1
|
Delorme J, Dima A, Bélanger V, Napartuk M, Bouchard I, Meloche C, Curnier D, Sultan S, Laverdière C, Sinnett D, Marcil V. Impact of Early Nutritional Intervention During Cancer Treatment on Dietary Intakes and Cardiometabolic Health in Children and Adolescents. Cancers (Basel) 2025; 17:157. [PMID: 39796783 PMCID: PMC11719478 DOI: 10.3390/cancers17010157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/27/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND/OBJECTIVES Pediatric cancer survivors are at greater risk of cardiometabolic complications than their peers. This study evaluates the preliminary impact of the VIE (Valorization, Implication, Education) intervention, which integrates nutrition, physical activity, and psychological support, on dietary intake and cardiometabolic health among children and adolescents during cancer treatment. METHODS This comparative study includes pediatric cancer patients recruited to either the VIE intervention group or a control group receiving standard care. Post-treatment data on dietary intake, anthropometric measures, blood pressure, and biochemical parameters were compared between groups and stratified by level of involvement in the nutritional intervention and age at diagnosis (children and adolescents). RESULTS In the intervention group, 45 participants were included (51.1% male, mean age at evaluation 10.2 ± 4.5 years, mean time since end of treatment of 1.3 ± 0.8 years), and the control group comprised 77 participants (44.2% male, mean age at evaluation 12.0 ± 5.6 years, mean time since end of treatment of 1.4 ± 0.8 years). The intervention group had lower total caloric intake (mean: 1759 ± 513 vs. 1997 ± 669 kcal, p = 0.042) and higher calcium intake (mean: 567 ± 240 vs. 432 ± 197 mg/1000 kcal, p = 0.001). The participants who were highly involved in the nutritional intervention had greater protein-derived energy intake than the controls (mean: 17 ± 5 vs. 15 ± 4%, p = 0.029). While there was a tendency for a lesser proportion of cardiometabolic risk factors in the adolescents from the intervention group, the differences did not reach statistical significance. CONCLUSIONS The VIE intervention improved some specific dietary intakes in the medium term after treatment completion but did not significantly impact cardiometabolic health outcomes. Additional strategies are needed to improve the diet of pediatric cancer patients, and further research is warranted to assess the long-term impact of such interventions.
Collapse
Affiliation(s)
- Josianne Delorme
- Centre de Recherche Azrieli du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada; (J.D.); (A.D.); (V.B.); (M.N.); (I.B.); (C.M.); (D.C.); (C.L.); (D.S.)
- Department of Nutrition, Faculty of Medicine, Université de Montreal, Montreal, QC H3T 1A8, Canada
| | - Andra Dima
- Centre de Recherche Azrieli du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada; (J.D.); (A.D.); (V.B.); (M.N.); (I.B.); (C.M.); (D.C.); (C.L.); (D.S.)
- Department of Nutrition, Faculty of Medicine, Université de Montreal, Montreal, QC H3T 1A8, Canada
| | - Véronique Bélanger
- Centre de Recherche Azrieli du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada; (J.D.); (A.D.); (V.B.); (M.N.); (I.B.); (C.M.); (D.C.); (C.L.); (D.S.)
- Department of Nutrition, Faculty of Medicine, Université de Montreal, Montreal, QC H3T 1A8, Canada
| | - Mélanie Napartuk
- Centre de Recherche Azrieli du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada; (J.D.); (A.D.); (V.B.); (M.N.); (I.B.); (C.M.); (D.C.); (C.L.); (D.S.)
- Department of Nutrition, Faculty of Medicine, Université de Montreal, Montreal, QC H3T 1A8, Canada
| | - Isabelle Bouchard
- Centre de Recherche Azrieli du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada; (J.D.); (A.D.); (V.B.); (M.N.); (I.B.); (C.M.); (D.C.); (C.L.); (D.S.)
| | - Caroline Meloche
- Centre de Recherche Azrieli du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada; (J.D.); (A.D.); (V.B.); (M.N.); (I.B.); (C.M.); (D.C.); (C.L.); (D.S.)
| | - Daniel Curnier
- Centre de Recherche Azrieli du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada; (J.D.); (A.D.); (V.B.); (M.N.); (I.B.); (C.M.); (D.C.); (C.L.); (D.S.)
- School of Kinesiology and Physical Activity Sciences, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Serge Sultan
- Centre de Recherche Azrieli du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada; (J.D.); (A.D.); (V.B.); (M.N.); (I.B.); (C.M.); (D.C.); (C.L.); (D.S.)
- Department of Psychology, Université de Montréal, Montreal, QC H2V 2S9, Canada
| | - Caroline Laverdière
- Centre de Recherche Azrieli du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada; (J.D.); (A.D.); (V.B.); (M.N.); (I.B.); (C.M.); (D.C.); (C.L.); (D.S.)
- Service of Hematology-Oncology, CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Daniel Sinnett
- Centre de Recherche Azrieli du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada; (J.D.); (A.D.); (V.B.); (M.N.); (I.B.); (C.M.); (D.C.); (C.L.); (D.S.)
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Valérie Marcil
- Centre de Recherche Azrieli du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada; (J.D.); (A.D.); (V.B.); (M.N.); (I.B.); (C.M.); (D.C.); (C.L.); (D.S.)
- Department of Nutrition, Faculty of Medicine, Université de Montreal, Montreal, QC H3T 1A8, Canada
| |
Collapse
|
2
|
Cheng X, Sun G, Meng L, Liu Y, Wen J, Zhao X, Cai W, Xin H, Liu Y, Hao C. Exploring the Molecular Mechanisms of Herbs in the Treatment of Hyperlipidemia Based on Network Pharmacology and Molecular Docking. J Med Food 2024; 27:1092-1105. [PMID: 39149800 DOI: 10.1089/jmf.2024.k.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Affiliation(s)
- Xiao Cheng
- School of Medicine, Linyi University, Linyi, China
| | - Geng Sun
- School of Chinese Medicine, Bozhou University, Bozhou, China
| | - Li Meng
- School of Medicine, Linyi University, Linyi, China
| | - Yueli Liu
- School of Medicine, Linyi University, Linyi, China
| | - Jiangnan Wen
- School of Medicine, Linyi University, Linyi, China
| | - Xiaoli Zhao
- School of Medicine, Linyi University, Linyi, China
| | - Wenhui Cai
- School of Medicine, Linyi University, Linyi, China
| | - Huawei Xin
- School of Medicine, Linyi University, Linyi, China
| | - Yu Liu
- School of Chinese Medicine, Bozhou University, Bozhou, China
| | | |
Collapse
|
3
|
Sarkar S, Roy D, Chatterjee B, Ghosh R. Clinical advances in analytical profiling of signature lipids: implications for severe non-communicable and neurodegenerative diseases. Metabolomics 2024; 20:37. [PMID: 38459207 DOI: 10.1007/s11306-024-02100-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/06/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND Lipids play key roles in numerous biological processes, including energy storage, cell membrane structure, signaling, immune responses, and homeostasis, making lipidomics a vital branch of metabolomics that analyzes and characterizes a wide range of lipid classes. Addressing the complex etiology, age-related risk, progression, inflammation, and research overlap in conditions like Alzheimer's Disease, Parkinson's Disease, Cardiovascular Diseases, and Cancer poses significant challenges in the quest for effective therapeutic targets, improved diagnostic markers, and advanced treatments. Mass spectrometry is an indispensable tool in clinical lipidomics, delivering quantitative and structural lipid data, and its integration with technologies like Liquid Chromatography (LC), Magnetic Resonance Imaging (MRI), and few emerging Matrix-Assisted Laser Desorption Ionization- Imaging Mass Spectrometry (MALDI-IMS) along with its incorporation into Tissue Microarray (TMA) represents current advances. These innovations enhance lipidomics assessment, bolster accuracy, and offer insights into lipid subcellular localization, dynamics, and functional roles in disease contexts. AIM OF THE REVIEW The review article summarizes recent advancements in lipidomic methodologies from 2019 to 2023 for diagnosing major neurodegenerative diseases, Alzheimer's and Parkinson's, serious non-communicable cardiovascular diseases and cancer, emphasizing the role of lipid level variations, and highlighting the potential of lipidomics data integration with genomics and proteomics to improve disease understanding and innovative prognostic, diagnostic and therapeutic strategies. KEY SCIENTIFIC CONCEPTS OF REVIEW Clinical lipidomic studies are a promising approach to track and analyze lipid profiles, revealing their crucial roles in various diseases. This lipid-focused research provides insights into disease mechanisms, biomarker identification, and potential therapeutic targets, advancing our understanding and management of conditions such as Alzheimer's Disease, Parkinson's Disease, Cardiovascular Diseases, and specific cancers.
Collapse
Affiliation(s)
- Sutanu Sarkar
- Amity Institute of Biotechnology (AIBNK), Amity University, Rajarhat, Newtown Action Area 2, Kolkata, 700135, West Bengal, India
| | - Deotima Roy
- Amity Institute of Biotechnology (AIBNK), Amity University, Rajarhat, Newtown Action Area 2, Kolkata, 700135, West Bengal, India
| | - Bhaskar Chatterjee
- Amity Institute of Biotechnology (AIBNK), Amity University, Rajarhat, Newtown Action Area 2, Kolkata, 700135, West Bengal, India
| | - Rajgourab Ghosh
- Amity Institute of Biotechnology (AIBNK), Amity University, Rajarhat, Newtown Action Area 2, Kolkata, 700135, West Bengal, India.
| |
Collapse
|
4
|
Lica JJ, Gucwa K, Heldt M, Stupak A, Maciejewska N, Ptaszyńska N, Łęgowska A, Pradhan B, Gitlin-Domagalska A, Dębowski D, Jakóbkiewicz-Banecka J, Rolka K. Lactoferricin B Combined with Antibiotics Exhibits Leukemic Selectivity and Antimicrobial Activity. Molecules 2024; 29:678. [PMID: 38338422 PMCID: PMC10856415 DOI: 10.3390/molecules29030678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
The fusion of penetrating peptides (PPs), e.g., cell penetration peptides (CPPs) or antimicrobial peptides (AMPs), together with antimicrobial agents is an expanding research field. Specific AMPs, such as lactoferricin B (LfcinB), have demonstrated strong antibacterial, antifungal, and antiparasitic activity, as well as valuable anticancer activity, proving beneficial in the development of anticancer conjugates. The resulting conjugates offer potential dual functionality, acting as both an anticancer and an antimicrobial agent. This is especially necessary in cancer treatment, where microbial infections pose a critical risk. Leukemic cells frequently exhibit altered outer lipid membranes compared to healthy cells, making them more sensitive to compounds that interfere with their membrane. In this study, we revisited and reanalyzed our earlier research on LfcinB and its conjugates. Furthermore, we carried out new experiments with a specific focus on cell proliferation, changes in membrane asymmetric phosphatidylserine location, intracellular reactive oxygen species (ROS) generation, mitochondrial functions, and in vitro bacterial topoisomerase inhibition.
Collapse
Affiliation(s)
- Jan Jakub Lica
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | - Katarzyna Gucwa
- Department of Microbiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland
| | - Mateusz Heldt
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland
| | - Anna Stupak
- Polpharma Biologics S.A., Gdansk Science & Technology Park, 80-172 Gdansk, Poland
| | - Natalia Maciejewska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland
| | - Natalia Ptaszyńska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | - Anna Łęgowska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | - Bhaskar Pradhan
- Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Agata Gitlin-Domagalska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | - Dawid Dębowski
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | | | - Krzysztof Rolka
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| |
Collapse
|
5
|
Lica JJ, Heldt M, Wieczór M, Chodnicki P, Ptaszyńska N, Maciejewska N, Łęgowska A, Brankiewicz W, Gucwa K, Stupak A, Pradhan B, Gitlin-Domagalska A, Dębowski D, Milewski S, Bieniaszewska M, Grabe GJ, Hellmann A, Rolka K. Dual-Activity Fluoroquinolone-Transportan 10 Conjugates Offer Alternative Leukemia Therapy during Hematopoietic Cell Transplantation. Mol Pharmacol 2023; 105:39-53. [PMID: 37977824 DOI: 10.1124/molpharm.123.000735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/01/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023] Open
Abstract
Hematopoietic cell transplantation (HCT) is often considered a last resort leukemia treatment, fraught with limited success due to microbial infections, a leading cause of mortality in leukemia patients. To address this critical issue, we explored a novel approach by synthesizing antileukemic agents containing antibacterial substances. This innovative strategy involves conjugating fluoroquinolone antibiotics, such as ciprofloxacin (CIP) or levofloxacin (LVX), with the cell-penetrating peptide transportan 10 (TP10). Here, we demonstrate that the resultant compounds display promising biologic activities in preclinical studies. These novel conjugates not only exhibit potent antimicrobial effects but are also selective against leukemia cells. The cytotoxic mechanism involves rapid disruption of cell membrane asymmetry leading to membrane damage. Importantly, these conjugates penetrated mammalian cells, accumulating within the nuclear membrane without significant effect on cellular architecture or mitochondrial function. Molecular simulations elucidated the aggregation tendencies of TP10 conjugates within lipid bilayers, resulting in membrane disruption and permeabilization. Moreover, mass spectrometry analysis confirmed efficient reduction of disulfide bonds within TP10 conjugates, facilitating release and activation of the fluoroquinolone derivatives. Intriguingly, these compounds inhibited human topoisomerases, setting them apart from traditional fluoroquinolones. Remarkably, TP10 conjugates generated lower intracellular levels of reactive oxygen species compared with CIP and LVX. The combination of antibacterial and antileukemic properties, coupled with selective cytostatic effects and minimal toxicity toward healthy cells, positions TP10 derivatives as promising candidates for innovative therapeutic approaches in the context of antileukemic HCT. This study highlights their potential in search of more effective leukemia treatments. SIGNIFICANCE STATEMENT: Fluoroquinolones are commonly used antibiotics, while transportan 10 (TP10) is a cell-penetrating peptide (CPP) with anticancer properties. In HCT, microbial infections are the primary cause of illness and death. Combining TP10 with fluoroquinolones enhanced their effects on different cell types. The dual pharmacological action of these conjugates offers a promising proof-of-concept solution for leukemic patients undergoing HCT. Strategically designed therapeutics, incorporating CPPs with antibacterial properties, have the potential to reduce microbial infections in the treatment of malignancies.
Collapse
Affiliation(s)
- Jan Jakub Lica
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Mateusz Heldt
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Milosz Wieczór
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Pawel Chodnicki
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Natalia Ptaszyńska
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Natalia Maciejewska
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Anna Łęgowska
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Wioletta Brankiewicz
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Katarzyna Gucwa
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Anna Stupak
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Bhaskar Pradhan
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Agata Gitlin-Domagalska
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Dawid Dębowski
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Sławomir Milewski
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Maria Bieniaszewska
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Grzegorz Jan Grabe
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Andrzej Hellmann
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Krzysztof Rolka
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| |
Collapse
|
6
|
Arévalo C, Rojas L, Santamaria M, Molina L, Arbeláez L, Sánchez P, Ballesteros-Ramírez R, Arevalo-Zambrano M, Quijano S, Cala MP, Fiorentino S. Untargeted metabolomic and lipidomic analyses reveal lipid dysregulation in the plasma of acute leukemia patients. Front Mol Biosci 2023; 10:1235160. [PMID: 38028534 PMCID: PMC10667492 DOI: 10.3389/fmolb.2023.1235160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Acute leukemias (AL) are aggressive neoplasms with high mortality rates. Metabolomics and oxidative status have emerged as important tools to identify new biomarkers with clinical utility. To identify the metabolic differences between healthy individuals (HI) and patients with AL, a multiplatform untargeted metabolomic and lipidomic approach was conducted using liquid and gas chromatography coupled with quadrupole-time-of-flight mass spectrometry (LC-QTOF-MS or GC-QTOF-MS). Additionally, the total antioxidant capacity (TAC) was measured. A total of 20 peripheral blood plasma samples were obtained from patients with AL and 18 samples from HI. Our analysis revealed 135 differentially altered metabolites in the patients belonging to 12 chemical classes; likewise, the metabolic pathways of glycerolipids and sphingolipids were the most affected in the patients. A decrease in the TAC of the patients with respect to the HI was evident. This study conducted with a cohort of Colombian patients is consistent with observations from other research studies that suggest dysregulation of lipid compounds. Furthermore, metabolic differences between patients and HI appear to be independent of lifestyle, race, or geographic location, providing valuable information for future advancements in understanding the disease and developing more global therapies.
Collapse
Affiliation(s)
- Cindy Arévalo
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Laura Rojas
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Mary Santamaria
- MetCore—Metabolomics Core Facility, Vice-Presidency for Research, Universidad de Los Andes, Bogotá, Colombia
| | | | - Lina Arbeláez
- Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Paula Sánchez
- Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Ricardo Ballesteros-Ramírez
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Sandra Quijano
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
- Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Mónica P. Cala
- MetCore—Metabolomics Core Facility, Vice-Presidency for Research, Universidad de Los Andes, Bogotá, Colombia
| | - Susana Fiorentino
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
7
|
Auclair N, Sané AT, Ahmarani L, Ould-Chikh NEH, Patey N, Beaulieu JF, Delvin E, Spahis S, Levy E. High-fat diet reveals the impact of Sar1b defects on lipid and lipoprotein profile and cholesterol metabolism. J Lipid Res 2023; 64:100423. [PMID: 37558128 PMCID: PMC10518719 DOI: 10.1016/j.jlr.2023.100423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023] Open
Abstract
Biallelic pathogenic variants of the Sar1b gene cause chylomicron retention disease (CRD) whose central phenotype is the inability to secrete chylomicrons. Patients with CRD experience numerous clinical symptoms such as gastrointestinal, hepatic, neuromuscular, ophthalmic, and cardiological abnormalities. Recently, the production of mice expressing either a targeted deletion or mutation of Sar1b recapitulated biochemical and gastrointestinal defects associated with CRD. The present study was conducted to better understand little-known aspects of Sar1b mutations, including mouse embryonic development, lipid profile, and lipoprotein composition in response to high-fat diet, gut and liver cholesterol metabolism, sex-specific effects, and genotype-phenotype differences. Sar1b deletion and mutation produce a lethal phenotype in homozygous mice, which display intestinal lipid accumulation without any gross morphological abnormalities. On high-fat diet, mutant mice exhibit more marked abnormalities in body composition, adipose tissue and liver weight, plasma cholesterol, non-HDL cholesterol and polyunsaturated fatty acids than those on the regular Chow diet. Divergences were also noted in lipoprotein lipid composition, lipid ratios (serving as indices of particle size) and lipoprotein-apolipoprotein distribution. Sar1b defects significantly reduce gut cholesterol accumulation while altering key players in cholesterol metabolism. Noteworthy, variations were observed between males and females, and between Sar1b deletion and mutation phenotypes. Overall, mutant animal findings reveal the importance of Sar1b in several biochemical, metabolic and developmental processes.
Collapse
Affiliation(s)
- Nickolas Auclair
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada; Department of Pharmacology & Physiology, Université de Montréal, Montreal, Quebec, Canada
| | - Alain T Sané
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Léna Ahmarani
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | | | - Nathalie Patey
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-François Beaulieu
- Laboratory of Intestinal Physiopathology, Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Edgard Delvin
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Schohraya Spahis
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada; Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Emile Levy
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada; Department of Pharmacology & Physiology, Université de Montréal, Montreal, Quebec, Canada; Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
8
|
Kartal Ö, Gürsel O. Assessment of metabolic syndrome parameters in pediatric acute lymphoblastic leukemia survivors. Indian J Cancer 2023; 60:325-330. [PMID: 36861687 DOI: 10.4103/ijc.ijc_1110_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Objective This study aims to demonstrate the prevalence of metabolic syndrome parameters and to investigate their relationship with body mass index in pediatric acute lymphoblastic leukemia survivors. Methods The cross-sectional study was conducted between January and October 2019 at the Department of Pediatric Hematology and comprised acute lymphoblastic leukemia survivors who had been treated between 1995 and 2016 and had been off treatment for at least 2 years. The control group included 40 healthy participants who were matched for age and gender. The two groups were compared in terms of various parameters (BMI [body mass index], waist circumference, fasting plasma glucose, HOMA-IR [Homeostatic Model Assessment-Insulin Resistance], etc.). Data were analyzed using Statistical Package for the Social Sciences (SPSS) 21. Results Of the 96 participants, 56 (58.3%) were survivors and 40 (41.6%) were controls. Among the survivors, there were 36 (64.3%) men, whereas the control group had 23 (57.5%) men. The mean age of the survivors was 16.67 ± 3.41 years, whereas the mean age of the controls was 15.51 ± 4.2 years (P > 0.05). Multinomial logistic regression analysis showed that cranial radiation therapy and female gender were associated with overweight and obesity (P < 0.05). A significant positive correlation was found between BMI and fasting insulin, in survivors (P < 0.05). Conclusion Disorders of the metabolic parameter were found to be more common among acute lymphoblastic leukemia survivors than among healthy controls.
Collapse
Affiliation(s)
- Ömer Kartal
- Gülhane Training and Research Hospital, Division of Pediatric Hematology and Oncology, Ankara, Turkey
| | - Orhan Gürsel
- Gülhane Training and Research Hospital, Division of Pediatric Hematology and Oncology, Ankara, Turkey
| |
Collapse
|
9
|
Oza PP, Kashfi K. The evolving landscape of PCSK9 inhibition in cancer. Eur J Pharmacol 2023; 949:175721. [PMID: 37059376 PMCID: PMC10229316 DOI: 10.1016/j.ejphar.2023.175721] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/23/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Cancer is a disease with a significant global burden in terms of premature mortality, loss of productivity, healthcare expenditures, and impact on mental health. Recent decades have seen numerous advances in cancer research and treatment options. Recently, a new role of cholesterol-lowering PCSK9 inhibitor therapy has come to light in the context of cancer. PCSK9 is an enzyme that induces the degradation of low-density lipoprotein receptors (LDLRs), which are responsible for clearing cholesterol from the serum. Thus, PCSK9 inhibition is currently used to treat hypercholesterolemia, as it can upregulate LDLRs and enable cholesterol reduction through these receptors. The cholesterol-lowering effects of PCSK9 inhibitors have been suggested as a potential mechanism to combat cancer, as cancer cells have been found to increasingly rely on cholesterol for their growth needs. Additionally, PCSK9 inhibition has demonstrated the potential to induce cancer cell apoptosis through several pathways, increase the efficacy of a class of existing anticancer therapies, and boost the host immune response to cancer. A role in managing cancer- or cancer treatment-related development of dyslipidemia and life-threatening sepsis has also been suggested. This review examines the current evidence regarding the effects of PCSK9 inhibition in the context of different cancers and cancer-associated complications.
Collapse
Affiliation(s)
- Palak P Oza
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, 10091, USA.
| |
Collapse
|
10
|
Bélanger V, Morel S, Napartuk M, Bouchard I, Meloche C, Curnier D, Sultan S, Laverdière C, Sinnett D, Marcil V. Abnormal HDL lipid and protein composition following pediatric cancer treatment: an associative study. Lipids Health Dis 2023; 22:72. [PMID: 37301877 DOI: 10.1186/s12944-023-01822-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/24/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Long-term childhood cancer survivors (CCS) are at high risk of having dyslipidemia including low high density lipoprotein cholesterol (HDL-C). However, little is known about the prevalence of low HDL-C and the impact of therapy exposure on HDL composition early after treatment is terminated. METHODS This associative study included 50 children and adolescents who had completed their cancer treatments (< 4 years). Clinical characteristics (demographic, diagnosis, treatment, anthropometric parameters), fasting plasma lipids, apoliporoteins (Apo) A-I and composition of HDL fractions (HDL2 and HDL3) were assessed. Data were stratified according to the presence of dyslipidemia and median doses of therapeutic agents and compared using Fisher exact or Mann-Whitney tests. Univariate binary logistic regression analyses were carried out to evaluate the associations between the clinical and biochemical characteristics and having low HDL-C. Composition of HDL2 and HDL3 particles was assessed in a sub-group of 15 patients and compared to 15 age- and sex-matched healthy controls using Wilcoxon paired test. RESULTS Of the 50 pediatric cancer patients included in this study (mean age: 11.30 ± 0.72 y; mean time since end of treatment: 1.47 ± 0.12 y; male: 38%), 8 had low HDL-C (16%), all of which were adolescent at diagnosis. Higher doses of doxorubicin were associated with lower HDL-C and Apo A-I levels. In hypertriglyceridemic patients and compared to normolipidemics, triglycerides (TG) content was greater in HDL2 and HDL3 fractions whereas esterified cholesterol (EC) content was lower in HDL2. Enrich TG content of HDL3 and lower EC of HDL2 was found in patients exposed to ≥ 90 mg/m2 doxorubicin. Factors positively associated with the risk of having low HDL-C were age, being overweight or obese and exposure to doxorubicin ≥ 90 mg/m2. Compared to healthy controls, a sub-group of 15 patients showed higher TG and free cholesterol (FC) content of HDL2 and HDL3 and lower EC content in HDL3. CONCLUSIONS Overall, we found abnormalities in HDL-C and Apo A-I levels and in HDL composition early after pediatric cancer treatment that are influenced by age, overweight or obesity status and exposure to doxorubicin.
Collapse
Affiliation(s)
- Véronique Bélanger
- Research Centre, CHU Sainte-Justine, 3175 Chem. de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
- Department of Nutrition, Université de Montréal, Montreal, QC, Canada
| | - Sophia Morel
- Research Centre, CHU Sainte-Justine, 3175 Chem. de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
- Department of Nutrition, Université de Montréal, Montreal, QC, Canada
| | - Mélanie Napartuk
- Research Centre, CHU Sainte-Justine, 3175 Chem. de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
- Department of Nutrition, Université de Montréal, Montreal, QC, Canada
| | - Isabelle Bouchard
- Research Centre, CHU Sainte-Justine, 3175 Chem. de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Caroline Meloche
- Research Centre, CHU Sainte-Justine, 3175 Chem. de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Daniel Curnier
- Research Centre, CHU Sainte-Justine, 3175 Chem. de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
- School of Kinesiology and Physical Activity Sciences, Université de Montréal, Montreal, QC, Canada
| | - Serge Sultan
- Research Centre, CHU Sainte-Justine, 3175 Chem. de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Caroline Laverdière
- Research Centre, CHU Sainte-Justine, 3175 Chem. de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
| | - Daniel Sinnett
- Research Centre, CHU Sainte-Justine, 3175 Chem. de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
| | - Valérie Marcil
- Research Centre, CHU Sainte-Justine, 3175 Chem. de la Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada.
- Department of Nutrition, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
11
|
Napartuk M, Bélanger V, Bouchard I, Meloche C, Curnier D, Sultan S, Laverdière C, Sinnett D, Marcil V. Improvement of Diet after an Early Nutritional Intervention in Pediatric Oncology. CHILDREN 2023; 10:children10040667. [PMID: 37189915 DOI: 10.3390/children10040667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Pediatric cancer survivors may experience cardiometabolic sequelae over the course of their lives as a result of the treatments they have received. While nutrition consists of an actionable target for cardiometabolic health, few nutritional interventions have been documented in this population. This study assessed the changes in diet during a one-year nutritional intervention for children and adolescents undergoing cancer treatments and the participants’ anthropometric and cardiometabolic profiles. A total of 36 children and adolescents (mean age: 7.9 years, 52.8% male) newly diagnosed with cancer (50% leukemia) and their parents underwent a one-year individualized nutrition intervention. The mean number of follow-up visits with the dietitian during the intervention was 4.72 ± 1.06. Between the initial and one-year assessments, there was an improvement in diet quality reflected by the Diet Quality Index (5.22 ± 9.95, p = 0.003). Similarly, the proportion of participants with moderate and good adherence (vs. low adherence) to the Healthy Diet Index score almost tripled after one year of intervention (14% vs. 39%, p = 0.012). In parallel, there was an increase in the mean z-scores for weight (0.29 ± 0.70, p = 0.019) and BMI (0.50 ± 0.88, p = 0.002), and in the mean levels of HDL-C (0.27 ± 0.37 mmol/L, p = 0.002) and 25-hydroxy vitamin D (14.5 ± 28.1 mmol/L, p = 0.03). Overall, this study supports that a one-year nutritional intervention deployed early after a pediatric cancer diagnosis is associated with an improvement in the diets of children and adolescents.
Collapse
Affiliation(s)
- Mélanie Napartuk
- Research Center of the CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
- Department of Nutrition, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1A8, Canada
| | - Véronique Bélanger
- Research Center of the CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
- Department of Nutrition, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1A8, Canada
| | - Isabelle Bouchard
- Research Center of the CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | - Caroline Meloche
- Research Center of the CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | - Daniel Curnier
- Research Center of the CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
- School of Kinesiology and Physical Activity Sciences, Université de Montréal, Montreal, QC H3G 1Y5, Canada
| | - Serge Sultan
- Research Center of the CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
- Department of Psychology, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Caroline Laverdière
- Research Center of the CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Daniel Sinnett
- Research Center of the CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Valérie Marcil
- Research Center of the CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
- Department of Nutrition, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1A8, Canada
| |
Collapse
|
12
|
Anand ST, Ryckman KK, Baer RJ, Charlton ME, Breheny PJ, Terry WW, Kober K, Oltman S, Rogers EE, Jelliffe-Pawlowski LL, Chrischilles EA. Metabolic differences among newborns born to mothers with a history of leukemia or lymphoma. J Matern Fetal Neonatal Med 2022; 35:6751-6758. [PMID: 33980115 PMCID: PMC8586052 DOI: 10.1080/14767058.2021.1922378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Leukemia and lymphoma are cancers affecting children, adolescents, and young adults and may affect reproductive outcomes and maternal metabolism. We evaluated for metabolic changes in newborns of mothers with a history of these cancers. METHODS A cross-sectional study was conducted on California births from 2007 to 2011 with linked maternal hospital discharge records, birth certificate, and newborn screening metabolites. History of leukemia or lymphoma was determined using ICD-9-CM codes from hospital discharge data and newborn metabolite data from the newborn screening program. RESULTS A total of 2,068,038 women without cancer history and 906 with history of leukemia or lymphoma were included. After adjusting for differences in maternal age, infant sex, age at metabolite collection, gestational age, and birthweight, among newborns born to women with history of leukemia/lymphoma, several acylcarnitines were significantly (p < .001 - based on Bonferroni correction for multiple testing) higher compared to newborns of mothers without cancer history: C3-DC (mean difference (MD) = 0.006), C5-DC (MD = 0.009), C8:1 (MD = 0.008), C14 (MD = 0.010), and C16:1 (MD = 0.011), whereas citrulline levels were significantly lower (MD = -0.581) among newborns born to mothers with history of leukemia or lymphoma compared to newborns of mothers without a history of cancer. CONCLUSION The varied metabolite levels suggest history of leukemia or lymphoma has metabolic impact on newborn offspring, which may have implications for future metabolic consequences such as necrotizing enterocolitis and urea cycle enzyme disorders in children born to mothers with a history of leukemia or lymphoma.
Collapse
Affiliation(s)
- Sonia T. Anand
- Department of Epidemiology, University of Iowa, Iowa City, Iowa, United States of America
| | - Kelli K. Ryckman
- Department of Epidemiology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| | - Rebecca J. Baer
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
- California Preterm Birth Initiative, University of California San Francisco, San Francisco, California, United States of America
| | - Mary E. Charlton
- Department of Epidemiology, University of Iowa, Iowa City, Iowa, United States of America
| | - Patrick J. Breheny
- Department of Biostatistics, University of Iowa, Iowa City, Iowa, United States of America
| | - William W. Terry
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| | - Kord Kober
- Department of Physiological Nursing, University of California San Francisco, San Francisco, California, United States of America
| | - Scott Oltman
- California Preterm Birth Initiative, University of California San Francisco, San Francisco, California, United States of America
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| | - Elizabeth E. Rogers
- California Preterm Birth Initiative, University of California San Francisco, San Francisco, California, United States of America
- Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco, California, United States of America
| | - Laura L. Jelliffe-Pawlowski
- California Preterm Birth Initiative, University of California San Francisco, San Francisco, California, United States of America
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| | | |
Collapse
|
13
|
Nierves L, Guo J, Chen S, Tsui J, Uzozie AC, Bush JW, Huan T, Lange PF. Multi-omic profiling of the leukemic microenvironment shows bone marrow interstitial fluid is distinct from peripheral blood plasma. Exp Hematol Oncol 2022; 11:56. [PMID: 36109804 PMCID: PMC9476264 DOI: 10.1186/s40164-022-00310-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Background The bone marrow is the place of hematopoiesis with a microenvironment that supports lifelong maintenance of stem cells and high proliferation. It is not surprising that this environment is also favourable for malignant cells emerging in the bone marrow or metastasizing to it. While the cellular composition of the bone marrow microenvironment has been extensively studied, the extracellular matrix and interstitial fluid components have received little attention. Since the sinusoids connect the bone marrow interstitial fluid to the circulation, it is often considered to have the same composition as peripheral blood plasma. Stark differences in the cellular composition of the bone marrow and peripheral blood with different secretory capacities would however suggest profound differences. Methods In this study we set out to better define if and how the bone marrow interstitial fluid (BMIF) compares to the peripheral blood plasma (PBP) and how both are remodeled during chemotherapy. We applied a multi-omic strategy to quantify the metabolite, lipid and protein components as well as the proteolytic modification of proteins to gain a comprehensive understanding of the two compartments. Results We found that the bone marrow interstitial fluid is clearly distinct from peripheral blood plasma, both during active pediatric acute lymphoblastic leukemia and following induction chemotherapy. Either compartment was shaped differently by active leukemia, with the bone marrow interstitial fluid being rich in extracellular vesicle components and showing protease dysregulation while the peripheral blood plasma showed elevation of immune regulatory proteins. Following chemotherapy, the BMIF showed signs of cellular remodeling and impaired innate immune activation while the peripheral blood plasma was characterized by restored lipid homeostasis. Conclusion This study provides a comprehensive examination of the fluid portion of the acute lymphoblastic leukemia microenvironment and finds the contribution of either microenvironment to tumourigenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s40164-022-00310-0.
Collapse
|
14
|
Apolipoproteins—New Biomarkers of Overweight and Obesity among Childhood Acute Lymphoblastic Leukemia Survivors? Int J Mol Sci 2022; 23:ijms231810634. [PMID: 36142534 PMCID: PMC9505294 DOI: 10.3390/ijms231810634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 01/19/2023] Open
Abstract
Patients suffering from childhood acute lymphoblastic leukemia (ALL) are at risk of late adverse treatment-related effects. The examination of targeted biomarkers could be used to improve the diagnosis and prediction of life-threatening ALL sequelae. The purpose of this cross-sectional study was to search for treatment-related alterations in apolipoprotein (Apo) levels as potential markers of the occurrence of obesity in subjects treated for ALL, and to assess the relationships between weight, gender, anticancer treatment, and Apo concentrations. Fifty-eight ALL survivors were included in the study. The mean time of follow-up after treatment cessation was 5.41 ± 4.29 years. Serum levels of apolipoproteins were measured using a multiplex assay kit. Among ALL survivors, we observed a significant correlation of Apo-C1, Apo-C3, Apo-H, and Apo-J levels, depending on body mass index (BMI). Marked differences were observed in the area under the curve of Apo-A1, Apo-A2, Apo-C1, Apo-D. In our study, patients with a history of childhood ALL developed alterations in their Apo profile. Furthermore, this is the first study revealing that some apolipoproteins may act as valuable biomarkers useful in the prognosis of metabolic imbalance. We believe that this paper, at least partially, will highlight the importance of long-term prognosis of metabolic complications associated with the anticancer chemotherapy used to treat hematological malignancies in children.
Collapse
|
15
|
Kerba J, Demers C, Bélanger V, Napartuk M, Bouchard I, Meloche C, Morel S, Prud’homme N, Gélinas I, Higgins J, Curnier D, Sultan S, Laverdière C, Sinnett D, Marcil V. Needs, Barriers and Facilitators of Adolescents Participating in a Lifestyle Promotion Program in Oncology: Stakeholders, Adolescents and Parents’ Perspective. CHILDREN 2022; 9:children9091340. [PMID: 36138649 PMCID: PMC9497682 DOI: 10.3390/children9091340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/17/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022]
Abstract
Treatments for adolescent cancer can cause debilitating side effects in the short- and long-term such as nausea and malnutrition but also cardiometabolic disturbances. Although the risk for cardiometabolic complications is greater for adolescents with cancer than younger ones, adolescents typically respond poorly to family-oriented health promotion programs. This study aims to assess the needs, barriers and facilitators to healthy lifestyle promotion interventions for adolescents with cancer and how to best adapt these interventions for them. Interviews were held with adolescents treated for cancer (n = 9) and parents (n = 6), focus groups were conducted with stakeholders working in oncology (n = 12) and self-report questionnaires were sent to stakeholders involved in a health promotion intervention (n = 6). At the time of interview, mean age of adolescent participants (40% female) was 17.0 ± 1.9 years (mean age at diagnosis: 14.6 ± 1.6 years). Verbatim and responses to questionnaires were coded and analyzed using qualitative methods. Stakeholder stated that adolescents with cancer need to access activities adapted to their age, to communicate with peers going through a similar experience, and to preserve their schooling and friendships. Barriers to intervention reported by adolescents, parents and stakeholders include lack of motivation, schedule conflicts, fatigue and treatment side effects. Some of the barriers mentioned by adolescents and parents include pain, post-surgery problems, school, physical deconditioning, and lack of time. Facilitators mentioned by adolescents and parents comprise trust in stakeholders’ expertise, personalized approaches, scheduling flexibility. Stakeholders recommended to build trust in the relationship, favoring non-moralizing teachings, adapt interventions to adolescents’ limited attention span and avoiding the use of long-term health benefits as a motivator.
Collapse
Affiliation(s)
- Johanne Kerba
- Research Center of the CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
- Department of Nutrition, Université de Montreal, Montreal, QC H3T 1A8, Canada
- Cardiometabolic Health, Diabetes, and Obesity Research Network (CMDO), Montreal, QC J1H 5N4, Canada
| | - Catherine Demers
- Research Center of the CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
- School of Physical and Occupational Therapy, McGill University, Montreal, QC H3G 1Y5, Canada
| | - Véronique Bélanger
- Research Center of the CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
- Department of Nutrition, Université de Montreal, Montreal, QC H3T 1A8, Canada
- Cardiometabolic Health, Diabetes, and Obesity Research Network (CMDO), Montreal, QC J1H 5N4, Canada
- Institute of Nutrition and Functional Food, Quebec City, QC G1V 0A6, Canada
| | - Mélanie Napartuk
- Research Center of the CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
- Department of Nutrition, Université de Montreal, Montreal, QC H3T 1A8, Canada
- Cardiometabolic Health, Diabetes, and Obesity Research Network (CMDO), Montreal, QC J1H 5N4, Canada
- Institute of Nutrition and Functional Food, Quebec City, QC G1V 0A6, Canada
| | - Isabelle Bouchard
- Research Center of the CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | - Caroline Meloche
- Research Center of the CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | - Sophia Morel
- Research Center of the CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
- Department of Nutrition, Université de Montreal, Montreal, QC H3T 1A8, Canada
- Cardiometabolic Health, Diabetes, and Obesity Research Network (CMDO), Montreal, QC J1H 5N4, Canada
- Institute of Nutrition and Functional Food, Quebec City, QC G1V 0A6, Canada
| | - Nicolas Prud’homme
- Division of Hematology-Oncology, CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | - Isabelle Gélinas
- School of Physical and Occupational Therapy, McGill University, Montreal, QC H3G 1Y5, Canada
| | - Johanne Higgins
- School of Rehabilitation, Université de Montréal, Montreal, QC H3N 1X7, Canada
| | - Daniel Curnier
- Research Center of the CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
- School of Kinesiology and Physical Activity Sciences, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Serge Sultan
- Research Center of the CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
- Department of Psychology, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Caroline Laverdière
- Research Center of the CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
- Department of Pediatrics, Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Daniel Sinnett
- Research Center of the CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
- Department of Pediatrics, Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Valérie Marcil
- Research Center of the CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
- Department of Nutrition, Université de Montreal, Montreal, QC H3T 1A8, Canada
- Cardiometabolic Health, Diabetes, and Obesity Research Network (CMDO), Montreal, QC J1H 5N4, Canada
- Institute of Nutrition and Functional Food, Quebec City, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-514-345-4931-(3272)
| |
Collapse
|
16
|
Romano A, Del Vescovo E, Rivetti S, Triarico S, Attinà G, Mastrangelo S, Maurizi P, Ruggiero A. Biomarkers Predictive of Metabolic Syndrome and Cardiovascular Disease in Childhood Cancer Survivors. J Pers Med 2022; 12:880. [PMID: 35743665 PMCID: PMC9225298 DOI: 10.3390/jpm12060880] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
The improvement in childhood cancer treatments resulted in a marked improvement in the survival of pediatric cancer patients. However, as survival increased, it was also possible to observe the long-term side effects of cancer therapies. Among these, metabolic syndrome is one of the most frequent long-term side effects, and causes high mortality and morbidity. Consequently, it is necessary to identify strategies that allow for early diagnosis. In this review, the pathogenetic mechanisms of metabolic syndrome and the potential new biomarkers that can facilitate its diagnosis in survivors of pediatric tumors are analyzed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica Sacro Cuore, 00168 Rome, Italy; (A.R.); (E.D.V.); (S.R.); (S.T.); (G.A.); (S.M.); (P.M.)
| |
Collapse
|
17
|
Yonan A, Jacques C, Fletcher T, Suk-In T, Campbell RB. An Overview of Conventional Drugs and Nanotherapeutic Options for the Treatment and Management of Pediatric Acute Lymphoblastic Leukemia. Anticancer Agents Med Chem 2022; 22:3050-3061. [PMID: 35473534 DOI: 10.2174/1871520622666220426105922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 12/29/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is a common form of pediatric cancer affecting the lymphoblast, a type of white blood cell found in the bone marrow. In this disease, the normal lymphoblast cells transform into leukemic cells and subsequently enter the bloodstream. Leukemic cells found in patients with ALL have shown differences in cholesterol uptake and utilization. Current treatment consists of chemotherapy, chimeric antigen receptor (CAR) therapy, and hematopoietic stem cell transplantation (HSCT). In addition, minimal residual disease (MRD) has become an effective tool for measuring treatment efficacy and the potential for relapse. Chemotherapy resistance remains a significant barrier in the treatment of ALL. Biomarkers such as an upregulated Akt signaling pathway and an overexpressed VLA-4 integrin-protein have been associated with drug resistance. Nanoparticles have been used to favorably alter the pharmacokinetic profile of conventional drug agents. These drug-delivery systems are designed to selectively deliver their drug payloads to desired targets. Therefore, nanoparticles offer advantages such as improved efficacy and reduced toxicity. This review highlights conventional treatment options, distinctive characteristics of pediatric ALL, therapeutic challenges encountered during therapy, and the key role that nanotherapeutics play in the treatment of ALL.
Collapse
Affiliation(s)
- Andre Yonan
- Department of Pharmaceutical Sciences, School of Pharmacy, MCPHS University, 19 Foster Street, Worcester, MA 01608, USA
| | - Christopher Jacques
- Department of Pharmaceutical Sciences, School of Pharmacy, MCPHS University, 19 Foster Street, Worcester, MA 01608
| | - Tafaswa Fletcher
- Department of Pharmaceutical Sciences, School of Pharmacy, MCPHS University, 19 Foster Street, Worcester, MA 01608, USA
| | - Thanaphorn Suk-In
- Department of Pharmaceutical Sciences, School of Pharmacy, MCPHS University, 19 Foster Street, Worcester, MA 01608, USA
| | - Robert B Campbell
- Department of Pharmaceutical Sciences, School of Pharmacy, MCPHS University, 19 Foster Street, Worcester, MA 01608, USA
| |
Collapse
|
18
|
Ouweneel AB, Reiche ME, Snip OSC, Wever R, van der Wel EJ, Schaftenaar FH, Kauerova S, Lutgens E, Van Eck M, Hoekstra M. Apolipoprotein A1 deficiency in mice primes bone marrow stem cells for T cell lymphopoiesis. J Cell Sci 2022; 135:272619. [PMID: 34698355 PMCID: PMC8645231 DOI: 10.1242/jcs.258901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/14/2021] [Indexed: 11/20/2022] Open
Abstract
The bone marrow has emerged as a potentially important target in cardiovascular disease as it generates all leukocytes involved in atherogenesis. In the current study, we evaluated whether a change in bone marrow functionality underlies the increased atherosclerosis susceptibility associated with high-density lipoprotein (HDL) deficiency. We found that HDL deficiency in mice due to the genetic lack of hepatocyte-derived apolipoprotein A1 (APOA1) was associated with an increase in the Lin−Sca-1+Kit+ (LSK) bone marrow stem cell population and lymphoid-primed multipotent progenitor numbers, which translated into a higher production and systemic flux of T cell subsets. In accordance with APOA1 deficiency-associated priming of stem cells to increase T lymphocyte production, atherogenic diet-fed low-density lipoprotein receptor knockout mice transplanted with bone marrow from APOA1-knockout mice displayed marked lymphocytosis as compared to wild-type bone marrow recipients. However, atherosclerotic lesion sizes and collagen contents were similar in the two groups of bone marrow recipients. In conclusion, systemic lack of APOA1 primes bone marrow stem cells for T cell lymphopoiesis. Our data provide novel evidence for a regulatory role of HDL in bone marrow functioning in normolipidemic mice. Summary: Changes in cholesterol metabolism, that is, in high-density lipoprotein levels, can significantly impact leukocyte numbers via modulating bone marrow functionality.
Collapse
Affiliation(s)
- Amber B Ouweneel
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333CC Leiden, The Netherlands
| | - Myrthe E Reiche
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Olga S C Snip
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333CC Leiden, The Netherlands
| | - Robbert Wever
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333CC Leiden, The Netherlands
| | - Ezra J van der Wel
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333CC Leiden, The Netherlands
| | - Frank H Schaftenaar
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333CC Leiden, The Netherlands
| | - Soňa Kauerova
- Laboratory for Atherosclerosis Research, Institute for Clinical and Experimental Medicine, 12111 Prague, Czech Republic
| | - Esther Lutgens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Miranda Van Eck
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333CC Leiden, The Netherlands
| | - Menno Hoekstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, 2333CC Leiden, The Netherlands
| |
Collapse
|
19
|
Zhang S, Wang BJ, Chen XL, Xiong H. A rare case of B-cell lymphoma characteristic of persistent lactic acidosis, hypoglycemia, and dyslipidemia in the emergency department. World J Emerg Med 2022; 13:488-491. [PMID: 36636571 PMCID: PMC9807382 DOI: 10.5847/wjem.j.1920-8642.2022.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/06/2022] [Indexed: 01/14/2023] Open
Affiliation(s)
- Shuo Zhang
- Department of Emergency Medicine, Peking University First Hospital, Beijing 100034, China
| | - Bing-jie Wang
- Department of Hematology, Peking University First Hospital, Beijing 100034, China
| | - Xiao-lan Chen
- Department of Emergency Medicine, Peking University First Hospital, Beijing 100034, China
| | - Hui Xiong
- Department of Emergency Medicine, Peking University First Hospital, Beijing 100034, China,Corresponding Author: Hui Xiong,
| |
Collapse
|
20
|
Rapid and non-invasive discrimination of acute leukemia bone marrow supernatants by Raman spectroscopy and multivariate statistical analysis. J Pharm Biomed Anal 2021; 210:114560. [PMID: 34999436 DOI: 10.1016/j.jpba.2021.114560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/22/2021] [Accepted: 12/26/2021] [Indexed: 12/20/2022]
Abstract
A simple and non-invasive detection method for acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) was established by systematically investigating the characteristics of bone marrow supernatants from 61 AML patients, 22 ALL patients, and 5 volunteers without hematological tumors by Raman spectroscopy and orthogonal partial least squares discriminant analysis (OPLS-DA). The control group could be well distinguished from the AML and ALL groups by Raman peaks of 859, 1031, 1437, 1443, 1446, 1579, and 1603 cm-1 and from the AML subtypes groups (AML-M2, AML-M3, AML-M4, and AML-M5) by the Raman peaks of 859, 1221, 1230, 1437, 1443, and 1603 cm-1, indicating high sensitivity and specificity of the method. Potentially important variables of acute leukemia (AL) prognosis, such as cholesterol, high-density lipoprotein, low-density lipoprotein, adenosine deaminase, and hemoglobin, could be effectively identified by Raman peaks of 1437, 1443, and 1579 cm-1. Therefore, Raman spectroscopy can be considered as a new non-invasive clinical tool for the detection of different types of AL and can be used to correlate biochemical parameters of AL patients with the classification and prognosis of AL.
Collapse
|
21
|
Jeong DW, Lee S, Chun YS. How cancer cells remodel lipid metabolism: strategies targeting transcription factors. Lipids Health Dis 2021; 20:163. [PMID: 34775964 PMCID: PMC8590761 DOI: 10.1186/s12944-021-01593-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/02/2021] [Indexed: 12/30/2022] Open
Abstract
Reprogramming of lipid metabolism has received increasing recognition as a hallmark of cancer cells because lipid dysregulation and the alteration of related enzyme profiles are closely correlated with oncogenic signals and malignant phenotypes, such as metastasis and therapeutic resistance. In this review, we describe recent findings that support the importance of lipids, as well as the transcription factors involved in cancer lipid metabolism. With recent advances in transcription factor analysis, including computer-modeling techniques, transcription factors are emerging as central players in cancer biology. Considering the limited number and the crucial role of transcription factors associated with lipid rewiring in cancers, transcription factor targeting is a promising potential strategy for cancer therapy.
Collapse
Affiliation(s)
- Do-Won Jeong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Seulbee Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.,Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Yang-Sook Chun
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea. .,Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, South Korea. .,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| |
Collapse
|
22
|
Bélanger V, Benmoussa A, Napartuk M, Warin A, Laverdière C, Marcoux S, Levy E, Marcil V. The Role of Oxidative Stress and Inflammation in Cardiometabolic Health of Children During Cancer Treatment and Potential Impact of Key Nutrients. Antioxid Redox Signal 2021; 35:293-318. [PMID: 33386063 DOI: 10.1089/ars.2020.8143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Significance: The 5-year survival rate of childhood cancers is now reaching 84%. However, treatments cause numerous acute and long-term side effects. These include cardiometabolic complications, namely hypertension, dyslipidemia, hyperglycemia, insulin resistance, and increased fat mass. Recent Advances: Many antineoplastic treatments can induce oxidative stress (OxS) and trigger an inflammatory response, which may cause acute and chronic side effects. Critical Issues: Clinical studies have reported a state of heightened OxS and inflammation during cancer treatment in children as the result of treatment cytotoxic action on both cancerous and noncancerous cells. Higher levels of OxS and inflammation are associated with treatment side effects and with the development of cardiometabolic complications. Key nutrients (omega-3 polyunsaturated fatty acids, dietary antioxidants, probiotics, and prebiotics) have the potential to modulate inflammatory and oxidative responses and, therefore, could be considered in the search for adverse complication prevention means as long as antineoplastic treatment efficiency is maintained. Future Directions: There is a need to better understand the relationship between cardiometabolic complications, OxS, inflammation and diet during pediatric cancer treatment, which represents the ultimate goal of this review. Antioxid. Redox Signal. 35, 293-318.
Collapse
Affiliation(s)
- Véronique Bélanger
- Research Centre, CHU Sainte-Justine University Health Centre, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Abderrahim Benmoussa
- Research Centre, CHU Sainte-Justine University Health Centre, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Mélanie Napartuk
- Research Centre, CHU Sainte-Justine University Health Centre, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Alexandre Warin
- Research Centre, CHU Sainte-Justine University Health Centre, Montreal, Canada
| | | | - Sophie Marcoux
- Department of Public Health & Preventive Medicine, Université de Montréal, Montreal, Canada
| | - Emile Levy
- Research Centre, CHU Sainte-Justine University Health Centre, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada.,Department of Pediatrics, Université de Montréal, Montreal, Canada
| | - Valérie Marcil
- Research Centre, CHU Sainte-Justine University Health Centre, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| |
Collapse
|
23
|
Ozturk E. The Relationship Between Hematological Malignancy and Lipid Profile. Medeni Med J 2021; 36:146-151. [PMID: 34239767 PMCID: PMC8226404 DOI: 10.5222/mmj.2021.91145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/29/2021] [Indexed: 11/05/2022] Open
Abstract
Objective Hypocholesterolemia is a metabolism disorder that may be seen in chronic diseases and malignancies. Various dyslipidemia profiles have been shown in adult and pediatric hematological malignancies. We aimed to evaluate the lipid profile properties in patients diagnosed with a hematological malignancy compared to a healthy control group. Method Out of 1213 patients diagnosed with hematologic malignancy, the data of 98 patients whose pretreatment lipid profiles had already been studied, were reviewed. Forty healthy individuals were selected as the control group. The levels of total cholesterol, triglycerides (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) were compared. Results Triglyceride values were significantly higher (p=0.02), and the total cholesterol, LDL and HDL levels were lower in the study group compared to the control group. Triglyceride values were higher (p=0.013), and HDL levels were lower (p=0.022) in parallel with increases in uric acid levels. There was a significant correlation between the International Prognostic Index (IPI) score and TG (p=0.003) in those diagnosed with non-Hodgkin lymphoma (NHL). Whereas no significant correlation was found between TG, total cholesterol, and LDL values in the limited (early) and advanced stage NHL, while a significant negative correlation was found with HDL (p=0.027). Conclusion Hypertriglyceridemia, as well as low LDL and HDL values may be seen in hematological malignancies. It should be kept in mind that there may be chronic diseases and malignancies in the etiology of incidental hypocholesterolemia and hypertriglyceridemia. Further studies are needed on this subject to determine the effects of dyslipidemia on the pathogenesis and prognosis of the disease in hematological malignancies.
Collapse
Affiliation(s)
- Erman Ozturk
- Istanbul Medeniyet University Faculty of Medicine, Department of Hematology, Istanbul, Turkey
| |
Collapse
|
24
|
Dong Y, Lu J, Wang T, Huang Z, Chen X, Ren Z, Hong L, Wang H, Yang D, Xie H, Zhang W. Multi-Omics Analysis Reveals Disturbance of Nanosecond Pulsed Electric Field in the Serum Metabolic Spectrum and Gut Microbiota. Front Microbiol 2021; 12:649091. [PMID: 34276585 PMCID: PMC8283677 DOI: 10.3389/fmicb.2021.649091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
Nanosecond pulsed electric field (nsPEF) is a novel ablation technique that is based on high-intensity electric voltage to achieve tumour-killing effect in the target region, and increasingly considered for treating tumours of the liver, kidneys and other organs with rich blood supply. This study aims to observe effect of nsPFE treatment on serum metabolites and gut microbiota. The serum and faecal specimens of the pigs were collected pre- and post-treatment. The gut microbiota of pigs was sequenced by Illumina Miseq platform for analysing the diversity and alterations of gut microbiota. Liquid chromatography-mass spectrometry (LC-MS)-based metabonomic analysis and Pearson coefficient method were also used to construct the interaction system of different metabolites, metabolic pathways and flora. A total of 1,477 differential metabolites from the serum were identified by four cross-comparisons of different post-operative groups with the control group. In addition, an average of 636 OTUs per sample was detected. Correlation analysis also revealed the strong correlation between intestinal bacteria and differential metabolites. The nsPEF ablation of the liver results in a degree of liver damage that affects various metabolic pathways, mainly lipid metabolism, as well as gut microbiota. In conclusion, our study provided a good point for the safety and feasibility of applying nsPEF on liver through the integrated analysis of metabolomics and microbiomes, which is beneficial for the improvement of nsPEF in clinical use.
Collapse
Affiliation(s)
- Yeping Dong
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou, China.,Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiahua Lu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China.,Institution of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Ting Wang
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou, China
| | - Zhiliang Huang
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou, China
| | - Xinhua Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China.,Institution of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liangjie Hong
- Department of Polymer Science and Engineering, Institute of Biomedical Macromolecules, Zhejiang University, Zhengzhou, China
| | - Haiyu Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dezhi Yang
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou, China
| | - Haiyang Xie
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China.,Institution of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Wu Zhang
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou, China
| |
Collapse
|
25
|
Yun X, Sun X, Hu X, Zhang H, Yin Z, Zhang X, Liu M, Zhang Y, Wang X. Prognostic and Therapeutic Value of Apolipoprotein A and a New Risk Scoring System Based on Apolipoprotein A and Adenosine Deaminase in Chronic Lymphocytic Leukemia. Front Oncol 2021; 11:698572. [PMID: 34277446 PMCID: PMC8281891 DOI: 10.3389/fonc.2021.698572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/08/2021] [Indexed: 12/11/2022] Open
Abstract
Lipid metabolism is related to lymphomagenesis, and is a novel therapeutic target in some hematologic tumors. Apolipoprotein A (ApoA), the major protein of high-density lipoprotein (HDL), plays a crucial role in lipid transportation and protecting against cardiovascular disease, and takes effect on anti-inflammation and anti-oxidation. It is correlated with the prognosis of some solid tumors. Yet, there is no investigation involving the role of ApoA plays in chronic lymphocytic leukemia (CLL). Our retrospective study focuses on the prognostic value of ApoA in CLL and its therapeutic potential for CLL patients. Herein, ApoA is a favorable independent prognostic factor for both overall survival (OS) and progression-free survival (PFS) of CLL patients. ApoA is negatively associated with β2-microglobulin (β2-MG) and advanced stage, which are poor prognostic factors in CLL. Age, Rai stage, ApoA, and adenosine deaminase (ADA) are included in a new risk scoring system named ARAA-score. It is capable of assessing OS and PFS of CLL patients. Furthermore, cell proliferation assays show that the ApoA-I mimetic L-4F can inhibit the proliferation of CLL cell lines and primary cells. In conclusion, ApoA is of prognostic value in CLL, and is a potential therapy for CLL patients. The ARAA-score may optimize the risk stratification of CLL patients.
Collapse
Affiliation(s)
- Xiaoya Yun
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Sun
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinting Hu
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huimin Zhang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zixun Yin
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Zhang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ming Liu
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ya Zhang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, China.,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
26
|
Madan D, Aggarwal P, Jain A, Gupta V. Lipid profile during chemotherapy in children with acute lymphoblastic leukemia. Indian J Cancer 2021; 58:461-462. [PMID: 34380832 DOI: 10.4103/ijc.ijc_280_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Dolly Madan
- Division of Pediatric Hematology Oncology, Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Priyanka Aggarwal
- Division of Pediatric Hematology Oncology, Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Anubha Jain
- Division of Pediatric Hematology Oncology, Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Vineeta Gupta
- Division of Pediatric Hematology Oncology, Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
27
|
Mahboobnia K, Pirro M, Marini E, Grignani F, Bezsonov EE, Jamialahmadi T, Sahebkar A. PCSK9 and cancer: Rethinking the link. Biomed Pharmacother 2021; 140:111758. [PMID: 34058443 DOI: 10.1016/j.biopha.2021.111758] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cancer is emerging as a major problem globally, as it accounts for the second cause of death despite medical advances. According to epidemiological and basic studies, cholesterol is involved in cancer progression and there are abnormalities in cholesterol metabolism of cancer cells including prostate, breast, and colorectal carcinomas. However, the importance of cholesterol in carcinogenesis and thereby the role of cholesterol homeostasis as a therapeutic target is still a debated area in cancer therapy. Proprotein convertase subtilisin/kexin type-9 (PCSK9), a serine protease, modulates cholesterol metabolism by attachment to the LDL receptor (LDLR) and reducing its recycling by targeting the receptor for lysosomal destruction. Published research has shown that PCSK9 is also involved in degradation of other LDLR family members namely very-low-density-lipoprotein receptor (VLDLR), lipoprotein receptor-related protein 1 (LRP-1), and apolipoprotein E receptor 2 (ApoER2). As a result, this protein represents an interesting therapeutic target for the treatment of hypercholesterolemia. Interestingly, clinical trials on PCSK9-specific monoclonal antibodies have reported promising results with high efficacy in lowering LDL-C and in turn reducing cardiovascular complications. It is important to note that PCSK9 mediates several other pathways apart from its role in lipid homeostasis, including antiviral activity, hepatic regeneration, neuronal apoptosis, and modulation of various signaling pathways. Furthermore, recent literature has illustrated that PCSK9 is closely associated with incidence and progression of several cancers. In a number of studies, PCSK9 siRNA was shown to effectively suppress the proliferation and invasion of the several studied tumor cells. Hence, a novel application of PCSK9 inhibitors/silencers in cancer/metastasis could be considered. However, due to poor data on effectiveness and safety of PCSK9 inhibitors in cancer, the impact of PCSK9 inhibition in these pathological conditions is still unknown. SEARCH METHODS A vast literature search was conducted to find intended studies from 1956 up to 2020, and inclusion criteria were original peer-reviewed publications. PURPOSE OF REVIEW To date, PCSK9 has been scantly investigated in cancer. The question that needs to be discussed is "How does PCSK9 act in cancer pathophysiology and what are the risks or benefits associated to its inhibition?". We reviewed the available publications highlighting the contribution of this proprotein convertase in pathways related to cancer, with focus on the potential implications of its long-term pharmacological inhibition in cancer therapy.
Collapse
Affiliation(s)
- Khadijeh Mahboobnia
- Department of Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Ettore Marini
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Francesco Grignani
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Evgeny E Bezsonov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, Moscow 117418, Russia; Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
28
|
Larouche V, Bellavance C, Tibout P, Bergeron S, Simonyan D, Gagné J. Screening for asymptomatic diabetes and metabolic comorbidities in pediatric patients during therapy for acute lymphoblastic leukemia. J Pediatr Endocrinol Metab 2021; 34:627-632. [PMID: 33838097 DOI: 10.1515/jpem-2020-0457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/19/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Chronic metabolic disturbances related to cancer treatment are well reported among survivors of pediatric acute lymphoblastic leukemia (ALL). However, few studies have investigated the incidence of these complications during the phase of chemotherapy. We evaluated the incidence of acute metabolic complications occurring during therapy in our cohort of patients diagnosed with ALL. METHODS A prospective study involving 50 ALL pediatric patients diagnosed and treated between 2012 and 2016 in our oncology unit. We collected weight, blood pressure, fasting plasma glucose and hemoglobin A1C (HBA1c) levels during the two years of therapy. RESULTS Obesity and overweight occurred in 43 and 25%, respectively among patients and have been reached at 12 months of chemotherapy. About 26% of the patients developed high blood pressure and 14% experienced hyperglycemias without meeting diabetes criteria. There was a significant decrease of HBA1c levels between the beginning and the end of therapy (p<0.0001). CONCLUSIONS Increase of body mass index in our ALL pediatric patients occurred during the first months of therapy and plateaued after a year of treatment. We should target this population for early obesity prevention. HbA1c levels measured during therapy did not reveal diabetes criteria. Hence, fasting blood glucose levels are sufficient to monitor ALL pediatric patients' glycemia.
Collapse
Affiliation(s)
- Valerie Larouche
- Department of Pediatric Hematology-Oncology, CHU de Québec-Université Laval, Quebec, Canada
| | | | - Pauline Tibout
- Department of Pediatric, CHU de Québec-Université Laval, Quebec, Canada
| | | | - David Simonyan
- Clinical and Evaluative Research Platform, Research Center, CHU de Québec-Université Laval, Quebec, Canada
| | - Julie Gagné
- Department of Pediatric, CHU de Québec-Université Laval, Quebec, Canada
| |
Collapse
|
29
|
Dłubek J, Rysz J, Jabłonowski Z, Gluba-Brzózka A, Franczyk B. The Correlation between Lipid Metabolism Disorders and Prostate Cancer. Curr Med Chem 2021; 28:2048-2061. [PMID: 32767911 DOI: 10.2174/0929867327666200806103744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/12/2020] [Accepted: 07/19/2020] [Indexed: 11/22/2022]
Abstract
Prostate cancer is the second most common cancer affecting the male population all over the world. The existence of a correlation between lipid metabolism disorders and cancer of the prostate gland has been widely known for a long time. According to hypotheses, cholesterol may contribute to prostate cancer progression as a result of its participation as a signaling molecule in prostate growth and differentiation via numerous biologic mechanisms including Akt signaling and de novo steroidogenesis. The results of some studies suggest that increased cholesterol levels may be associated with a higher risk of a more aggressive course of the disease. The aforementioned alterations in the synthesis of fatty acids are a unique feature of cancer and, therefore, constitute an attractive target for therapeutic intervention in the treatment of prostate cancer. Pharmacological or gene therapy aims to reduce the activity of enzymes involved in de novo synthesis of fatty acids, FASN, ACLY (ATP citrate lyase) or SCD-1 (Stearoyl-CoA Desaturase) in particular, that may result in cells growth arrest. Nevertheless, not all cancers are unequivocally associated with hypocholesterolaemia. It cannot be ruled out that the relationship between prostate cancer and lipid disorders is not a direct quantitative correlation between carcinogenesis and the amount of circulating cholesterol. Perhaps the correspondence is more sophisticated and connected to the distribution of cholesterol fractions or even sub-fractions of e.g. HDL cholesterol.
Collapse
Affiliation(s)
- Justyna Dłubek
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Zeromskiego 113, 90-549 Lodz, Poland
| | - Zbigniew Jabłonowski
- Department of Urology, Medical University of Lodz, Zeromskiego 113, 90-549 Lodz, Poland
| | - Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
30
|
Increased Levels of Adipocyte and Epidermal Fatty Acid-Binding Proteins in Acute Lymphoblastic Leukemia Survivors. J Clin Med 2021; 10:jcm10081567. [PMID: 33917805 PMCID: PMC8068128 DOI: 10.3390/jcm10081567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 12/31/2022] Open
Abstract
Childhood cancer survivors are highly exposed to the development of side effects after many years of cessation of anticancer treatment, including altered lipid metabolism that may result in an increased risk of overweight and metabolic syndrome. Adipocyte (A-FABP) and epidermal (E-FABP) fatty acid-binding proteins are expressed in adipocytes and are assumed to play an important role in the development of lipid disturbances leading to the onset of metabolic syndrome. The aim of this study was to investigate the association between serum A-FABP and E-FABP levels, overweight, and components of the metabolic syndrome in acute lymphoblastic leukemia survivors. Sixty-two acute lymphoblastic leukemia (ALL) survivors (34 females) were included in the study. The mean age at the time of the study was 12.41 ± 4.98 years (range 4.71–23.43). Serum levels of A-FABP and E-FABP were analyzed using a commercially available ELISA kit. The ALL survivors presented statistically higher A-FABP levels in comparison with the healthy controls (25.57 ± 14.46 vs. 15.13 ± 7.61 ng/mL, p < 0.001). The subjects with body mass index (BMI) above the normal range (18 overweight, 10 obese) had a greater level of A-FABP compared to the ALL group with normal BMI (32.02 ± 17.10 vs. 20.33 ± 9.24 ng/mL, p = 0.006). Of all participants, 53.23% had at least one risk factor of metabolic syndrome; in this group, only the A-FABP level showed a statistically significant difference compared to the healthy control group (30.63 ± 15.91 vs. 15.13 ± 7.61 ng/mL, p < 0.001). The subjects with two or more metabolic risk factors (16.13%) presented higher levels of both A-FABP (33.62 ± 17.16 vs. 15.13 ± 7.61 ng/mL, p = 0.001) and E-FABP (13.37 ± 3.62 vs. 10.12 ± 3.21 ng/mL, p = 0.021) compared to the controls. Univariable regression models showed significant associations between BMI and systolic blood pressure with the A-FABP level (coeff. 1.02 and 13.74, respectively; p < 0.05). In contrast, the E-FABP level was only affected by BMI (coeff. 0.48; p < 0.01). The findings reported herein suggest that the increased levels of A-FABP and E-FABP may be involved in the pathogenesis of overweight and the onset of metabolic syndrome in acute lymphoblastic leukemia. However, further longitudinal, prospective studies of fatty acid-binding proteins and their potential role in the pathogenesis of obesity and metabolic syndrome in ALL survivors remain to be performed.
Collapse
|
31
|
Body Composition Change, Unhealthy Lifestyles and Steroid Treatment as Predictor of Metabolic Risk in Non-Hodgkin's Lymphoma Survivors. J Pers Med 2021; 11:jpm11030215. [PMID: 33802940 PMCID: PMC8002720 DOI: 10.3390/jpm11030215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/26/2021] [Accepted: 03/10/2021] [Indexed: 12/30/2022] Open
Abstract
Unhealthy lifestyle, as sedentary, unbalanced diet, smoking, and body composition change are often observed in non-Hodgkin’s lymphoma (NHL) survivors, and could be determinant for the onset of cancer treatment-induced metabolic syndrome (CTIMetS), including abdominal obesity, sarcopenia, and insulin resistance. The aim of this study was to assess whether changes in body composition, unhealthy lifestyles and types of anti-cancer treatment could increase the risk of metabolic syndrome (MetSyn) and sarcopenia in long-term NHL survivors. We enrolled 60 consecutive NHL patients in continuous remission for at least 3 years. Nutritional status was assessed by anthropometry-plicometry, and a questionnaire concerning lifestyles and eating habits was administered. More than 60% of survivors exhibited weight gain and a change in body composition, with an increased risk of MetSyn. Univariate analysis showed a significantly higher risk of metabolic disorder in patients treated with steroids, and in patients with unhealthy lifestyles. These data suggest that a nutritional intervention, associated with adequate physical activity and a healthier lifestyle, should be indicated early during the follow-up of lymphoma patients, in order to decrease the risk of MetSyn’s onset and correlated diseases in the long term.
Collapse
|
32
|
Efficacy of Polyphenols in the Management of Dyslipidemia: A Focus on Clinical Studies. Nutrients 2021; 13:nu13020672. [PMID: 33669729 PMCID: PMC7922034 DOI: 10.3390/nu13020672] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Polyphenols (PLPs), phytochemicals found in a wide range of plant-based foods, have gained extensive attention in view of their antioxidant, anti-inflammatory, immunomodulatory and several additional beneficial activities. The health-promoting effects noted in animal models of various non-communicable diseases explain the growing interest in these molecules. In particular, in vitro and animal studies reported an attenuation of lipid disorders in response to PLPs. However, despite promising preclinical investigations, the effectiveness of PLPs in human dyslipidemia (DLP) is less clear and necessitates revision of available literature. Therefore, the present review analyzes the role of PLPs in managing clinical DLP, notably by dissecting their potential in ameliorating lipid/lipoprotein metabolism and alleviating hyperlipidemia, both postprandially and in long-term interventions. To this end, PubMed was used for article search. The search terms included polyphenols, lipids, triglycerides, cholesterol, LDL-cholesterol and /or HDL-cholesterol. The critical examination of the trials published to date illustrates certain benefits on blood lipids along with co-morbidities in participant’s health status. However, inconsistent results document significant research gaps, potentially owing to study heterogeneity and lack of rigor in establishing PLP bioavailability during supplementation. This underlines the need for further efforts in order to elucidate and support a potential role of PLPs in fighting DLP.
Collapse
|
33
|
Morel S, Delvin E, Marcil V, Levy E. Intestinal Dysbiosis and Development of Cardiometabolic Disorders in Childhood Cancer Survivors: A Critical Review. Antioxid Redox Signal 2021; 34:223-251. [PMID: 32390455 DOI: 10.1089/ars.2020.8102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Survivors of pediatric cancers have a high risk of developing side effects after the end of their treatments. Many potential factors have been associated with the onset of cardiometabolic disorders (CMD), including cancer disease itself, chemotherapy, hormonal treatment, radiotherapy, and genetics. However, the precise etiology and underlying mechanisms of these long-term complications are poorly understood. Recent Advances: Greater awareness is currently paid to the role of microbiota in the emergence of cancers and modulation of cancer therapies in both children and adults. Alterations in the composition and diversity of intestinal microbiota can clearly influence tumor development and progression as well as immune responses and clinical output. As dysbiosis is closely linked to the development of host metabolic diseases, including obesity, metabolic syndrome, type 2 diabetes, and non-alcoholic fatty liver disease, it may increase the risk of CMD in cancer populations. Critical Issues: Only limited studies targeting the profile of intestinal dysbiosis before and after cancer treatment have been conducted. Further, the exact contribution of intestinal dysbiosis to the development of CMD in cancer survivors is poorly appreciated. This review intends to clarify the influence of gut microbiota on CMD in childhood cancer survivors, elucidate the potential mechanisms, and evaluate the latest research on the interplay between diet/food supplement, microbiota, and cancer-related CMD. Future Directions: The implication of intestinal dysbiosis in late metabolic complications of childhood cancer survivors should be clarified. Intervention strategies could be developed to reduce the risk of survivors to CMD. Antioxid. Redox Signal. 34, 223-251.
Collapse
Affiliation(s)
- Sophia Morel
- Research Centre, Sainte-Justine University Hospital Health Center, Université de Montréal, Montreal, Canada.,Department of Nutrition and Université de Montréal, Montreal, Canada
| | - Edgard Delvin
- Research Centre, Sainte-Justine University Hospital Health Center, Université de Montréal, Montreal, Canada
| | - Valérie Marcil
- Research Centre, Sainte-Justine University Hospital Health Center, Université de Montréal, Montreal, Canada.,Department of Nutrition and Université de Montréal, Montreal, Canada
| | - Emile Levy
- Research Centre, Sainte-Justine University Hospital Health Center, Université de Montréal, Montreal, Canada.,Department of Nutrition and Université de Montréal, Montreal, Canada.,Department of Pediatrics, Université de Montréal, Montreal, Canada
| |
Collapse
|
34
|
Li B, Liu Y, Yuan Q, Lin Q, Shi WQ, Zhu PW, Min YL, Ge QM, Shao Y. Apolipoprotein A1 and Low-Density Lipoprotein as Risk Factors for Intraocular Metastases in Postmenopausal Breast Cancer. Technol Cancer Res Treat 2021; 20:1533033820984180. [PMID: 33413027 PMCID: PMC7797569 DOI: 10.1177/1533033820984180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/01/2020] [Accepted: 12/08/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The outcomes of patients with postmenopausal breast cancer(PBC) can be improved through the early detection of intraocular metastases(IOMs). In this study, we investigated patients with PBC, and compared those with IOMs with those with non-intraocular metastases(NIOMs) in terms of blood lipid levels, and then differentiated the risk factors associated with IOMs. METHODS Student's t-test and a chi-square test were used to discriminate between the IOMs and NIOMs groups. After establishing a Poisson regression model to analyze risk factors, we plotted receiver operating characteristic curves(ROC) to assess the quality of risk factors predicting IOMs. RESULTS The incidence of IOMs in PBC was 1.16%. There was no significant difference in terms of histopathology between the 2 groups. The levels of total cholesterol (TC), apolipoprotein A1(APOA1) and low-density lipoprotein(LDL) in IOMs were significantly lower than in NIOMs groups. Poisson regression suggested that low levels of APOA1 and LDL were risk factors for IOMs (P = 0.002 and P < 0.001, respectively). ROC curve analysis demonstrated that the cut-off values of APOA1 and LDL were 1.025 g/L and 2.415 mmol/L. The highest prediction accuracy for IOMs involved the combination of APOA1 and LDL (AUC = 0.881, P < 0.001). CONCLUSION Our research demonstrates that low levels of APOA1 and LDL efficiently predict IOMs in PBC as risk factors, and the combination of APOA1 and LDL was more predictive than single factors.
Collapse
Affiliation(s)
- Biao Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yao Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Qing Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Qi Lin
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Wen-Qing Shi
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Pei-Wen Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - You-Lan Min
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Qian-Min Ge
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
35
|
Implications of metabolism-driven myeloid dysfunctions in cancer therapy. Cell Mol Immunol 2020; 18:829-841. [PMID: 33077904 PMCID: PMC7570408 DOI: 10.1038/s41423-020-00556-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
Immune homeostasis is maintained by an adequate balance of myeloid and lymphoid responses. In chronic inflammatory states, including cancer, this balance is lost due to dramatic expansion of myeloid progenitors that fail to mature to functional inflammatory neutrophils, macrophages, and dendritic cells (DCs), thus giving rise to a decline in the antitumor effector lymphoid response. Cancer-related inflammation orchestrates the production of hematopoietic growth factors and cytokines that perpetuate recruitment and activation of myeloid precursors, resulting in unresolved and chronic inflammation. This pathologic inflammation creates profound alterations in the intrinsic cellular metabolism of the myeloid progenitor pool, which is amplified by competition for essential nutrients and by hypoxia-induced metabolic rewiring at the tumor site. Therefore, persistent myelopoiesis and metabolic dysfunctions contribute to the development of cancer, as well as to the severity of a broad range of diseases, including metabolic syndrome and autoimmune and infectious diseases. The aims of this review are to (1) define the metabolic networks implicated in aberrant myelopoiesis observed in cancer patients, (2) discuss the mechanisms underlying these clinical manifestations and the impact of metabolic perturbations on clinical outcomes, and (3) explore new biomarkers and therapeutic strategies to restore immunometabolism and differentiation of myeloid cells towards an effector phenotype to increase host antitumor immunity. We propose that the profound metabolic alterations and associated transcriptional changes triggered by chronic and overactivated immune responses in myeloid cells represent critical factors influencing the balance between therapeutic efficacy and immune-related adverse effects (irAEs) for current therapeutic strategies, including immune checkpoint inhibitor (ICI) therapy.
Collapse
|
36
|
Mogensen PR, Grell K, Schmiegelow K, Overgaard UM, Wolthers BO, Mogensen SS, Vaag A, Frandsen TL. Dyslipidemia at diagnosis of childhood acute lymphoblastic leukemia. PLoS One 2020; 15:e0231209. [PMID: 32251440 PMCID: PMC7135240 DOI: 10.1371/journal.pone.0231209] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/18/2020] [Indexed: 01/19/2023] Open
Abstract
As survival of acute lymphoblastic leukemia (ALL) exceeds 90%, limiting therapy-related toxicity has become a key challenge. Cardio-metabolic dysfunction is a challenge during and after childhood ALL therapy. In a single center study, we measured triglycerides (TG), total cholesterol (TC), high (HDL) and low density lipoproteins (LDL) levels at diagnosis and assessed the association with BMI, early therapy response, on-therapy hyperlipidemia and the toxicities; thromboembolism, osteonecrosis and pancreatitis. We included 127 children (1.0-17.9 years) all treated according to the NOPHO ALL2008 protocol. Dyslipidemia was identified at ALL-diagnosis in 99% of the patients, dominated by reduced HDL levels (98%) and mild hypertriglyceridemia (61%). Hypertriglyceridemia was not associated with body mass index (P = 0.71). Five percent of patients had mild hypercholesterolemia, 14% had mild hypocholesterolemia, 13% had decreased and 1% elevated LDL-levels. Increased TG and TC levels at ALL-diagnosis were not associated with any on-therapy lipid levels. Lipid levels and BMI were not associated to MRD after induction therapy; However, BMI and hypercholesterolemia were associated with worse risk group stratification (P<0.045 for all). The cumulative incidence of thromboembolism was increased both for patients with hypo- (20.0%) and hypercholesterolemia (16.7%) compared to patients with normal TC levels (2.2%) at diagnosis (P = 0.0074). In conclusion, dyslipidemic changes were present prior to ALL-therapy in children with ALL but did not seem to affect dysmetabolic traits during therapy and were not predictive of on-therapy toxicities apart from an association between dyscholesterolemia at time of ALL-diagnosis and risk of thromboembolism. However, the latter should be interpreted with caution due to low number in the groups.
Collapse
Affiliation(s)
- Pernille Rudebeck Mogensen
- Department of Diabetes and Bone-metabolic Research Unit, University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Kathrine Grell
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Denmark
| | | | - Benjamin Ole Wolthers
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Signe Sloth Mogensen
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Allan Vaag
- Steno Diabetes Center Copenhagen, Copenhagen, Denmark
| | - Thomas Leth Frandsen
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
37
|
Could PCSK9 be a new therapeutic target of Eugenol? In vitro and in silico evaluation of hypothesis. Med Hypotheses 2020; 136:109513. [DOI: 10.1016/j.mehy.2019.109513] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/15/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023]
|
38
|
Amorim NML, Kee A, Coster ACF, Lucas C, Bould S, Daniel S, Weir JM, Mellett NA, Barbour J, Meikle PJ, Cohn RJ, Turner N, Hardeman EC, Simar D. Irradiation impairs mitochondrial function and skeletal muscle oxidative capacity: significance for metabolic complications in cancer survivors. Metabolism 2020; 103:154025. [PMID: 31765667 DOI: 10.1016/j.metabol.2019.154025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Metabolic complications are highly prevalent in cancer survivors treated with irradiation but the underlying mechanisms remain unknown. METHODS Chow or high fat-fed C57Bl/6J mice were irradiated (6Gy) before investigating the impact on whole-body or skeletal muscle metabolism and profiling their lipidomic signature. Using a transgenic mouse model (Tg:Pax7-nGFP), we isolated muscle progenitor cells (satellite cells) and characterised their metabolic functions. We recruited childhood cancer survivors, grouped them based on the use of total body irradiation during their treatment and established their lipidomic profile. RESULTS In mice, irradiation delayed body weight gain and impaired fat pads and muscle weights. These changes were associated with impaired whole-body fat oxidation in chow-fed mice and altered ex vivo skeletal muscle fatty acid oxidation, potentially due to a reduction in oxidative fibres and reduced mitochondrial enzyme activity. Irradiation led to fasting hyperglycaemia and impaired glucose uptake in isolated skeletal muscles. Cultured satellite cells from irradiated mice showed decreased fatty acid oxidation and reduced glucose uptake, recapitulating the host metabolic phenotype. Irradiation resulted in a remodelling of lipid species in skeletal muscles, with the extensor digitorum longus muscle being particularly affected. A large number of lipid species were reduced, with several of these species showing a positive correlation with mitochondrial enzymes activity. In cancer survivors exposed to irradiation, we found a similar decrease in systemic levels of most lipid species, and lipid species that increased were positively correlated with insulin resistance (HOMA-IR). CONCLUSION Irradiation leads to long-term alterations in body composition, and lipid and carbohydrate metabolism in skeletal muscle, and affects muscle progenitor cells. Such changes result in persistent impairment of metabolic functions, providing a new mechanism for the increased prevalence of metabolic diseases reported in irradiated individuals. In this context, changes in the lipidomic signature in response to irradiation could be of diagnostic value.
Collapse
Affiliation(s)
- Nadia M L Amorim
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Anthony Kee
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Adelle C F Coster
- School of Mathematics and Statistics, UNSW Sydney, Sydney, Australia
| | - Christine Lucas
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Sarah Bould
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Sara Daniel
- Mechanisms of Disease and Translational Research, School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Jacquelyn M Weir
- Metabolomics Laboratory, Baker IDI, Heart and Diabetes Institute, Melbourne, Australia
| | - Natalie A Mellett
- Metabolomics Laboratory, Baker IDI, Heart and Diabetes Institute, Melbourne, Australia
| | - Jayne Barbour
- Mitochondrial Bioenergetics Lab, Department of Pharmacology, School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Peter J Meikle
- Metabolomics Laboratory, Baker IDI, Heart and Diabetes Institute, Melbourne, Australia
| | - Richard J Cohn
- School of Women's and Children's Health, UNSW Sydney, Randwick, Australia; Kids Cancer Centre, Sydney Children's Hospital Network, Randwick, Australia
| | - Nigel Turner
- Mitochondrial Bioenergetics Lab, Department of Pharmacology, School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Edna C Hardeman
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Sydney, Sydney, Australia.
| | - David Simar
- Mechanisms of Disease and Translational Research, School of Medical Sciences, UNSW Sydney, Sydney, Australia.
| |
Collapse
|
39
|
Morel S, Amre D, Teasdale E, Caru M, Laverdière C, Krajinovic M, Sinnett D, Curnier D, Levy E, Marcil V. Dietary Intakes Are Associated with HDL-Cholesterol in Survivors of Childhood Acute Lymphoblastic Leukaemia. Nutrients 2019; 11:E2977. [PMID: 31817482 PMCID: PMC6950746 DOI: 10.3390/nu11122977] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022] Open
Abstract
Survivors of childhood acute lymphoblastic leukemia (cALL) are at high risk of developing dyslipidemia, including low HDL-cholesterol (HDL-C). This study aimed to examine the associations between food/nutrient intake and the levels of HDL-C in a cohort of children and young adult survivors of cALL. Eligible participants (n = 241) were survivors of cALL (49.4% boys; median age: 21.7 years old) recruited as part of the PETALE study. Nutritional data were collected using a validated food frequency questionnaire. Fasting blood was used to determine participants' lipid profile. Multivariable logistic regression models were fitted to evaluate the associations between intakes of macro- and micronutrients and food groups and plasma lipids. We found that 41.3% of cALL survivors had at least one abnormal lipid value. Specifically, 12.2% had high triglycerides, 17.4% high LDL-cholesterol, and 23.1% low HDL-C. Low HDL-C was inversely associated with high intake (third vs. first tertile) of several nutrients: proteins (OR: 0.27, 95% CI: 0.08-0.92), zinc (OR: 0.26, 95% CI: 0.08-0.84), copper (OR: 0.34, 95% CI: 0.12-0.99), selenium (OR: 0.17, 95% CI: 0.05-0.59), niacin (OR: 0.25, 95% CI: 0.08-0.84), riboflavin (OR: 0.31, 95% CI: 0.12-0.76) and vitamin B12 (OR: 0.35, 95% CI: 0.13-0.90). High meat consumption was also inversely associated (OR: 0.28, 95% CI: 0.09-0.83) with low HDL-C while fast food was positively associated (OR: 2.41, 95% CI: 1.03-5.63) with low HDL-C. The role of nutrition in the development of dyslipidemia after cancer treatment needs further investigation.
Collapse
Affiliation(s)
- Sophia Morel
- Research Centre, Sainte-Justine University Health Center, Departments of Nutrition, Université de Montréal, Montreal, QC H3T 1C5, Canada; (S.M.); (E.T.); (E.L.)
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Devendra Amre
- Research Centre, Sainte-Justine University Health Center, Departments of Pediatrics, Université de Montréal, Montreal, QC H3T 1C5, Canada; (D.A.); (C.L.); (M.K.); (D.S.)
| | - Emma Teasdale
- Research Centre, Sainte-Justine University Health Center, Departments of Nutrition, Université de Montréal, Montreal, QC H3T 1C5, Canada; (S.M.); (E.T.); (E.L.)
| | - Maxime Caru
- Research Centre, Sainte-Justine University Health Center, Departments of Kinesiology, Université de Montréal, Montreal, QC H3T 1C5, Canada; (M.C.); (D.C.)
| | - Caroline Laverdière
- Research Centre, Sainte-Justine University Health Center, Departments of Pediatrics, Université de Montréal, Montreal, QC H3T 1C5, Canada; (D.A.); (C.L.); (M.K.); (D.S.)
| | - Maja Krajinovic
- Research Centre, Sainte-Justine University Health Center, Departments of Pediatrics, Université de Montréal, Montreal, QC H3T 1C5, Canada; (D.A.); (C.L.); (M.K.); (D.S.)
| | - Daniel Sinnett
- Research Centre, Sainte-Justine University Health Center, Departments of Pediatrics, Université de Montréal, Montreal, QC H3T 1C5, Canada; (D.A.); (C.L.); (M.K.); (D.S.)
| | - Daniel Curnier
- Research Centre, Sainte-Justine University Health Center, Departments of Kinesiology, Université de Montréal, Montreal, QC H3T 1C5, Canada; (M.C.); (D.C.)
| | - Emile Levy
- Research Centre, Sainte-Justine University Health Center, Departments of Nutrition, Université de Montréal, Montreal, QC H3T 1C5, Canada; (S.M.); (E.T.); (E.L.)
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Valérie Marcil
- Research Centre, Sainte-Justine University Health Center, Departments of Nutrition, Université de Montréal, Montreal, QC H3T 1C5, Canada; (S.M.); (E.T.); (E.L.)
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
40
|
Delvin E, Marcil V, Alos N, Laverdière C, Sinnett D, Krajinovic M, Bélanger V, Drouin S, Nyalendo C, Levy E. Is there a relationship between vitamin D nutritional status and metabolic syndrome in childhood acute lymphoblastic leukemia survivors? A PETALE study. Clin Nutr ESPEN 2019; 31:28-32. [PMID: 31060831 DOI: 10.1016/j.clnesp.2019.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Treatment of childhood acute lymphoblastic leukemia (cALL) has reached unprecedented success leading to survival rates reaching 90%. This is regrettably linked to increased risk of developing long-term health-related sequels into early adulthood. OBJECTIVE This study aims at assessing the relationship between the vitamin D status and metabolic biomarkers in PETALE, a well-characterized cohort of cALL survivors. RESULTS We demonstrate that 15.9% of the study participants exhibited 3 or more metabolic syndrome (MetS) risk factors. We also show a direct relationship between s25OHD3 and plasma HDL-Cholesterol concentrations in female but not male participants. CONCLUSION Our data, from a metabolically well-described cohort, support a modest role for vitamin D in lipid metabolism in childhood leukemia survivors. The major outcome of this study is the strong association between HDL-Cholesterol concentration and s25OHD3 only in female subjects, thereby conveying vitamin D a gender-specific cardio-protective effect. cALL survivors represent a population at higher risk for secondary diseases. For this reason thorough nutritional evaluation, including vitamin D should be part of the regular follow-up.
Collapse
Affiliation(s)
- E Delvin
- Sainte-Justine UHC Research Centre, Université de Montréal, Montréal, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Canada.
| | - V Marcil
- Sainte-Justine UHC Research Centre, Université de Montréal, Montréal, Canada; Department of Nutrition, Université de Montréal, Montréal, Canada
| | - N Alos
- Sainte-Justine UHC Research Centre, Université de Montréal, Montréal, Canada; Department of Pediatrics, Université de Montréal, Montréal, Canada
| | - C Laverdière
- Sainte-Justine UHC Research Centre, Université de Montréal, Montréal, Canada; Department of Pediatrics, Université de Montréal, Montréal, Canada
| | - D Sinnett
- Sainte-Justine UHC Research Centre, Université de Montréal, Montréal, Canada; Department of Pediatrics, Université de Montréal, Montréal, Canada
| | - M Krajinovic
- Sainte-Justine UHC Research Centre, Université de Montréal, Montréal, Canada; Department of Pediatrics, Université de Montréal, Montréal, Canada
| | - V Bélanger
- Sainte-Justine UHC Research Centre, Université de Montréal, Montréal, Canada; Department of Nutrition, Université de Montréal, Montréal, Canada
| | - S Drouin
- Sainte-Justine UHC Research Centre, Université de Montréal, Montréal, Canada
| | - C Nyalendo
- Sainte-Justine UHC Research Centre, Université de Montréal, Montréal, Canada; Department of Clinical Biochemistry, Sainte-Justine UHC, Université de Montréal, Montréal, Canada
| | - E Levy
- Sainte-Justine UHC Research Centre, Université de Montréal, Montréal, Canada; Department of Nutrition, Université de Montréal, Montréal, Canada.
| |
Collapse
|
41
|
Fournier M, Bonneil E, Garofalo C, Grimard G, Laverdière C, Krajinovic M, Drouin S, Sinnett D, Marcil V, Levy E. Altered proteome of high-density lipoproteins from paediatric acute lymphoblastic leukemia survivors. Sci Rep 2019; 9:4268. [PMID: 30862935 PMCID: PMC6414624 DOI: 10.1038/s41598-019-40906-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 01/30/2019] [Indexed: 01/16/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most frequent malignancy in children. With the use of more modern, efficient treatments, 5-year survival has reached more than 90% in this population. However, this achievement comes with many secondary and long-term effects since more than 65% of the survivors experience at least one severe complication, including the metabolic syndrome and cardiovascular diseases. The main objective of the present work was to characterize the composition of HDL particles isolated from pediatric ALL survivors. HDLs from 8 metabolically healthy ALL survivors, 8 metabolically unhealthy ALL survivors and 8 age- and gender-matched controls were analyzed. The HDL fraction from the survivors contained less cholesterol than the controls. In addition, proteomic analyses revealed an enrichment of pro-thrombotic (e.g., fibrinogen) and pro-inflammatory (e.g., amyloid A) proteins in the HDLs deriving from metabolically unhealthy survivors. These results indicate an alteration in the composition of lipid and protein content of HDL from childhood ALL survivors with metabolic disorders. Although more work is needed to validate the functionality of these HDLs, the data seem relevant for survivor health given the detection of potential biomarkers related to HDL metabolism and functionality in cancer.
Collapse
Affiliation(s)
- Maryse Fournier
- Research Centre, Sainte-Justine University Hospital Health Center, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada.,Department of Nutrition, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada
| | - Eric Bonneil
- Institute of Research in Immunology and Cancer, Université de Montréal, QC, H3C 3J7, Montréal, Canada
| | - Carole Garofalo
- Research Centre, Sainte-Justine University Hospital Health Center, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada
| | - Guy Grimard
- Department of Pediatrics, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada
| | - Caroline Laverdière
- Research Centre, Sainte-Justine University Hospital Health Center, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada.,Department of Pediatrics, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada
| | - Maja Krajinovic
- Research Centre, Sainte-Justine University Hospital Health Center, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada.,Department of Pediatrics, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada
| | - Simon Drouin
- Research Centre, Sainte-Justine University Hospital Health Center, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada
| | - Daniel Sinnett
- Research Centre, Sainte-Justine University Hospital Health Center, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada.,Department of Pediatrics, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada
| | - Valérie Marcil
- Research Centre, Sainte-Justine University Hospital Health Center, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada.,Department of Nutrition, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada
| | - Emile Levy
- Research Centre, Sainte-Justine University Hospital Health Center, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada. .,Department of Nutrition, Université de Montréal, Montreal, H3T 1C5, Quebec, Canada.
| |
Collapse
|
42
|
Gupta A, Stokes W, Eguchi M, Hararah M, Amini A, Mueller A, Morgan R, Bradley C, Raben D, McDermott J, Karam SD. Statin use associated with improved overall and cancer specific survival in patients with head and neck cancer. Oral Oncol 2019; 90:54-66. [PMID: 30846177 DOI: 10.1016/j.oraloncology.2019.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Studies have shown the utility of lipid-lowering agents in improving outcomes in various cancers. We aim to explore how statins affect overall survival and cancer specific survival in head and neck cancer patients using population-based datasets. PATIENTS AND METHODS Using the Surveillance, Epidemiology, and End Results (SEER)-Medicare linked dataset, we separated HNC patients into three groups: those with no hyperlipidemia (nH), those with hyperlipidemia and not taking a statin (HnS), and those with hyperlipidemia and taking a statin (H + S). Overall survival (OS) and cancer specific survival (CSS) were compared between the three groups based on disease subsite (oral cavity, oropharynx, and other) using Kaplan-Meier and multivariate Cox regression analysis (MVA), controlling for demographic, socioeconomic, staging, treatment, and comorbidity covariates. Using Pearson chi-square analysis, we also compared the incidence of cancer-related toxicity events. RESULTS There were 495 nH, 567 HnS, and 530 H + S patients. H + S patients had superior OS and CSS (73.0, 81.2%) relative to nH (58.6, 69.1%) and HnS groups (61.7, 69.2%) (p < 0.01). On MVA, H + S patients showed improved OS (p < 0.01) and CSS (p = 0.04) compared to nH (HR = 1.64, 1.56) and HnS (HR = 1.40, 1.37). MVA stratified by subsite yielded similar results for oral cavity and oropharyngeal disease. Toxicity-related events did not differ significantly between the groups. CONCLUSION HNC patients with hyperlipidemia and taking a statin demonstrated improved outcomes compared to nH and HnS patients, further supporting statins' role as a potential adjuvant anti-neoplastic agent in HNC. Further prospective studies to investigate the impact of statins on HNC outcomes are warranted.
Collapse
Affiliation(s)
- Abhinav Gupta
- Department of Radiation Oncology, University of Colorado, Denver, United States
| | - William Stokes
- Department of Radiation Oncology, University of Colorado, Denver, United States
| | - Megan Eguchi
- Department of Health Systems, Management, and Policy, Colorado School of Public Health, United States.
| | - Mohammad Hararah
- Department of Otolaryngology, University of Colorado, Denver, United States
| | - Arya Amini
- Department of Radiation Oncology, City of Hope Medical Center, United States
| | - Adam Mueller
- Department of Radiation Oncology, University of Colorado, Denver, United States
| | - Rustain Morgan
- Department of Radiology, University of Colorado, Denver, United States
| | - Cathy Bradley
- Department of Health Systems, Management, and Policy, Colorado School of Public Health, United States
| | - David Raben
- Department of Radiation Oncology, University of Colorado, Denver, United States
| | - Jessica McDermott
- Department of Medicine, Division of Medical Oncology, University of Colorado, Denver, United States
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado, Denver, United States.
| |
Collapse
|
43
|
Leahy J, Spahis S, Bonneil E, Garofalo C, Grimard G, Morel S, Laverdière C, Krajinovic M, Drouin S, Delvin E, Sinnett D, Marcil V, Levy E. Insight from mitochondrial functions and proteomics to understand cardiometabolic disorders in survivors of acute lymphoblastic leukemia. Metabolism 2018; 85:151-160. [PMID: 29563052 DOI: 10.1016/j.metabol.2018.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 03/12/2018] [Accepted: 03/14/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Childhood acute lymphoblastic leukemia (cALL) is the most prevalent form of cancer in children. Due to advances in treatment and therapy, young cALL subjects now achieve a 90% survival rate. However, this tremendous advance does not come without consequence since ~2/3 of cALL survivors are affected by long-term and late, severe complications. Although the metabolic syndrome is a very serious sequel of cALL, the mechanisms remain undefined. It is also surprising to note that the mitochondrion, a central organelle in metabolic functions and the main cellular energy generator, have not yet been explored. OBJECTIVES To determine whether cALL survivors exhibit impairments in their mitochondrial functions and proteomic profiling in relationship with metabolic disorders in cALL survivors compared to healthy controls. METHODS AND RESULTS Anthropometric measures, metabolic characteristics and lipid profiles were assessed, mitochondria isolated from peripheral blood mononuclear cells, and proteomic analyzed. Our data demonstrated that metabolically. Unhealthy survivors exhibited several metabolic syndrome components (e.g. overweight, insulin resistance, dyslipidemia, inflammation) whereas Healthy cALL survivors resemble the Controls. In line with these abnormalities, functional experiments in these subjects revealed a significant decrease in the protein expression of mitochondrial antioxidant superoxide dismutase, PGC1-α transcription factor (a key modulator of mitochondrion biogenesis), and an increase in pro-apoptotic cytochrome c. Proteomic analysis of mitochondria by mass spectrometry revealed changes in the regulation of proteins related to inflammation, apoptosis, energy production, redox and antioxidant activity, fatty acid β-oxidation, protein transport and metabolism, and signalling pathways between groups. CONCLUSIONS Through the use of proteomic analysis, our work demonstrated a number of significant alterations in protein expression in mitochondria of cALL survivors, especially the metabolically Unhealthy survivor group. Further investigation of these proteins may help delineate the mechanisms by which mitochondrial dysfunctions exert cardiometabolic derangements in cALL survivors.
Collapse
Affiliation(s)
- Jade Leahy
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada; Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Schohraya Spahis
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada; Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Eric Bonneil
- Proteomic Platform, IRIC Université de Montréal, Montreal, Quebec, Canada
| | - Carole Garofalo
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Guy Grimard
- Department of Paediatrics, Université de Montréal, Montreal, Quebec, Canada
| | - Sophia Morel
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada; Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Caroline Laverdière
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada; Department of Paediatrics, Université de Montréal, Montreal, Quebec, Canada
| | - Maja Krajinovic
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada; Department of Paediatrics, Université de Montréal, Montreal, Quebec, Canada
| | - Simon Drouin
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Edgard Delvin
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Daniel Sinnett
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada; Department of Paediatrics, Université de Montréal, Montreal, Quebec, Canada
| | - Valérie Marcil
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada; Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Emile Levy
- Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada; Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
44
|
CFTR Deletion Confers Mitochondrial Dysfunction and Disrupts Lipid Homeostasis in Intestinal Epithelial Cells. Nutrients 2018; 10:nu10070836. [PMID: 29954133 PMCID: PMC6073936 DOI: 10.3390/nu10070836] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/23/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023] Open
Abstract
Background: Cystic Fibrosis (CF) is a genetic disease in which the intestine exhibits oxidative and inflammatory markers. As mitochondria are the central source and the main target of reactive oxygen species, we hypothesized that cystic fibrosis transmembrane conductance regulator (CFTR) defect leads to the disruption of cellular lipid homeostasis, which contributes to mitochondrial dysfunction. Methods. Mitochondrial functions and lipid metabolism were investigated in Caco-2/15 cells with CFTR knockout (CFTR-/-) engineered by the zinc finger nuclease technique. Experiments were performed under basal conditions and after the addition of the pro-oxidant iron-ascorbate (Fe/Asc) complex. Results. Mitochondria of intestinal cells with CFTR-/-, spontaneously showed an altered redox homeostasis characterised by a significant decrease in the expression of PPARα and nuclear factor like 2. Consistent with these observations, 8-oxoguanine-DNA glycosylase, responsible for repair of ROS-induced DNA lesion, was weakly expressed in CFTR-/- cells. Moreover, disturbed fatty acid β-oxidation process was evidenced by the reduced expression of CPT1 and acyl-CoA dehydrogenase long-chain in CFTR-/- cells. The decline of mitochondrial cytochrome c and B-cell lymphoma 2 expression pointing to magnified apoptosis. Mitochondrial respiration was also affected as demonstrated by the low expression of respiratory oxidative phosphorylation (OXPHOS) complexes and a high adenosine diphosphate/adenosine triphosphate ratio. In contrast, the FAS and ACC enzymes were markedly increased, thereby indicating lipogenesis stimulation. This was associated with an augmented secretion of lipids, lipoproteins and apolipoproteins in CFTR-/- cells. The addition of Fe/Asc worsened while butylated hydroxy toluene partially improved these processes. Conclusions: CFTR silencing results in lipid homeostasis disruption and mitochondrial dysfunction in intestinal epithelial cells. Further investigation is needed to elucidate the mechanisms underlying the marked abnormalities in response to CFTR deletion.
Collapse
|
45
|
Long J, Zhang CJ, Zhu N, Du K, Yin YF, Tan X, Liao DF, Qin L. Lipid metabolism and carcinogenesis, cancer development. Am J Cancer Res 2018; 8:778-791. [PMID: 29888102 PMCID: PMC5992506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/08/2018] [Indexed: 06/08/2023] Open
Abstract
The disorder of lipid metabolism is pathologically linked to hyperlipidemia, lipid storage disease, obesity and other related diseases. Intriguingly, recent studies have revealed that lipid metabolism disorders play an important role in carcinogenesis and development as well, since they cause abnormal expression of various genes, proteins, and dysregulation of cytokines and signaling pathways. More importantly, lipid-lowering drugs and anti-lipid per-oxidation treatment have been showing their advantages in clinic, in comparison with other anti-cancer drugs with high toxicity. Thus, further elucidation of molecular mechanism between lipid metabolism and cancer is essential in developing novel diagnostic biomarkers and therapeutic targets of human cancers.
Collapse
Affiliation(s)
- Jia Long
- School of Pharmacy, Hunan University of Chinese MedicineChangsha, Hunan, China
| | - Chan-Juan Zhang
- School of Pharmacy, Hunan University of Chinese MedicineChangsha, Hunan, China
| | - Neng Zhu
- The First Affiliated Hospital, Hunan University of Chinese MedicineChangsha, Hunan, China
| | - Ke Du
- School of Pharmacy, Hunan University of Chinese MedicineChangsha, Hunan, China
| | - Yu-Fang Yin
- Department of Neuroscience and Pharmacology, School of Medicine, Southern Illinois UniversitySpringfield, Illinois, United States
| | - Xi Tan
- Department of Biochemistry & Molecular Biology, University of CalgaryCalgary, Alberta, Canada
| | - Duan-Fang Liao
- School of Pharmacy, Hunan University of Chinese MedicineChangsha, Hunan, China
- Division of Stem Cell Regulation and Application, Key Lab for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese MedicineChangsha, Hunan Province, China
| | - Li Qin
- School of Pharmacy, Hunan University of Chinese MedicineChangsha, Hunan, China
- Division of Stem Cell Regulation and Application, Key Lab for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese MedicineChangsha, Hunan Province, China
| |
Collapse
|
46
|
Bielorai B, Pinhas-Hamiel O. Type 2 Diabetes Mellitus, the Metabolic Syndrome, and Its Components in Adult Survivors of Acute Lymphoblastic Leukemia and Hematopoietic Stem Cell Transplantations. Curr Diab Rep 2018; 18:32. [PMID: 29671081 DOI: 10.1007/s11892-018-0998-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW A growing number of pediatric acute lymphoblastic leukemia (ALL) and hematopoietic stem cell transplantation (HSCT) survivors reach adulthood and face long-term health-related problems. We review risk factors and the prevalence of the metabolic syndrome (MetS), a cluster of obesity-related comorbidities, including abdominal obesity, atherogenic dyslipidemia, elevated blood pressure, impaired glucose metabolism, and type 2 diabetes in ALL and HSCT survivors. RECENT FINDINGS Components of the MetS are already detected during the first year of ALL maintenance therapy and significantly worsen over time. The prevalence of MetS increases at a faster rate in this setting than in the general population. Factors found to be of the greatest potential risk to the development of the MetS are central obesity, increased BMI, irradiation therapy, older age, poor diet, and low level of physical activity. The early onset of MetS and its components among ALL and HSCT survivors calls for early and continuous screening to identify those at risk and to implement preventive measures.
Collapse
Affiliation(s)
- Bella Bielorai
- Department of Pediatric Hematology-Oncology and BMT, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orit Pinhas-Hamiel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Pediatric Endocrinology and Diabetes Unit, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel.
| |
Collapse
|
47
|
Özdemir ZC, Düzenli Kar Y, Demiral M, Sırmagül B, Bör Ö, Kırel B. The Frequency of Metabolic Syndrome and Serum Osteopontin Levels in Survivors of Childhood Acute Lymphoblastic Leukemia. J Adolesc Young Adult Oncol 2018; 7:480-487. [PMID: 29641359 DOI: 10.1089/jayao.2017.0129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Metabolic syndrome (MetS) and obesity have increasingly been reported in survivors of childhood cancer. Osteopontin (OPN) is primarily synthesized in adipose tissue and is thought to have a role in obesity and the development of insulin resistance (IR). The aim of this study was to investigate the frequency of MetS in survivors of acute lymphoblastic leukemia (ALL) and to establish the relationship between serum OPN levels and anthropometric measurements and glucose metabolism. METHODS A total 50 survivors of ALL (median age: 10.5 years; post-treatment interval 4.54 ± 2.48 years), and 20 healthy children (median age: 11 years) were included in the study. Anthropometric measurements were taken, and serum glucose, insulin, homeostasis model assessment and IR index (HOMA-IR index), lipoprotein, thyroid hormone levels, and OPN levels were measured. RESULTS Twenty-one (42%) survivors were overweight/obese, 2 (5.1%) survivors had MetS, 7 (14%) survivors had IR, and 19 (38%) survivors had dyslipidemia. Fasting insulin levels and HOMA-IR of the overweight/obese survivors were significantly higher than those of the normal-weight survivors (p < 0.05 and p < 0.01) and control group (p < 0.01 and p < 0.01). The serum OPN level was significantly lower in the overweight/obese survivor than in the normal-weight survivor and control group (37.42 ng/mL [range, 27.32-62.07], 69.02 ng/mL [range, 40.29-88.21], and 85.7 ng/mL [range 67.7-102.3]; p < 0.01, p < 0.001, respectively). Serum OPN levels were inversely correlated with anthropometric measurements and HOMA-IR index in all the subjects. CONCLUSION Our results showed that obesity and IR are associated with decreased serum OPN levels in childhood survivors of ALL.
Collapse
Affiliation(s)
- Zeynep Canan Özdemir
- 1 Department of Pediatric Hematology/Oncology, Eskişehir Osmangazi University , Ekişehir, Turkey
| | - Yeter Düzenli Kar
- 1 Department of Pediatric Hematology/Oncology, Eskişehir Osmangazi University , Ekişehir, Turkey
| | - Meliha Demiral
- 2 Department of Pediatric Endocrinology, Eskişehir Osmangazi University , Ekişehir, Turkey
| | - Başar Sırmagül
- 3 Department of Pharmacology, Faculty of Medicine, Eskişehir Osmangazi University , Ekişehir, Turkey
| | - Özcan Bör
- 1 Department of Pediatric Hematology/Oncology, Eskişehir Osmangazi University , Ekişehir, Turkey
| | - Birgül Kırel
- 2 Department of Pediatric Endocrinology, Eskişehir Osmangazi University , Ekişehir, Turkey
| |
Collapse
|
48
|
Chueh HW, Yoo JH. Metabolic syndrome induced by anticancer treatment in childhood cancer survivors. Ann Pediatr Endocrinol Metab 2017; 22:82-89. [PMID: 28690985 PMCID: PMC5495983 DOI: 10.6065/apem.2017.22.2.82] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 06/11/2017] [Indexed: 12/25/2022] Open
Abstract
The number of childhood cancer survivors is increasing as survival rates improve. However, complications after treatment have not received much attention, particularly metabolic syndrome. Metabolic syndrome comprises central obesity, dyslipidemia, hypertension, and insulin resistance, and cancer survivors have higher risks of cardiovascular events compared with the general population. The mechanism by which cancer treatment induces metabolic syndrome is unclear. However, its pathophysiology can be categorized based on the cancer treatment type administered. Brain surgery or radiotherapy may induce metabolic syndrome by damaging the hypothalamic-pituitary axis, which may induce pituitary hormone deficiencies. Local therapy administered to particular endocrine organs directly damages the organs and causes hormone deficiencies, which induce obesity and dyslipidemia leading to metabolic syndrome. Chemotherapeutic agents interfere with cell generation and growth, damage the vascular endothelial cells, and increase the cardiovascular risk. Moreover, chemotherapeutic agents induce oxidative stress, which also induces metabolic syndrome. Physical inactivity caused by cancer treatment or the cancer itself, dietary restrictions, and the frequent use of antibiotics may also be risk factors for metabolic syndrome. Since childhood cancer survivors with metabolic syndrome have higher risks of cardiovascular events at an earlier age, early interventions should be considered. The optimal timing of interventions and drug use has not been established, but lifestyle modifications and exercise interventions that begin during cancer treatment might be beneficial and tailored education and interventions that account for individual patients' circumstances are needed. This review evaluates the recent literature that describes metabolic syndrome in cancer survivors, with a focus on its pathophysiology.
Collapse
Affiliation(s)
- Hee Won Chueh
- Department of Pediatrics, Dong-A University Hospital, Dong-A University College of Medicine, Busan, Korea
| | - Jae Ho Yoo
- Department of Pediatrics, Dong-A University Hospital, Dong-A University College of Medicine, Busan, Korea
| |
Collapse
|