1
|
Gong W, Chen J, Xu S, Li Y, Zhou Y, Qin X. The regulatory effect of Angelicae Sinensis Radix on neuroendocrine-immune network and sphingolipid metabolism in CUMS-induced model of depression. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117217. [PMID: 37769886 DOI: 10.1016/j.jep.2023.117217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Conventional antidepressants therapy remains unsatisfactory due to the disadvantages of delayed clinical onset of action and side effects. Traditional Chinese Medicine (TCM) with good efficacy and higher safety have received much attention. Angelicae Sinensis Radix (AS), a well-known TCM, has been proved to exhibit the efficacy of antidepression recently. AIM OF THE STUDY The purpose of this study was to investigate the potential anti-depressant mechanisms of AS based on chronic unpredictable mild stress (CUMS) rat model. MATERIALS AND METHODS In this study, behavioral experiments, molecular biology techniques, and ultra performance liquid chromatography-triple-time of flight mass spectrometer (UPLC-Triple-TOF/MS) were combined to explore the potential antidepressant mechanisms of AS based on CUMS rat model. RESULTS The results demonstrated that AS could reduce the contents of serum hypothalamic-pituitary-adrenal (HPA) axis hormones in CUMS rats, including corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and cortisol (CORT). In addition, AS regulated the percentage of CD4+ T lymphocytes, the ratio of CD4+/CD8+, and the levels of serum cytokines such as IL-1β, IL-4, IL-6, and TNF-α in CUMS rats. Lipidomics showed that 31 lipids were related to depression and AS could regulate the lipid metabolism alteration induced by CUMS, particularly sphingolipid metabolism. Finally, the key proteins in sphingolipid metabolic pathways in hippocampus of CUMS rats could be back-regulated by AS, including serine palmitoyl transferase (SPTLC2), ceramide synthase (CerS2), sphingomyelinase (SPHK1), and neutral sphingomyelinase (nSMase). CONCLUSION AS could alleviate NEI network disorder and restore the levels of sphingolipid metabolites and key proteins in CUMS rats. The underlying mechanism by which AS relieved depression-like behavior in CUMS rats may be through modulation of NEI and disturbances in sphingolipid metabolism.
Collapse
Affiliation(s)
- Wenxia Gong
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, China.
| | - Jinlong Chen
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, China
| | - Shaohua Xu
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, China
| | - Yuanji Li
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, China
| | - Yuzhi Zhou
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, China.
| |
Collapse
|
2
|
Eid SA, Rumora AE, Beirowski B, Bennett DL, Hur J, Savelieff MG, Feldman EL. New perspectives in diabetic neuropathy. Neuron 2023; 111:2623-2641. [PMID: 37263266 PMCID: PMC10525009 DOI: 10.1016/j.neuron.2023.05.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023]
Abstract
Diabetes prevalence continues to climb with the aging population. Type 2 diabetes (T2D), which constitutes most cases, is metabolically acquired. Diabetic peripheral neuropathy (DPN), the most common microvascular complication, is length-dependent damage to peripheral nerves. DPN pathogenesis is complex, but, at its core, it can be viewed as a state of impaired metabolism and bioenergetics failure operating against the backdrop of long peripheral nerve axons supported by glia. This unique peripheral nerve anatomy and the injury consequent to T2D underpins the distal-to-proximal symptomatology of DPN. Earlier work focused on the impact of hyperglycemia on nerve damage and bioenergetics failure, but recent evidence additionally implicates contributions from obesity and dyslipidemia. This review will cover peripheral nerve anatomy, bioenergetics, and glia-axon interactions, building the framework for understanding how hyperglycemia and dyslipidemia induce bioenergetics failure in DPN. DPN and painful DPN still lack disease-modifying therapies, and research on novel mechanism-based approaches is also covered.
Collapse
Affiliation(s)
- Stephanie A Eid
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amy E Rumora
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Bogdan Beirowski
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Neuroscience Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - David L Bennett
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, UK
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Masha G Savelieff
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
3
|
Wang Y, Pang X, Gu C, Li C, Li B, Zhou C, Chen H, Zheng Z. Different associations of anthropometric indices with diabetic retinopathy and diabetic kidney disease in chinese patients with type 2 diabetes mellitus. Acta Diabetol 2023; 60:1187-1198. [PMID: 37179497 DOI: 10.1007/s00592-023-02111-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
AIMS To investigate the associations of anthropometric indices, including body mass index (BMI), waist-to-hip ratio (WHR), waist-to-height ratio (WHtR), waist circumference (WC) and hip circumference (HC), with diabetic retinopathy (DR) and diabetic kidney disease (DKD) in Chinese patients with type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS This cross-sectional study evaluated 5226 Chinese participants with T2DM at three hospitals between 2005 and 2016. Logistic regression models and restricted cubic spline analysis were used to assess the associations of anthropometric indices with DR and DKD. RESULTS A BMI of around 25 kg/m2 was related to a low risk of DR (OR based on the third fifth: 0.752, 95%CI: 0.615-0.920). Besides, HC had an inverse association with DR in men independently of BMI (OR based on the highest fifth: 0.495, 95%CI: 0.350-0.697). In the restricted cubic spline models, BMI, WHtR, WC, and HC showed J-shaped associations with DKD, while WHR showed an S-shaped association with DKD. Compared to the lowest fifth, the odds ratios (OR) based on the highest fifth of BMI, WHR, WHtR, WC and HC for DKD were 1.927 (1.572-2.366), 1.566 (1.277-1.923), 1.910 (1.554-2.351), 1.624 (1.312-2.012) and 1.585 (1.300-1.937) respectively in multivariable models. CONCLUSIONS A median BMI and a large hip might be related to a low risk of DR, while lower levels of all the anthropometric indices were associated with a lower risk of DKD. Our findings suggested maintain a median BMI, a low WHR, a low WHtR and a large hip for prevention of DR and DKD.
Collapse
Affiliation(s)
- Yujie Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Hongkou District, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| | - Xin Pang
- Department of Ophthalmology, Haiyan County People's Hospital, No.901 Yanhu West Road, Wuyuan Street, Haiyan County, Jiaxing, Zhejiang Province, China
| | - Chufeng Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Hongkou District, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| | - Chenxin Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Hongkou District, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| | - Bo Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Hongkou District, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| | - Chuandi Zhou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Hongkou District, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| | - Haibing Chen
- Department of Endocrinology and Metabolism, Shanghai 10th People's Hospital, Tongji University, No.301 Yanan Zhong Road, Shanghai, China.
| | - Zhi Zheng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Hongkou District, Shanghai, China.
- National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.
| |
Collapse
|
4
|
Eid SA, O’Brien PD, Kretzler KH, Jang DG, Mendelson FE, Hayes JM, Carter A, Zhang H, Pennathur S, Brosius FC, Koubek EJ, Feldman EL. Dietary interventions improve diabetic kidney disease, but not peripheral neuropathy, in a db/db mouse model of type 2 diabetes. FASEB J 2023; 37:e23115. [PMID: 37490006 PMCID: PMC10372884 DOI: 10.1096/fj.202300354r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023]
Abstract
Patients with type 2 diabetes often develop the microvascular complications of diabetic kidney disease (DKD) and diabetic peripheral neuropathy (DPN), which decrease quality of life and increase mortality. Unfortunately, treatment options for DKD and DPN are limited. Lifestyle interventions, such as changes to diet, have been proposed as non-pharmacological treatment options for preventing or improving DKD and DPN. However, there are no reported studies simultaneously evaluating the therapeutic efficacy of varying dietary interventions in a type 2 diabetes mouse model of both DKD and DPN. Therefore, we compared the efficacy of a 12-week regimen of three dietary interventions, low carbohydrate, caloric restriction, and alternate day fasting, for preventing complications in a db/db type 2 diabetes mouse model by performing metabolic, DKD, and DPN phenotyping. All three dietary interventions promoted weight loss, ameliorated glycemic status, and improved DKD, but did not impact percent fat mass and DPN. Multiple regression analysis identified a negative correlation between fat mass and motor nerve conduction velocity. Collectively, our data indicate that these three dietary interventions improved weight and glycemic status and alleviated DKD but not DPN. Moreover, diets that decrease fat mass may be a promising non-pharmacological approach to improve DPN in type 2 diabetes given the negative correlation between fat mass and motor nerve conduction velocity.
Collapse
Affiliation(s)
- Stephanie A. Eid
- Department of Neurology, University of Michigan, Ann Arbor, MI 48103, USA
| | | | | | - Dae-Gyu Jang
- Department of Neurology, University of Michigan, Ann Arbor, MI 48103, USA
| | - Faye E. Mendelson
- Department of Neurology, University of Michigan, Ann Arbor, MI 48103, USA
| | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI 48103, USA
| | - Andrew Carter
- Department of Neurology, University of Michigan, Ann Arbor, MI 48103, USA
| | - Hongyu Zhang
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48103, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48103, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48103, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48103, USA
| | - Frank C. Brosius
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48103, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48103, USA
- Department of Medicine, University of Arizona, Tucson, AZ, 85721 USA
| | - Emily J. Koubek
- Department of Neurology, University of Michigan, Ann Arbor, MI 48103, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48103, USA
| |
Collapse
|
5
|
Fang J, Wang H, Niu T, Shi X, Xing X, Qu Y, Liu Y, Liu X, Xiao Y, Dou T, Shen Y, Liu K. Integration of Vitreous Lipidomics and Metabolomics for Comprehensive Understanding of the Pathogenesis of Proliferative Diabetic Retinopathy. J Proteome Res 2023. [PMID: 37329324 DOI: 10.1021/acs.jproteome.3c00007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
As a vision-threatening complication of diabetes mellitus (DM), proliferative diabetic retinopathy (PDR) is associated with sustained metabolic disorders. Herein, we collected the vitreous cavity fluid of 49 patients with PDR and 23 control subjects without DM for metabolomics and lipidomics analyses. Multivariate statistical methods were performed to explore relationships between samples. For each group of metabolites, gene set variation analysis scores were generated, and we constructed a lipid network by using weighted gene co-expression network analysis. The association between lipid co-expression modules and metabolite set scores was investigated using the two-way orthogonal partial least squares (O2PLS) model. A total of 390 lipids and 314 metabolites were identified. Multivariate statistical analysis revealed significant vitreous metabolic and lipid differences between PDR and controls. Pathway analysis showed that 8 metabolic processes might be associated with the development of PDR, and 14 lipid species were found to be altered in PDR patients. Combining metabolomics and lipidomics, we identified fatty acid desaturase 2 (FADS2) as an important potential contributor to the pathogenesis of PDR. Collectively, this study integrates vitreous metabolomics and lipidomics to comprehensively unravel metabolic dysregulation and identifies genetic variants associated with altered lipid species in the mechanistic pathways for PDR.
Collapse
Affiliation(s)
- Junwei Fang
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Hanying Wang
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Tian Niu
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Xin Shi
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Xindan Xing
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Yuan Qu
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Yujuan Liu
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Xinyi Liu
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Yu Xiao
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Tianyu Dou
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Yinchen Shen
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Kun Liu
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| |
Collapse
|
6
|
Cuevas-Delgado P, Miguel V, Rupérez FJ, Lamas S, Barbas C. Impact of renal tubular Cpt1a overexpression on the kidney metabolome in the folic acid-induced fibrosis mouse model. Front Mol Biosci 2023; 10:1161036. [PMID: 37377862 PMCID: PMC10291237 DOI: 10.3389/fmolb.2023.1161036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/24/2023] [Indexed: 06/29/2023] Open
Abstract
Background: Chronic kidney disease (CKD) is characterized by the progressive and irreversible deterioration of kidney function and structure with the appearance of renal fibrosis. A significant decrease in mitochondrial metabolism, specifically a reduction in fatty acid oxidation (FAO) in tubular cells, is observed in tubulointerstitial fibrosis, whereas FAO enhancement provides protection. Untargeted metabolomics offers the potential to provide a comprehensive analysis of the renal metabolome in the context of kidney injury. Methodology: Renal tissue from a carnitine palmitoyl transferase 1a (Cpt1a) overexpressing mouse model, which displays enhanced FAO in the renal tubule, subjected to folic acid nephropathy (FAN) was studied through a multiplatform untargeted metabolomics approach based on LC-MS, CE-MS and GC-MS analysis to achieve the highest coverage of the metabolome and lipidome affected by fibrosis. The expression of genes related to the biochemical routes showing significant changes was also evaluated. Results: By combining different tools for signal processing, statistical analysis and feature annotation, we were able to identify variations in 194 metabolites and lipids involved in many metabolic routes: TCA cycle, polyamines, one-carbon metabolism, amino acid metabolism, purine metabolism, FAO, glycerolipids and glycerophospholipids synthesis and degradation, glycosphingolipids interconversion, and sterol metabolism. We found several metabolites strongly altered by FAN, with no reversion induced by Cpt1a overexpression (v.g. citric acid), whereas other metabolites were influenced by CPT1A-induced FAO (v.g. glycine-betaine). Conclusion: It was implemented a successful multiplatform metabolomics approach for renal tissue analysis. Profound metabolic changes accompany CKD-associated fibrosis, some associated with tubular FAO failure. These results highlight the importance of addressing the crosstalk between metabolism and fibrosis when undertaking studies attempting to elucidate the mechanism of CKD progression.
Collapse
Affiliation(s)
- Paula Cuevas-Delgado
- Centre for Metabolomics and Bioanalysis (CEMBIO), School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Verónica Miguel
- Program of Physiological and Pathological Processes, Centro de Biología Molecular “Severo Ochoa” (CBMSO, CSIC-UAM), Madrid, Spain
| | - Francisco J. Rupérez
- Centre for Metabolomics and Bioanalysis (CEMBIO), School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Santiago Lamas
- Program of Physiological and Pathological Processes, Centro de Biología Molecular “Severo Ochoa” (CBMSO, CSIC-UAM), Madrid, Spain
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| |
Collapse
|
7
|
Gao Y, Yu T, Ai F, Ji C, Wu Y, Huang X, Zheng X, Yan F. Bacillus coagulans XY2 ameliorates copper-induced toxicity by bioadsorption, gut microbiota and lipid metabolism regulation. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130585. [PMID: 37055990 DOI: 10.1016/j.jhazmat.2022.130585] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 06/19/2023]
Abstract
Excessive copper pollutes the environment and endangers human health, attracting plenty of global attention. In this study, a novel strain named Bacillus coagulans XY2 was discovered to have a great copper tolerance and adsorption capacity. B. coagulans XY2 might maintain copper homeostasis through multisystem synergies of copper resistance, sulfur metabolism, Fe-S cluster assembly, and siderophore transport. In mice, by promoting the expression of SREBF-1 and SREBF-2 and their downstream genes, B. coagulans XY2 significantly inhibited the copper-induced decrease in weight growth rate, ameliorated dyslipidemia, restored total cholesterol and triglyceride contents both in serum and liver. Furthermore, B. coagulans XY2 recovered the diversity of gut microbiota and suppressed the copper-induced reduction in the ratio of Firmicutes to Bacteroidota. Serum metabolomics analysis showed that the alleviating effect of B. coagulans XY2 on copper toxicity was mainly related to lipid metabolism. For the first time, we demonstrated mechanisms of copper toxicity mitigation by B. coagulans XY2, which was related to self-adsorption, host copper excretion promotion, and lipid metabolism regulation. Moreover, working model of B. coagulans XY2 on copper homeostasis was predicted by whole-genome analysis. Our study provides a new solution for harmfulness caused by copper both in human health and the environment.
Collapse
Affiliation(s)
- Yufang Gao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ting Yu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Fang Ai
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Chen Ji
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yalan Wu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xuedi Huang
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Fujie Yan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Wang R, Jian Q, Hu G, Du R, Xu X, Zhang F. Integrated Metabolomics and Transcriptomics Reveal Metabolic Patterns in Retina of STZ-Induced Diabetic Retinopathy Mouse Model. Metabolites 2022; 12:metabo12121245. [PMID: 36557283 PMCID: PMC9782096 DOI: 10.3390/metabo12121245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/24/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Diabetic retinopathy (DR), as the leading cause of vision loss in the working-age population, exhibits unique metabolite profiles in human plasma and vitreous. However, those in retina are not fully understood. Here, we utilized liquid and gas chromatography-tandem mass spectrometry technology to explore metabolite characteristics of streptozotocin (STZ)-induced diabetic mice retina. A total of 145 metabolites differed significantly in diabetic retinas compared with controls. These metabolites are mainly enriched in the Warburg effect, and valine, leucine and isoleucine degradation pathways. To further identify underlying regulators, RNA sequencing was performed to integrate metabolic enzyme alterations with metabolomics in STZ-induced diabetic retina. Retinol metabolism and tryptophan metabolism are the shared pathways enriched by metabolome and transcriptome. Additionally, transcriptomic analysis identified 71 differentially expressed enzyme-related genes including Hk2, Slc7a5, Aldh1a3 and Tph integrated with altered metabolic pathways. In addition, single nucleotide polymorphisms within 6 out of 71 genes are associated with increased diabetes risk. This study lays the foundation for mechanism research and the therapeutic target development of DR.
Collapse
Affiliation(s)
- Ruonan Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Qizhi Jian
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Guangyi Hu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Rui Du
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
- Correspondence: (X.X.); (F.Z.)
| | - Fang Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
- Correspondence: (X.X.); (F.Z.)
| |
Collapse
|
9
|
Bitzer M, Ju W, Subramanian L, Troost JP, Tychewicz J, Steck B, Wiggins RC, Gipson DS, Gadegbeku CA, Brosius FC, Kretzler M, Pennathur S. The Michigan O'Brien Kidney Research Center: transforming translational kidney research through systems biology. Am J Physiol Renal Physiol 2022; 323:F401-F410. [PMID: 35924446 PMCID: PMC9485002 DOI: 10.1152/ajprenal.00091.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/19/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
Research on kidney diseases is being transformed by the rapid expansion and innovations in omics technologies. The analysis, integration, and interpretation of big data, however, have been an impediment to the growing interest in applying these technologies to understand kidney function and failure. Targeting this urgent need, the University of Michigan O'Brien Kidney Translational Core Center (MKTC) and its Administrative Core established the Applied Systems Biology Core. The Core provides need-based support for the global kidney community centered on enabling incorporation of systems biology approaches by creating web-based, user-friendly analytic and visualization tools, like Nephroseq and Nephrocell, guiding with experimental design, and processing, analysis, and integration of large data sets. The enrichment core supports systems biology education and dissemination through workshops, seminars, and individualized training sessions. Meanwhile, the Pilot and Feasibility Program of the MKTC provides pilot funding to both early-career and established investigators new to the field, to integrate a systems biology approach into their research projects. The relevance and value of the portfolio of training and services offered by MKTC are reflected in the expanding community of young investigators, collaborators, and users accessing resources and engaging in systems biology-based kidney research, thereby motivating MKTC to persevere in its mission to serve the kidney research community by enabling access to state-of-the-art data sets, tools, technologies, expertise, and learning opportunities for transformative basic, translational, and clinical studies that will usher in solutions to improve the lives of people impacted by kidney disease.
Collapse
Affiliation(s)
- Markus Bitzer
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Wenjun Ju
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Lalita Subramanian
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Jonathan P Troost
- Division of Pediatric Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Joseph Tychewicz
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Becky Steck
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Roger C Wiggins
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Debbie S Gipson
- Division of Pediatric Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Crystal A Gadegbeku
- Department of Kidney Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic Health System, Cleveland, Ohio
| | - Frank C Brosius
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Division of Nephrology, The University of Arizona College of Medicine Tucson, Tucson, Arizona
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
10
|
Jian Q, Wu Y, Zhang F. Metabolomics in Diabetic Retinopathy: From Potential Biomarkers to Molecular Basis of Oxidative Stress. Cells 2022; 11:cells11193005. [PMID: 36230967 PMCID: PMC9563658 DOI: 10.3390/cells11193005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetic retinopathy (DR), the leading cause of blindness in working-age adults, is one of the most common complications of diabetes mellitus (DM) featured by metabolic disorders. With the global prevalence of diabetes, the incidence of DR is expected to increase. Prompt detection and the targeting of anti-oxidative stress intervention could effectively reduce visual impairment caused by DR. However, the diagnosis and treatment of DR is often delayed due to the absence of obvious signs of retina imaging. Research progress supports that metabolomics is a powerful tool to discover potential diagnostic biomarkers and therapeutic targets for the causes of oxidative stress through profiling metabolites in diseases, which provides great opportunities for DR with metabolic heterogeneity. Thus, this review summarizes the latest advances in metabolomics in DR, as well as potential diagnostic biomarkers, and predicts molecular targets through the integration of genome-wide association studies (GWAS) with metabolomics. Metabolomics provides potential biomarkers, molecular targets and therapeutic strategies for controlling the progress of DR, especially the interventions at early stages and precise treatments based on individual patient variations.
Collapse
Affiliation(s)
- Qizhi Jian
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Yingjie Wu
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Liaoning Provence Key Laboratory of Genome Engineered Animal Models, Dalian Medical University, Dalian 116000, China
- Shandong Provincial Hospital, School of Laboratory Animal & Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
- Correspondence: (Y.W.); (F.Z.)
| | - Fang Zhang
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
- Correspondence: (Y.W.); (F.Z.)
| |
Collapse
|
11
|
Rumora AE, Guo K, Hinder LM, O’Brien PD, Hayes JM, Hur J, Feldman EL. A High-Fat Diet Disrupts Nerve Lipids and Mitochondrial Function in Murine Models of Neuropathy. Front Physiol 2022; 13:921942. [PMID: 36072849 PMCID: PMC9441493 DOI: 10.3389/fphys.2022.921942] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
As the prevalence of prediabetes and type 2 diabetes (T2D) continues to increase worldwide, accompanying complications are also on the rise. The most prevalent complication, peripheral neuropathy (PN), is a complex process which remains incompletely understood. Dyslipidemia is an emerging risk factor for PN in both prediabetes and T2D, suggesting that excess lipids damage peripheral nerves; however, the precise lipid changes that contribute to PN are unknown. To identify specific lipid changes associated with PN, we conducted an untargeted lipidomics analysis comparing the effect of high-fat diet (HFD) feeding on lipids in the plasma, liver, and peripheral nerve from three strains of mice (BL6, BTBR, and BKS). HFD feeding triggered distinct strain- and tissue-specific lipid changes, which correlated with PN in BL6 mice versus less robust murine models of metabolic dysfunction and PN (BTBR and BKS mice). The BL6 mice showed significant changes in neutral lipids, phospholipids, lysophospholipids, and plasmalogens within the nerve. Sphingomyelin (SM) and lysophosphatidylethanolamine (LPE) were two lipid species that were unique to HFD BL6 sciatic nerve compared to other strains (BTBR and BKS). Plasma and liver lipids were significantly altered in all murine strains fed a HFD independent of PN status, suggesting that nerve-specific lipid changes contribute to PN pathogenesis. Many of the identified lipids affect mitochondrial function and mitochondrial bioenergetics, which were significantly impaired in ex vivo sural nerve and dorsal root ganglion sensory neurons. Collectively, our data show that consuming a HFD dysregulates the nerve lipidome and mitochondrial function, which may contribute to PN in prediabetes.
Collapse
Affiliation(s)
- Amy E. Rumora
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Department of Neurology, Columbia University, New York, NY, United States
| | - Kai Guo
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Lucy M. Hinder
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Phillipe D. O’Brien
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Junguk Hur
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
12
|
Afshinnia F, Reynolds EL, Rajendiran TM, Soni T, Byun J, Savelieff MG, Looker HC, Nelson RG, Michailidis G, Callaghan BC, Pennathur S, Feldman EL. Serum lipidomic determinants of human diabetic neuropathy in type 2 diabetes. Ann Clin Transl Neurol 2022; 9:1392-1404. [PMID: 35923113 PMCID: PMC9463947 DOI: 10.1002/acn3.51639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE The serum lipidomic profile associated with neuropathy in type 2 diabetes is not well understood. Obesity and dyslipidemia are known neuropathy risk factors, suggesting lipid profiles early during type 2 diabetes may identify individuals who develop neuropathy later in the disease course. This retrospective cohort study examined lipidomic profiles 10 years prior to type 2 diabetic neuropathy assessment. METHODS Participants comprised members of the Gila River Indian community with type 2 diabetes (n = 69) with available stored serum samples and neuropathy assessment 10 years later using the combined Michigan Neuropathy Screening Instrument (MNSI) examination and questionnaire scores. A combined MNSI index was calculated from examination and questionnaire scores. Serum lipids (435 species from 18 classes) were quantified by mass spectrometry. RESULTS The cohort included 17 males and 52 females with a mean age of 45 years (SD = 9 years). Participants were stratified as with (high MNSI index score > 2.5407) versus without neuropathy (low MNSI index score ≤ 2.5407). Significantly decreased medium-chain acylcarnitines and increased total free fatty acids, independent of chain length and saturation, in serum at baseline associated with incident peripheral neuropathy at follow-up, that is, participants had high MNSI index scores, independent of covariates. Participants with neuropathy also had decreased phosphatidylcholines and increased lysophosphatidylcholines at baseline, independent of chain length and saturation. The abundance of other lipid classes did not differ significantly by neuropathy status. INTERPRETATION Abundance differences in circulating acylcarnitines, free fatty acids, phosphatidylcholines, and lysophosphatidylcholines 10 years prior to neuropathy assessment are associated with neuropathy status in type 2 diabetes.
Collapse
Affiliation(s)
- Farsad Afshinnia
- Department of Internal Medicine‐NephrologyUniversity of MichiganAnn ArborMichiganUSA
| | - Evan L. Reynolds
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA,Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Thekkelnaycke M. Rajendiran
- University of Michigan, Michigan Regional Comprehensive Metabolomics Resource CoreAnn ArborMichiganUSA,Department of PathologyUniversity of MichiganAnn ArborMichiganUSA
| | - Tanu Soni
- University of Michigan, Michigan Regional Comprehensive Metabolomics Resource CoreAnn ArborMichiganUSA
| | - Jaeman Byun
- Department of Internal Medicine‐NephrologyUniversity of MichiganAnn ArborMichiganUSA
| | - Masha G. Savelieff
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA
| | - Helen C. Looker
- Chronic Kidney Disease SectionNational Institute of Diabetes and Digestive and Kidney DiseasesPhoenixArizonaUSA
| | - Robert G. Nelson
- Chronic Kidney Disease SectionNational Institute of Diabetes and Digestive and Kidney DiseasesPhoenixArizonaUSA
| | - George Michailidis
- Department of Statistics and the Informatics InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Brian C. Callaghan
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA,Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Subramaniam Pennathur
- Department of Internal Medicine‐NephrologyUniversity of MichiganAnn ArborMichiganUSA,University of Michigan, Michigan Regional Comprehensive Metabolomics Resource CoreAnn ArborMichiganUSA,Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Eva L. Feldman
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA,Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
13
|
Elshareif N, Gavini CK, Mansuy-Aubert V. LXR agonist modifies neuronal lipid homeostasis and decreases PGD2 in the dorsal root ganglia in western diet-fed mice. Sci Rep 2022; 12:10754. [PMID: 35750708 PMCID: PMC9232502 DOI: 10.1038/s41598-022-14604-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/09/2022] [Indexed: 11/09/2022] Open
Abstract
The prevalence of peripheral neuropathy is high in diabetic and overweight populations. Chronic neuropathic pain, a symptom of peripheral neuropathy, is a major disabling symptom that leads to a poor quality of life. Glucose management for diabetic and prediabetic individuals often fail to reduce or improve pain symptoms, therefore, exploring other mechanisms is necessary to identify effective treatments. A large body of evidence suggest that lipid signaling may be a viable target for management of peripheral neuropathy in obese individuals. The nuclear transcription factors, Liver X Receptors (LXR), are known regulators of lipid homeostasis, phospholipid remodeling, and inflammation. Notably, the activation of LXR using the synthetic agonist GW3965, delayed western diet (WD)-induced allodynia in rodents. To further understand the neurobiology underlying the effect of LXR, we used translating ribosome affinity purification and evaluated translatomic changes in the sensory neurons of WD-fed mice treated with the LXR agonist GW3965. We also observed that GW3965 decreased prostaglandin levels and decreased free fatty acid content, while increasing lysophosphatidylcholine, phosphatidylcholine, and cholesterol ester species in the sensory neurons of the dorsal root ganglia (DRG). These data suggest novel downstream interplaying mechanisms that modifies DRG neuronal lipid following GW3965 treatment.
Collapse
Affiliation(s)
- Nadia Elshareif
- Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Chaitanya K Gavini
- Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Virginie Mansuy-Aubert
- Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA.
| |
Collapse
|
14
|
YAN Y, LUO Z, DENG T, CUI X, YANG J, PAN X, YANG L, WANG Y, LI L, LI L, GAO M, YANG X. Effect on hypoglycemic activity and UPLC–MS/MS profiling of Rosa roxburghii fruit fermented with Chinese traditional distiller's yeast. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.41822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yanfang YAN
- Guizhou Medical University, China; Chinese Academy of Sciences, China
| | - Zhongsheng LUO
- Guizhou Medical University, China; Chinese Academy of Sciences, China
| | - Tingfei DENG
- Guizhou Medical University, China; Chinese Academy of Sciences, China
| | | | - Juan YANG
- Guizhou Medical University, China; Chinese Academy of Sciences, China
| | - Xiong PAN
- Guizhou Medical University, China; Chinese Academy of Sciences, China
| | - Lishou YANG
- Guizhou Medical University, China; Chinese Academy of Sciences, China
| | - Yu WANG
- Guizhou Medical University, China; Chinese Academy of Sciences, China
| | - Liangqun LI
- Guizhou Medical University, China; Chinese Academy of Sciences, China
| | - Lilang LI
- Guizhou Medical University, China; Chinese Academy of Sciences, China
| | - Ming GAO
- Guizhou Medical University, China; Chinese Academy of Sciences, China
| | - Xiaosheng YANG
- Guizhou Medical University, China; Chinese Academy of Sciences, China
| |
Collapse
|
15
|
Wang W, Li T, Li Z, Wang H, Liu X. Differential lipidomics of HK-2 cells and exosomes under high glucose stimulation. Int J Med Sci 2022; 19:393-401. [PMID: 35165524 PMCID: PMC8795806 DOI: 10.7150/ijms.67326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/28/2021] [Indexed: 12/02/2022] Open
Abstract
Abnormal cellular lipid metabolism has a very important role in the occurrence and progression of diabetic kidney disease (DKD). However, the lipid composition and differential expression by high glucose stimulation of renal tubular cells and their exosomes, which is a vital part of the development of DKD, are largely unknown. In this study, based on targeted lipid analysis by isotope labeling and tandem mass spectrometry, a total of 421 and 218 lipid species were quantified in HK-2 cells and exosomes, respectively. More importantly, results showed that GM3 d18:1/22:0, GM3 d18:1/16:0, GM3 d18:0/16:0, GM3 d18:1/22:1 were significantly increased, while LPE18:1, LPE, CL66:4 (16:1), BMP36:3, CL70:7 (16:1), CL74:8 (16:1) were significantly decreased in high glucose-stimulated HK-2 cells. Also, PG36:1, FFA22:5, PC38:3, SM d18:1/16:1, CE-16:1, CE-18:3, CE-20:5, and CE-22:6 were significantly increased, while GM3 d18:1/24:1, GM3 were significantly decreased in exosomes secreted by high glucose-stimulated HK-2 cells. Furthermore, TAG, PC, CL were decreased significantly in the exosomes comparing with the HK-2 cells, and LPA18:2, LPI22:5, PG32:2, FFA16:1, GM3 d18:1/18:1, GM3 d18:1/20:1, GM3 d18:0/20:0, PC40:6p, TAG52:1(18:1), TAG52:0(18:0), CE-20:5, CE-20:4, CE-22:6 were only found in exosomes. In addition, the expression of PI4P in HK-2 cells decreased under a high glucose state. These data may be useful to provide new targets for exploring the mechanisms of DKD.
Collapse
Affiliation(s)
- Weidong Wang
- Department of Nephrology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Shenyang, Liaoning, P.R. China, 110001
| | - Tingting Li
- Department of Nephrology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Shenyang, Liaoning, P.R. China, 110001
| | - Zhijie Li
- Department of Nephrology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Shenyang, Liaoning, P.R. China, 110001
| | - Hongmiao Wang
- Department of Nephrology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Shenyang, Liaoning, P.R. China, 110001
| | - Xiaodan Liu
- Department of Nephrology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Shenyang, Liaoning, P.R. China, 110001
| |
Collapse
|
16
|
Baek J, He C, Afshinnia F, Michailidis G, Pennathur S. Lipidomic approaches to dissect dysregulated lipid metabolism in kidney disease. Nat Rev Nephrol 2022; 18:38-55. [PMID: 34616096 PMCID: PMC9146017 DOI: 10.1038/s41581-021-00488-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2021] [Indexed: 01/03/2023]
Abstract
Dyslipidaemia is a hallmark of chronic kidney disease (CKD). The severity of dyslipidaemia not only correlates with CKD stage but is also associated with CKD-associated cardiovascular disease and mortality. Understanding how lipids are dysregulated in CKD is, however, challenging owing to the incredible diversity of lipid structures. CKD-associated dyslipidaemia occurs as a consequence of complex interactions between genetic, environmental and kidney-specific factors, which to understand, requires an appreciation of perturbations in the underlying network of genes, proteins and lipids. Modern lipidomic technologies attempt to systematically identify and quantify lipid species from biological systems. The rapid development of a variety of analytical platforms based on mass spectrometry has enabled the identification of complex lipids at great precision and depth. Insights from lipidomics studies to date suggest that the overall architecture of free fatty acid partitioning between fatty acid oxidation and complex lipid fatty acid composition is an important driver of CKD progression. Available evidence suggests that CKD progression is associated with metabolic inflexibility, reflecting a diminished capacity to utilize free fatty acids through β-oxidation, and resulting in the diversion of accumulating fatty acids to complex lipids such as triglycerides. This effect is reversed with interventions that improve kidney health, suggesting that targeting of lipid abnormalities could be beneficial in preventing CKD progression.
Collapse
Affiliation(s)
- Judy Baek
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Chenchen He
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Farsad Afshinnia
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Subramaniam Pennathur
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
17
|
Fort PE, Rajendiran TM, Soni T, Byun J, Shan Y, Looker HC, Nelson RG, Kretzler M, Michailidis G, Roger JE, Gardner TW, Abcouwer SF, Pennathur S, Afshinnia F. Diminished retinal complex lipid synthesis and impaired fatty acid β-oxidation associated with human diabetic retinopathy. JCI Insight 2021; 6:e152109. [PMID: 34437304 PMCID: PMC8525591 DOI: 10.1172/jci.insight.152109] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/25/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND This study systematically investigated circulating and retinal tissue lipid determinants of human diabetic retinopathy (DR) to identify underlying lipid alterations associated with severity of DR. METHODS Retinal tissues were retrieved from postmortem human eyes, including 19 individuals without diabetes, 20 with diabetes but without DR, and 20 with diabetes and DR, for lipidomic study. In a parallel study, serum samples from 28 American Indians with type 2 diabetes from the Gila River Indian Community, including 12 without DR, 7 with mild nonproliferative DR (NPDR), and 9 with moderate NPDR, were selected. A mass-spectrometry–based lipidomic platform was used to measure serum and tissue lipids. RESULTS In the postmortem retinas, we found a graded decrease of long-chain acylcarnitines and longer-chain fatty acid ester of hydroxyl fatty acids, diacylglycerols, triacylglycerols, phosphatidylcholines, and ceramide(NS) in central retina from individuals with no diabetes to those with diabetes with DR. The American Indians’ sera also exhibited a graded decrease in circulating long-chain acylcarnitines and a graded increase in the intermediate-length saturated and monounsaturated triacylglycerols from no DR to moderate NPDR. CONCLUSION These findings suggest diminished synthesis of complex lipids and impaired mitochondrial β-oxidation of fatty acids in retinal DR, with parallel changes in circulating lipids. TRIAL REGISTRATION ClinicalTrials.gov NCT00340678. FUNDING This work was supported by NIH grants R24 DK082841, K08DK106523, R03DK121941, P30DK089503, P30DK081943, P30DK020572, P30 EY007003; The Thomas Beatson Foundation; and JDRF Center for Excellence (5-COE-2019-861-S-B).
Collapse
Affiliation(s)
- Patrice E Fort
- Department of Ophthalmology and Visual Sciences.,Department of Molecular and Integrative Physiology
| | | | | | - Jaeman Byun
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yang Shan
- Department of Ophthalmology and Visual Sciences
| | - Helen C Looker
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Phoenix, Arizona, USA
| | - Robert G Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Phoenix, Arizona, USA
| | - Matthias Kretzler
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - George Michailidis
- Department of Statistics and the Informatics Institute, University of Florida, Gainesville, Florida, USA
| | - Jerome E Roger
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Université Paris-Saclay, Orsay, France
| | - Thomas W Gardner
- Department of Ophthalmology and Visual Sciences.,Department of Molecular and Integrative Physiology.,Department of Internal Medicine-Metabolism, Endocrinology and Diabetes, and
| | | | - Subramaniam Pennathur
- Department of Molecular and Integrative Physiology.,Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA.,Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, Michigan, USA
| | - Farsad Afshinnia
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
18
|
Li X, Cai S, He Z, Reilly J, Zeng Z, Strang N, Shu X. Metabolomics in Retinal Diseases: An Update. BIOLOGY 2021; 10:944. [PMID: 34681043 PMCID: PMC8533136 DOI: 10.3390/biology10100944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/17/2022]
Abstract
Retinal diseases are a leading cause of visual loss and blindness, affecting a significant proportion of the population worldwide and having a detrimental impact on quality of life, with consequent economic burden. The retina is highly metabolically active, and a number of retinal diseases are associated with metabolic dysfunction. To better understand the pathogenesis underlying such retinopathies, new technology has been developed to elucidate the mechanism behind retinal diseases. Metabolomics is a relatively new "omics" technology, which has developed subsequent to genomics, transcriptomics, and proteomics. This new technology can provide qualitative and quantitative information about low-molecular-weight metabolites (M.W. < 1500 Da) in a given biological system, which shed light on the physiological or pathological state of a cell or tissue sample at a particular time point. In this article we provide an extensive review of the application of metabolomics to retinal diseases, with focus on age-related macular degeneration (AMD), diabetic retinopathy (DR), retinopathy of prematurity (ROP), glaucoma, and retinitis pigmentosa (RP).
Collapse
Affiliation(s)
- Xing Li
- School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China; (X.L.); (Z.H.)
| | - Shichang Cai
- Department of Human Anatomy, School of Medicine, Hunan University of Medicine, Huaihua 418000, China;
| | - Zhiming He
- School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China; (X.L.); (Z.H.)
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK;
| | - Zhihong Zeng
- College of Biological and Environmental Engineering, Changsha University, Changsha 410022, China;
| | - Niall Strang
- Department of Vision Science, Glasgow Caledonian University, Glasgow G4 0BA, UK;
| | - Xinhua Shu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China; (X.L.); (Z.H.)
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK;
- Department of Vision Science, Glasgow Caledonian University, Glasgow G4 0BA, UK;
| |
Collapse
|
19
|
Baek J, Pennathur S. Urinary 2-Hydroxyglutarate Enantiomers Are Markedly Elevated in a Murine Model of Type 2 Diabetic Kidney Disease. Metabolites 2021; 11:metabo11080469. [PMID: 34436410 PMCID: PMC8400583 DOI: 10.3390/metabo11080469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 12/23/2022] Open
Abstract
Metabolic reprogramming is a hallmark of diabetic kidney disease (DKD); nutrient overload leads to increased production of metabolic byproducts that may become toxic at high levels. One metabolic byproduct may be 2-hydroxyglutarate (2-HG), a metabolite with many regulatory functions that exists in both enantiomeric forms physiologically. We quantitatively determined the levels of L and D-2HG enantiomers in the urine, plasma, and kidney cortex of db/db mice, a pathophysiologically relevant murine model of type 2 diabetes and DKD. We found increased fractional excretion of both L and D-2HG enantiomers, suggesting increased tubular secretion and/or production of the two metabolites in DKD. Quantitation of TCA cycle metabolites in db/db cortex suggests that TCA cycle overload and an increase in 2-HG precursor substrate, α-ketoglutarate, drive the increased L and D-2HG production in DKD. In conclusion, we demonstrated increased 2-HG enantiomer production and urinary excretion in murine type 2 DKD, which may contribute to metabolic reprogramming and progression of diabetic kidney disease.
Collapse
Affiliation(s)
- Judy Baek
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Subramaniam Pennathur
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA;
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48105, USA
- Correspondence:
| |
Collapse
|
20
|
Eid SA, Hinder LM, Zhang H, Eksi R, Nair V, Eddy S, Eichinger F, Park M, Saha J, Berthier CC, Jagadish HV, Guan Y, Pennathur S, Hur J, Kretzler M, Feldman EL, Brosius FC. Gene expression profiles of diabetic kidney disease and neuropathy in eNOS knockout mice: Predictors of pathology and RAS blockade effects. FASEB J 2021; 35:e21467. [PMID: 33788970 DOI: 10.1096/fj.202002387r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/31/2022]
Abstract
Diabetic kidney disease (DKD) and diabetic peripheral neuropathy (DPN) are two common diabetic complications. However, their pathogenesis remains elusive and current therapies are only modestly effective. We evaluated genome-wide expression to identify pathways involved in DKD and DPN progression in db/db eNOS-/- mice receiving renin-angiotensin-aldosterone system (RAS)-blocking drugs to mimic the current standard of care for DKD patients. Diabetes and eNOS deletion worsened DKD, which improved with RAS treatment. Diabetes also induced DPN, which was not affected by eNOS deletion or RAS blockade. Given the multiple factors affecting DKD and the graded differences in disease severity across mouse groups, an automatic data analysis method, SOM, or self-organizing map was used to elucidate glomerular transcriptional changes associated with DKD, whereas pairwise bioinformatic analysis was used for DPN. These analyses revealed that enhanced gene expression in several pro-inflammatory networks and reduced expression of development genes correlated with worsening DKD. Although RAS treatment ameliorated the nephropathy phenotype, it did not alter the more abnormal gene expression changes in kidney. Moreover, RAS exacerbated expression of genes related to inflammation and oxidant generation in peripheral nerves. The graded increase in inflammatory gene expression and decrease in development gene expression with DKD progression underline the potentially important role of these pathways in DKD pathogenesis. Since RAS blockers worsened this gene expression pattern in both DKD and DPN, it may partly explain the inadequate therapeutic efficacy of such blockers.
Collapse
Affiliation(s)
- Stephanie A Eid
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lucy M Hinder
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Hongyu Zhang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ridvan Eksi
- Department of Computational Medicine and Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Viji Nair
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sean Eddy
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Felix Eichinger
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Meeyoung Park
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jharna Saha
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Celine C Berthier
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Hosagrahar V Jagadish
- Department of Computational Medicine and Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yuanfang Guan
- Department of Computational Medicine and Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Subramaniam Pennathur
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Matthias Kretzler
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Computational Medicine and Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Frank C Brosius
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
21
|
Sas KM, Lin J, Wang CH, Zhang H, Saha J, Rajendiran TM, Soni T, Nair V, Eichinger F, Kretzler M, Brosius FC, Michailidis G, Pennathur S. Renin-angiotensin system inhibition reverses the altered triacylglycerol metabolic network in diabetic kidney disease. Metabolomics 2021; 17:65. [PMID: 34219205 PMCID: PMC8312633 DOI: 10.1007/s11306-021-01816-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Dyslipidemia is a significant risk factor for progression of diabetic kidney disease (DKD). Determining the changes in individual lipids and lipid networks across a spectrum of DKD severity may identify lipids that are pathogenic to DKD progression. METHODS We performed untargeted lipidomic analysis of kidney cortex tissue from diabetic db/db and db/db eNOS-/- mice along with non-diabetic littermate controls. A subset of mice were treated with the renin-angiotensin system (RAS) inhibitors, lisinopril and losartan, which improves the DKD phenotype in the db/db eNOS-/- mouse model. RESULTS Of the three independent variables in this study, diabetes had the largest impact on overall lipid levels in the kidney cortex, while eNOS expression and RAS inhibition had smaller impacts on kidney lipid levels. Kidney lipid network architecture, particularly of networks involving glycerolipids such as triacylglycerols, was substantially disrupted by worsening kidney disease in the db/db eNOS-/- mice compared to the db/db mice, a feature that was reversed with RAS inhibition. This was associated with decreased expression of the stearoyl-CoA desaturases, Scd1 and Scd2, with RAS inhibition. CONCLUSIONS In addition to the known salutary effect of RAS inhibition on DKD progression, our results suggest a previously unrecognized role for RAS inhibition on the kidney triacylglycerol lipid metabolic network.
Collapse
Affiliation(s)
- Kelli M Sas
- Division of Nephrology, Department of Internal Medicine, University of Michigan, 5309 Brehm Center, 1000 Wall St., Ann Arbor, Michigan, 48105, USA
| | - Jiahe Lin
- Department of Statistics, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Chih-Hong Wang
- Division of Nephrology, Department of Internal Medicine, University of Michigan, 5309 Brehm Center, 1000 Wall St., Ann Arbor, Michigan, 48105, USA
| | - Hongyu Zhang
- Division of Nephrology, Department of Internal Medicine, University of Michigan, 5309 Brehm Center, 1000 Wall St., Ann Arbor, Michigan, 48105, USA
| | - Jharna Saha
- Division of Nephrology, Department of Internal Medicine, University of Michigan, 5309 Brehm Center, 1000 Wall St., Ann Arbor, Michigan, 48105, USA
| | - Thekkelnaycke M Rajendiran
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, 48109, USA
- Michigan Regional Comprehensive Metabolomics Resource Core, Ann Arbor, Michigan, 48105, USA
| | - Tanu Soni
- Michigan Regional Comprehensive Metabolomics Resource Core, Ann Arbor, Michigan, 48105, USA
| | - Viji Nair
- Division of Nephrology, Department of Internal Medicine, University of Michigan, 5309 Brehm Center, 1000 Wall St., Ann Arbor, Michigan, 48105, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Felix Eichinger
- Division of Nephrology, Department of Internal Medicine, University of Michigan, 5309 Brehm Center, 1000 Wall St., Ann Arbor, Michigan, 48105, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan, 5309 Brehm Center, 1000 Wall St., Ann Arbor, Michigan, 48105, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Frank C Brosius
- Division of Nephrology, Department of Internal Medicine, University of Michigan, 5309 Brehm Center, 1000 Wall St., Ann Arbor, Michigan, 48105, USA
- Division of Nephrology, Department of Medicine, University of Arizona, Tucson, Arizona, 85724, USA
| | - George Michailidis
- Department of Statistics and Computer and Information Sciences, University of Florida, Gainesville, Florida, 32611, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, 5309 Brehm Center, 1000 Wall St., Ann Arbor, Michigan, 48105, USA.
- Michigan Regional Comprehensive Metabolomics Resource Core, Ann Arbor, Michigan, 48105, USA.
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, 48109, USA.
| |
Collapse
|
22
|
Shojaie A. Differential Network Analysis: A Statistical Perspective. WILEY INTERDISCIPLINARY REVIEWS. COMPUTATIONAL STATISTICS 2021; 13:e1508. [PMID: 37050915 PMCID: PMC10088462 DOI: 10.1002/wics.1508] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/03/2020] [Indexed: 11/06/2022]
Abstract
Networks effectively capture interactions among components of complex systems, and have thus become a mainstay in many scientific disciplines. Growing evidence, especially from biology, suggest that networks undergo changes over time, and in response to external stimuli. In biology and medicine, these changes have been found to be predictive of complex diseases. They have also been used to gain insight into mechanisms of disease initiation and progression. Primarily motivated by biological applications, this article provides a review of recent statistical machine learning methods for inferring networks and identifying changes in their structures.
Collapse
Affiliation(s)
- Ali Shojaie
- Department of Biostatistics, University of Washington, Seattle WA
| |
Collapse
|
23
|
Ziegler D, Strom A, Straßburger K, Knebel B, Bönhof GJ, Kotzka J, Szendroedi J, Roden M. Association of cardiac autonomic dysfunction with higher levels of plasma lipid metabolites in recent-onset type 2 diabetes. Diabetologia 2021; 64:458-468. [PMID: 33084971 PMCID: PMC7801358 DOI: 10.1007/s00125-020-05310-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS Emerging evidence suggests that in addition to hyperglycaemia, dyslipidaemia could represent a contributing pathogenetic factor to diabetic neuropathy, while obesity and insulin resistance play a role in the development of diabetic cardiac autonomic neuropathy (CAN) characterised by reduced heart rate variability (HRV), particularly in type 2 diabetes. We hypothesised that distinct lipid metabolites are associated with diminished HRV in recent-onset type 2 diabetes rather than type 1 diabetes. METHODS We analysed 127 plasma lipid metabolites (11 acylcarnitines, 39 NEFA, 12 sphingomyelins (SMs), 56 phosphatidylcholines and nine lysophosphatidylcholines) using MS in participants from the German Diabetes Study baseline cohort recently diagnosed with type 1 (n = 100) and type 2 diabetes (n = 206). Four time-domain HRV indices (number of normal-to-normal (NN) intervals >50 ms divided by the number of all NN intervals [pNN50]; root mean square of successive differences [RMSSD]; SD of NN intervals [SDNN]; and SD of differences between adjacent NN intervals) and three frequency-domain HRV indices (very-low-frequency [VLF], low-frequency [LF] and high-frequency [HF] power spectrum) were computed from NN intervals recorded during a 3 h hyperinsulinaemic-euglycaemic clamp at baseline and in subsets of participants with type 1 (n = 60) and type 2 diabetes (n = 95) after 5 years. RESULTS In participants with type 2 diabetes, after Bonferroni correction and rigorous adjustment, SDNN was inversely associated with higher levels of diacyl-phosphatidylcholine (PCaa) C32:0, PCaa C34:1, acyl-alkyl-phosphatidylcholine (PCae) C36:0, SM C16:0 and SM C16:1. SD of differences between NN intervals was inversely associated with PCaa C32:0, PCaa C34:1, PCaa C34:2, PCae C36:0 and SM C16:1, and RMSSD with PCae C36:0. For VLF power, inverse associations were found with PCaa C30:0, PCaa C32:0, PCaa C32:1, PCaa C34:2 and SM C16:1, and for LF power inverse associations were found with PCaa C32:0 and SM C16:1 (r = -0.242 to r = -0.349; p ≤ 0.0005 for all correlations). In contrast, no associations of lipid metabolites with measures of cardiac autonomic function were noted in participants recently diagnosed with type 1 diabetes. After 5 years, HRV declined due to ageing rather than diabetes, whereby prediction analyses for lipid metabolites were hampered. CONCLUSIONS/INTERPRETATION Higher plasma levels of specific lipid metabolites are closely linked to cardiac autonomic dysfunction in recent-onset type 2 diabetes but not type 1 diabetes, suggesting a role for perturbed lipid metabolism in the early development of CAN in type 2 diabetes. Graphical abstract.
Collapse
Affiliation(s)
- Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany.
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Klaus Straßburger
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Birgit Knebel
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jörg Kotzka
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | | |
Collapse
|
24
|
Chen Z, Liang Q, Wu Y, Gao Z, Kobayashi S, Patel J, Li C, Cai F, Zhang Y, Liang C, Chiba H, Hui SP. Comprehensive lipidomic profiling in serum and multiple tissues from a mouse model of diabetes. Metabolomics 2020; 16:115. [PMID: 33067714 DOI: 10.1007/s11306-020-01732-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 09/28/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Diabetes mellitus is a serious metabolic disorder causing multiple organ damage in human. However, the lipidomic profiles in different organs and their associations are rarely studied in either diabetic patients or animals. OBJECTIVES To evaluate and compare the characteristics of lipid species in serum and multiple tissues in a diabetic mouse model. METHODS Semi-quantitative profiling analyses of intact and oxidized lipids were performed in serum and multiple tissues from a diabetic mouse model fed a high fat diet and treated with streptozotocin by using LC/HRMS and MS/MS. The total content of each lipid class, and the tissue-specific lipid species in all tissue samples were determined and compared by multivariate analyses. RESULTS The diabetic mouse model displayed characteristic differences in serum and multiple organs: the brain and heart showed the largest reduction in cardiolipin, while the kidney had more alterations in triacylglycerol. Interestingly, the lipidomic differences also existed between different regions of the same organ: cardiolipin species with highly polyunsaturated fatty acyls decreased only in atrium but not in ventricle, while renal cortex showed longer fatty acyl chains for both increased and decreased triacylglycerol species than renal medulla. Importantly, diabetes caused an accumulation of lipid hydroperoxides, suggesting that oxidative stress was induced in all organs except for the brain during the development of diabetes. CONCLUSIONS These findings provided novel insight into the organ-specific relationship between diabetes and lipid metabolism, which might be useful for evaluating not only diabetic tissue injury but also the effectiveness of diabetic treatments.
Collapse
Affiliation(s)
- Zhen Chen
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, 060-0812, Japan
| | - Qiangrong Liang
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, 11548, USA
| | - Yue Wu
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, 060-0812, Japan
| | - Zijun Gao
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, 060-0812, Japan
| | - Satoru Kobayashi
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, 11548, USA
| | - Joy Patel
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, 11548, USA
| | - Cairong Li
- Clinical Medical College, Hubei University of Science and Technology, 437100, Xianning, China
| | - Fei Cai
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, 437100, Xianning, China
| | - Youhua Zhang
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, 11548, USA
| | - Chongsheng Liang
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, 060-0812, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi-4-2-1-15, Higashi, Sapporo, 007-0894, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
25
|
Becker S, Carroll LS, Vinberg F. Diabetic photoreceptors: Mechanisms underlying changes in structure and function. Vis Neurosci 2020; 37:E008. [PMID: 33019947 PMCID: PMC8694110 DOI: 10.1017/s0952523820000097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Based on clinical findings, diabetic retinopathy (DR) has traditionally been defined as a retinal microvasculopathy. Retinal neuronal dysfunction is now recognized as an early event in the diabetic retina before development of overt DR. While detrimental effects of diabetes on the survival and function of inner retinal cells, such as retinal ganglion cells and amacrine cells, are widely recognized, evidence that photoreceptors in the outer retina undergo early alterations in diabetes has emerged more recently. We review data from preclinical and clinical studies demonstrating a conserved reduction of electrophysiological function in diabetic retinas, as well as evidence for photoreceptor loss. Complementing in vivo studies, we discuss the ex vivo electroretinography technique as a useful method to investigate photoreceptor function in isolated retinas from diabetic animal models. Finally, we consider the possibility that early photoreceptor pathology contributes to the progression of DR, and discuss possible mechanisms of photoreceptor damage in the diabetic retina, such as enhanced production of reactive oxygen species and other inflammatory factors whose detrimental effects may be augmented by phototransduction.
Collapse
Affiliation(s)
- Silke Becker
- John A. Moran Eye Center, University of Utah, Salt Lake City, Utah
| | - Lara S Carroll
- John A. Moran Eye Center, University of Utah, Salt Lake City, Utah
| | - Frans Vinberg
- John A. Moran Eye Center, University of Utah, Salt Lake City, Utah
| |
Collapse
|
26
|
Guo K, Eid SA, Elzinga SE, Pacut C, Feldman EL, Hur J. Genome-wide profiling of DNA methylation and gene expression identifies candidate genes for human diabetic neuropathy. Clin Epigenetics 2020; 12:123. [PMID: 32787975 PMCID: PMC7425575 DOI: 10.1186/s13148-020-00913-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) is the most common complication of type 2 diabetes (T2D). Although the cellular and molecular mechanisms of DPN are poorly understood, we and others have shown that altered gene expression and DNA methylation are implicated in disease pathogenesis. However, how DNA methylation might functionally impact gene expression and contribute to nerve damage remains unclear. Here, we analyzed genome-wide transcriptomic and methylomic profiles of sural nerves from T2D patients with DPN. RESULTS Unbiased clustering of transcriptomics data separated samples into groups, which correlated with HbA1c levels. Accordingly, we found 998 differentially expressed genes (DEGs) and 929 differentially methylated genes (DMGs) between the groups with the highest and lowest HbA1c levels. Functional enrichment analysis revealed that DEGs and DMGs were enriched for pathways known to play a role in DPN, including those related to the immune system, extracellular matrix (ECM), and axon guidance. To understand the interaction between the transcriptome and methylome in DPN, we performed an integrated analysis of the overlapping genes between DEGs and DMGs. Integrated functional and network analysis identified genes and pathways modulating functions such as immune response, ECM regulation, and PI3K-Akt signaling. CONCLUSION These results suggest for the first time that DNA methylation is a mechanism regulating gene expression in DPN. Overall, DPN patients with high HbA1c have distinct alterations in sural nerve DNA methylome and transcriptome, suggesting that optimal glycemic control in DPN patients is an important factor in maintaining epigenetic homeostasis and nerve function.
Collapse
Affiliation(s)
- Kai Guo
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 1301 North Columbia Rd. Stop 9037, Grand Forks, ND 58202-9037 USA
| | - Stephanie A. Eid
- Department of Neurology, School of Medicine, University of Michigan, Ann Arbor, MI 48109 USA
| | - Sarah E. Elzinga
- Department of Neurology, School of Medicine, University of Michigan, Ann Arbor, MI 48109 USA
| | - Crystal Pacut
- Department of Neurology, School of Medicine, University of Michigan, Ann Arbor, MI 48109 USA
| | - Eva L. Feldman
- Department of Neurology, School of Medicine, University of Michigan, Ann Arbor, MI 48109 USA
| | - Junguk Hur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 1301 North Columbia Rd. Stop 9037, Grand Forks, ND 58202-9037 USA
| |
Collapse
|
27
|
Zhang Q, Song W, Liang X, Xie J, Shi Y, Shi X, Qiu B, Chen X. A Metabolic Insight Into the Neuroprotective Effect of Jin-Mai-Tong (JMT) Decoction on Diabetic Rats With Peripheral Neuropathy Using Untargeted Metabolomics Strategy. Front Pharmacol 2020; 11:221. [PMID: 32194428 PMCID: PMC7066215 DOI: 10.3389/fphar.2020.00221] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/18/2020] [Indexed: 12/20/2022] Open
Abstract
Jin-Mai-Tong (JMT) decoction is a traditional Chinese compound prescription for treating diabetic peripheral neuropathy (DPN). The aim of this study is to investigate the neuroprotective effect of JMT decoction on diabetic rats with peripheral neuropathy and to elucidate the potential mechanism based on a metabolomics approach. Sprague-Dawley (SD) rats were randomly divided into four groups: control group, Streptozotocin (STZ) induced model group, JMT low dose (JMT-L) treated group and JMT high dose (JMT-H) treated group. After 12 weeks of treatment, behavioral changes, small fiber loss, and histopathological damages of sciatic nerves were estimated. Serum samples were collected for untargeted metabolomics analysis based on UPLC/QTOF-MS and multivariate statistics. As a result, JMT treatment at two dosages (13.9 and 27.8 g/kg⋅d) evidently improved the mechanical pain threshold (P < 0.05), increased the intraepidermal nerve fiber density (IENFD) and subepidermal nerve fiber density (SNFD) (P < 0.05), and renovated the demyelination and axonal atrophy of sciatic nerves on DPN rats. Furthermore, metabolomics study revealed that the serum metabolic profiles altered significantly among the control group and the STZ-induced model group. A total of 21 metabolites were identified as potential biomarkers related to the therapeutic effect of JMT decoction. Among them, 16 biomarkers were found in both JMT-H and JMT-L treated groups, while the five others were specific to JMT-H group. These metabolites mainly involved in lipid metabolism, tricarboxylic acid (TCA) cycle, amino acid metabolism, and so on. Besides, correlation analysis indicated that both mechanical pain threshold and distal nerve fiber density were negatively correlated with the serum levels of metabolites from lipid metabolism and TCA cycle. In conclusion, the results demonstrated that JMT decoction has an obvious protective effect against DPN, which could be mediated via ameliorating the metabolic disorders in diabetic rats with peripheral neuropathy.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Song
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaochun Liang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jun Xie
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yue Shi
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaohu Shi
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Bintao Qiu
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiuting Chen
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
28
|
Callaghan BC, Reynolds EL, Banerjee M, Chant E, Villegas-Umana E, Gardner TW, Votruba K, Giordani B, Pop-Busui R, Pennathur S, Feldman EL. The Prevalence and Determinants of Cognitive Deficits and Traditional Diabetic Complications in the Severely Obese. Diabetes Care 2020; 43:683-690. [PMID: 31932459 PMCID: PMC7035591 DOI: 10.2337/dc19-1642] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/24/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To determine the prevalence of cognitive deficits and traditional diabetic complications and the association between metabolic factors and these outcomes. RESEARCH DESIGN AND METHODS We performed a cross-sectional study in severely obese individuals before bariatric surgery. Lean control subjects were recruited from a research website. Cognitive deficits were defined by the National Institutes of Health (NIH) Toolbox (<5th percentile for lean control subjects). Cardiovascular autonomic neuropathy (CAN) was defined by an expiration-to-inspiration (E-to-I) ratio of <5th percentile for lean control subjects. Retinopathy was based on retinal photographs and nephropathy on the estimated glomerular filtration rate (<60 mg/dL) and/or the albumin-to-creatinine ratio (ACR) (≥30 mg/g). NIH Toolbox, E-to-I ratio, mean deviation on frequency doubling technology testing, and ACR were used as sensitive measures of these outcomes. We used multivariable linear regression to explore associations between metabolic factors and these outcomes. RESULTS We recruited 138 severely obese individuals and 46 lean control subjects. The prevalence of cognitive deficits, CAN, retinopathy, and nephropathy were 6.5%, 4.4%, 0%, and 6.5% in lean control subjects; 22.2%, 18.2%, 0%, and 6.1% in obese participants with normoglycemia; 17.7%, 21.4%, 1.9%, and 17.9% in obese participants with prediabetes; and 25.6%, 31.9%, 6.1%, and 16.3% in obese participants with diabetes. Waist circumference was significantly associated with cognitive function (-1.48; 95% CI -2.38, -0.57) and E-to-I ratio (-0.007; 95% CI -0.012, -0.002). Prediabetes was significantly associated with retinal function (-1.78; 95% CI -3.56, -0.002). CONCLUSIONS Obesity alone is likely sufficient to cause cognitive deficits but not retinopathy or nephropathy. Central obesity is the key metabolic risk factor.
Collapse
|
29
|
O'Brien PD, Guo K, Eid SA, Rumora AE, Hinder LM, Hayes JM, Mendelson FE, Hur J, Feldman EL. Integrated lipidomic and transcriptomic analyses identify altered nerve triglycerides in mouse models of prediabetes and type 2 diabetes. Dis Model Mech 2020; 13:dmm.042101. [PMID: 31822493 PMCID: PMC6994925 DOI: 10.1242/dmm.042101] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/29/2019] [Indexed: 12/16/2022] Open
Abstract
Peripheral neuropathy (PN) is a complication of prediabetes and type 2 diabetes (T2D). Increasing evidence suggests that factors besides hyperglycaemia contribute to PN development, including dyslipidaemia. The objective of this study was to determine differential lipid classes and altered gene expression profiles in prediabetes and T2D mouse models in order to identify the dysregulated pathways in PN. Here, we used high-fat diet (HFD)-induced prediabetes and HFD/streptozotocin (STZ)-induced T2D mouse models that develop PN. These models were compared to HFD and HFD-STZ mice that were subjected to dietary reversal. Both untargeted and targeted lipidomic profiling, and gene expression profiling were performed on sciatic nerves. Lipidomic and transcriptomic profiles were then integrated using complex correlation analyses, and biological meaning was inferred from known lipid-gene interactions in the literature. We found an increase in triglycerides (TGs) containing saturated fatty acids. In parallel, transcriptomic analysis confirmed the dysregulation of lipid pathways. Integration of lipidomic and transcriptomic analyses identified an increase in diacylglycerol acyltransferase 2 (DGAT2), the enzyme required for the last and committed step in TG synthesis. Increased DGAT2 expression was present not only in the murine models but also in sural nerve biopsies from hyperlipidaemic diabetic patients with PN. Collectively, these findings support the hypothesis that abnormal nerve-lipid signalling is an important factor in peripheral nerve dysfunction in both prediabetes and T2D. This article has an associated First Person interview with the joint first authors of the paper. Summary: Mouse models of prediabetes and type 2 diabetes that develop peripheral neuropathy display increased levels of nerve triglycerides, which return to normal upon dietary reversal, suggesting that altered lipids are involved in disease.
Collapse
Affiliation(s)
- Phillipe D O'Brien
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Kai Guo
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | - Stephanie A Eid
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Amy E Rumora
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Lucy M Hinder
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - John M Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Faye E Mendelson
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| |
Collapse
|
30
|
Tan SM, Ziemann M, Thallas-Bonke V, Snelson M, Kumar V, Laskowski A, Nguyen TV, Huynh K, Clarke MV, Libianto R, Baker ST, Skene A, Power DA, MacIsaac RJ, Henstridge DC, Wetsel RA, El-Osta A, Meikle PJ, Wilson SG, Forbes JM, Cooper ME, Ekinci EI, Woodruff TM, Coughlan MT. Complement C5a Induces Renal Injury in Diabetic Kidney Disease by Disrupting Mitochondrial Metabolic Agility. Diabetes 2020; 69:83-98. [PMID: 31624141 DOI: 10.2337/db19-0043] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 10/08/2019] [Indexed: 11/13/2022]
Abstract
The sequelae of diabetes include microvascular complications such as diabetic kidney disease (DKD), which involves glucose-mediated renal injury associated with a disruption in mitochondrial metabolic agility, inflammation, and fibrosis. We explored the role of the innate immune complement component C5a, a potent mediator of inflammation, in the pathogenesis of DKD in clinical and experimental diabetes. Marked systemic elevation in C5a activity was demonstrated in patients with diabetes; conventional renoprotective agents did not therapeutically target this elevation. C5a and its receptor (C5aR1) were upregulated early in the disease process and prior to manifest kidney injury in several diverse rodent models of diabetes. Genetic deletion of C5aR1 in mice conferred protection against diabetes-induced renal injury. Transcriptomic profiling of kidney revealed diabetes-induced downregulation of pathways involved in mitochondrial fatty acid metabolism. Interrogation of the lipidomics signature revealed abnormal cardiolipin remodeling in diabetic kidneys, a cardinal sign of disrupted mitochondrial architecture and bioenergetics. In vivo delivery of an orally active inhibitor of C5aR1 (PMX53) reversed the phenotypic changes and normalized the renal mitochondrial fatty acid profile, cardiolipin remodeling, and citric acid cycle intermediates. In vitro exposure of human renal proximal tubular epithelial cells to C5a led to altered mitochondrial respiratory function and reactive oxygen species generation. These experiments provide evidence for a pivotal role of the C5a/C5aR1 axis in propagating renal injury in the development of DKD by disrupting mitochondrial agility, thereby establishing a new immunometabolic signaling pathway in DKD.
Collapse
Affiliation(s)
- Sih Min Tan
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| | - Mark Ziemann
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Vicki Thallas-Bonke
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| | - Matthew Snelson
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| | - Vinod Kumar
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Adrienne Laskowski
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| | | | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Michele V Clarke
- Department of Endocrinology, Austin Health, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Renata Libianto
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Scott T Baker
- Department of Endocrinology, Austin Health, Melbourne, Victoria, Australia
| | - Alison Skene
- Department of Anatomical Pathology, Austin Health, Melbourne, Victoria, Australia
| | - David A Power
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Department of Nephrology and Institute for Breathing and Sleep, Austin Health, Melbourne, Victoria, Australia
| | - Richard J MacIsaac
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Department of Endocrinology and Diabetes, St Vincent's Hospital, Melbourne, Victoria, Australia
| | | | - Rick A Wetsel
- Research Center for Immunology and Autoimmune Diseases, Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas-Houston, Houston, TX
| | - Assam El-Osta
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Scott G Wilson
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Renal Medicine, Alfred Health, Melbourne, Victoria, Australia
| | - Josephine M Forbes
- Glycation and Diabetes Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Mark E Cooper
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| | - Elif I Ekinci
- Department of Endocrinology, Austin Health, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Melinda T Coughlan
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, Australia
| |
Collapse
|
31
|
Afshinnia F, Nair V, Lin J, Rajendiran TM, Soni T, Byun J, Sharma K, Fort PE, Gardner TW, Looker HC, Nelson RG, Brosius FC, Feldman EL, Michailidis G, Kretzler M, Pennathur S. Increased lipogenesis and impaired β-oxidation predict type 2 diabetic kidney disease progression in American Indians. JCI Insight 2019; 4:130317. [PMID: 31573977 PMCID: PMC6948762 DOI: 10.1172/jci.insight.130317] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUNDIn this study, we identified the lipidomic predictors of early type 2 diabetic kidney disease (DKD) progression, which are currently undefined.METHODSThis longitudinal study included 92 American Indians with type 2 diabetes. Serum lipids (406 from 18 classes) were quantified using mass spectrometry from baseline samples when iothalamate-based glomerular filtration rate (GFR) was at least 90 mL/min. Affymetrix GeneChip Array was used to measure renal transcript expression. DKD progression was defined as at least 40% decline in GFR during follow-up.RESULTSParticipants had a mean age of 45 ± 9 years and median urine albumin/creatinine ratio of 43 (interquartile range 11-144). The 32 progressors had significantly higher relative abundance of polyunsaturated triacylglycerols (TAGs) and a lower abundance of C16-C20 acylcarnitines (ACs) (P < 0.001). In a Cox regression model, the main effect terms of unsaturated free fatty acids and phosphatidylethanolamines and the interaction terms of C16-C20 ACs and short-low-double-bond TAGs by categories of albuminuria independently predicted DKD progression. Renal expression of acetyl-CoA carboxylase-encoding gene (ACACA) correlated with serum diacylglycerols in the glomerular compartment (r = 0.36, and P = 0.006) and with low-double-bond TAGs in the tubulointerstitial compartment (r = 0.52, and P < 0.001).CONCLUSIONCollectively, the findings reveal a previously unrecognized link between lipid markers of impaired mitochondrial β-oxidation and enhanced lipogenesis and DKD progression in individuals with preserved GFR. Renal acetyl-CoA carboxylase activation accompanies these lipidomic changes and suggests that it may be the underlying mechanism linking lipid abnormalities to DKD progression.TRIAL REGISTRATIONClinicalTrials.gov, NCT00340678.FUNDINGNIH R24DK082841, K08DK106523, R03DK121941, P30DK089503, P30DK081943, and P30DK020572.
Collapse
Affiliation(s)
- Farsad Afshinnia
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Viji Nair
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jiahe Lin
- Department of Statistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Thekkelnaycke M. Rajendiran
- Michigan Regional Comprehensive Metabolomics Resource Core and
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Tanu Soni
- Michigan Regional Comprehensive Metabolomics Resource Core and
| | - Jaeman Byun
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kumar Sharma
- Division of Nephrology, Department of Internal Medicine, University of Texas Health at San Antonio, San Antonio, Texas, USA
| | - Patrice E. Fort
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Thomas W. Gardner
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Helen C. Looker
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA
| | - Robert G. Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona, USA
| | - Frank C. Brosius
- Division of Nephrology, Department of Medicine, University of Arizona College of Medicine, Tuscan, Arizona, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - George Michailidis
- Department of Statistics and
- Informatics Institute, University of Florida, Gainesville, Florida, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Michigan Regional Comprehensive Metabolomics Resource Core and
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
32
|
Mathew AV, Jaiswal M, Ang L, Michailidis G, Pennathur S, Pop-Busui R. Impaired Amino Acid and TCA Metabolism and Cardiovascular Autonomic Neuropathy Progression in Type 1 Diabetes. Diabetes 2019; 68:2035-2044. [PMID: 31337616 PMCID: PMC6754246 DOI: 10.2337/db19-0145] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023]
Abstract
While diabetes is characterized by hyperglycemia, nutrient metabolic pathways like amino acid and tricarboxylic acid (TCA) cycle are also profoundly perturbed. As glycemic control alone does not prevent complications, we hypothesized that these metabolic disruptions are responsible for the development and progression of diabetic cardiovascular autonomic neuropathy (CAN). We performed standardized cardiovascular autonomic reflex tests and targeted fasting plasma metabolomic analysis of amino acids and TCA cycle intermediates in subjects with type 1 diabetes and healthy control subjects followed for 3 years. Forty-seven participants with type 1 diabetes (60% female and mean ± SD age 35 ± 13 years, diabetes duration 13 ± 7 years, and HbA1c 7.9 ± 1.2%) had lower fumarate levels and higher threonine, serine, proline, asparagine, aspartic acid, phenylalanine, tyrosine, and histidine levels compared with 10 age-matched healthy control subjects. Higher baseline fumarate levels and lower baseline amino acid levels-asparagine and glutamine-correlate with CAN (lower baseline SD of normal R-R interval [SDNN]). Baseline glutamine and ornithine levels also associated with the progression of CAN (lower SDNN at 3 years) and change in SDNN, respectively, after adjustment for baseline HbA1c, blood glucose, BMI, cholesterol, urine microalbumin-to- creatinine ratio, estimated glomerular filtration rate, and years of diabetes. Therefore, significant changes in the anaplerotic flux into the TCA cycle could be the critical defect underlying CAN progression.
Collapse
Affiliation(s)
- Anna V Mathew
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Mamta Jaiswal
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Lynn Ang
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | | | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Rodica Pop-Busui
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| |
Collapse
|
33
|
Eid S, Sas KM, Abcouwer SF, Feldman EL, Gardner TW, Pennathur S, Fort PE. New insights into the mechanisms of diabetic complications: role of lipids and lipid metabolism. Diabetologia 2019; 62:1539-1549. [PMID: 31346658 PMCID: PMC6679814 DOI: 10.1007/s00125-019-4959-1] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/21/2019] [Indexed: 02/07/2023]
Abstract
Diabetes adversely affects multiple organs, including the kidney, eye and nerve, leading to diabetic kidney disease, diabetic retinopathy and diabetic neuropathy, respectively. In both type 1 and type 2 diabetes, tissue damage is organ specific and is secondary to a combination of multiple metabolic insults. Hyperglycaemia, dyslipidaemia and hypertension combine with the duration and type of diabetes to define the distinct pathophysiology underlying diabetic kidney disease, diabetic retinopathy and diabetic neuropathy. Only recently have the commonalities and differences in the metabolic basis of these tissue-specific complications, particularly those involving local and systemic lipids, been systematically examined. This review focuses on recent progress made using preclinical models and human-based approaches towards understanding how bioenergetics and metabolomic profiles contribute to diabetic kidney disease, diabetic retinopathy and diabetic neuropathy. This new understanding of the biology of complication-prone tissues highlights the need for organ-specific interventions in the treatment of diabetic complications.
Collapse
Affiliation(s)
- Stephanie Eid
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Kelli M Sas
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Steven F Abcouwer
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Thomas W Gardner
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, 1000 Wall Street, Ann Arbor, MI, 48105, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Patrice E Fort
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, 1000 Wall Street, Ann Arbor, MI, 48105, USA.
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
34
|
Rumora AE, Savelieff MG, Sakowski SA, Feldman EL. Disorders of mitochondrial dynamics in peripheral neuropathy: Clues from hereditary neuropathy and diabetes. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 145:127-176. [PMID: 31208522 PMCID: PMC11533248 DOI: 10.1016/bs.irn.2019.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Peripheral neuropathy is a common and debilitating complication of diabetes and prediabetes. Recent clinical studies have identified an association between the development of neuropathy and dyslipidemia in prediabetic and diabetic patients. Despite the prevalence of this complication, studies identifying molecular mechanisms that underlie neuropathy progression in prediabetes or diabetes are limited. However, dysfunctional mitochondrial pathways in hereditary neuropathy provide feasible molecular targets for assessing mitochondrial dysfunction in neuropathy associated with prediabetes or diabetes. Recent studies suggest that elevated levels of dietary saturated fatty acids (SFAs) associated with dyslipidemia impair mitochondrial dynamics in sensory neurons by inducing mitochondrial depolarization, compromising mitochondrial bioenergetics, and impairing axonal mitochondrial transport. This causes lower neuronal ATP and apoptosis. Conversely, monounsaturated fatty acids (MUFAs) restore nerve and sensory mitochondrial function. Understanding the mitochondrial pathways that contribute to neuropathy progression in prediabetes and diabetes may provide therapeutic targets for the treatment of this debilitating complication.
Collapse
Affiliation(s)
- Amy E Rumora
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Masha G Savelieff
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Stacey A Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
35
|
Hinder LM, Sas KM, O'Brien PD, Backus C, Kayampilly P, Hayes JM, Lin CM, Zhang H, Shanmugam S, Rumora AE, Abcouwer SF, Brosius FC, Pennathur S, Feldman EL. Mitochondrial uncoupling has no effect on microvascular complications in type 2 diabetes. Sci Rep 2019; 9:881. [PMID: 30696927 PMCID: PMC6351661 DOI: 10.1038/s41598-018-37376-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/28/2018] [Indexed: 12/30/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN), diabetic kidney disease (DKD), and diabetic retinopathy (DR) contribute to significant morbidity and mortality in diabetes patients. The incidence of these complications is increasing with the diabetes epidemic, and current therapies minimally impact their pathogenesis in type 2 diabetes (T2D). Improved mechanistic understanding of each of the diabetic complications is needed in order to develop disease-modifying treatments for patients. We recently identified fundamental differences in mitochondrial responses of peripheral nerve, kidney, and retinal tissues to T2D in BKS-db/db mice. However, whether these mitochondrial adaptations are the cause or consequence of tissue dysfunction remains unclear. In the current study BKS-db/db mice were treated with the mitochondrial uncoupler, niclosamide ethanolamine (NEN), to determine the effects of mitochondrial uncoupling therapy on T2D, and the pathogenesis of DPN, DKD and DR. Here we report that NEN treatment from 6-24 wk of age had little effect on the development of T2D and diabetic complications. Our data suggest that globally targeting mitochondria with an uncoupling agent is unlikely to provide therapeutic benefit for DPN, DKD, or DR in T2D. These data also highlight the need for further insights into the role of tissue-specific metabolic reprogramming in the pathogenesis of diabetic complications.
Collapse
Affiliation(s)
- Lucy M Hinder
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kelli M Sas
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Phillipe D O'Brien
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Carey Backus
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Pradeep Kayampilly
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - John M Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Cheng-Mao Lin
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Hongyu Zhang
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sumathi Shanmugam
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Amy E Rumora
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Steven F Abcouwer
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Frank C Brosius
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|