua, Italy
| | - Giovanni Tosi
- Laboratory of Angiogenesis and Cancer Metabolism, DiBio, University of Padua, Italy; Veneto Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Marco Ravazzolo
- Laboratory of Angiogenesis and Cancer Metabolism, DiBio, University of Padua, Italy
| | - Manuela Simonato
- Fondazione Istituto di Ricerca Pediatrica "Città della Speranza", Padova, Italy
| | | | | | - Paola Cogo
- Fondazione Istituto di Ricerca Pediatrica "Città della Speranza", Padova, Italy; Division of Pediatrics, Department of Medicine, University Hospital S Maria della Misericordia, University of Udine, Italy
| | - Massimo M Santoro
- Laboratory of Angiogenesis and Cancer Metabolism, DiBio, University of Padua, Italy; Veneto Institute of Molecular Medicine (VIMM), Padua, Italy.
| |
Collapse
|
6
|
Huang Y, Liu J, He J, Hu Z, Tan F, Zhu X, Yuan F, Jiang Z. UBIAD1 alleviates ferroptotic neuronal death by enhancing antioxidative capacity by cooperatively restoring impaired mitochondria and Golgi apparatus upon cerebral ischemic/reperfusion insult. Cell Biosci 2022; 12:42. [PMID: 35379328 PMCID: PMC8981649 DOI: 10.1186/s13578-022-00776-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/19/2022] [Indexed: 12/13/2022] Open
Abstract
Background Neuronal death due to over-oxidative stress responses defines the pathology of cerebral ischemic/reperfusion (I/R) insult. Ferroptosis is a form of oxidative cell death that is induced by disruption of the balance between antioxidants and pro-oxidants in cells. However, the potential mechanisms responsible for cerebral I/R-induced ferroptotic neuronal death have not been conclusively determined. UBIAD1, is a newly identified antioxidant enzyme that catalyzes coenzyme Q10 (CoQ10) and vitamin K2 biosynthesis in the Golgi apparatus membrane and mitochondria, respectively. Even though UBIAD1 is a significant mediator of apoptosis in cerebral I/R challenge, its roles in ferroptotic neuronal death remain undefined. Therefore, we investigated whether ferroptotic neuronal death is involved in cerebral I/R injury. Further, we evaluated the functions and possible mechanisms of UBIAD1 in cerebral I/R-induced ferroptotic neuronal death, with a major focus on mitochondrial and Golgi apparatus dysfunctions. Results Ferroptosis occurred in cerebral I/R. Ferroptotic neuronal death promoted cerebral I/R-induced brain tissue injury and neuronal impairment. UBIAD1 was expressed in cerebral tissues and was localized in neurons, astrocytes, and microglia. Under cerebral I/R conditions overexpressed UBIAD1 significantly suppressed lipid peroxidation and ferroptosis. Moreover, upregulated UBIAD1 protected against brain tissue damage and neuronal death by alleviating I/R-mediated lipid peroxidation and ferroptosis. However, UBIAD1 knockdown reversed these changes. Enhanced UBIAD1-mediated ferroptosis elevated the antioxidative capacity by rescuing mitochondrial and Golgi apparatus dysfunction in cerebral I/R-mediated neuronal injury. They improved the morphology and biofunctions of the mitochondria and Golgi apparatus, thereby elevating the levels of SOD, T-AOC and production of CoQ10, endothelial nitric oxide synthase (eNOS)-regulated nitric oxide (NO) generation as well as suppressed MDA generation. Conclusions The neuroprotective agent, UBIAD1, modulates I/R-mediated ferroptosis by restoring mitochondrial and Golgi apparatus dysfunction in damaged brain tissues and neurons, thereby enhancing antioxidative capacities. Moreover, the rescue of impaired mitochondrial and Golgi apparatus as a possible mechanism of regulating ferroptotic neuronal death is a potential treatment strategy for ischemic stroke. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00776-9.
Collapse
Affiliation(s)
- Yan Huang
- NHC Key Laboratory of Birth Defect for Research and Prevention (Hunan Provincial Maternal and Child Health Care Hospital), Changsha, Hunan, 410008, People's Republic of China.,Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, 410008, People's Republic of China.,Hunan Provincial Key Laboratory of Neurorestoration, Hunan Normal University, Changsha, Hunan, 410081, People's Republic of China
| | - Jianyang Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, 139 Renming Road, Changsha, Hunan, 410011, People's Republic of China
| | - Jialin He
- Department of Neurology, The Second Xiangya Hospital, Central South University, 139 Renming Road, Changsha, Hunan, 410011, People's Republic of China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, 139 Renming Road, Changsha, Hunan, 410011, People's Republic of China
| | - Fengbo Tan
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Xuelin Zhu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Fulai Yuan
- Health Management Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| | - Zheng Jiang
- Department of Neurology, The Second Xiangya Hospital, Central South University, 139 Renming Road, Changsha, Hunan, 410011, People's Republic of China.
| |
Collapse
|
7
|
Elsabrouty R, Jo Y, Hwang S, Jun DJ, DeBose-Boyd RA. Type 1 polyisoprenoid diphosphate phosphatase modulates geranylgeranyl-mediated control of HMG CoA reductase and UBIAD1. eLife 2021; 10:64688. [PMID: 34842525 PMCID: PMC8641950 DOI: 10.7554/elife.64688] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 11/28/2021] [Indexed: 11/18/2022] Open
Abstract
UbiA prenyltransferase domain-containing protein-1 (UBIAD1) utilizes geranylgeranyl pyrophosphate (GGpp) to synthesize the vitamin K2 subtype menaquinone-4. The prenyltransferase has emerged as a key regulator of sterol-accelerated, endoplasmic reticulum (ER)-associated degradation (ERAD) of HMG CoA reductase, the rate-limiting enzyme in synthesis of cholesterol and nonsterol isoprenoids including GGpp. Sterols induce binding of UBIAD1 to reductase, inhibiting its ERAD. Geranylgeraniol (GGOH), the alcohol derivative of GGpp, disrupts this binding and thereby stimulates ERAD of reductase and translocation of UBIAD1 to Golgi. We now show that overexpression of Type 1 polyisoprenoid diphosphate phosphatase (PDP1), which dephosphorylates GGpp and other isoprenyl pyrophosphates to corresponding isoprenols, abolishes protein geranylgeranylation as well as GGOH-induced ERAD of reductase and Golgi transport of UBIAD1. Conversely, these reactions are enhanced in the absence of PDP1. Our findings indicate PDP1-mediated hydrolysis of GGpp significantly contributes to a feedback mechanism that maintains optimal intracellular levels of the nonsterol isoprenoid.
Collapse
Affiliation(s)
- Rania Elsabrouty
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| | - Youngah Jo
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| | - Seonghwan Hwang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| | - Dong-Jae Jun
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| | - Russell A DeBose-Boyd
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| |
Collapse
|
8
|
Takemoto Y, Kadota S, Minami I, Otsuka S, Okuda S, Abo M, Punzalan LL, Shen Y, Shiba Y, Uesugi M. Chemical Genetics Reveals a Role of Squalene Synthase in TGFβ Signaling and Cardiomyogenesis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yasushi Takemoto
- Institute for Chemical Research (ICR) Kyoto University Uji Kyoto 611-0011 Japan
| | - Shin Kadota
- Institute for Biomedical Sciences Shinshu University Matsumoto, Nagano 390-8621 Japan
| | - Itsunari Minami
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University Kyoto 606-8501 Japan
| | - Shinya Otsuka
- Institute for Chemical Research (ICR) Kyoto University Uji Kyoto 611-0011 Japan
| | - Satoshi Okuda
- Institute for Chemical Research (ICR) Kyoto University Uji Kyoto 611-0011 Japan
| | - Masahiro Abo
- Institute for Chemical Research (ICR) Kyoto University Uji Kyoto 611-0011 Japan
| | - Louvy Lynn Punzalan
- Institute for Chemical Research (ICR) Kyoto University Uji Kyoto 611-0011 Japan
| | - Yan Shen
- Institute for Chemical Research (ICR) Kyoto University Uji Kyoto 611-0011 Japan
| | - Yuji Shiba
- Institute for Biomedical Sciences Shinshu University Matsumoto, Nagano 390-8621 Japan
| | - Motonari Uesugi
- Institute for Chemical Research (ICR) Kyoto University Uji Kyoto 611-0011 Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University Kyoto 606-8501 Japan
- School of Pharmacy Fudan University Shanghai 201203 China
| |
Collapse
|
9
|
Politiek FA, Waterham HR. Compromised Protein Prenylation as Pathogenic Mechanism in Mevalonate Kinase Deficiency. Front Immunol 2021; 12:724991. [PMID: 34539662 PMCID: PMC8446354 DOI: 10.3389/fimmu.2021.724991] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/12/2021] [Indexed: 12/25/2022] Open
Abstract
Mevalonate kinase deficiency (MKD) is an autoinflammatory metabolic disorder characterized by life-long recurring episodes of fever and inflammation, often without clear cause. MKD is caused by bi-allelic pathogenic variants in the MVK gene, resulting in a decreased activity of the encoded enzyme mevalonate kinase (MK). MK is an essential enzyme in the isoprenoid biosynthesis pathway, which generates both non-sterol and sterol isoprenoids. The inflammatory symptoms of patients with MKD point to a major role for isoprenoids in the regulation of the innate immune system. In particular a temporary shortage of the non-sterol isoprenoid geranylgeranyl pyrophosphate (GGPP) is increasingly linked with inflammation in MKD. The shortage of GGPP compromises protein prenylation, which is thought to be one of the main causes leading to the inflammatory episodes in MKD. In this review, we discuss current views and the state of knowledge of the pathogenetic mechanisms in MKD, with particular focus on the role of compromised protein prenylation.
Collapse
Affiliation(s)
- Frouwkje A Politiek
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
10
|
Takemoto Y, Kadota S, Minami I, Otsuka S, Okuda S, Abo M, Punzalan LL, Shen Y, Shiba Y, Uesugi M. Chemical Genetics Reveals a Role of Squalene Synthase in TGFβ Signaling and Cardiomyogenesis. Angew Chem Int Ed Engl 2021; 60:21824-21831. [PMID: 34374184 DOI: 10.1002/anie.202100523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Indexed: 11/11/2022]
Abstract
KY02111 is a widely used small molecule that boosts cardiomyogenesis of the mesoderm cells derived from pluripotent stem cells, yet its molecular mechanism of action remains elusive. The present study resolves the initially perplexing effects of KY02111 on Wnt signaling and subsequently identifies squalene synthase (SQS) as a molecular target of KY02111 and its optimized version, KY-I. By disrupting the interaction of SQS with cardiac ER-membrane protein TMEM43, KY02111 impairs TGFβ signaling, but not Wnt signaling, and thereby recapitulates the clinical mutation of TMEM43 that causes arrhythmogenic right ventricular cardiomyopathy (ARVC), an inherited heart disease that involves a substitution of myocardium with fatty tissue. These findings reveal a heretofore undescribed role of SQS in TGFβ signaling and cardiomyogenesis. KY02111 may find its use in ARVC modeling as well as serve as a chemical tool for studying TGFβ/SMAD signaling.
Collapse
Affiliation(s)
- Yasushi Takemoto
- Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shin Kadota
- Institute for Biomedical Sciences, Shinshu University, Matsumoto, Nagano, 390-8621, Japan
| | - Itsunari Minami
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan
| | - Shinya Otsuka
- Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Satoshi Okuda
- Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Masahiro Abo
- Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Louvy Lynn Punzalan
- Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yan Shen
- Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yuji Shiba
- Institute for Biomedical Sciences, Shinshu University, Matsumoto, Nagano, 390-8621, Japan
| | - Motonari Uesugi
- Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan.,Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan.,School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
11
|
Xie J, Li L. Functional study of SCCD pathogenic gene UBIAD1 (Review). Mol Med Rep 2021; 24:706. [PMID: 34368857 PMCID: PMC8365407 DOI: 10.3892/mmr.2021.12345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/29/2021] [Indexed: 12/22/2022] Open
Abstract
Schnyder's crystalline corneal dystrophy (SCCD) is a rare autosomal dominant genetic disorder that is characterized by progressive corneal opacity, owing to aberrant accumulation of cholesterol and phospholipids in the cornea. A number of SCCD affected families have been reported in the world since 1924, when it was first described. In 2007, the molecular basis of SCCD was demonstrated to be associated with a tumor suppressor, UbiA prenyltransferase domain-containing 1 (UBIAD1), which was isolated from the bladder mucosa and demonstrated to be involved in vitamin K2 and CoQ10 biosynthesis. This sterol triggers the binding of UBIAD1 to 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMGCR) at endoplasmic reticulum (ER) membranes, which is regulated by an intracellular geranylgeranyl diphosphate (GGpp) molecule. The inability of SCCD-associated UBIAD1 to bind GGpp results in the consistent binding of UBIAD1 to HMGCR at ER membranes. This binding leads to HMGCRs being redundant. Therefore, they cannot be degraded through ER-associated degradation to synthesize abundant cholesterol in tissue cells. Excess corneal cholesterol accumulation thus leads to SCCD disease. After decades, the efforts of numerous ophthalmologists and scientists have helped clarify the molecular basis and pathogenesis of SCCD, which has guided the effective diagnosis and treatment of this genetic disorder. However, more studies need to be conducted to understand the pathogenesis of SCCD disease from a genetic basis by studying the defective gene, UBIAD1. Results would guide effective diagnosis and treatment of the inherited eye disease.
Collapse
Affiliation(s)
- Jumin Xie
- Medical School of Renal Disease Occurrence and Intervention, Hubei Polytechnic University, Huangshi, Hubei 435003, P.R. China
| | - Lingxing Li
- Department of Cardiovascular Medicine, Tai'an City Central Hospital, Tai'an, Shandong 271000, P.R. China
| |
Collapse
|
12
|
Schumacher MM, DeBose-Boyd RA. Posttranslational Regulation of HMG CoA Reductase, the Rate-Limiting Enzyme in Synthesis of Cholesterol. Annu Rev Biochem 2021; 90:659-679. [PMID: 34153214 DOI: 10.1146/annurev-biochem-081820-101010] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The polytopic, endoplasmic reticulum (ER) membrane protein 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase produces mevalonate, the key intermediate in the synthesis of cholesterol and many nonsterol isoprenoids including geranylgeranyl pyrophosphate (GGpp). Transcriptional, translational, and posttranslational feedback mechanisms converge on this reductase to ensure cells maintain a sufficient supply of essential nonsterol isoprenoids but avoid overaccumulation of cholesterol and other sterols. The focus of this review is mechanisms for the posttranslational regulation of HMG CoA reductase, which include sterol-accelerated ubiquitination and ER-associated degradation (ERAD) that is augmented by GGpp. We discuss how GGpp-induced ER-to-Golgi trafficking of the vitamin K2 synthetic enzyme UbiA prenyltransferase domain-containing protein-1 (UBIAD1) modulates HMG CoA reductase ERAD to balance the synthesis of sterol and nonsterol isoprenoids. We also summarize the characterization of genetically manipulated mice, which established that sterol-accelerated, UBIAD1-modulated ERAD plays a major role in regulation of HMG CoA reductase and cholesterol metabolism in vivo.
Collapse
Affiliation(s)
- Marc M Schumacher
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA;
| | - Russell A DeBose-Boyd
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA;
| |
Collapse
|
13
|
Juarez D, Fruman DA. Targeting the Mevalonate Pathway in Cancer. Trends Cancer 2021; 7:525-540. [PMID: 33358111 DOI: 10.1016/j.trecan.2020.11.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
The mevalonate synthesis inhibitors, statins, are mainstay therapeutics for cholesterol management and cardiovascular health. Thirty years of research have uncovered supportive roles for the mevalonate pathway in numerous cellular processes that support oncogenesis, most recently macropinocytosis. Central to the diverse mechanisms of statin sensitivity is an acquired dependence on one mevalonate pathway output, protein geranylgeranylation. New chemical prenylation probes and the discovery of a novel geranylgeranyl transferase hold promise to deepen our understanding of statin mechanisms of action. Further, insights into statin selection and the counterproductive role of dietary geranylgeraniol highlight how we should assess statins in the clinic. Lastly, rational combination strategies preview how statins will enter the oncology toolbox.
Collapse
Affiliation(s)
- Dennis Juarez
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - David A Fruman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
14
|
van den Boomen DJH, Volkmar N, Lehner PJ. Ubiquitin-mediated regulation of sterol homeostasis. Curr Opin Cell Biol 2020; 65:103-111. [PMID: 32580085 DOI: 10.1016/j.ceb.2020.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/03/2020] [Accepted: 04/26/2020] [Indexed: 11/19/2022]
Abstract
Cholesterol is an essential component of mammalian membranes, and its homeostasis is strictly regulated, with imbalances causing atherosclerosis, Niemann Pick disease, and familial hypercholesterolemia. Cellular cholesterol supply is mediated by LDL-cholesterol import and de novo cholesterol biosynthesis, and both pathways are adjusted to cellular demand by the cholesterol-sensitive SREBP2 transcription factor. Cholesterol homeostasis is modulated by a wide variety of metabolic pathways and the ubiquitination machinery, in particular E3 ubiquitin ligases. In this article, we review recent progress in understanding the role of E3 ubiquitin ligases in the metabolic control of cellular sterol homeostasis.
Collapse
Affiliation(s)
- Dick J H van den Boomen
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Norbert Volkmar
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Paul J Lehner
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
15
|
Jun DJ, Schumacher MM, Hwang S, Kinch LN, Grishin NV, DeBose-Boyd RA. Schnyder corneal dystrophy-associated UBIAD1 is defective in MK-4 synthesis and resists autophagy-mediated degradation. J Lipid Res 2020; 61:746-757. [PMID: 32188638 PMCID: PMC7193952 DOI: 10.1194/jlr.ra119000551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/21/2020] [Indexed: 12/15/2022] Open
Abstract
The autosomal dominant disorder Schnyder corneal dystrophy (SCD) is caused by mutations in UbiA prenyltransferase domain-containing protein-1 (UBIAD1), which uses geranylgeranyl pyrophosphate (GGpp) to synthesize the vitamin K2 subtype menaquinone-4 (MK-4). SCD is characterized by opacification of the cornea, owing to aberrant build-up of cholesterol in the tissue. We previously discovered that sterols stimulate association of UBIAD1 with ER-localized HMG-CoA reductase, which catalyzes a rate-limiting step in the synthesis of cholesterol and nonsterol isoprenoids, including GGpp. Binding to UBIAD1 inhibits sterol-accelerated ER-associated degradation (ERAD) of reductase and permits continued synthesis of GGpp in cholesterol-replete cells. GGpp disrupts UBIAD1-reductase binding and thereby allows for maximal ERAD of reductase as well as ER-to-Golgi translocation of UBIAD1. SCD-associated UBIAD1 is refractory to GGpp-mediated dissociation from reductase and remains sequestered in the ER to inhibit ERAD. Here, we report development of a biochemical assay for UBIAD1-mediated synthesis of MK-4 in isolated membranes and intact cells. Using this assay, we compared enzymatic activity of WT UBIAD1 with that of SCD-associated variants. Our studies revealed that SCD-associated UBIAD1 exhibited reduced MK-4 synthetic activity, which may result from its reduced affinity for GGpp. Sequestration in the ER protects SCD-associated UBIAD1 from autophagy and allows intracellular accumulation of the mutant protein, which amplifies the inhibitory effect on reductase ERAD. These findings have important implications not only for the understanding of SCD etiology but also for the efficacy of cholesterol-lowering statin therapy, which becomes limited, in part, because of UBIAD1-mediated inhibition of reductase ERAD.
Collapse
Affiliation(s)
- Dong-Jae Jun
- Departments of Molecular Genetics,University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Marc M Schumacher
- Departments of Molecular Genetics,University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Seonghwan Hwang
- Departments of Molecular Genetics,University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Lisa N Kinch
- Biophysics,University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Nick V Grishin
- Biophysics,University of Texas Southwestern Medical Center, Dallas, TX 75390-9046; Howard Hughes Medical Institute,University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Russell A DeBose-Boyd
- Departments of Molecular Genetics,University of Texas Southwestern Medical Center, Dallas, TX 75390-9046. mailto:
| |
Collapse
|
16
|
Jo Y, Kim SS, Garland K, Fuentes I, DiCarlo LM, Ellis JL, Fu X, Booth SL, Evers BM, DeBose-Boyd RA. Enhanced ER-associated degradation of HMG CoA reductase causes embryonic lethality associated with Ubiad1 deficiency. eLife 2020; 9:54841. [PMID: 32118581 PMCID: PMC7069719 DOI: 10.7554/elife.54841] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/02/2020] [Indexed: 12/15/2022] Open
Abstract
UbiA prenyltransferase domain-containing protein-1 (UBIAD1) synthesizes the vitamin K subtype menaquinone-4 (MK-4). Previous studies in cultured cells (Schumacher et al., 2015) revealed that UBIAD1 also inhibits endoplasmic reticulum (ER)-associated degradation (ERAD) of ubiquitinated HMG CoA reductase (HMGCR), the rate-limiting enzyme of the mevalonate pathway that produces cholesterol and essential nonsterol isoprenoids. Gene knockout studies were previously attempted to explore the function of UBIAD1 in mice; however, homozygous germ-line elimination of the Ubiad1 gene caused embryonic lethality. We now report that homozygous deletion of Ubiad1 is produced in knockin mice expressing ubiquitination/ERAD-resistant HMGCR. Thus, embryonic lethality of Ubiad1 deficiency results from depletion of mevalonate-derived products owing to enhanced ERAD of HMGCR rather than from reduced synthesis of MK-4. These findings provide genetic evidence for the significance of UBIAD1 in regulation of cholesterol synthesis and offer the opportunity in future studies for the discovery of new physiological roles of MK-4.
Collapse
Affiliation(s)
- Youngah Jo
- Department of Molecular Genetics, University of Texas Southwestern Medical, Dallas, United States
| | - Steven S Kim
- Department of Molecular Genetics, University of Texas Southwestern Medical, Dallas, United States
| | - Kristina Garland
- Department of Molecular Genetics, University of Texas Southwestern Medical, Dallas, United States
| | - Iris Fuentes
- Department of Molecular Genetics, University of Texas Southwestern Medical, Dallas, United States
| | - Lisa M DiCarlo
- Department of Molecular Genetics, University of Texas Southwestern Medical, Dallas, United States
| | - Jessie L Ellis
- Center at Dallas and Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Somerville, United States
| | - Xueyan Fu
- Center at Dallas and Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Somerville, United States
| | - Sarah L Booth
- Center at Dallas and Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Somerville, United States
| | - Bret M Evers
- Department of Pathology, University of Texas Southwestern Medical, Dallas, United States
| | - Russell A DeBose-Boyd
- Department of Molecular Genetics, University of Texas Southwestern Medical, Dallas, United States
| |
Collapse
|
17
|
Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol 2019; 21:225-245. [DOI: 10.1038/s41580-019-0190-7] [Citation(s) in RCA: 450] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2019] [Indexed: 12/14/2022]
|
18
|
Chen L, Chen XW, Huang X, Song BL, Wang Y, Wang Y. Regulation of glucose and lipid metabolism in health and disease. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1420-1458. [PMID: 31686320 DOI: 10.1007/s11427-019-1563-3] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/15/2019] [Indexed: 02/08/2023]
Abstract
Glucose and fatty acids are the major sources of energy for human body. Cholesterol, the most abundant sterol in mammals, is a key component of cell membranes although it does not generate ATP. The metabolisms of glucose, fatty acids and cholesterol are often intertwined and regulated. For example, glucose can be converted to fatty acids and cholesterol through de novo lipid biosynthesis pathways. Excessive lipids are secreted in lipoproteins or stored in lipid droplets. The metabolites of glucose and lipids are dynamically transported intercellularly and intracellularly, and then converted to other molecules in specific compartments. The disorders of glucose and lipid metabolism result in severe diseases including cardiovascular disease, diabetes and fatty liver. This review summarizes the major metabolic aspects of glucose and lipid, and their regulations in the context of physiology and diseases.
Collapse
Affiliation(s)
- Ligong Chen
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China.
| | - Xiao-Wei Chen
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Yan Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Yiguo Wang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
19
|
Sun X, Liu H, Wang P, Wang L, Ni W, Yang Q, Wang H, Tang H, Zhao G, Zheng Z. Construction of a novel MK-4 biosynthetic pathway in Pichia pastoris through heterologous expression of HsUBIAD1. Microb Cell Fact 2019; 18:169. [PMID: 31601211 PMCID: PMC6786277 DOI: 10.1186/s12934-019-1215-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
Background With a variety of physiological and pharmacological functions, menaquinone is an essential prenylated product that can be endogenously converted from phylloquinone (VK1) or menadione (VK3) via the expression of Homo sapiens UBIAD1 (HsUBIAD1). The methylotrophic yeast, Pichia pastoris, is an attractive expression system that has been successfully applied to the efficient expression of heterologous proteins. However, the menaquinone biosynthetic pathway has not been discovered in P. pastoris. Results Firstly, we constructed a novel synthetic pathway in P. pastoris for the production of menaquinone-4 (MK-4) via heterologous expression of HsUBIAD1. Then, the glyceraldehyde-3-phosphate dehydrogenase constitutive promoter (PGAP) appeared to be mostsuitable for the expression of HsUBIAD1 for various reasons. By optimizing the expression conditions of HsUBIAD1, its yield increased by 4.37 times after incubation at pH 7.0 and 24 °C for 36 h, when compared with that under the initial conditions. We found HsUBIAD1 expressed in recombinant GGU-23 has the ability to catalyze the biosynthesis of MK-4 when using VK1 and VK3 as the isopentenyl acceptor. In addition, we constructed a ribosomal DNA (rDNA)-mediated multi-copy expression vector for the fusion expression of SaGGPPS and PpIDI, and the recombinant GGU-GrIG afforded higher MK-4 production, so that it was selected as the high-yield strain. Finally, the yield of MK-4 was maximized at 0.24 mg/g DCW by improving the GGPP supply when VK3 was the isopentenyl acceptor. Conclusions In this study, we constructed a novel synthetic pathway in P. pastoris for the biosynthesis of the high value-added prenylated product MK-4 through heterologous expression of HsUBIAD1 and strengthened accumulation of GGPP. This approach could be further developed and accomplished for the biosynthesis of other prenylated products, which has great significance for theoretical research and industrial application.
Collapse
Affiliation(s)
- Xiaowen Sun
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China.,University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Hui Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
| | - Peng Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
| | - Li Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
| | - Wenfeng Ni
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China.,University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Qiang Yang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China.,University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Han Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China.,University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Hengfang Tang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China.,University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Genhai Zhao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China.
| | - Zhiming Zheng
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China.
| |
Collapse
|
20
|
Jo Y, Hamilton JS, Hwang S, Garland K, Smith GA, Su S, Fuentes I, Neelam S, Thompson BM, McDonald JG, DeBose-Boyd RA. Schnyder corneal dystrophy-associated UBIAD1 inhibits ER-associated degradation of HMG CoA reductase in mice. eLife 2019; 8:44396. [PMID: 30785396 PMCID: PMC6402834 DOI: 10.7554/elife.44396] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/19/2019] [Indexed: 12/14/2022] Open
Abstract
Autosomal-dominant Schnyder corneal dystrophy (SCD) is characterized by corneal opacification owing to overaccumulation of cholesterol. SCD is caused by mutations in UBIAD1, which utilizes geranylgeranyl pyrophosphate (GGpp) to synthesize vitamin K2. Using cultured cells, we previously showed that sterols trigger binding of UBIAD1 to the cholesterol biosynthetic enzyme HMG CoA reductase (HMGCR), thereby inhibiting its endoplasmic reticulum (ER)-associated degradation (ERAD) (Schumacher et al. 2015). GGpp triggers release of UBIAD1 from HMGCR, allowing maximal ERAD and ER-to-Golgi transport of UBIAD1. SCD-associated UBIAD1 resists GGpp-induced release and is sequestered in ER to inhibit ERAD. We now report knockin mice expressing SCD-associated UBIAD1 accumulate HMGCR in several tissues resulting from ER sequestration of mutant UBIAD1 and inhibition of HMGCR ERAD. Corneas from aged knockin mice exhibit signs of opacification and sterol overaccumulation. These results establish the physiological significance of UBIAD1 in cholesterol homeostasis and indicate inhibition of HMGCR ERAD contributes to SCD pathogenesis.
Collapse
Affiliation(s)
- Youngah Jo
- Departments of Molecular Genetics, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jason S Hamilton
- Departments of Molecular Genetics, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, United States
| | - Seonghwan Hwang
- Departments of Molecular Genetics, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, United States
| | - Kristina Garland
- Departments of Molecular Genetics, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, United States
| | - Gennipher A Smith
- Departments of Molecular Genetics, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, United States
| | - Shan Su
- Departments of Molecular Genetics, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, United States
| | - Iris Fuentes
- Departments of Molecular Genetics, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, United States
| | - Sudha Neelam
- Department of Ophthalmology, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, United States
| | - Bonne M Thompson
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jeffrey G McDonald
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, United States
| | - Russell A DeBose-Boyd
- Departments of Molecular Genetics, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
21
|
Mo H, Jeter R, Bachmann A, Yount ST, Shen CL, Yeganehjoo H. The Potential of Isoprenoids in Adjuvant Cancer Therapy to Reduce Adverse Effects of Statins. Front Pharmacol 2019; 9:1515. [PMID: 30662405 PMCID: PMC6328495 DOI: 10.3389/fphar.2018.01515] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022] Open
Abstract
The mevalonate pathway provides sterols for membrane structure and nonsterol intermediates for the post-translational modification and membrane anchorage of growth-related proteins, including the Ras, Rac, and Rho GTPase family. Mevalonate-derived products are also essential for the Hedgehog pathway, steroid hormone signaling, and the nuclear localization of Yes-associated protein and transcriptional co-activator with PDZ-binding motif, all of which playing roles in tumorigenesis and cancer stem cell function. The phosphatidylinositol-4,5-bisphosphate 3-kinase-AKT-mammalian target of rapamycin complex 1 pathway, p53 with gain-of-function mutation, and oncoprotein MYC upregulate the mevalonate pathway, whereas adenosine monophosphate-activated protein kinase and tumor suppressor protein RB are the downregulators. The rate-limiting enzyme, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), is under a multivalent regulation. Sterol regulatory element binding protein 2 mediates the sterol-controlled transcriptional downregulation of HMGCR. UbiA prenyltransferase domain-containing protein-1 regulates the ubiquitination and proteasome-mediated degradation of HMGCR, which is accelerated by 24, 25-dihydrolanosterol and the diterpene geranylgeraniol. Statins, competitive inhibitors of HMGCR, deplete cells of mevalonate-derived intermediates and consequently inhibit cell proliferation and induce apoptosis. Clinical application of statins is marred by dose-limiting toxicities and mixed outcomes on cancer risk, survival and mortality, partially resulting from the statin-mediated compensatory upregulation of HMGCR and indiscriminate inhibition of HMGCR in normal and tumor cells. Tumor HMGCR is resistant to the sterol-mediated transcriptional control; consequently, HMGCR is upregulated in cancers derived from adrenal gland, blood and lymph, brain, breast, colon, connective tissue, embryo, esophagus, liver, lung, ovary, pancreas, prostate, skin, and stomach. Nevertheless, tumor HMGCR remains sensitive to isoprenoid-mediated degradation. Isoprenoids including monoterpenes (carvacrol, L-carvone, geraniol, perillyl alcohol), sesquiterpenes (cacalol, farnesol, β-ionone), diterpene (geranylgeranyl acetone), “mixed” isoprenoids (tocotrienols), and their derivatives suppress the growth of tumor cells with little impact on non-malignant cells. In cancer cells derived from breast, colon, liver, mesothelium, prostate, pancreas, and skin, statins and isoprenoids, including tocotrienols, geraniol, limonene, β-ionone and perillyl alcohol, synergistically suppress cell proliferation and associated signaling pathways. A blend of dietary lovastatin and δ-tocotrienol, each at no-effect doses, suppress the growth of implanted murine B16 melanomas in C57BL6 mice. Isoprenoids have potential as adjuvant agents to reduce the toxicities of statins in cancer prevention or therapy.
Collapse
Affiliation(s)
- Huanbiao Mo
- Department of Nutrition, Byrdine F. Lewis College of Nursing and Health Professions, Georgia State University, Atlanta, GA, United States
| | - Rayna Jeter
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Andrea Bachmann
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Sophie T Yount
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Hoda Yeganehjoo
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
22
|
Xu Z, Duan F, Lu H, Abdulkadhim Dragh M, Xia Y, Liang H, Hong L. UBIAD1 suppresses the proliferation of bladder carcinoma cells by regulating H-Ras intracellular trafficking via interaction with the C-terminal domain of H-Ras. Cell Death Dis 2018; 9:1170. [PMID: 30518913 PMCID: PMC6281600 DOI: 10.1038/s41419-018-1215-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/28/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022]
Abstract
UbiA prenyltransferase domain-containing protein 1 (UBIAD1) plays a key role in biosynthesis of vitamin K2 and coenzyme Q10 using geranylgeranyl diphosphate (GGPP). However, the mechanism by which UBIAD1 participates in tumorigenesis remains unknown. This study show that UBIAD1 interacts with H-Ras, retains H-Ras in the Golgi apparatus, prevents H-Ras trafficking from the Golgi apparatus to the plasma membrane, blocks the aberrant activation of Ras/MAPK signaling, and inhibits the proliferation of bladder cancer cells. In addition, GGPP was required to maintain the function of UBIAD1 in regulating the Ras/ERK signaling pathway. A Drosophila model was employed to confirm the function of UBIAD1/HEIX in vivo. The activation of Ras/ERK signaling at the plasma membrane induced melanotic masses in Drosophila larvae. Our study suggests that UBIAD1 serves as a tumor suppressor in cancer and tentatively reveals the underlying mechanism of melanotic mass formation in Drosophila.
Collapse
Affiliation(s)
- Zhiliang Xu
- Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Fengsen Duan
- Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Huiai Lu
- Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Maytham Abdulkadhim Dragh
- Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yanzhi Xia
- Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Huageng Liang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ling Hong
- Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
23
|
Gonzalvez M, Ho Wang Yin G, Gascon P, Denis D, Hoffart L. Clinical and para-clinical description of a novel mutation for Schnyder dystrophy in a French family. J Fr Ophtalmol 2018; 41:920-925. [PMID: 30446344 DOI: 10.1016/j.jfo.2018.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The objective of this article is to describe the evolution of Schnyder dystrophy in 3 related patients of different ages and to highlight the discovery of a new mutation unidentified until now. CASE REPORT We present a series of 3 cases, all first-degree relatives with no suggestion of consanguinity, of different ages (30, 40 and 59 years) and two distinct generations (mother and children). Slit lamp examination revealed the same lesions in our three patients: an early-onset corneal arcus senilis, central corneal deposits, and a gray stromal haze in the two oldest subjects. The older the patient, the more numerous and dense were these lesions. The various anterior segment OCTs showed an increase in the number of hyperreflective opacities in the anterior stroma and, in the older subject, the appearance of many posterior shadows. Monitoring of pachymetry by Pentacam® showed progressive age-related thickening. All three patients had dyslipidemia treated with statins or diet alone. In our case we proposed treatment only to subject A because of the significant impact on her visual acuity. DISCUSSION Numerous clinical, para-clinical and genetic descriptions of this disease are found in the literature. Schnyder dystrophy is rare but not unheard of and may be discovered fortuitously or in the setting of decreased visual acuity. Genetic analysis of our family revealed a mutation of the UBIAD1 gene not described in the literature. UBIAD1 encodes the protein domain-containing UbiA prenyltransferase 1 which converts vitamin K1 into K2 and is involved in the cholesterol synthesis pathway. In the case of a mutation, it is no longer functional, leading to the accumulation of cholesterol crystals. Given the clinical context and the presence of this variant of the reference sequence in all relatives, its pathogenesis is strongly suspected in our family. The originality of our article is to present the progression of the same pathology in 3 patients with the same mutation at different ages and degrees of severity. This notion of progressive worsening and the need to treat late in the majority of cases are found in literature. CONCLUSION The discovery of a new variant within the UBAID1 gene suggests its pathogenesis in view of the clinical features available to us. The dystrophy is initially asymptomatic before the high number of deposits becomes disabling.
Collapse
Affiliation(s)
- M Gonzalvez
- Aix-Marseille université, 13284 Marseille, France; Service d'ophtalmologie, hôpital de la Timone, AP-HM, 264, rue Saint-Pierre, 13385 Marseille, France.
| | - G Ho Wang Yin
- Aix-Marseille université, 13284 Marseille, France; Service d'ophtalmologie, hôpital de la Timone, AP-HM, 264, rue Saint-Pierre, 13385 Marseille, France
| | - P Gascon
- Aix-Marseille université, 13284 Marseille, France; Service d'ophtalmologie, hôpital de la Timone, AP-HM, 264, rue Saint-Pierre, 13385 Marseille, France
| | - D Denis
- Aix-Marseille université, 13284 Marseille, France; Service d'ophtalmologie, hôpital de la Timone, AP-HM, 264, rue Saint-Pierre, 13385 Marseille, France
| | - L Hoffart
- Aix-Marseille université, 13284 Marseille, France; Service d'ophtalmologie, hôpital de la Timone, AP-HM, 264, rue Saint-Pierre, 13385 Marseille, France
| |
Collapse
|
24
|
Sarosiak A, Udziela M, Ścieżyńska A, Oziębło D, Wawrzynowska A, Szaflik JP, Ołdak M. Clinical diversity in patients with Schnyder corneal dystrophy-a novel and known UBIAD1 pathogenic variants. Graefes Arch Clin Exp Ophthalmol 2018; 256:2127-2134. [PMID: 30084067 PMCID: PMC6208719 DOI: 10.1007/s00417-018-4075-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 06/29/2018] [Accepted: 07/23/2018] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Schnyder corneal dystrophy (SCD) is a rare inherited disease that leads to gradual vision loss by the deposition of lipids in the corneal stroma. The aim of this study is to report a novel pathogenic variant in the UBIAD1 gene and present clinical and molecular findings in Polish patients with SCD. METHODS Individuals (n = 37) originating from four Polish SCD families were subjected for a complete ophthalmological check-up and genetic testing. Corneal changes were visualized by slit-lamp examination, anterior segment optical coherent tomography (AS-OCT), and in vivo confocal microscopy (IVCM). RESULTS In a proband with primarily mild SCD that progressed rapidly at the end of the fifth decade of life, a novel missense pathogenic variant in UBIAD1 (p.Thr120Arg) was identified. The other studied SCD family represents the second family reported worldwide with the UBIAD1 p.Asp112Asn variant. SCD in the remaining two families resulted from a frequently identified p.Asn102Ser pathogenic variant. All affected subjects presented a crystalline form of SCD. The severity of corneal changes was age-dependent, and their morphology and localization are described in detail. CONCLUSION The novel p.Thr120Arg is the fourth SCD-causing variant lying within the FARM motif of the UBIAD1 protein, which underlines a high importance of this motif for SCD pathogenesis. The current study provides independent evidence for the pathogenic potential of UBIAD1 p.Asp112Asn and new information useful for clinicians.
Collapse
Affiliation(s)
- Anna Sarosiak
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, T. Chałubińskiego 5, 02-004, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Monika Udziela
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
| | - Aneta Ścieżyńska
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, T. Chałubińskiego 5, 02-004, Warsaw, Poland
| | - Dominika Oziębło
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, T. Chałubińskiego 5, 02-004, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Anna Wawrzynowska
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, T. Chałubińskiego 5, 02-004, Warsaw, Poland
| | - Jacek P Szaflik
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
| | - Monika Ołdak
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, T. Chałubińskiego 5, 02-004, Warsaw, Poland.
| |
Collapse
|
25
|
Wangeline MA, Vashistha N, Hampton RY. Proteostatic Tactics in the Strategy of Sterol Regulation. Annu Rev Cell Dev Biol 2018; 33:467-489. [PMID: 28992438 DOI: 10.1146/annurev-cellbio-111315-125036] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In eukaryotes, the synthesis and uptake of sterols undergo stringent multivalent regulation. Both individual enzymes and transcriptional networks are controlled to meet changing needs of the many sterol pathway products. Regulation is tailored by evolution to match regulatory constraints, which can be very different in distinct species. Nevertheless, a broadly conserved feature of many aspects of sterol regulation is employment of proteostasis mechanisms to bring about control of individual proteins. Proteostasis is the set of processes that maintain homeostasis of a dynamic proteome. Proteostasis includes protein quality control pathways for the detection, and then the correction or destruction, of the many misfolded proteins that arise as an unavoidable feature of protein-based life. Protein quality control displays not only the remarkable breadth needed to manage the wide variety of client molecules, but also extreme specificity toward the misfolded variants of a given protein. These features are amenable to evolutionary usurpation as a means to regulate proteins, and this approach has been used in sterol regulation. We describe both well-trod and less familiar versions of the interface between proteostasis and sterol regulation and suggest some underlying ideas with broad biological and clinical applicability.
Collapse
Affiliation(s)
- Margaret A Wangeline
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093;
| | - Nidhi Vashistha
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093;
| | - Randolph Y Hampton
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093;
| |
Collapse
|
26
|
Schumacher MM, Jun DJ, Johnson BM, DeBose-Boyd RA. UbiA prenyltransferase domain-containing protein-1 modulates HMG-CoA reductase degradation to coordinate synthesis of sterol and nonsterol isoprenoids. J Biol Chem 2017; 293:312-323. [PMID: 29167270 DOI: 10.1074/jbc.ra117.000423] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/20/2017] [Indexed: 12/17/2022] Open
Abstract
UBIAD1 (UbiA prenyltransferase domain-containing protein-1) utilizes geranylgeranyl pyrophosphate (GGpp) to synthesize vitamin K2 We previously reported that sterols stimulate binding of UBIAD1 to endoplasmic reticulum (ER)-localized 3-hydroxy-3-methylglutaryl (HMG) CoA reductase. UBIAD1 binding inhibits sterol-accelerated, ER-associated degradation (ERAD) of reductase, one of several mechanisms for feedback control of this rate-limiting enzyme in the branched pathway that produces cholesterol and nonsterol isoprenoids such as GGpp. Accumulation of GGpp in ER membranes triggers release of UBIAD1 from reductase, permitting its maximal ERAD and ER-to-Golgi transport of UBIAD1. Mutant UBIAD1 variants associated with Schnyder corneal dystrophy (SCD), a human disorder characterized by corneal accumulation of cholesterol, resist GGpp-induced release from reductase and remain sequestered in the ER to block reductase ERAD. Using lines of genetically manipulated cells, we now examine consequences of UBIAD1 deficiency and SCD-associated UBIAD1 on reductase ERAD and cholesterol synthesis. Our results indicated that reductase becomes destabilized in the absence of UBIAD1, resulting in reduced cholesterol synthesis and intracellular accumulation. In contrast, an SCD-associated UBIAD1 variant inhibited reductase ERAD, thereby stabilizing the enzyme and contributing to enhanced synthesis and intracellular accumulation of cholesterol. Finally, we present evidence that GGpp-regulated, ER-to-Golgi transport enables UBIAD1 to modulate reductase ERAD such that synthesis of nonsterol isoprenoids is maintained in sterol-replete cells. These findings further establish UBIAD1 as a central player in the reductase ERAD pathway and regulation of isoprenoid synthesis. They also indicate that UBIAD1-mediated inhibition of reductase ERAD underlies cholesterol accumulation associated with SCD.
Collapse
Affiliation(s)
- Marc M Schumacher
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9046
| | - Dong-Jae Jun
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9046
| | - Brittany M Johnson
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9046
| | - Russell A DeBose-Boyd
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9046.
| |
Collapse
|
27
|
Johnson BM, DeBose-Boyd RA. Underlying mechanisms for sterol-induced ubiquitination and ER-associated degradation of HMG CoA reductase. Semin Cell Dev Biol 2017; 81:121-128. [PMID: 29107682 DOI: 10.1016/j.semcdb.2017.10.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 10/19/2017] [Indexed: 11/30/2022]
Abstract
Accelerated ubiquitination and subsequent endoplasmic reticulum (ER)-associated degradation (ERAD) constitute one of several mechanisms for feedback control of HMG CoA reductase, the rate-limiting enzyme in synthesis of cholesterol and nonsterol isoprenoids. This ERAD is initiated by the accumulation of certain sterols in ER membranes, which trigger binding of reductase to ER membrane proteins called Insigs. Insig-associated ubiquitin ligases facilitate ubiquitination of reductase, marking the enzyme for extraction across the ER membrane through a reaction that is augmented by nonsterol isoprenoids. Once extracted, ubiquitinated reductase becomes dislocated into the cytosol for degradation by 26S proteasomes. In this review, we will highlight several advances in the understanding of reductase ERAD, which includes the discovery for a role of the vitamin K2 synthetic enzyme UBIAD1 in the reaction and demonstration that sterol-accelerated ERAD significantly contributes to feedback regulation of reductase and cholesterol metabolism in livers of whole animals.
Collapse
Affiliation(s)
- Brittany M Johnson
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, United States
| | - Russell A DeBose-Boyd
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, United States.
| |
Collapse
|